
An Internet Content Integration System: the Mediator and Wrappers.byNikolaos T. Ntarmos

Submitted to theDepartment of Ele
troni
 and Computer Engineeringin Partial Ful�llment of the Requirements forthe Diploma of Ele
troni
 and Computer Engineeringat the Te
hni
al University of Crete.Guidan
e CommitteeProfessor Peter Trianta�llou (Supervisor)Asso
iate Professor Manolis KoubarakisAssistant Professor Euripides PetrakisApril 2002

A
knowledgementsI would like to thank Professor Peter Trianta�llou, for supervising this e�ort and for hisguidan
e and support; they were more than indispensable to the
ompletion of this thesis.I would also like to thank in advan
e Assistant Professor Euripides Petrakis and Asso
iateProfessor Manolis Koubarakis for parti
ipating in my jury.Spe
ial thanks also go to my house-mate, Vassilis Heliades, for his support and patien
e(sleeping through the day and working at night isn't something everyone
ould
ope with...).

ii

Abstra
tInformation integration and dissemination over the web is in
reasingly re
eiving more atten-tion from a
ademi
s and related industry. With su
h emerging enabling te
hnologies as XMLand all of it's des
endants (XQuery/XML-QL, XPath, XPointer, XSL/XSLT, et
.), we seemto be moving into an era of relative data uniformity. However, the unstru
tured and het-erogeneous nature and the immense proportions of data
urrently available through the web,make information integration a vital part of many modern data management systems anddata warehouses.The most wide-spread approa
h to automated data integration and dissemination utilizesa mediator and wrappers for the ba
k-end sites. The former stands between the wrappersand the end-user, while the latter deal with data extra
tion from the ba
k-end sites and datatransformation into the mediator's internal data model.In this text, we shall present the Content Integration Ar
hite
ture (C.I.A.) - an approa
hto a domain-independent
a
hing mediator system - as well as two appli
ations based uponit: HyperHotel and HyperTV.

iii

Contents
A
knowledgements iiAbstra
t iiiList Of Figures vi1 Introdu
tion 11.1 Overview . 11.2 Ne
essity / Current Situation . 21.3 Thesis outline . 42 Ar
hite
tural Overview 52.1 The user
lient . 52.2 The front-end . 62.2.1 The user interfa
e . 62.2.2 The query generator . 62.3 The ba
k-end . 72.3.1 The mediator . 72.3.2 The data repository . 72.3.3 The agents . 82.3.4 The wrappers . 82.4 The e-sites . 93 HIT/CIA: The Mediator 113.1 Front-End Interfa
e (F.E.IN.) . 113.2 DOM-Tree Populator (DO.T.-POP.) . 133.2.1 The DomDB XML File . 153.3 Ba
k-end Interfa
e (B.IN.) . 163.3.1 Wrapper Generation Toolkits . 183.4 Querying Models . 203.4.1 DOM-Tree Approa
h . 213.4.2 Relational Database Approa
h . 233.4.3 Fully On-Line Approa
h . 243.4.4 Hybrid Approa
h . 253.5 Putting it all together. 264 Champion Appli
ations. 294.1 Overview . 294.2 HyperHotel . 294.3 HyperTV . 31iv

5 Related Work 335.1 Full-S
ale Integration . 335.1.1 TSIMMIS . 335.1.2 Dis
o . 355.1.3 ENOSYS Markets . 375.1.4 ShopBot . 395.2 Wrapper Generation Toolkits . 405.2.1 Grammar-Based . 405.2.1.1 Lex-Ya

 . 415.2.1.2 JEDI . 415.2.1.3 YAT . 425.2.1.4 Minerva . 435.2.2 Learning-Based . 445.2.2.1 NoDose . 455.2.2.2 XWrap . 466 Con
lusions and Future Work 47Appendix ATe
hnologi
al & Software Choi
es . 50A.1 Te
hnologies Used . 50A.2 Software Used . 51Appendix BModels of Database Conne
tivity . 52B.1 Dire
t JDBC Conne
tion . 52B.2 Web Server Model . 53B.3 Spe
ialized Appli
ation Server Model . 55Referen
e List 55

v

List Of Figures
2.1 Mediator Ar
hite
ture . 62.2 Integrating third-party Wrappers into a Mediator-Based System. 93.1 FEIN . 123.2 DOT-POP . 153.3 Sample DomDB XML File . 163.4 B.IN. 183.5 Minerva Sample De�nition File . 193.6 Jedi Sample De�nition File . 203.7 Minerva Sample Input . 213.8 Minerva Sample Output . 223.9 The Mediator . 285.1 The TSIMMIS System. 345.2 The DISCO System. 365.3 The ENOSYS System. 385.4 JEDI Ar
hite
ture . 425.5 YAT ar
hite
ture . 435.6 YAT translation s
enario . 445.7 The steps of using NoDose . 455.8 XWrap ar
hite
ture . 46B.1 Dire
t JDBC Conne
tion. 53B.2 Intermediate Web Server Conne
tion. 54B.3 Intermediate Spe
ialized Appli
ation Server Conne
tion. 55

vi

Chapter 1Introdu
tion
1.1 OverviewThe world wide web has evolved to the world's most massive database, but also to the mostnon-homogeneous one. Several attempts have been made to develop te
hnologies that willintegrate related data available online in an automated or semi-automated way and fa
ili-tate/provide uniform a

ess to this data.Some of them aim to implement a domain-based integrator; they make use of arti�
ialintelligen
e and domain-based knowledge to automati
ally extra
t the stru
ture of availabledata and integrate it.Others try to
reate a more generi
 infrastru
ture on whi
h numerous domain-based in-tegration appli
ations will be based; they rely on wrapper-generation toolkits and a
ustominternal design / data model.What we try to do is to build an independent mediator model, using third-party o�-the-selfwrappers and/or wrapper generation toolkits to extra
t information from e-sites, and standardXML-based[1℄ te
hnologies to integrate them with our data model. The purpose of this work isto automate the task of sele
tively querying multiple data sour
es on the web and presentingthe results in a uniform way. In later stages of development, the system will make use of
a
hing and distribution te
hniques for in
reased throughput and de
reased response time touser queries.

