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Abstract. We argue the case for a new paradigm for architecting structured P2P
overlay networks, coined AESOP. AESOP consists of 3 layers: (i) an architecture,
PLANES, that ensures significant performance speedups, assuming knowledge
of altruistic peers; (ii) an accounting/auditing layer, AltSeAl, that identifies and
validates altruistic peers; and (iii) SeAledPLANES, a layer that facilitates the
coordination/collaboration of the previous two components. We briefly present
these components along with experimental and analytical data of the promised
significant performance gains and the related overhead. In light of these very
encouraging results, we put this three-layer architecture paradigm forth as the
way to structure the P2P overlay networks of the future.

1 Introduction

P2P networks have recently been receiving an everincreasing recognition and attention.
Given the desirable characteristics and the inherent promises of the peer-to-peer com-
puting paradigm, attention is likely to increase in the coming years. Within the related
research a fundamental problem of "routing" (lookup) in P2P networks has received
special attention; given a request arriving at a specific peer node, for a document id,
route the request to the peer in the network, which stores the document.

Recent research in P2P networks has largely focused on structuring efforts for the
network overlay so to ensure the fast routing of requests to the peers storing the re-
quested objects. Most prominent in these efforts is a class of P2P network overlays
based on Distributed Hash Tables (DHTs). DHT-based solutions [1–4] can provide
routing in the steady-state case in O(logN) hops, in a network of N peers, providing
routing efficiency and scalability. These performance characteristics constituted an im-
portant step forward, compared to the original, pioneering attempts for "unstructured"
P2P networks [5, 6]. In unstructured networks related overheads are much higher and
no guarantees can be given for the efficiency or the locating of the requested documents.

Currently, there are efforts underway for bridging this structure chasm: unstruc-
tured networks are being enriched with DHTs (e.g., Limewire[7] and Mnet[8] (ex-
Mojonation[9]) with Chord[2]) and structured networks aim to deal effectively with the
operational characteristics found in applications built on top of unstructured networks
(e.g., Structella [10]).
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1.1 Our Perspectives and Position

Real-world Perspective Our starting position is that our world consists of altruists,
selfish people, and of others with behavior ranging in between, with a non-negligible
percentage of the last category showing altruistic behavior if given the incentives to
do so. Within the world of P2P networks this fact has been clearly manifested and
documented: take as example the ’free riders’[11] phenomenon, first measured in the
Gnutella network.

The bad news is that the great majority of Gnutella peers were proven to be free
riders (more than 70%). And this is indeed very bad news for DHT-style overlays, since
the great majority of peers may be joining the network and leaving very soon thereafter
– [12] have show that the median session duration in Gnutella and Napster is approx-
imately 60 minutes! There also exist other independent reports offering evidence that
half of the peer population is changing almost every half an hour[13].

The good news are that a non-negligible percentage of the peers were proven to be
altruistic1. In Mojonation[9], more than 1-2% of all users, stayed connected almost all
the time. In Gnutella, 1% (10%) of peers served about 40% (90%) of the total requests
[11], while [12] have shown that the longer a node has been up, the more likely it is
to remain up. Note that the routing algorithm in Gnutella acts as a counter-incentive
to acting altruistically, flooding peers with requests. Also, the majority of Mojo Nation
users were dissatisfied with it and that is why they permanently disconnected. Thus, we
conjecture that, by giving incentives (to avoid the so-called tragedy of the commons)
and taking away such counter-incentives, more network nodes will be willing to act
altruistically.

Research Perspective Looking at related research in DHT-structured P2P networks,
one notices that given a highly-dynamic environment, routing performance degrades to
O(N) hops (that is, if the network remains connected). Fundamentally, this is due to the
difficulty in keeping up with the required updates to routing state for special neighbors
which ensureO(logN) hops in the steady-state case. Much to their credit, the authors in
[14] studied how to guarantee in highly-dynamic cases O(logN) routing performance.
To do this, O(log2N) so-called stabilization “rounds” need be ran by every node every
half-life to update routing state (successors, predecessors, and fingers). However, this
(i) transfers overhead from routing to the stabilization phases, (ii) this solution is ex-
pensive, yielding a total message overhead of O(NlogN) per half life: e.g., each node
in an one-million node network needs to run on the order of 400 stabilization rounds,
say, every half hour!, and (iii) detecting the presence/absence of low-bandwidth nodes
(which are the great majority) during stabilization is time- consuming and highly er-
ror prone (think of nodes behind 56Kbits lines). Hence, given the huge scales and the

1 There is some disagreement whether this is true altruistic behaviour or a positive externality
(i.e., a benefit to the community that results from peers acting in their own self- interest);
Nonetheless, be it altruism or "altruism", the benefits to the community contributed by these
peers are recognized by all!

