
Range query optimization leveraging peer heterogeneity
in DHT data networks

Nikos Ntarmos, Theoni Pitoura, and Peter Triantafillou

R.A. Computer Technology Institute and
Computer Engineering & Informatics Dept.,

University of Patras, Rio, Greece.
{ntarmos, pitoura, peter}@ceid.upatras.gr

Abstract. In this work we address the issue of efficient processing of range
queries in DHT-based P2P data networks. The novelty of the proposed approach
lies on architectures, algorithms, and mechanisms for identifying and appropri-
ately exploiting powerful nodes in such networks. The existence of such nodes
has been well documented in the literature and plays a key role in the architecture
of most successful real-world P2P applications. However, till now, this hetero-
geneity has not been taken into account when architecting solutions for complex
query processing, especially in DHT networks. With this work we attempt to fill
this gap for optimizing the processing of range queries. Significant performance
improvements are achieved due to (i) ensuring a much smaller hop count per-
formance for range queries, and (ii) avoiding the dangers and inefficiencies of
relying for range query processing on weak nodes, with respect to processing,
storage, and communication capacities, and with intermittent connectivity. We
present detailed experimental results validating our performance claims.

1 Introduction

Structured P2P systems have provided the P2P community with efficient and combined
routing/location primitives. This goal is accomplished by maintaining a structure in the
system, emerging by the way that peers define their neighbors. These systems are usu-
ally referred to as Distributed Hash Tables (DHTs)[1–3]. DHTs have managed to take
routing and location of data items in P2P systems to the next level; from the nonde-
terministic, flood-based techniques used in unstructured P2P overlays, DHTs provide
us with strong probabilistic (under node failures and skewed data and access distribu-
tions) guarantees on the worst-case number of hops required to route a message from a
node to any other node in the system or, equivalently, for a node in the system to locate
data items published therein. Unfortunately, traditional DHT overlays were designed
to only support exact-match queries. This has led researchers to investigate how they
could enhance P2P systems to support more complex queries[4–15]. On another axis,
one of the main characteristics of widely deployed P2P networks (e.g. Gnutella, Kazaa,
etc.) is that participating peers are largely heterogeneous, with regard to their process-
ing power, available main memory and disk storage, network bandwidth, and internet
connection uptime. Relevant studies of P2P networks [16, 17] have shown that this large
heterogeneity is also depicted in the distribution of the query processing chores across

the node population; in the Gnutella network, about 70% of nodes share no files at all
with the community, while 5% of nodes serve almost 95% of the queries posed.

Recognizing heterogeneity among peers and harnessing it to speed-up complex
query processing has not been done before in the structured P2P world, although most
workable real-world P2P applications utilize it, by building multi-level hybrid networks.
Our philosophy is based on this very observation. We wish to bring this “hybrid” design
into the DHT world and utilize it for complex query processing. The question now is
how to do this efficiently. Therefore, we believe that harnessing the power of power-
ful and “altruistic” nodes is the key to providing an efficient way to expedite complex
query processing in a P2P setting. In this work we discuss the range query case. Note
that we do not propose another range queriable P2P overlay. We leverage the function-
ality, scalability, and performance of such network overlays, and present a two-layered
architecture were powerful nodes are identified and assigned extra tasks. We do so in
an efficient and low-overhead way, using the functionality already provided by the un-
derlying structured P2P network, with significant gains in range query processing costs.
To our knowledge, this is the first work to look into this issue.

2 Range Queries over DHTs

Traditional DHTs DHTs use an m-bit circular identifier space for nodes and ob-
jects/documents, and modulo-N arithmetic (withN = 2m being the maximum number
of nodes/documents in the system). Both node and document IDs are usually based on
some randomizing (usually cryptographic) hashing (e.g. SHA-1) of a node/document
specific piece of information. Nodes maintain links to other nodes in the overlay, ac-
cording to the DHT’s geometry and distance function[18]. Using these links, DHTs
can route between any two nodes in the overlay in O(logN) hops, while maintaining
O(logN) links. A document d inserted into a DHT is stored on the node whose ID is
closer to the document’s ID, according to the DHT’s distance function. This node is
called the document’s “successor” (or “root”). We assume that data stored in the P2P
network are structured in a (k + l)-attribute relation R(a1,..., ak,b1,...,bl), where ai, bi
are the attributes of R, with every tuple t in R being uniquely identified by a primary
key t.key. This key can be either one of the attributes of the tuple, or can be calculated
otherwise (e.g. based on the values of one or more of the attributes of t). Furthermore,
attributes ai are used as single-attribute indices of t, with each ai being characterized
by the domain t.ai.D : {t.ai.vmin, t.ai.vstep, t.ai.vmax} of its values.