1

The use of third-party wrapper generation toolkits removes the burden of the developmentof this part of a mediator system and allows us to exploit available te
hnology, making ourwork market-relevant, and to
on
entrate on the building of the mediator itself. By utilizingXML-based te
hnologies, the only requirement the mediator must fa
e is to deal with XMLdata,
omplying to a prede�ned set of DTDs. Queries
an then be formulated in many ways(in
luding XSL, XPath, XQuery and DTD-
ompliant XML do
uments).We will demonstrate the fun
tionality of this system with two appli
ations: HyperHotel andHyperTV; two dynami
 mediator-based information integration and dissemination systems fore-hotels and television program listings, respe
tively.1.2 Ne
essity / Current SituationDue to the diversity of data available online through the World Wide Web, should one wantto retrieve information on a spe
i�
 subje
t, one would have to sear
h in many di�erent sites,keeping tra
k of sear
h and
omparison results while most of the time dealing with outdatedand/or obsolete data. This situation
alls for a new way of designing and implementing dataretrieval systems.Let's assume, for example, that an individual intends to pur
hase something online (e.g. abook,
drom et
.). Using
urrently available solutions, the pro
ess is as follows:1. Visit all relevant e-sites. This is an inherently ine�
ient task, sin
e the set of availablee-sites
onstantly
hanges. This usually results in the individual visiting only a small,random subset of them, therefore ex
luding important amounts of available data.2. Sear
h for the wanted item. This step for
es the user to deal with many di�erentinterfa
es a
ross the di�erent sites. Should an e-site not be very well designed or itssear
h engine be stri
ter than usual, the user would probably fail in �nding the desiredinformation.3. Compare and
hoose. The
hoi
e
ould be based upon su
h
riteria as the pri
e or theproximity of the e-shop, the available paying methods et
. In any
ase, the user has to2

keep tra
k of all relevant results from the previous step(s) in order to be able to
ompareand
hoose.Let's assume, however, that there were a
entral e-site, interfa
ing with all ba
k-end e-sites ina way that is transparent to the end-user. The user would then only have to sear
h on
e forthe desired information; the
entral e-site would undertake the task of querying all registeredba
k-end sites and presenting the results in a uniform way, so that dire
t
omparison wouldbe made possible, if not
ompletely automated.The se
ond s
enario is obviously mu
h more preferable than the �rst one, as far as easeof use is
on
erned, but what about e�
ien
y? Suppose two subsequent users are lookingfor the same information. Asking the same question twi
e over the internet would be veryine�
ient due to the network overhead. There are
ases in whi
h identi
al su

essive queriesshould both be run online. However, for all the other
ases, by using an appropriate
a
hings
heme, we
an redu
e the network overhead and response times signi�
antly. In any
ase,should there be no
entral e-site, the users would have to individually deal with the networkoverhead themselves.The goal of the C.I.A. endeavor is to build a domain-independent, dynami
, mediatorsystem with
a
hing, with an emphasis on speed, platform independen
e and ease of deploy-ment. For modularity and ease of maintenan
e, C.I.A. was built as three independent but
ooperating parts:1. a graphi
al user interfa
e (GUI), based on Java Servlets([2, 3℄) and/or JavaServerPages([4, 5℄), HTML forms and XML-based te
hnologies,2. an XML-enabled mediator, utilizing third-party wrappers and standard XML-derivedte
hnologies, and3. a
a
hing subsystem, based on o�-the-self database management systems and novel
a
hemanagement te
hniques.The work reported here is primarily
on
erned with the se
ond part: the Mediator. 3

1.3 Thesis outlineWe will
ontinue as follows: in Ch. 2 we will dis
uss the ar
hite
ture of C.I.A. outliningit's building parts and the way they interfa
e with ea
h-other and with the end-users andba
k-end e-sites. In Ch. 3 we'll delve into the details of the Mediator's ar
hite
ture andthe te
hnologies used therein, also des
ribing the querying models supported by the overallsystem as well as the results obtained by extensively testing these models. We will then (Ch.4) present two data integration appli
ations implemented using our system: HyperHotel andHyperTV, integrating e-hotels and TV program listings from TV e-sites respe
tively. We shall
on
lude with a brief presentation of work related to C.I.A. (Ch. 5) and proposals for futurework(Ch. 6). Appendi
es A and B give some more te
hni
al details on the implementation ofthe Mediator and C.I.A. as a whole.

4

Chapter 2Ar
hite
tural Overview
As we already mentioned, C.I.A. is a mediator-based data integration and dissemination ap-pli
ation for diverse data on the web. Written totally in Java([6℄), it guarantees maximumplatform independen
e and portability. Brie�y, C.I.A. is a
lient/server ar
hite
ture,
onsist-ing of the following
omponents:� The user
lient.� The user interfa
e.� The query generator.� The mediator system.� The data repository.� The agents.� The wrappers.� The ba
k-end e-sites.A s
hemati
 view of this ar
hite
ture is presented in �gure 2.1.2.1 The user
lientThis is usually a web browser. Any browser available today (even text-based ones, su
h asLynx)
an
onta
t the C.I.A. server, using the HTTP/1.1([7℄) or higher proto
ol, HTML 3.0 or5

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

Query
Generator Mediator Agent

Agent

Agent

Wrapper

Wrapper

Wrapper

Wrapper

Wrapper

Wrapper

Web

Browser

Web

Browser

Web

Browser

HTML/XML
over the Web

HTML/XML
over the Web

back−end
e−sites

Data
Repository

Clients

Mediator Server

Figure 2.1: Mediator Ar
hite
turehigher and Javas
ript 1.0 or higher; the system uses server-side te
hnologies, therefore movingthe burden of almost all tasks into the server. This is a great advantage of the system, sin
e itallows a

ess from lightweight
lients, su
h as PDAs and even WAP-enabled mobile phones.2.2 The front-endThis is the server-side part of the user interfa
e. A more detailed des
ription of this part ofthe system is provided in [8℄.2.2.1 The user interfa
eThe user interfa
e
onsists of HTML pages/forms and server-side te
hnologies, su
h as JSPsand Java Servlets. This frontend is the only interfa
e with the user. We have tried to makeit as user-friendly as possible, given that this is an edu
ational proje
t and not a
ommer
ialone.2.2.2 The query generatorThis module validates the user query passed to it from the user interfa
e, and generates aquery in XML, a