For this reason and for brevity in the remaining discussion we refer to altruistic nodes im-
plying both altruistic and powerful nodes



highly- dynamic nature of the vast majority of peers, current architectures fail to ensure
O(logN) routing in the highly- dynamic case.

Furthermore, even O(logN) hops, achieved in steady-state assuming ’good node
behavior’, may not be good enough; after all, these are overlay hops with each being
translated into multiple physical network hops. In addition, even O(logN) hops over
peers with low bandwidth will definitely create performance problems. Finally, within
the DHT world there is a complete lack of attention on exploiting powerful peers in
order to improve performance.

But even when considering the unstructured P2P research efforts, one also notices a
lack of considerable attention on research exploiting the heterogeneities among peer
nodes [12]. As an exception, [15] talk about exploiting powerful nodes, which are
thought of consisting of a number of smaller, “virtual” nodes. This transforms sev-
eral hops among weaker nodes, into internal “virtual hops” within a powerful peer.
[16] presents distributed algorithms to force-flow increased loads towards more capa-
ble nodes.

But still, heterogeneity means more than a mere distinction between powerful and
weak nodes; there is also heterogeneity with respect to their behavior, being altruistic or
selfish. For example, there will be powerful nodes that will not be acting altruistically.
It is reasonable to expect that altruistic nodes will tend to have greater (processing,
memory, and bandwidth) capabilities, willing to share them (when not in use) with
others (practically at very small extra costs, given the flat-rate resource pricing) . This
expectation has been validated in [13].

Despite this, the aforementioned related work has made some good progress, show-
ing the way in exploiting powerful nodes. Similar to our work, they are criticizing DHTs
and structured overlays in failing to cope with highly-dynamic environments, such as
the ones expected in sharing P2P networks [17]. However, this led them to avoid using
structured overlays, which unfortunately led to their inability to deliver definite perfor-
mance guarantees, with respect to routing hop counts and robustness. Conversely, we
follow a different path; we add further structure to DHTs, leveraging altruistic peers. In
this way, we can deliver definite performance guarantees for the steady-case and, per-
haps more importantly, for the highly-dynamic cases. Over and above any hop-count
improvements, we ensure a more stable infrastructure, especially during high churn[18].

Fundamental Peer Characteristics and Implications In general, in this work we
define altruistic peers to be the peers having the following characteristics. They:

– stay connected for significantly longer periods of time, and
– are willing and possess the necessary capacity to accept greater loads.

With these altruists’ characteristics in mind we revisit the “traditional” arguments
about routing hot spots and about the overhead in dealing with the frequent topology
changes inherent in P2P networks. Specifically:

– It is a good idea to concentrate most routing chores at altruistic peers; these peers
are willing to carry extra load and have the required capabilities to do so. This
results in more efficient routing than forcing weaker nodes to partake heavily in the
routing tasks.



– The above decision will undoubtedly create greater routing tables at altruists. Tradi-
tionally, this causes greater reorganization overhead incurred when nodes enter and
leave the network. However, the additional routing table entries of altruists will con-
cern other altruistic peers. Because these stay connected for long periods of time,
maintaining the freshness of this extra routing state does not result in prohibitively
increased bandwidth overheads.

Our Position and Contributions This paper intends to show how to leverage the
coexistence of altruists and selfish peers found in real-life networks and harness them to
improve routing performance. We will focus on structured networks, and in particular
we will base our proposal on the desirable characteristics of Chord2, which include its
simplicity, its acceptability within the community (as evidenced by the systems utilizing
it, which include Limewire, MNet, Sun’s JXTA, and others) and its flexibility [19].
However, the proposed architecture can also be applied on other DHTs as well. More
specifically, our position is:

1. Weaving into the structured P2P network architectures the behavior and capabil-
ity differences of peers, much-needed, quantifiable, and significant further routing
speedups can be attained.