Now suppose that every index tuple is added to the DHT, using an ID generated by
(SHA-1) hashing the attribute’s value. This would result in tuples being spread across all
participating nodes in a uniform manner, but would also lead to tuples with successive
index values being stored on completely unrelated nodes. This fact renders traditional
DHTs highly inefficient for range query processing; given a range on the domain of
the index values, a traditional DHT has to execute queries for each and every value in
the range interval! A range query for r consecutive values would require on average r
queries to be executed, for a total of O(r × log(N)) hops. In a non-densely populated
value domain, most of these queries would return no data items. If all nodes had global
knowledge on every value stored in the P2P overlay (we’ll call this system the Enhanced

DHT), they could then skip queries for non-existing values. Thus, if only r ′ out of r
values exist in the system, it would take on average r′ queries, or O(r′× log(N)) hops.
Although better than O(r× log(N)), this still is too expensive for a real-world system.

Range-queriable DHTs After the first wave of DHTs, the peer-to-peer research com-
munity started investigating structured overlays that would allow for more complex
queries than simple equality, while achieving the same performance and scalability fig-
ures of early DHTs. This has lead to the design and implementation of several spe-
cially crafted DHTs, capable of efficient complex query processing: SkipNet[4], Skip
Graphs[5], OP-Chord[11], PIER[13], Mercury[14], P-Trees[6], as well as the works by
Ganesan et al.[7, 8], Gupta et al.[9], and Sahin et al.[10], are examples of such systems.

The common idea behind these overlays with regard to range query processing, is
that traditional DHTs destroy the locality of content, due to the randomizing (crypto-
graphic) hash functions used to construct document IDs prior to insertion, but locality
is a desired property when sequential access is sought, as is the case in range queries.
Due to this, these overlays use the actual content (e.g. attribute values in a P2P-based
RDBMS environment, file names in a file-sharing system, etc.) rather than the outcome
of a (cryptographic) hash function to sort and store documents on the overlay. Thus doc-
ument locality is preserved and range query processing consists of: (i) locating the node
responsible for the start of the range, and (ii) following one-hop “successor” pointers
until we reach the node responsible for the end of the range, gathering results in the
meantime. If the desired range spans q nodes on the overlay, the above lead to a hop-
count complexity of O(logN + q); O(logN) hops for phase (i), plus q more hops for
phase (ii). We will use the term LP-DHT ring to refer to such a locality-preserving,
range-queriable overlay in the rest of this paper.

3 The RangeGuard

Our intention is to form a second LP-DHT ring, the RangeGuard ring, above the LP-
DHT ring (fig. 1), composed of powerful nodes – the RangeGuards or RGs – burdened
with extra functionality chores. Each such node is responsible for storing the index
tuples placed in nodes between its predecessor RangeGuard and itself. Thus, if there
are M RGs in the system, they partition the normal LP-DHT ring into M continuous
and disjoint ranges. Each RG maintains routing information for both the lower-level
ring and the RangeGuard ring. Additionally, there is a direct link from each peer to
the next RG in the upper-level ring (i.e. to the RG responsible for the peer). Nodes in
the lower-level ring probe their RG (e.g. as part of the standard LP-DHT stabilization
process), and automatically update the index tuples it stores.

RGs must be (i) powerful enough and willing to withstand the extra (storage, pro-
cessing, communication) load, and (ii) connected most of the time, to provide hop-count
guarantees for range queries and to avoid large transfers due to their joining/leaving.
This, in turn, calls for a mechanism to identify and exploit candidate RGs in an effi-

Normal LP ring ��
: RangeGuard
: Normal node

�� �� �� �	
� ��� �� �� ���� ��������� ��
����� !!""#$ %&'())**+,-./0

12

RangeGuard ring

Fig. 1. The RangeGuard architecture. RGs form a second LP-DHT ring of their own, taking re-
sponsibility (using consistent hashing) for ranges of nodes on the lower-level ring.

cient and transparent manner1. Given the functionality offered by our initial (without
RangeGuards) infrastructure, RGs are identified and located as follows.