ording to a prede�ned grammar (DTD). It then forwards this query to6

the next part: the Mediator. Alternatively the XML query
an be forwarded to the lo
al
a
he-storage system and the mediator will be engaged by it only in a
a
he (partial/full)miss.2.3 The ba
k-end 12.3.1 The mediatorThis part is named after its task: it stands between the user-interfa
e and the ba
k-end agents,sele
ting whi
h, if any, agents to involve in ea
h query, and formatting their output, a

ordingto a prede�ned grammar (DTD), in order to be presented to the user in a uniform way. Thesele
tion of the agents is based on meta-data, kept by the mediator, and on the user query.2.3.2 The data repositoryThis in
ludes the meta-data database, as well as a (optional) data-
a
he for e-sites. There arethree approa
hes for the implementation of the data repository:1. The RDBMS approa
h, whi
h uses an o�-the-self relational database (e.g. MySQL orMi
rosoft SQL Server). Data a

ess is done through JDBC and XML. This is assumedto be the fastest approa
h, as far as runtime e�
ien
y is
on
erned.2. The native XML approa
h, whi
h utilizes o�-the-self native XML databases, su
h asLore([9, 10℄), Quilt([11℄) and dbXML. Data a

ess is done through vendor-spe
i�
 APIsor the X-API. This approa
h is
onsidered by the authors as the best of the three, sin
e it
an be platform-independent (if the database is implemented in Java) while using XML-derived te
hnologies, making it easier to
ode and integrate with the rest of the system.It's only short
omings are the low runtime e�
ien
y and the la
k of
ommer
ial support(the above mentioned implementations are far from being stable or ready for produ
tion1Though the mediator and the database
ould be
onsidered middleware, they are so
loselyinter
onne
ted with the agents and the wrappers that are dealt with as parts of the ba
k-end.7

use). However, as native XML databases evolve and spread, both disadvantages arebound to be extin
t.3. The DOM2 approa
h, in whi
h all data is kept in DOM trees, without the supportof an underlying native XML database, and parsed at will. This is the worst of thethree approa
hes, as it is memory-
onsuming (DOM trees are kept in main memory),requires extra time for the parsing of the XML data (should the desired DOM tree notbe loaded at the time of the query) and exe
ution times are mu
h greater, sin
e queriesare exe
uted on DOM trees, with no query optimization or s
heduling. On the otherhand, it is the easiest of the three to
ode for simple queries (we believe that the so-
alledsimple queries, will be the vast majority of all queries that will run on the database).2.3.3 The agentsAgents de
ide whether and what data will be drawn from the web or the lo
al data
a
he. Inthe �rst
ase, agents make use of sele
ted ba
k-end wrappers to extra
t the desired information.Se
ondly, the exe
ute a query on the lo
al database. In both
ases, an agent has to formatits output a

ording to a prede�ned grammar (DTD), so that the front-end modules will bepresented with results in a uniform way.2.3.4 The wrappersAutomati
ally generated or hard
oded, these are the most vital part of CIA. They extra
tinformation from the e-sites and transform it to the C.I.A. internal data model. Agents andwrappers will be dis
ussed further in the following
hapter. For a more te
hni
al overview ofwrappers, see appendix 5.2.Due to the authors' previous experien
e with su
h tools as Lex and Ya

 and the demandfor maximum
ontrol on the generated wrapper, grammar-based toolkits were preferred overlearning-based ones. After extensively testing many available solutions, we ended up using2For more information on DOM and DOM-related te
hnologies, please refer to [12, 13, 14, 15, 16, 17℄. 8

two wrapper generation toolkits, namely GMD-IPSI's JEDI and Araneus's Minerva. A
tually,the mediator has the ability to
hoose between Jedi and Minerva based wrappers at runtime.Of
ourse, grammar-based toolkits require the user to have knowledge on programmingand grammar rules. This is no disadvantage at this stage of development. However, shouldC.I.A. ever go
ommer
ial, a more user-friendly toolkit would be preferable.The integration of wrappers with the rest of the system is shown in Fig. 2.2 and 2.1.

Figure 2.2: Integrating third-party Wrappers into a Mediator-Based System.
2.4 The e-sitesThese are the original sour
es of information; the ba
k-end e-sites that we query, in order toextra
t the desired information. They
an be HTML or XML web servers, using any kind9

of server-side te
hnologies, but only text-based
lient-side ones (for example, a Ma
romediaFlash-enabled web page
an't be queried, sin
e it is impossible to parse with our wrappers).

10

Chapter 3HIT/CIA: The Mediator
The Mediator is the heart of the C.I.A. It is responsible for the retrieval of information from theba
k-end e-sites and the integration of data extra
ted by the latter ant its reformation a

ord-ing to its internal data model. For the shake of modularity, the Mediator is also implementedas a set of independent but
ooperating
omponents. These are:1. the Front-End Interfa
e,2. the DOM-Tree Populator/Data Manager, implementing the lo
al data repository, and3. the Ba
k-end Interfa
e.3.1 Front-End Interfa
e (F.E.IN.)To fa
ilitate and modularize the
ommuni
ation between the mediator and the user interfa
emodules, all data inter
hange is done using XML do
uments
omplying to a set of prede-�ned DTDs (the naming s
heme is <Appli
ation Name>-Query.dtd). Thus, the user interfa
emodules need not know anything about the query exe
ution methods or the internals of wrap-ping, while the mediator doesn't have to deal with HTML form elements and HTTP messageparsing.However, query exe
ution is done using o�-the-self te
hnologies, su
h as XPath, XSL(T),XQuery or JDBC, depending on the implementation of the data repository. This
alls for atranslator from Query.dtd -
ompliant XML do
uments to the appropriate query language.11

This task has been assigned to the mediator's Front-End Interfa
e (F.E.IN., pronoun
ed'feign'). FEIN
onsists of a set of translators, one for ea
h appli
ation - query method pair.Sin
e query DTDs are appli
ation - dependent, this part of the mediator is the only one witha need for domain-based knowledge.In more details, FEIN fun
tions in two levels:1. Level 1: XML input manipulation,
ommon to all translators within an appli
ation. Atthis level, the XML do
ument given as input to the translator is parsed and all relevantinformation is extra
ted and stored. This information is then exposed to the se
ondlevel via prede�ned Java methods.2. Level 2: query generation, spe
i�
 to the query language used. Using the informationextra
ted during the �rst level of the translation, the modules fun
tioning at this levelgenerate the
orresponding queries in the output query language. For the momentF.E.IN. supports XSL(T) and XPath, with XQuery support being under development.
Information
Extraction