2. Routing speedups should refer to hop counts, routing state size and maintenance
requirements, and robustness, and they should not be achieved by transferring over-
head to other system operation phases (e.g., stabilization).

3. Routing speedups should pertain to the steady-state and highly-dynamic cases.
4. Altruistic and powerful nodes can be harnessed to offer these significant efficiency

gains, while requiring that only a very small percentage of peers be altruistic, being
burdened with only small overheads.

5. A software layer responsible for identifying and managing altruistic and powerful
nodes can go long ways in offering these significant efficiency gains, while requir-
ing that only a very small percentage of peers be altruistic, being burdened with
only small overheads.

6. As a result, a paradigm that facilitates the cooperation of an altruist-based architec-
ture and an auditing/accounting layer identifying altruist nodes is needed in order
to take the next step in structured P2P network architectures.

2 PLANES: Altruists to the Rescue

In PLANES, node and document IDs consist of m bits, allowing N ≤ 2m nodes and
documents. A small percentage of nodes (i.e. A << N) is altruistic.

2.1 Architecting Layered, Altruism-based P2P Networks

The fundamentals of our approach are:

2 Due to this, the log()-notation in the examples to follow refers to base-2 logarithms.



1. The N nodes are partitioned into DHT-structured clusters. For each cluster, a DHT-
structured overlay network is created. (Note that any similar structure of choice
can be used instead of DHTs, such as [20, 21] yielding similar relative performance
gains to that we show for DHTs). Given the desired cluster size, S, and the number
of clusters, C , overall, C = N

S clusters are formed.
2. Each node requires minimal overhead for associating node IDs with cluster IDs

(e.g. by hashing node IDs to cluster IDs).
3. The vast majority of a cluster’s peers are selfish. Within each cluster there exists at

least one altruistic peer.
4. Altruistic peers maintain greater routing state, with an entry for all other altruists,

creating a completely connected altruistic overlay network. Thus, communication
between altruistic nodes (and thus between clusters) requires 1 hop3. Later, we will
do away with the complete connectivity requirement.

5. Within every DHT cluster, all nodes maintain routing state for their neighbors, as
required by the cluster’s DHT. Thus, each node has O(logS) neighbors. Also, all
nodes keep routing state pointing to the altruistic node(s) in their cluster.

Routing is performed in two levels:

1. Across clusters, from any node to a node in a different cluster: given the completely-
connected altruistic overlay network, routing to reach any cluster from outside the
cluster requires two overlay hops: one hop from a node to its altruist and another
from this altruist to the altruist of the target cluster.

2. Within clusters, from any node (including an altruistic node) to another node in the
same cluster: routing is performed by sending the message over the cluster DHT
network.

Fig. 1 visualizes an example layered P2P network.

Forming Clusters Using Consistent Hashing We present one possible alternative for
cluster formation.

1. Clusters are assigned IDs as follows:
ID(ci) = 2m

C · (i− 1), i = 1, . . . , C
2. Using consistent hashing[22]4 each node ID is mapped to one of the C cluster IDs:

node nj is assigned to cluster ci if ID(ci) < ID(nj) < ID(ci+1). Thus, step 1
partitions a Chord ring into C subrings, onto which node IDs are assigned (see fig.
2).

3. Using consistent hashing once more each node ID is placed within its cluster (sub-
ring).

Figure 2 illustrates the clusters fomred for a network of eight clusters.

3 In practice, we talk about a "highly-connected" altruistic network, and O(1) hops since com-
plete connectivity is hard to achieve.

4 Consistent hashing ensures that, with high probability, all clusters will have equal numbers of
peer nodes (with negligible differences).



Fig. 1. An Example Network with
N=30, C=6, S=5

Fig. 2. Forming Clusters in an
Altruism-based P2P Network – A
Chord Ring of Chord Rings

2.2 PLANES Algorithms

Routing The routing algorithm is called at a node with srcNodeId, requesting docId,
and produces the nodeId storing this document. In the algorithm, there are two func-
tions used to send messages: send() and Route() (uses the cluster’s DHT to route the
message).