3.1 Node Performance Counters and the Node Performance Relation (NPR)

The administrator of each node selects whether she wants her node to be a candidate
for RangeGuard membership or not (much like it is done now with super-peers in most
unstructured P2P sharing applications). A candidate node n, with id n.id, keeps track
of the amount n.α of retrieval and/or just routing requests it serves. This information
is updated periodically, every E seconds (also called an epoch). Thus, it keeps two
node performance counters (or NPCs) – n.αc and n.αp – of requests served during the
current and the previous epoch respectively.

This information is stored in the system as a four-attribute node performance re-
lation NPR : {n.id, n.αp,U , status}, with primary key n.id, and indexed by n.αp.
status is a boolean variable, set to true if the node is a member of the RangeGuard.
U is a counter, incremented on every update of the tuple, and left-shifted (assuming a
little-endian architecture) (i) on every update or (ii) every E+δ seconds, with the timer
being reset on every update. δ is a quantity depending on measurable characteristics
(e.g. round-trip / ping time) of the end-to-end connection between node n and the node
storing the index tuple with n’s metadata. U encapsulates the amount of time a peer
stays connected to the network. We believe that the network uptime of a peer and the
number of requests it has served during this time, are enough evidence of a node’s
power and fitness for the RG ring. More elaborate metrics may be used instead, under
the same intuition of storing these tuples on the lower LP-DHT ring; investigation of
such metrics is an open issue and a subject of ongoing and future work. If a node wishes
to cease being a candidate RG, it suffices to set a low value (e.g. 0) for its αp and stop
updating this information (so that its U value decays with inactivity). Also note that the
NPR tuple of a node n is stored on this very node, since the primary key of the relation
is the n.id attribute.

Cost of Maintaining NPR CandidateRG nodes must update theirNPR index tuple –
remember thatNPR tuples are also indexed by their n.αp field. This operation requires
2 LP-DHT ring lookups every epoch E ; one lookup to delete the index tuple for the old

1 We assume that peers will not act maliciously or selfishly (leaving countermeasures for such
behavior as a possibility for future work), as is the case with most DHT-based research.

value of n.αp, and one to insert the index tuple for the new value of n.αp. The overall
cost, in terms of hops, isO(log(N)) (since every lookup needsO(log(N)) hops), while
the bandwidth consumption is minimal given the very small size of these index tuples.
Alternatively, we can either keep a link to the node last seen storing the relevant index
tuple and start the lookup from there, or follow a soft-state approach. Moreover, the
overall cost is tunable via E , so we can trade-off NPR index freshness for bandwidth
and hops.

3.2 Joining the RangeGuard

A node that is to join the RangeGuard uses its RG as the “bootstrap” node for the
RangeGuard ring. The RG is responsible for retrieving the metadata of the candidate
node and checking whether it is powerful enough (i.e. has served more requests than
a predefined threshold) and has stayed online for long enough (based on the corre-
sponding U value) to be allowed into the RangeGuard. If all prerequisites2 are met, the
standard LP-DHT join protocol is executed and the candidate node is promoted to the
RG ring, otherwise the protocol terminates. After that, it updates the status field in its
entry in theNPR relation on the lower-level ring to reflect its promotion to RG status
and notifies nodes in its arc of responsibility of its existence. Alternatively, this step
may be left as part of the lower-level ring stabilization/maintenance process. The cost
of joining the RangeGuard ring consists of: (i) the cost to contact and send the relevant
NPR tuple to the RG responsible for the joining node (1 hop), and (ii) the cost of the
standard LP-DHT ring join protocol, for theRG ring. Thus, the hop-count cost for join-
ing the RG ring is in O(log(M)), while the extra bandwidth consumption is minimal
(given the expected small size of the RG ring and the very small size ofNPR tuples).

Admission into the RangeGuard There are two ways for a node to be admitted into
the RangeGuard: either (i) be promoted by a node already in the RangeGuard who
wishes to shed some of its load, or (ii) volunteering to take up some region in the
address space for which there exists no RG.

i. Promotion Due to irregularities in the data or access distribution, a RangeGuard
may get overloaded with incoming requests. Moreover, it is possible for a region in
the RangeGuard to be underpopulated (e.g. imagine the RangeGuard ring in its setup
phases). In such cases, a member of the RangeGuard can ask for support from candidate
RangeGuards by promoting them to RG status.