FEIN

Java
Methods

Extracted
Information

User
Interface

Compliant
XML Document

Query.dtd

����
����
����
����

����
����
����
����

����
����
����

����
����
����

Level 1

XSL Generator

XPath Generator

Level 2

XSL Query

XPath Query

Parsing

Figure 3.1: FEINAs already stated, the use of the Query.dtd
ompliant XML do
uments as a means of
om-muni
ation between the user interfa
e modules and the mediator, provides many advantages:� it adds an extra level of abstra
tion between the user-interfa
e modules and the mediator.After the query DTDs are de�ned,
ommuni
ation is done using DTD -
ompliant XMLdo
uments, independent of the a
tual query language used or the HTML form layout.This will be made
lear at Ch. 4, where we use di�erent query languages and HTMLform layouts (a
tually one of the forms is stati
 while another is generated on-the-�y)12

for the di�erent appli
ations presented there, while keeping the same API between theuser-interfa
e and the mediator.� it allows for transparent and easy addition of a
a
hing subsystem between the userinterfa
e and the mediator, sin
e the API used by the former to a

ess the later isaltered so that it redire
ts all queries to the
a
he.� XML manipulation (generation, parsing et
.) is mu
h easier than any other query lan-guage. The fully stru
tured nature of XML makes it an ideal
hoi
e sin
e manipulationis pretty simple while XML generation is straightforward on
e we have a result or querytree.� addition of another query language doesn't a�e
t the user interfa
e at all, sin
e whatwill a
tually be added is a Level 2 query generator for the
orresponding language.The only disadvantage of this method is that it requires parsing of the query DTD
ompliantXML do
ument at all stages of the query exe
ution (i.e. when the
a
he is added, the XMLquery is �rst parsed at the
a
he level, then (in the
ase of a
a
he miss or partial miss)regenerated and reparsed at the mediator level by FEIN). However, by using third-partyXML parsers (namely Apa
he Proje
t's Xer
es parser, in deferred-node mode), the parsing-generation-reparsing overhead is redu
ed to a few millise
onds. As we have seen, the bottlene
kof our system is the network transfer layer and not FEIN.3.2 DOM-Tree Populator (DO.T.-POP.)The output of FEIN is a query, exe
uted on the data repository to extra
t the desired output.The mediator's repository is implemented as a forest of DOM trees, one for ea
h ba
k-end e-site. The system always does a
old start-up (i.e. the repository is empty when the mediator'sserver
omes up). The population of these DOM trees, is done by the se
ond part of thesystem: the DOM-Tree Populator (DOT-POP).
13

DOT-POP is domain - independent, so there is a unique DOT-POP for all implementedappli
ations. The fun
tionality of this part
an be analyzed in the following stages:1. Top-level sele
tion: during this stage, DOT-POP sele
ts the ba
k-end sites that areinvolved in the exe
uted query. This is done using the XPath output of FEIN to sele
tall DOM tree roots that satisfy the top-level
onstraints de�ned by the user. At this stageof exe
ution all DOM trees are almost empty; they
ontain only information in
ludedin the DomDB XML �le (the exa
t fun
tionality of this �le will be further dis
ussed in3.2.1).2. URL generation: at this stage, using the query
onstraints and a set of prede�nedrules, DOT-POP generates the URLs of the ba
k-end HTML pages to be wrapped. Thefun
tionality of this stage is equivalent to the �lling and submission of HTML forms in theba
k-end sites. We make heavy use of the
apabilities provided by the java.re�e
t pa
kageto guarantee that this part of DOT-POP is also domain-independent. All informationneeded throughout this stage is extra
ted at runtime either from the user query or from
orresponding metadata kept in external XML �les.3. BIN invo
ation: after de�ning the wrapped URLs,
ontrol is transferred to the Ba
k-endInterfa
e (the fun
tionality of BIN will be further dis
ussed in 3.3). What we need toknow for the moment is that BIN returns a set of XML do
uments,
omplying to anappli
ation - spe
i�
 DTD, representing the data extra
ted from ba
k-end sites.4. DOM tree population and normalization: at the �nal stage of DOT-POP, all data ex-tra
ted at the previous stage is added to the DOM tree. The system o�ers the ability tonormalize the populated DOM tree, using XSL transformations. Information
on
erningthe normalization as well as the
orresponding XSLT do
ument, are de�ned at runtime.Please note that by normalization we mean any kind of XSL transformation on the resultingtree. XSL queries generated by FEIN are a
tually exe
uted at stage 4 of DOT-POP.As we
an dedu
e from the above, when all four stages of DOT-POP are over, what wehave is a DOM tree
ontaining the result of the user-de�ned query. Corre
tness of the result14

XPath Query

Stage 1:
Top−level selection

Extracted
InformationFEIN Stage 2:

URL Generation

Stage 3:
BIN Invocation

XSL Query

Stage 4:
Population &

Normalization

DOT−POP XML Metadata

BIN

User
Interface

Result
DOM Tree

N

Figure 3.2: DOT-POPset is guaranteed by the operations leading up to DOT-POP as well as by the four stages ofthe latter. Completeness however is a
ompletely di�erent story; sin
e data is fet
hed overthe web, we sometimes deal with network timeouts, web server mis
on�gurations or ba
k-end e-site downtime. To a

ount for these
ases, DOT-POP
hara
terizes DOM trees thatare empty, as a result of data transfer errors, as in
omplete. This prevents the
a
hing andstoring of these parts of the result set, so the data repository is always in a
onsistent state.3.2.1 The DomDB XML FileTo avoid any unne
essary ba
k-end e-site a

ess and redu
e network overhead, we need ameans to sele
t only those sites whose result-set will
ontain answers to the user query. Sin
esu
h knowledge is not available a-priori, what we do is to desele
t those sites whose result-setwill
ertainly NOT
ontain any useful information. To do this, we need some extra data about15

the ba
k-end sites and the information they provide (i.e. some meta-data). This metadata iskept in XML �les (one for ea
h C.I.A. appli
ation), namely the DomDB XML �les.The DomDB �les are stati
 XML �les. They
ontain metadata (i.e. data about data) andany stati
 (i.e. not
hanging) information
on
erning the ba
k-end sites. They are loadedby the DOT-POP on-demand at runtime, every time a new query arrives. Data kept therein
onsists of all top-level information about the ba
k-end sites (e.g. site name, URL, snail-mailaddress et
.), plus dire
tives for the wrapping phase (e.g the
lass name of the wrapper, the
lass name of the URL generator et
.).The use of DomDB �les greatly improves the system's overall performan
e, by allowingsele
tive querying of ba
k-end sites with the (tiny) extra
ost of loading and parsing the XMLdata they
ontain. An ex
erpt from the DomDB �le used by one of C.I.A.'s appli
ations -HyperHotel - is shown in �g. 3.3.