PLANESRouting (srcNodeId, docId): nodeId
1: srcNodeId.send (srcAltrNodeId, docId); /* send request to altruist within source cluster */
2: ClusterId := srcAltrNodeId.ConsistentHash(docId); /* id target cluster */
3: destAltrNodeId:=srcAltrNodeId.LookUp (ClusterId); /* get target cluster’s altruistic node id

*/
4: srcAltrNodeId.send (destAltrNodeId, docId); /* send to target cluster’s altruistic peer */
5: nodeId := destAltrNodeId.Route (ClusterId, docId); /* route to node in target cluster and

return its id */

Addition and Deletion of Documents The id of the document being added is hashed
to, first, the proper cluster and then, using the cluster’s DHT document addition proto-
col, to one of the cluster’s nodes where it is stored. Deleting a document requires no
extra state maintenance.

Addition and Deletion of Peer Nodes A node (altruistic or not) ni joins the network,
as usual, by finding the address of any member node, say of cluster cs. Communicating
with it, finds the address of the altruistic node for cs. Then the id of the cluster to which
it will belong, cd, is determined by hashing the id of ni, as explained earlier in sec. 2.1
(discussing cluster formation using consistent hashing). The altruistic node of the target
cluster cd is then found using the altruist for cs. Finally, ni joins the DHT structure of
the target cluster, using the DHT join protocol and including an entry in its routing table
for the cluster’s altruist.



Adding an altruist also involves communication within the altruist network to store
the altruist network’s routing table and update the other altruists’ tables to include it.
Further, all DHT-cluster nodes need add an entry for it.

A node leaving the network affects only the cluster’s DHT structure, calling on the
leave protocol of the DHT. Altruist deletion requires informing its cluster nodes and
may require finding a replacement for it, e.g., if it is the last altruist for its cluster. This
can be done examining its local routing table and selecting another altruist (typically
one that is associated with a small number of clusters).

2.3 Performance of Routing in PLANES

To illustrate the improved efficiency, we first present a simple “winning configuration”
for PLANES. We set C = N

logN , yielding S = logN . Furthermore, we structure each
cluster network using a DHT, as explained in sec. 2.1.

Routing Hop-Count Efficiency This configuration will ensure routing in O(logS) =
O(log(logN)) hops, in the steady-state case, within each cluster. This follows straight-
forwardly from the adoption of a DHT-cluster organization and the O(1) hop-count
routing between the altruistic nodes.

The “hard” case occurs when peers join and leave the network concurrently with
such high rates that the DHT cannot maintain fresh routing states (i.e., information
about neighbors of nodes). Depending on the adopted DHT organization, the probabil-
ity of facing this “hard” case varies. However, in highly dynamic networks, as argued
earlier, the performance of routing will degrade toO(N). Since DHTs guarantee routing
hop counts in this case in the order of the size of the DHT network, it follows that with
our architecture, in this highly dynamic case, routing is ensured in O(S) = O(logN)
hops, given the O(1) hops between the altruists.

The existence of N
logN clusters implies requiring a number of at least N

logN altruistic
peers (one per cluster). However, note that as N increases, an increasingly smaller per-
centage of N is required: e.g., for 1000 nodes, 10% of the nodes need be altruistic; for
one million nodes, only 5% of the nodes need be altruistic.

The following examples, quantify the improvements. For simplicity, in most dis-
cussions we drop the O-notation, since the constant factors should be the same for our
architecture and for DHT-style architectures.

Routing Performance at Larger Scales: Example Consider a (N =) one million
node network. Then, routing in a traditional DHT overlay requires (logN =) 20 hops,
in the steady-state. In the highly-dynamic case, DHT routing requires O(N) hops – a
gloomy prospect!

For altruism-based routing we assume that 5% (50,000) of peers are altruistic. Hav-
ing one altruistic node per cluster, each cluster will have about logN ≈20 peer nodes
and the routing within each cluster will require log(logN) ≈4 hops and 6 in total, af-
ter adding the two hops needed to get to the source and destination clusters’ altruistic
nodes, in the steady-state case. Therefore, in similarly-sized networks, routing hop-
count efficiency is improved by a factor of better than 3×.