With the infrastructure described earlier, when a RG wants to promote a node to
RangeGuard status for a region around a point p – i.e. the id of a node in a distance of
at most ε from a point p in the lower-level ring, with access count greater than a in the
previous epoch, and a U value above u – it merely executes the range query:

select id from NPR where U > u and αp > a and 0 ≤ id− p < ε
The result set of this query will contain the IDs of candidate RGs in the region of
interest. It is then up to the RG who originated the query to select the best candidate,
inform it of its promotion, and initiate the join protocol to add it to the RG ring.

2 These thresholds will probably vary depending on the semantics sought from the RangeGuard.
Calculating crisp theoretical thresholds is an orthogonal issue and left as future work.

ii. Volunteering Candidate RGs may lie in any region on the lower-level ring. For
data/access distribution irregularity reasons similar to the ones urging RangeGuards to
ask for support, it is possible for some regions to have such low data/access loads that
the RangeGuard responsible for them has never been in need of support. This could
result in large arcs/ranges on the lower-level ring being mapped to a single RangeGuard
node, located many hops away on the lower-level ring from the first nodes on this arc.
Although this is not an issue in the steady state, it may increase the time needed by a
node on this arc to find a new RG, should the current RG leave the system abnormally.

We, thus, allow candidate RG nodes on the lower-level ring to volunteer for an RG
position; if a candidate RG detects a situation as the one described earlier (i.e. a large
distance between itself and its RG), it can contact the latter and ask to be promoted to
RG status. TheRG is responsible for going through the αp and U checks and admitting
the candidate to the RangeGuard or not.

3.3 Leaving the RangeGuard

Similarly, a RG may decide to leave the RangeGuard if it finds itself in a situation
where its arc of responsibility becomes very small (due to candidate RGs being pro-
moted to RG status in its vicinity), or the load it faces as an RG drops below some
predefined threshold (e.g. an estimate of the load it should have, based on uniform
data/access load). A RG that wishes to leave the RangeGuard ring, goes through the
following steps: (1) it follows the LP-DHT ring “leave” protocol, transferring its RG-
related stored data to the appropriate node(s) on the RG ring, (2) it updates the status
field in its entry in the NPR relation on the lower-level ring, to denote that it is no
longer a RangeGuard, and (3) optionally, it notifies the nodes that link to it on the RG
ring to update their links, or leaves this to be done as a part of the RG ring stabiliza-
tion/maintenance process.

Note that our approach uses standard LP-DHT ring operations to set up and maintain
the RangeGuard ring. With the exception of the second step, the procedure described
above is the standard LP-DHT leave protocol. Also note that the leaving RG does not
need to notify nodes on its arc of responsibility of their new RG, since that will be
achieved during the lower-level ring stabilization process. Consequently, the cost for a
node to leave the RangeGuard is equal to the cost of executing the standard LP-DHT
leave protocol for the RG ring, while data transfer is minimal due to the very small size
ofNPR tuples and the size of theRG ring. On the other hand, there is the requirement
for several RangeGuard peers with enhanced capabilities. This is not unrealistic, since
many peers in real-life applications have proved to be more powerful. With the notion
and exploitation of RangeGuards we can harness this power heterogeneity to achieve
higher efficiency in range query processing.

3.4 Range Query Processing Using RGs

With RangeGuards in the scene, a query (ai.vlow, ai.vhigh) on attribute ai will be sent
from the requesting node directly (1 hop) to the RG responsible for the requesting
node’s data. After this point the RangeGuards assume responsibility to gather the re-
quested information, using the LP-DHT algorithm described earlier, except that now all

: Normal node

�����
�

�����	
�������������
�

�� �� �� �� !"# $% &' () *+ ,-
./

Requested range

Without RangeGuard

With RangeGuard

0123456789:;<=>?@ABCDEFGHI JK LM NNO
O PPQQRRS

S
TTU
U

VW XY Z[\]
^_`a

...from requesting node

: RangeGuard

Fig. 2. Range query processing with and without RGs.

operations take place on the RangeGuard ring (fig. 2). With data placement on the lower
ring being reflected on the RangeGuard ring, the requested index tuples will reside be-
tween RGl responsible for ai.vlow and RGh responsible for ai.vhigh. This algorithm
requires 1 routing hop to reach the RangeGuard ring, another O(log(M)) hops in the
RG ring to reach RGl, and as many routing hops as there are RangeGuards between
RGl and RGh. Moreover, the O(log(M)) term can be further improved to O(1), by
using techniques similar to those presented in [19] or [20].