Figure 3.3: Sample DomDB XML File
3.3 Ba
k-end Interfa
e (B.IN.)So far we have seen how we manipulate the user query, how we sele
t the ba
k-end sites toquery and how we put together the resulting XML do
ument. However, we haven't dis
ussed16

the way data is integrated with the mediator's internal data model. This is done by the thirdpart of the mediator, the Ba
k-end Interfa
e (BIN).BIN is responsible for fet
hing the data
orresponding to the URLs de�ned at stage 2 ofDOT-POP, extra
ting useful information and
onverting it to a prede�ned data model. BINoperations exe
ute in two stages, to
ompensate for the network delays, while maintainingmaximum parallelism for improved e�
ien
y:1. Stage 1: data fet
hing. During this stage BIN a

esses the ba
k-end sites, using theURLs generated by DOT-POP. It fet
hes and stores this information for use by the nextstage. All retrieval operations are done in a parallel and thread-safe way, so that, givenenough network bandwidth on the mediator's side, the overall network delay equals themaximum of the set of delays for ea
h of the transfers.2. Stage 2: wrapping. This is were wrappers are deployed. Wrappers are
onstru
tedusing third-party wrapper generation toolkits (WGTs), usually available free of
hargefor edu
ational and non-
ommer
ial purposes. Wrappers are responsible for parsingthe data fet
hed during stage 1 of BIN's exe
ution, using a set of prede�ned grammarand output rules. They usually generate forests of DOM trees,
orresponding to thedo
ument fragments they parsed and wrapped. Sin
e these operations usually involvenumerous ba
k-end sites, wrappers are deployed in parallel, using the multithreadingme
hanisms provided by the Java programming language. However, the WGTs usedto implement C.I.A. su�er from
ertain ine�
ien
ies as far as thread-safe exe
ution is
on
erned. In order to a

omplish maximum parallelism, the thread-unsafe parts of thewrapping pro
ess have been isolated and serialized using syn
hronized Java methods.Thus, the overall wrapping delay equals the sum of the maximum of the set of delays forthe thread-safe parts of wrapping, plus the sum of delays from the thread-unsafe partsof wrapping.
17

BIN

BIN

BIN

BIN

Back−end e−site

Data Retrieval
over the WWW

Stage 1

URL

Stage 2

Information Extraction
and Integration

BIN

DOT−POP

EBNF

data

Wrapped Data

Figure 3.4: B.IN.3.3.1 Wrapper Generation ToolkitsThe wrapper generation toolkits used in the implementation of C.I.A. take as input a wrappingde�nition �le. This �le is a mixture of EBNF style grammar rules, Java or Java-like instru
tionsand method
alls, and output formatting de�nition instru
tions (see �g. 3.5 and �g. 3.6 1).For a more te
hni
al and detailed des
ription of all examined wrapper generation toolkits,refer to Ch. 5.2.The use of EBNF-supporting wrapper generation toolkits was the result of the followingfa
tors:� the high grade of a
quaintan
e with (E)BNF-based tools (e.g. Lex/Ya

 et
.) minimizeslearning overhead (the best-
ase s
enario would be one in whi
h the implementer wouldknow a-priori exa
tly how to use the available tools). For example, of the two presented1All Minerva �gures and �les were taken from the Minerva distribution. The Jedi �le shown in �g. 3.6 wastaken from the Jedi distribution. For li
ensing details, refer to the
orresponding web sites (see App. 5.2 formore info on Minerva and Jedi). 18

Figure 3.5: Minerva Sample De�nition Filewrapper generation toolkits, we tend to use Minerva more than Jedi, sin
e it fully sup-ports the Java programming language rather than the synta
ti
ally Java-like languageof the latter.� grammar-basedWGTs allow for maximum
ontrol on the input manipulation and outputgeneration. Sin
e this is a resear
h proje
t, we are more interested in using tools thatallow us a great degree of
ontrol; user-friendliness is not required.� the ability to mix grammar rules and programming language instru
tions gives maximum�exibility as to the integration and formatting
apabilities of the generated wrapper.� be
ause of their deterministi
 nature, EBNF-based wrappers exe
ute faster and requireless memory than their learning-based
ounterparts, due to the simpli
ity of the data-stru
tures required for their implementation.The sample input and the
orresponding output for the Minerva �le shown in �g. 3.5, aredepi
ted in �gures 3.7 and 3.8.
19

Figure 3.6: Jedi Sample De�nition File3.4 Querying ModelsAs we already mentioned, user queries are exe
uted by DOT-POP in two stages:1. Stage 1: �lling-out ba
k-end sites' forms using user-supplied values.2. Stage 2: running a user-de�ned query on the out
ome of the wrapping pro
ess.The �rst stage is done internally by DOT-POP. However, the se
ond stage
an be implementedin a variety of ways:� the DOM tree approa
h. 20

Figure 3.7: Minerva Sample Input� the native XML database approa
h.� the relational database approa
h.� the fully-online approa
h.� a hybrid approa
h
ombining two or more of the above methods.3.4.1 DOM-Tree Approa
hIn this approa
h, all data from the e-sites being integrated, is prefet
hed and kept in a DOMtree. All queries thereafter are exe
uted against this populated DOM tree, using some kindof XML-based query language, su
h as XSL(T).This approa
h o�ers several advantages:� It's extremely easy to program. Sin
e wrappers return data in the form of XML do
-uments or DOM trees, the population of the main DOM tree is straightforward andblazing-fast.� It allows for easy querying. Java, through XML pa
kages (su
h as Xalan) provides avariety of methods to exe
ute XPath or XSL(T) queries against a given DOM tree; all21