In the highly-dynamic case, when large numbers of peers join and leave the net-
work concurrently and frequently and the special neighbors structure of the DHT clus-
ter breaks, altruism-based routing requires O(S) = O(logN) ≈20 DHT hops, plus 2
for reaching the target cluster. This yields an impressive improvement of several orders
of magnitude!

Routing Performance at Smaller Scales: Example For smaller size networks, with
one thousand peer nodes, traditional solutions yield a routing hop count about (logN =)
10 and 1000 in the steady-state and highly-dynamic cases, respectively. With altruism-
based routing, the steady-state routing hop count is about 3 (i.e. log(log1000) and the
highly-dynamic case is about S = log1000 = 10, yielding improvement factors of about
2× (after accounting for altruistic network hops) and about two orders of magnitude,
respectively.

2.4 PLANES Architecture Extensions

In dynamic systems, the main concern is the overhead for maintaining freshness of
routing state about altruists, which may become expensive or even impossible to main-
tain, breaking the complete-connectivity of the altruistic network. We first work in two
dimensions: (i) reduce the required number of altruists and (ii) reduce their routing
state. Then, we discuss an architecture without complete connectivity for the altruists
network.

PLANES with Fewer Altruists: Riding the Log() Factor... We present an extended
architecture, showing how to offer small sacrifices in routing speedups, to secure dra-
matic reductions in the overhead for maintaining altruist network routing state.

We architect the network to consist of C = N
z×logN clusters, yielding a cluster

size of S = z × logN for an appropriately-valued integer z. The key is to note that:
(i) the required number of altruists (which is equal to C) decreases by a factor equal
to z; and (ii) the routing hop count within each DHT cluster increases by logz, since
logS = log(z × logN) = logz + log(logN).

Example: with one million nodes and z = 6, C ≈ 8335 clusters, cutting the state
and freshness overhead requirements by a factor of 6× (going from a 50,000 altruistic-
nodes network down to 8335 nodes). In return, instead of routing in <5 hops within the
DHT cluster, we now require about <7 hops (log120 ≈ 7). Taking this point further,
using z = 50, results in 1000 clusters, each with 1000 nodes in it. Routing within each
cluster now needs 10 hops; and the required number of altruists are now reduced by a
factor of 50×.

Thus, we can still ensure significant speedups in routing (by a factor of about 2×
for the steady-state case and by orders of magnitude in the highly-dynamic case). At the
same time, the overhead for maintaining high connectivity within the altruistic network,
is dramatically reduced, since the number of altruists has been drastically reduced. Fi-
nally, we stress that requiring such a small percentage (0.1%) of altruistic nodes is not
unrealistic [11–13].



PLANES with Less Altruism, and/or Less Power: Keep on Clustering... Alterna-
tively (or complementarily) to the previous architecture, one can adopt the same layer-
ing principle recursively with respect now to the altruistic network. The motivation for
this is twofold: (i) reduce further the overhead for maintaining complete/high connec-
tivity between altruists, and (ii) exploit possible heterogeneities among altruists.

Fig. 3. A Multilevel Altruism-based P2P Network.

Fig. 3 outlines our approach for a three-layer P2P network. This network now in-
cludes a clustered altruistic P2P network with A = 50, 000 altruistic nodes, partitioned
in C = 390 clusters (AltNets), each of S = 128 altruistic nodes. This configuration
is obtained by employing the C = A

z×logA configuration presented earlier and applied
now for the altruistic network of A nodes, with z = 8.

Altruists belong in AltNet, or in Alt2Net. In the network in Figure 3 the network has
N =1,000,000 nodes, with 5% (50,000) altruistic nodes being organized into two lev-
els (of 390 altruistic clusters - AltNets - with 128 altruists each and an Alt2Net network
of 390 altruists, one for each AltNet cluster). Each DHT cluster (DHTNet) consists of
20 nodes. Each DHTNet is served by an AltNet, with each AltNet serving 128 DHT-
Nets. All AltNets and the Alt2Net are as before (almost) completely connected. The
requirements in order to maintain this high connectivity are further drastically reduced:
altruists within an AltNet (Alt2Net) need have 128 (390) neighbors. This represents a
reduction by a factor of about 400 to 128, respectively.