Since, there will probably be much fewer RGs in the system than there are nodes,
and RangeGuards are more powerful (with respect to computing capacities, network
bandwidth, and network uptime) than the average node in the system, this architecture
is significantly more efficient that the one presented earlier. Specifically, for 5% × N
RGs, although the worst-case hop-count efficiency remains inO(N), it now has a rather
significantly lower constant modifier (i.e. a 5% – or 20 times – lower hop-count). Note
that we require a mere 5% × N nodes to be powerful and altruistic in our setting; as
relevant research has pointed out [16, 17], we can expect an average 5% of the node pop-
ulation in wide-scale peer-to-peer data sharing networks, such as Gnutella and Kazaa,
to be powerful, altruistic nodes. Thus, by harnessing the full power of all these nodes,
we can achieve even higher performance gains than those outlined above.

3.5 Modifications to the LP-DHT Overlay

We have extended the underlying LP-DHT system in the following fields. First we have
provided appropriate protocols to allow nodes to join/leave the RangeGuard ring, while
guaranteeing correct operation of the overall system, as well as a method to discover
and use candidate RGs (described in detail in sect. 3.2 and 3.3). We have also altered
the query processing protocol, to utilize and harness the extra functionality offered by
the RangeGuard (described in sect. 3.4). As far as routing state is concerned, we have
added 1 more entry to each node to point to theRG responsible for it. For fault-tolerance
reasons and faster recovery from failing/leavingRGs, we may choose to maintain links
to the next k RGs. Note that routing state size is still in O(logN).

With the extra information in the nodes’ routing tables, we also need to tweak the
stabilization process to include the RG entry in the set of links to probe. Much like
the standard stabilization process, a node issues a query for its ID on the RG ring. The
relevant information is by design stored on the responsible RG; thus, the response to
this query will originate from the RG currently responsible for the arc in which the

querying node is located. If the RG responsible for the node has changed (e.g. due to
more candidate RGs joining the RangeGuard), the node will get back a response from
a different RG and will thus update its RG link. Finally, if all of a node’s k RG links
have failed simultaneously, then the node can fall-back to querying the lower-level ring
for a RangeGuard (i.e. a node whose status field is set to true) in its vicinity.

4 Load Distribution on the RG Ring

In order to emulate the 95%-5% observation of [16] (i.e. 5% of all nodes serve 95% of
all requests in the system), we have nodes on the LP-DHT ring flip a biased coin and
dispatch queries to theRG ring with a 0.95 probability, while processing them solely on
the LP-DHT ring with probability 0.05. Apart from relevant provisions by the LP-DHT,
the load is further balanced on the RG ring by the load-aware join/leave protocols.

As far as join/leave is concerned, remember that RGs may call for support from
candidate RG nodes when overloaded, and may decide to leave the RG ring if their
load is too low or their arc of responsibility is too narrow. In the former case, the RG
calling for help can choose among several candidate RGs, as returned from the relevant
query. Since this node knows which part of its arc of responsibility causes it the more
load, it can choose an appropriate candidate RG to shed this very load. The above
algorithm is able to provide us with the basics for having a balanced access load. As
already mentioned, we expect candidate RangeGuards to be uniformly distributed on
the lower-level ring. Thus, RangeGuards calling for help will have a good probability
of finding a candidate RangeGuard in their arc of interest.