Figure 3.8: Minerva Sample Outputa programmer has to do is put together the query and pass it as an argument to therelevant Java method.� It allows for easy transformation from and to XML/HTML and other human-readableforms. This means that the presentation of the query results
an be done using a simpleXSL stylesheet and o�-the-shelf tools.� It is reusable. By implementing the fun
tionality required to support a DOM-baseddatabase, we
an use the exa
t same
omponents for even more tasks (e.g. informationextra
tion from traditional databases, transformation of data into many di�erent formset
.).It does however su�er from some very important disadvantages:� In order to support updates at runtime, the DOM Tree approa
h requires the designand implementation of
omponents performing
ompli
ated manipulations of the DOMtrees. The easiest solution is to rebuild the whole DOM tree every time an update isperformed. However, the ine�
ien
ies of this method are quite obvious. On the other22

hand, implementing DOM tree updates makes all sour
e-
ode level maintenan
e tasks avery di�
ult endeavor.� Memory requirements
an be
ome prohibitive. For the proof-of-
on
ept appli
ationsimplemented for this thesis, the amount of memory used was not very big. However,we expe
t memory requirements to grow almost linearly to the growth of the numberof e-sites wrapped. A possible solution for this problem would be to use some formof persistent DOM trees, saving all information on some external storage devi
e. This
ould
ir
umvent the memory
onsumption matter, but the query exe
ution time wouldin
rease.� There is no query optimization me
hanism other than that provided by the defaultXML manipulation Java pa
kages. A traditional relational database
an exe
ute thesame queries in fragments of the time required by the DOM tree approa
h to exe
ute itsXSL transformations.3.4.2 Relational Database Approa
hAs the header implies, in this approa
h all data is prefet
hed and kept in a traditional relationaldatabase. All queries thereafter are exe
uted using JDBC and SQL query language ([18℄).This approa
h o�ers the following advantages:� O�-the-shelf solution. Using third-party produ
ts removes the burden of maintenan
eand support of these parts of the system. This allows us to
on
entrate on the devel-opment of the data integration side of C.I.A., using the low-level database a

ess as abla
k box.� Industrial-strength quality. Sin
e this is a third-party produ
t, it has probably beenthoroughly tested and debugged by the
ompany that developed it. The importan
e ofthis fa
t may not be obvious at this time. However,
onsider the possibility of C.I.A. go-ing
ommer
ial; everyone would prefer a system based on a well-known, highly optimizedrelational database over an experimental and not-so-stable DOM-Tree based one. 23

� Easy querying. These produ
ts usually support a variety of query languages throughdi�erent interfa
es. Just to mention a few, we generally
an run queries written inSQL, XPath, XML-QL([19℄) and XML Query([20, 21℄), via ODBC, JDBC, CORBA andRMI([22℄).� Fast queries. The fa
t that these produ
ts are separately developed, allows their de-velopers to delve into su
h details as query s
heduling and optimization, transa
tion
ontrol, storage optimization et
. The out
ome of all these: a blazing-fast query exe
u-tion engine.� Powerful queries, if JDBC or ODBC is used. XPath, XML-QL and XSL are not aspowerful query languages as SQL and XML Query([23℄). Therefore, the use of a rela-tional database for our metadata repository also allows us to easily exe
ute powerful and
omplex queries in a straightforward manner.� Easier updates. Of
ourse a relational database management system (RDBMS) o�eringall of the above,
ould do nothing else than to also o�er a powerful and highly optimizedupdate me
hanism. This solves the greatest ine�
ien
y of the DOM-Tree approa
h inthe best possible way.It's main disadvantages in
lude:� Extra bindings and extra
osts, due to the use of third-party
ommer
ial software.� No sour
e
ode is available sin
e these are full-blown
ommer
ial produ
ts. This mayprove really annoying in
ases where a
ertain fun
tionality is not implemented by thesoftware in use (in whi
h
ase we should either
hange the RDBMS used, or redesignthe rest of the system, both of whi
h being very expensive).3.4.3 Fully On-Line Approa
hAll solutions presented so far, are based on some kind of prefet
hing and
a
he-storage te
h-nologies. If we
ompletely remove this part of the system, what results is the Fully On-Line24

approa
h; no data prefet
hing or
a
hing is done on the server side. The only information theserver has is the initial metadata, as made available by the DomDB XML �les.The advantages of this approa
h in
lude:� Extreme reusability. Sin
e all tasks are done on-line, this approa
h needs only theDomDB XML �les and the
orresponding wrappers to fun
tion properly. If these tworequirements are met, the Fully On-Line approa
h
an a
t as a full-�edge, domain-independent mediator2.� It allows for sele
tive queries and/or updates. Of
ourse, the real update will be doneagainst a server-side database, as those des
ribed earlier. However, the Full On-Lineapproa
h makes it possible to query only a portion of the ba
k-end sites, thus allowingfor sele
tive exe
ution of user or system-de�ned queries.� It allows for better
a
hing algorithms. Sin
e no
a
hing is implemented in the database,the task of
a
hing is moved outside the Mediator, where more
ompli
ated and propri-etary algorithms
an be used.� Low memory requirements. Sin
e no
a
hing is done on the Mediator server's side, thememory requirements of this approa
h are extremely low,
ompared to the requirementsof the approa
hes presented so far.However, this solution has the worst run-time e�
ien
y of all previous approa
hes; ea
h andevery query takes extra overhead (network transfer, metadata parsing, data wrapping, wrap-ping output manipulation, et
.), making query exe
ution a time-expensive pro
ess.3.4.4 Hybrid Approa
hC.I.A. uses none of these approa
hes as they were presented above. We rather invented ahybrid approa
h,
ombining the advantages of all of the mentioned approa
hes, while avoidingmost of their short
omings:2As we shall see, the Fully On-Line part of the Mediator was used in an as-is basis in both of the sampleappli
ations of C.I.A. 25