At the same time, the significant routing speedups are maintained. For the example
one-million-node network, instead of requiring two hops to reach the target DHT clus-
ter, now two or four hops are required for this purpose (depending on whether the source
and destination nodes are served by the same AltNet overlay, or not, respectively). So
a total of about 6-8 hops are required: 2-4 to reach the target DHT cluster and about 4
to reach the target node within it. This gives a speedup of about 2.5 to 3×, compared to
the 20 hops required in the steady-state case for the plain DHT architecture. Again, in
the highly-dynamic case, the speedup is several orders of magnitude.

Note that, the more layers we deploy, the less the routing state powerful peers have
to maintain. The latter, however, comes at the expense of routing hops. Whether more
layers are suitable or not is highly dependent on the characteristics of the network and
the actual application.



PLANES without Altruistic Network Complete Connectivity Altruistic networks
can also be structured using a DHT, doing away with the completely-connected net-
work. The layered routing algorithm presented earlier, needs to be updated to combine
steps 3 and 4 and call on the DHT’s routing operation to send the request to the target
cluster.

Routing without Complete Connectivity: The altruists form a Chord unit ring onto
which altruistic node ids are placed. In addition, cluster ids are mapped to the same
ring (like document ids are mapped to Chord rings). Thus, altruists are responsible for
clusters, as nodes are responsible for documents in Chord networks. Routing then at the
top layer (i.e., from a source-cluster altruist to the destination cluster altruist) is done by
routing through the altruists’ Chord ring for the destination cluster id. The other steps
remain the same.

Consider a network with N = 1,000,000, nodes with S = C =
√
N =1,000.

Employing a DHT for theC =1,000 altruists does not improve hop counts in the steady-
state case: about logC (=10) hops would be required to route through the altruists’ DHT
and logS (=10) hops to route within the target cluster’s DHT.

However, this still leverages the characteristics of altruists to yield high routing per-
formance in the highly-dynamic case. Since we assume that the altruist routing state
about their neighbors can be maintained even in the highly- dynamic case, routing
within it requires O(logC) = O(log

√
N). But even in the unlikely case where this

cannot be achieved, routing within the altruists’ DHT will require O(C) = O(
√
N).

Routing within the cluster DHTs requires in the highly-dynamic caseO(S) = O(
√
N).

Thus, overall, O(
√
N) hops are required, a drastic improvement compared to DHTs,

making this architecture highly desirable.
Finally, in the architecture of sec. 2.4, altruist DHTs can be used at one level only.

This still enjoys smaller hop counts in the steady-state and highly-dynamic cases, and
requires a percentage of completely-connected nodes.

3 AltSeAl: Altruism Sealed

SeAl[23] is a software layer we have developed for identifying selfish peers and giving
them incentives to behave fairly so to improve load balancing and overall data-access
performance. SeAl can be transparently incorporated in structured and unstructured
networks. Here we outline AltSeAl, a modified version of SeAl, addresssing the needs
of AESOP.

3.1 The Monitoring/Accounting Layer

The basic idea is that all transactions between peers result in the creation of tokens
(called “Transaction Receipts” or TRs) that can be used much like “favors” in real life;
the peers rendering favors (i.e. sharing resources) gain the right to ask peers receiving
favors to somehow pay them back in the future or get “punished” otherwise.

All of these operations are performed transparently to the user. Nodes keep track of
the favors they render or receive (i.e. store the corresponding TRs) in two “favor lists”:
the “Favors-Done” (Fd) and “Favors-Owed” (Fo) lists. Moreover, nodes in AltSeAl are



characterized by their “altruism score” (denoted by ni.A). This is simply a function of
|Fd| and |Fo|, where |X| denotes the size of the set X . For example, we can consider
|Fd| − |Fo| or |Fd||Fo| as possible altruism score functions.

If node n1 shares a resource r1 and node n2 accesses it, the favor-lists mechanism
enables n1 to selectively redirect a subsequent incoming request for r1 to n2. AltSeAl
nodes autonomously and independently set an upper (ni.Amax) and a lower (ni.Amin)
threshold value for their score. When they rate higher than ni.Amax they always redi-
rect incoming requests (if possible), while never redirecting when rating lower than
ni.Amin. In all other cases, nodes with a tunable probability decide whether to serve or
redirect.