With respect to data placement, if the popularity of a value does not depend on its
position in the attributes domain (e.g. value v is not the most popular for all attributes
in the system) then having multiple attributes mapped on the same ring translates to
having multiple popular items distributed to all nodes on the system. In the opposite
case, a random but easily computable offset value (e.g. the cryptographic hash of the
the attribute’s name) can be added (mod the maximum document ID) to all values in the
attribute’s domain. This provides us with enough randomization in the data placement
to guarantee similar results, as we shall see in sect. 5.2. Note that, for anN -node system
and the worst-case skewed distribution (i.e. one value being selected with probability 1
and the rest with probability 0), then N attributes are required to have a balanced load,
under a best-case distribution of load based solely on the above facts. However, since
the RG ring is much smaller than the LP-DHT ring, the required number of attributes
is much smaller (i.e. M<<N attributes for an M -node RG ring)

Furthermore, due to this difference in the sizes of the RG and the LP-DHT rings,
everyRG node is responsible for the values assigned to multiple nodes on the LP-DHT
ring, which leads to an even smoother distribution of the load on theRG ring. Moreover,
we can easily apply load balancing techniques developed for the underlying LP-DHT,
to further balance the load on both lower-level andRG nodes (e.g. virtual nodes[21], or
load-aware node migration[22], when using OP-Chord[11]; rely on the load balancing
effects of the overlay itself, when using SkipNets[4] or Skip Graphs[5], etc.)

5 Performance Evaluation

We will be using our home-brewed LP-DHT, OP-Chord[11], as our overlay of choice.
OP-Chord is based on Chord, with an order-preserving hash function used instead of
SHA-1 for document ID generation, and the same range query processing principles
discussed in sect. 2. We have extended the basic Chord simulator (available through
http://www.pdos.lcs.mit.edu/chord/), adding support for index tuples and range queries,
and implementing our OP-Chord and RangeGuard architectures. We have chosen to test
two aspects of the system: (i) the hop count efficiency of our range query processing
algorithm, and (ii) the distribution of storage requirements and accesses on participating
RG nodes during range query processing, under realistically skewed distributions.

5.1 Hop Count

The experiments used a single-index-attribute relation, with the index attribute tak-
ing 5, 000 integer values, following a Zipf distribution with θ=0.7 over D[17]. Range
queries are generated using a separate Zipf distribution over the domain D (again with
θ=0.7) for their lower bound, and a uniformly distributed range span S, ranging from
1% to 50% of the attribute domain. We report on a series of 50, 000-queries experiments
for a system with N=1, 000 nodes,M=50 (≈5%×N) range guards, and 50, 000 tuples
(the reported results are not sensitive to these values).

Performance Reference Points We have compared the hop-count efficiency of the
RG architecture against (i) plain Chord (PC), as a representative of traditional DHTs,
(ii) an imaginary, enhanced Chord (EC), where for each rangeR the system knows the
IDs of the n′ nodes storing values in Ra, (iii) our OP-Chord architecture, and (iv) a
hybrid system where 95% of queries are processed on the RG ring and the remaining
5% are dealt with on the OP-Chord ring (see sect. 4). Assume we have an integer range
query r = <vlow, vhigh>. Further assume that the requested index tuples are stored on
n′ nodes, under Chord’s hashing scheme, and on k nodes, managed by k ′ RangeGuards,
under our OPHF scheme. Then, in order to gather all possible results:

– PC: |r| queries, or O(|r| log(N)) hops, are needed.
– EC : |n′| queries, or O(|n′| log(N)) hops, must be executed.
– OP : we must first route to the node holding vlow and then follow k-1 successor

pointers, for an O(log(N)+k) overall hop count.
– RG: we must route to the closestRG (1 hop), then to theRG holding vlow (O(log(M)

hops) and follow k′−1 successor pointers, for anO(log(M)+k′) overall hop count.
– OP + RG: we flip a biased coin and choose among OP or RG processing, with

the hop count complexities outlined above.

Fig. 3 summarizes the measured hop-counts per range query. Traditional DHTs were
not designed with range queries in mind thus Chord performs poorly. The (unrealisti-
cally) enhanced Chord brings the required hop count down to ≈20% of the Chord fig-
ure. However, total global knowledge is required to implement this approach. On the
other hand, by using the order-preserving hashing scheme and the RangeGuard archi-
tecture, the hop count is decreased by a factor of approx. 50 to 500 compared to PC,

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30 35 40 45 50

H
op

s
pe

r
qu

er
y

Range span (% of attribute domain)

169.0

1,303.3

2,720.0

5,553.3

14,053.3

31.1

240.0
500.9

1,022.7

3,102.3

15.2

54.4

105.7
204.5

504.2

4.1
7.9

12.6
21.7

50.8

3.4
5.5

7.8
12.5

27.4

Plain Chord
Enhanced Chord

OP-Chord
90% RangeGuard 10% OP-Chord

RangeGuard

Fig. 3. Hop count per range query (log-plot).