� Fully On-Line queries, as an interfa
e with the ba
k-end sites,� an internal DOM-Tree database, for the stati
 or slowly
hanging parts of the wrappedinformation, and� an external Relational database for the
a
hing of wrapped data.This approa
h o�ers all advantages of the individual approa
hes, with the following di�eren-tiations:� It doesn't su�er from the run-time ine�
ien
y of the Fully On-Line approa
h, sin
e theba
k-end sites are
onta
ted less frequently.� The memory requirements are de
reased to a minimum, sin
e only stati
 data is kept inmemory.� It provides ultra-fast exe
ution of queries
on
erning
a
hed or stati
 data.� The use of an external Relational database as a
a
he, moves the development andmaintenan
e
ost from the Mediator to the external Ca
he. Modularity is one of thedevelopers' main goals.3.5 Putting it all together.Our Mediator is the assembly of all of the above. A s
hemati
 view is depi
ted in �g. 3.9.Information integration, as presented above (Ch. 3.2), su�ers from a serious ine�
ien
y.Although all data is stored and manipulated as DOM trees, there is no spe
i�
 method forall the parts and stages of mediation to share the same DOM tree in a thread-safe way. Thismeans that data is
onverted from and to XML whenever the pro
essing
ontext
hanges (i.e.from DOT-POP to BIN, from BIN to DOT-POP et
.).The main reason why this o

urs is the la
k of a

ess to the sour
e
ode of the wrapper gen-eration toolkits as well as the la
k of appropriate Java methods whi
h would export pro
esseddata as DOM trees. However, for the time being, with C.I.A. still in the 'proof-of-
on
ept'26

stage of development, the delay presented to the system by this fa
t is negligible, sin
e thenumber of ba
k-end e-sites is not great. If e�
ien
y ever be
omes
riti
al to the evaluationof C.I.A. as a whole, this is a se
tion whose improvement would provide an important overallperforman
e gain.The Mediator and C.I.A. as a whole were designed with tree main fa
tors in mind:1. Platform independen
e: the �nal out
ome should be easily portable among di�erent soft-ware and hardware platforms. The use of Java and XML derived te
hnologies guaranteesmaximum platform independen
e.2. Ar
hite
ture openness: modules should be easily alterable, while the set of wrappedba
k-end sites should be as dynami
 as possible. This is a
hieved by using the DomDB�les and in
onjun
tion with the overall ar
hite
ture design.3. Li
ense freedom: all parts used should be either open/free sour
e or freely available foredu
ational reasons. The Mediator was developed in Java, using Sun's publi
ly availableJDK, and non-
ommer
ial wrapper generation toolkits.

27

User
Interface

Compliant
XML Document

Query.dtd
Information
Extraction

FEIN

Java
Methods

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

Level 1

XSL Generator

XPath Generator

Level 2

Parsing

Extracted
Information

XPath Query

XSL Query

Stage 1:
Top−level selection

Stage 2:
URL Generation

Stage 3:
BIN Invocation

Stage 4:
Population &

Normalization

DOT−POP XML Metadata

BIN

BIN

BIN

BIN

Data Retrieval
over the WWW

Stage 1

URL

Stage 2

Information Extraction
and Integration

BIN
Result

DOM Tree

Mediator

Back−end e−site

Back−end e−site

Back−end e−site

Back−end e−site

EBNF

data

Wrapped Data

Figure3.9:TheMediator
28

Chapter 4Champion Appli
ations.
4.1 OverviewWe shall now present two proof-of-
on
ept novel data integration appli
ations, implementedusing the C.I.A., as it was des
ribed in the previous
hapters:� HyperHotel: a data integration appli
ation, bringing together the vast amounts of in-formation available online by real-world hotels. Users will have the ability to sear
h fortheir residen
e-of-
hoi
e in multiple e-hotels, without having to visit the web sites ofea
h and every one of them, and� HyperTV: an appli
ation integrating data available on the world-wide-web,
on
erningtelevision
hannels' programs. Users will eventually be able to sear
h and sele
t the TVprograms they'll wat
h, by sele
tively querying TV stations' web sites, in a uniform,
entralized and user-friendly manner.4.2 HyperHotelA
lassi
 example of data freely available through the world-wide-web in unstru
tured or semi-stru
tured form, is data about a

ommodation fa
ilities, su
h as hotels and rent-rooms. The
ommon pra
ti
e for su
h
ompanies is to have a web site o�ering lo
ation-related informa-tion (su
h as address, transportation, proximity to known sites et
.), room rates, availability
he
king, online booking et
. Sin
e tourism is a qui
kly growing se
tor of modern e
onomies,29

the demand for a
entralized way of uniformly querying all su
h fa
ilities is be
oming greater.HyperHotel's goal is to answer to this demand in a semi-automated way, surpassing
urrentlyavailable paradigms utilizing data-entry and/or proprietary
ommuni
ation proto
ols betweenthe integrator and the ba
k-end sites.Being an appli
ation of C.I.A., HyperHotel has the following advantages:� It uses standard world-wide-web te
hnologies and proto
ols (i.e. HTTP/1.1, SSL et
.)to
ommuni
ate with the ba
k-end sites and with the
lients. This means that a hotelneeds only have a web site to be a
andidate for integration, while all a user needs is aweb browser and a

ess to the Internet.� It is written totally in Java, hen
e guaranteeing maximum platform independen
e onthe server side.� Sin
e all data is drawn from publi
ly available sour
es (i.e. the hotels' web sites), it isfree of possible
opyright and li
ensing issues.To a
hieve better performan
e, the HyperHotel Mediator prefet
hes, integrates and stores all�stati
� data (i.e. data available through stati
 HTML pages) at start-up, while still o�eringthe
apability of online dynami
 querying through HTML form interfa
es.HyperHotel makes it possible for a user to query multiple hotel websites, based on su
h
riteria as:1. lo
ality (
urrently more than 40 hotels from more than 5 areas in Gree
e are dynami
allyin
luded in queries).2. hotel
ategory (e.g. A/B/C
lass et
.)3. amenities available (e.g. swimming pool,
onferen
e room, restaurant et
.)4.
loseness to the sea.5. proximity to the nearest
ity.6. room size (i.e. number of beds). 30