3.2 Favors and Complaints

In the previous scenario, if n2 serves the redirected request, then the corresponding
favor is marked as paid-back. Otherwise, n1 may choose to use the corresponding TR
– i.e. TRn2

n1
(r1) – as a means of accusing n2 of acting selfishly. This is accomplished

in the following manner. AltSeAl uses a DHT overlay of its own to store “complaints”.
n1 sends TRn2

n1
(r1) to the appropriate node – say n3 – on this DHT (found by hashing

the TR itself). n3 then acts as an arbitrator between n1 and n2; it can ask (both) nodes
to verify TRn2

n1
(r1) and have n2 pay back the corresponding favor. If the verification

succeeds but n2 still refuses to play fair, n3 stores TRn2
n1

(r1) for other nodes to know.
If the verification fails, n3 may choose to similarly “complain” about the perjurer peer.

What’s more interesting is that, if n2 chooses to go altruist at some time, it can
go out on the DHT, collect all filed complaints, and selectively pay them back, thus
improving its status with respect to the community. Note that, while complaints are
sent out to the DHT, TRs concerning favors done or paid-back are kept locally at the
altruistic peer. Moreover, to keep storage requirements constant as the system evolves,
we use an aging scheme for stored TRs.

TRs are constructed using strong (e.g. public-key) cryptographic primitives, while
nodes in AltSeAl are equipped with a public/private key-pair and identified using a di-
gest of their public key, also used to verify TRs. Thus, nodes can’t fake TRs or refuse
the validity of a TR, unless they change their ID (key-pair). Furthermore, AltSeAl de-
ploys a feedback mechanism rather than a penalizing one – requests are queued and
served in a prioritized manner, while the actual resources allocated for serving these
requests (e.g. bandwidth, storage, etc.) vary, based on the overall “score” of the served
peers. Moreover, peers commence their lifecycle in the system with the worst possible
score, thus having no incentive to change their ID or mount a Sybil [24]-class attack.

3.3 SeAled PLANES: AltSeAl and AltNets

AESOP requires the capability to find the IDs of a number of altruistic peers, asyn-
chronously with respect to when they assumed such a status. In the context of AltSeAl,
altruism can be expressed using the “altruism score”. For example, only peers with
|Fd|
|Fo| ≥ 2 may be deemed altruists. Proofs of altruism are also needed. In AltSeAl, TRs



of favors rendered or paid-back can serve for this purpose5. Using these TRs, further
auditing is possible, validating a peer’s claims for altruism.

Finally, AESOP needs a structure to manage altruists. We use a second DHT-based
(e.g. Chord[2]) overlay for the altruists – the AltDHT. As soon as a node n is proved to
be an altruist, the AddToAltDHT(n) routine is called. This routine:

1. Is directed to the node n′, responsible for maintaining the “complaints” for n.
2. n′ audits n, retrieving its white records and checking the locally-stored black records

for it.
3. If the audit is successful (i.e. n’s altruism score is higher than the system’s altruism

threshold), n′ computes an altruist ID (e.g. by hashing the concatenation of the
string “Altruist” and n’s ID) and, using the DHT node addition protocol, it adds n
to the AltDHT. If the audit fails, n′ returns an error to n.

4. Whenever a node is promoted to the AltDHT it assumes special responsibilities
(e.g. routing).

5. When a peer loses its altruist status (e.g. its altruism score drops below the corre-
sponding threshold), it is removed from the AltDHT using the DHT’s node deletion
protocol.

Note that peers have a natural incentive not to cheat staying in AltDHT when they
wish not to be altruists, since they receive extra load. In addition, peers in AltDHT can
perform random audits: periodically, they choose a random ID n′′ from those in AltDHT
and calculate its altruism score. Peers that are discovered to cheat can be ejected! A
more elaborate (but also more resource-hungry) approach to verifiable monitoring and
auditing is described in [23].

With this infrastructure in place, discovering altruists is straightforward. To discover
k altruists we can, for example, compute a random ID, use AltDHT to locate the node
responsible for it and then follow k successor pointers (if AltDHT is implemented using
Chord).

4 The Performance of AltSeAl

We have simulated AltSeAl. Our performance results show that AltSeAl performs very
well in terms of network/storage overhead and the number of transactions required to
audit all nodes.