10 to 110 compared toEC , and 5 to 20 compared to OP for different range spans, with
the performance of OP +RG following closely behind.

5.2 Load Distribution

The effect of random offsets and of overlapping multiple attributes in the access/storage
load balancing is beneficial in our setting. To showcase this claim, we have performed
the following experiment: assume we have an OP-Chord ring; we add nodes to the
system, at random positions on the OP-Chord ring (simulating the quasi-uniform place-
ment resulting from the use of SHA-1); we let the system stabilize and add 20, 000
multi-attribute tuples in the system. The values of the index attributes are drawn from
the [1, 40, 000] integer interval according to a Zipf distribution with θ = 0.7. If, on the
other hand, we assume a uniform value occurrence distribution (as opposed to the above
Zipfian distribution), the following results carry on to a Zipf load access distribution.
We vary (i) the number of index attributes per tuple, from 1 (the classic single-attribute
case of the currently available Chord system) up to 400 attributes, and (ii) the num-
ber of nodes in the network from 1, 000 to 5, 000, 10, 000, and 20, 000. Note that, e.g.
in the 20, 000-node case, should these nodes be RG nodes, they would be enough to
administer a 400, 000-node network, under the 5%-intuition described earlier.

Figure 4 shows the ratio of the highest to the lowest load in the system. Naturally,
the optimal load ratio is 1, in which case all nodes in the system will have the same
load. With a θ = 0.7 Zipfian value occurrence distribution in an 1,000-node network,
the highest-to-lowest single-attribute node access/storage load ratio load is 7.5, drop-
ping to 1.97 for 8, and 1.06 for 400 attributes. We have noted on the figures the load
ratio for the single-attribute case (denoted by the “load = ” points) and the number of
attributes required for this load to drop below 2 (denoted by the “# of attributes” points).
With nodes being placed on the lower-level ring using Chord’s SHA-1, we can expect
RangeGuards to be uniformly distributed on the ring. Thus, the above situation holds
for both the lower-level ring and the RangeGuard ring of our architecture. Note, how-
ever, the increase in the latter with the number of nodes in the network. As we expect
RG nodes to be a small percentage of all network nodes, the above results show that,
for the RG ring, load distribution will be within acceptable bounds (even without the
other relevant mechanisms discussed in sect. 3). For much larger networks, we shall
either need a very large number of attributes to achieve a good load distribution and/or
more elaborate load balancing mechanisms[23].

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 50 100 150 200 250 300 350 400

M
ax

/m
in

 n
od

e
lo

ad
 r

at
io

ratio = 7.5

8 attributes

1,000 nodes

 0
 5

 10
 15

 20
 25
 30
 35

 0 50 100 150 200 250 300 350 400

ratio = 33.25

50 attributes

5,000 nodes

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400

M
ax

/m
in

 n
od

e
lo

ad
 r

at
io

of attributes

ratio = 65.5

140 attributes

10,000 nodes

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400

of attributes

ratio = 130.0

330 attributes

20,000 nodes

Fig. 4. Highest-to-lowest node load ratio.

6 Related Work

All earlier research efforts focusing on complex query processing over DHTs[4–15]
failed to recognize and exploit the key fact that the appropriate utilization of power-
ful nodes can speed up query processing significantly. Viewed from a complementary
angle, earlier research failed to recognize that in large scale data sharing networks,
there exist nodes which are weak, with respect to their processing, storage, and com-
munication capacity, and that there also exist nodes with orders of magnitude more
horsepower[17]. Our proposal avoids the pitfall of relying upon weak nodes for query
processing. Furthermore, we follow a data management approach to discovering and
harnessing powerful nodes: keeping metadata for participating nodes as a relation over
the LP-DHT ring allows us to swiftly and efficiently locate such nodes and, by promot-
ing them to RangeGuard status, to use them in the core of routing and query processing.