4.1 Experimental Setup

Our experimental setup assumes that AltSeAl operates in a music-file sharing context,
with file sizes (in Mbytes) uniformly distributed in the range 3-10 (for an average size
of 6.5 Mbytes). The simulated network consists of 2,500 nodes, sharing 50,000 distinct
documents, replicated across peers following a Zipf access distribution, with α = 0.7
and 1.2 [25] (for a total of approximately 50.200 and 51,350 documents respectively).

5 We’ll call such “positive” TRs the white records, as opposed to “negative” TRs called the black
records.



We have also tested our system with larger node populations (with similar results),
but with not as many queries, due to CPU and memory constraints, and thus report
only on the 2500-node case here. The simulation runs for 200,000 requests. Requests
arrive at the system following a Poisson distribution, such that every peer will make
approximately 5 requests per day of simulated time. The documents requested follow a
Zipf distribution too, with similar results for both α values (0.7 and 1.2). Due to space
considerations, we report only on the α = 1.2 cases.

The peer population consists of 90% (70%) free-riders and 10% (30%) altruists,
with network connections ranging (uniformly) from 33.6kbps (modem) to 256kbps (ca-
ble) lines for selfish peers, and from 256kbps to 2Mbps (T1) lines for altruists. Further-
more, all peers may fail or deny service with a probability of 0.2, and delete/unshare
files with a probability of 0.1.

Finding a peer sharing a file and downloading the file are both 1-hop operations.
All AltSeAl operations are run on top of a DHT, thus every AltSeAl transfer is as-
sumed to take O(log(N)) = 11 hops on average (for the 2500-node network). As we’ll
show shortly, in spite of this handicap, AltSeAl incurs negligible network overhead.
Moreover, should AltSeAl be operating on top of store-and-forward networks, such as
FreeNet or AChord, the observed network and storage overhead would be orders of
magnitudes smaller.

Peers compute their scores using |Fd| − |Fo|. Altruistic (selfish) peers redirect in-
coming requests with probabilities 0, 1, and 0.5, when their score is below their lower
threshold, above their upper threshold, or within these values respectively.
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Fig. 4. Performance of the Auditing Mechanism

The simulation results are depicted in fig. 4 and 5. In the simulation the TR aging
mechanism was off, hence the linear growth of the storage overhead (fig. 5). Even with
this handicap, AltSeAl inflicts on average a mere 0.16% storage overhead. Moreover,
the network overhead stabilizes to at most approximately 0.7%, while more than 90%
of the total node population has been audited, after the first 5k requests (fig. 4).
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5 Conclusions

The coexistence of altruistic and selfish peers in P2P networks has been well docu-
mented. With this paper we PLANES; an architectural paradigm harnessing these char-
acteristics, weaving them into the structured network architecture. We argued for the
need and have shown how to achieve significantly greater routing efficiency in such net-
works for both the steady-state and highly-dynamic cases, without transferring routing
overheads to other system functionalities, and while introducing significant efficiency
gains in terms of hop counts, routing state size and maintenance requirements, and ro-
bustness.

We presented several architectures and algorithms offering trade-offs between rout-
ing speedups vs the required number of altruists and their routing state and between
routing path lengths in the steady-state case vs altruist-network connectivity require-
ments. The end result is that extremely small percentages of altruistic nodes are re-
quired, being burdened with small overheads, and introducing steady-state routing speed-
ups by factors of up to 2-4×, and by several orders of magnitude in the highly-dynamic
case. At the same time, total routing state size is reduced by a factor of about 2×, which
leads to improved robustness.

Furthermore, routing robustness is improved due to the smaller total routing state
and the isolation of the ill-effects of selfish behavior within small clusters of peers.
Because of the above and its simplicity, we believe the proposed paradigm is viable and
realizable and we offer it as the way to structure the P2P networks of the future.

Finally, we presented a number of open problems whose solution can ensure sig-
nificant further performance gains. In a related thread we are developing a software
monitoring/auditing layer that can seamlessly and efficiently discover altruistic nodes
within the network [23]. In addition, we are developing a protocol suite integrating this
layer with the PLANES architecture. The two components lead to a self-organizing,
altruist-inspired, dynamic P2P network architecture, maintaining the highly desirable
performance characteristics of PLANES, as presented here.
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