7 Conclusions

With this work we address the problem of efficient range query processing in struc-
tured P2P networks. Our approach leverages existing DHT-based P2P research. Our
approach is centered on a new architecture that facilitates the exploitation of powerful
nodes, coined RangeGuards, in the network, assigning to them specific tasks for further
significant speedups during range query processing. This architecture is based on: (i)
a way to efficiently identify and collect RangeGuards, and (ii) mechanisms to utilize
them during range query processing. Our performance results have shown that signifi-
cant savings can be achieved by the proposed architecture. Perhaps most importantly, a
key advantage of the proposed architecture is that the dangers and inefficiencies of rely-
ing on weak nodes for range query processing, with respect to their processing, storage,
and communication capacities, and their intermittent connectivity are avoided.

Acknowledgments

Peter Triantafillou was partly funded by FP6 of the EU through IST DELIS (#001907).
Nikos Ntarmos was funded by the PENED 2003 Programme of the EU and the General
Secretariat for Research and Technology of the Hellenic State.

References

1. Stoica, et al., I.: Chord: A scalable peer-to-peer lookup service for internet applications. In:
Proc. ACM SIGCOMM. (2001)

2. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: Proc. ACM SIGCOMM. (2001)

3. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. In: Proc. Middleware. (2001)

4. Harvey, N., Jones, M., Saroiu, S., Theimer, M., Wolman, A.: Skipnet: A scalable overlay
network with practical locality properties. In: Proc. USITS. (2003)

5. Aspnes, J., Shah, G.: Skip Graphs. In: Proc. SODA. (2003)
6. Crainiceanu, A., Linga, P., Gehrke, J., Shanmugasundaram, J.: Querying peer-to-peer net-

works using P-trees. In: Proc. WebDB. (2004)
7. Ganesan, P., Bawa, M., Garcia-Molina, H.: Online balancing of range-partitioned data with

applications to peer-to-peer systems. In: Proc. VLDB. (2004)
8. Ganesan, P., Yang, B., Garcia-Molina, H.: Multi-dimensional indexing in peer-to-peer sys-

tems. In: Proc. WebDB. (2004)
9. Gupta, A., Agrawal, D., Abbadi, A.: Approximate range selection queries in peer-to-peer

systems. In: Proc. CIDR. (2003)
10. Sahin, O., Gupta, A., Agrawal, D., Abbadi, A.: Query processing over peer-to-peer data

sharing systems. Technical Report UCSB/CSD-2002-28, UC Santa Barbara (2002)
11. Triantafillou, P., Pitoura, T.: Towards a unifying framework for complex query processing

over structured peer-to-peer data networks. In: Proc. DBISP2P. (2003)
12. Gribble, et al., S.: What Can Peer-to-Peer Do for Databases, and Vice Versa? In: Proc

WebDB. (2001)
13. Huebsch, et al., R.: Querying the internet with PIER. In: Proc. VLDB. (2003)
14. Bharambe, A., Agrawal, M., Seshan, S.: Mercury: Supporting scalable multi-attribute range

queries. In: Proc. SIGCOMM. (2004)
15. Andrzejak, A., Xu, Z.: Scalable, efficient range queries for grid information services. In:

Proc. P2P. (2002)
16. Adar, E., Huberman, B.: Free Riding on Gnutella. First Monday (2000)
17. Saroiu, S., Gummadi, K., Gribble, S.: A measurement study of peer-to-peer file sharing

systems. In: Proc. MMCN. (2002)
18. Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker, S., Stoica, I.: The impact

of DHT routing geometry on resilience and proximity. In: Proc. SIGCOMM. (2003)
19. Gupta, A., Liskov, B., Rodrigues, R.: One hop lookups for peer-to-peer overlays. In: Proc.

HotOS IX. (2003)
20. Ntarmos, N., Triantafillou, P.: AESOP: Altruism-Endowed Self-Organizing Peers. In: Proc.

DBISP2P. (2004)
21. Rao, et al., A.: Load balancing in structured P2P systems. In: Proc. IPTPS. (2003)
22. Karger, D., Ruhl, M.: New algorithms for load balancing in P2P systems. In: Proc. IPTPS.

(2004)
23. Pitoura, T., Ntarmos, N., Triantafillou, P.: HotRod: Range query processing and load bal-

ancing in peer-to-peer data networks. Technical Report TR 2004/12/05, R.A. Computer
Technology Institute (2004)