7. a
tual dates of a

ommodation.8. �nal room rates (in
luding support for ranging rates, e.g. spanning multiple seasons).A demonstration of HyperHotel is available online at http://hit.softnet.tu
.gr/Appli
ations/HyperHotel.4.3 HyperTVHyperTV is another proof-of-
on
ept appli
ation based on C.I.A.. It deals with the integra-tion and uniform querying of television
hannel programmes, available online through the
orresponding television
hannel website.Currently almost all television
hannels have a website, mainly providing information aboutthe
hannel's programme. Moving into the era of digital television, users will have a

ess tohundreds of
hannels, through the
orresponding digital platforms. The diversity and largeamount of programmes will then make printed TV guides and individual
hannel websitesobsolete or unusable. HyperTV
overs this gap, by providing a �
entralized� way of sele
tivelyquerying multiple programmes, transparently to the end-user.HyperTV allows for queries based on su
h
riteria as:1.
hannel name (
urrently more than 10
hannels are integrated).2.
hannel type (i.e. satellite,
able, digital, subs
riber-based et
.)3. program start/end hour.4. program name.5. program type and/or des
ription.6. prede�ned queries,
on
erning high-volume high-frequen
y user queries (e.g. �Whatmovies are there tonight?� or �What football mat
hes are on tomorrow?�).To a
hieve maximum query exe
ution performan
e and minimum response time, HyperTVprefet
hes, integrates and stores all relevant data, for a prede�ned amount of time (usually31

seven days)[18℄. This pro
ess is done during low-a
tivity time periods (e.g. at night), so thatusers will seldom see any degradation in performan
e. The stored data is then deleted and /or updated in a
ir
ular way, on a per-day basis: at the end of ea
h programme day (when theprogramme for a day be
omes obsolete), the system prefet
hes the programme for the seventhday (i.e. the programme of the �rst day of the next week, starting from the
urrent day). Thiste
hnique guarantees
ompleteness and
orre
tness for the prefet
hed and stored data.A demonstration of HyperTV is available online at http://hit.softnet.tu
.gr/Appli
ations/HyperTV.

32

Chapter 5Related Work
We pro
eed with the des
ription of related work and its
omparison to C.I.A.. We
lassifyrelevant proje
ts in two major
ategories, as to their fun
tionality: full-s
ale integration andwrapper generation.5.1 Full-S
ale IntegrationData integration has been a hot-spot of information te
hnology for many years. Many attemptshave been made to
reate a full-blown mediator system. Due to the size of relevant work, we
hoose only to refer to the most well-known among them1: TSIMMIS([48, 49℄), DISCO([50,51℄), Enosys Markets([52℄) and ShopBot([53℄).5.1.1 TSIMMISTSIMMIS stands for The Stanford-IBM Manager for Multiple Information Sour
es. As itsname implies, TSIMMIS was developed by the Stanford University in
ooperation with IBM.TSIMMIS is a
lassi
 representative of a full-s
ale mediator system,
onsisting of the fol-lowing
omponents:1For more information on the subje
t, please refer to [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,38, 39, 40, 41, 42, 43, 44, 45, 46, 47℄.

33

Translator

Information
Source

Classifier/Extractor Plain Text

Generator
Translator

Definition

Local
Constraint

Manager

Local
Constraint

Manager

Translator

Information
Source

Information
Source

Translator

Constraint
Manager Mediator

Application

Classifier/Extractor Plain Text

Mediator
Mediator

Generator

Definition

Figure 5.1: The TSIMMIS System.� The Translator Generator and the generated Translators. Ba
k-end sites are a

essedthrough wrappers (referred to as �Translators� in the TSIMMIS literature), semi-automati
ally generated by the Translator Generator, a wrapper generation toolkit.Translators deal with the tasks of
onverting queries to a form exe
utable on the ba
k-end sites and then
onverting the extra
ted data to the TSIMMIS obje
t model.� TheMediator Generator and the generatedMediators. Mediators are semi-automati
allygenerated super-wrappers, dealing with the task of sele
tively in
luding sets of Transla-tors in query exe
ution time, based on semanti

riteria (e.g. query semanti

ategoryand Translators available for relative ba
k-end sites).� The Constraint Managers. These
omponents deal with integrity
onstraints imposedon the integrated data by front-end appli
ations. 34

� The Classi�ers/Extra
tors. These
omponents deal with the extra
tion of useful at-tributes from unstru
tured data sour
es (e.g. plain-text �les), so that su
h information
ould be used by a Translator in subsequent queries.� The data model. TSIMMIS uses a self-des
ribing (tagged) obje
t model,
alled theObje
t Ex
hange Model, or OEM. OEM allows simple obje
t nesting, thus being a verysimple obje
t model. Queries against OEM repositories are issued in OEM-QL, andSQL-like language, spe
i�
 to the TSIMMIS proje
t.The design of TSIMMIS is very
lose to that of the C.I.A.; both platforms use wrappers,semi-automati
ally generated using wrapper generation toolkits, to a

ess ba
k-end e-sites. Inthe C.I.A.,
onstraint management is done during stages 2 and 4 of the DOT-POP exe
ution,while there is no need for Mediators, sin
e multiple C.I.A. instan
es are deployed for di�erentsemanti

ategories.Moreover, both platforms use self-des
ribing obje
t models. However, TSIMMIS's OEM
alls for a model-spe
i�
 proprietary query language, while XML is an industry standard, withquerying
apabilities
ontrolled by the W3C XML group. Another major di�eren
e betweenTSIMMIS and the C.I.A. is the use of Classi�ers/Extra
tors, sin
e C.I.A.
urrently doesn'tsupport integration of unstru
tured data. This is due to the fa
t that
urrently publi
lyavailable wrapper generation toolkits don't support e�
ient wrapping of unstru
tured data.5.1.2 Dis
oDISCO stands for Distributed Information Sear
h COmponent and was developed by InriaRo
qen
ourt and the University of Maryland.DISCO is another representative of a full-s
ale mediator system. It features:� The Catalog : a
olle
tion of data
on
erning the Mediators. The Appli
ation uses dataavailable in the Catalog to sele
t whi
h Mediators to in
lude in every query exe
ution.� The Mediators. DISCO's Mediators deal with the tasks of sele
ting whi
h wrappers touse for every query and the
onversion of wrapped data to the system's data model. 35

Catalog

Mediator Mediator

Application

Wrapper Wrapper Wrapper

DatabaseDatabaseDatabase Figure 5.2: The DISCO System.� The Wrappers. These
omponents deal with the
onversion of queries, from a subset ofthe general query language used by the Mediator, to the parti
ular language used by the
orresponding data sour
e, and with the
onversion of data thus a
quired to the formatexpe
ted by the
orresponding Mediator.� The data model. DISCO's data model is based on the ODMG-93 standard[54℄,
onsistingof an obje
t data model (ODM), an obje
t de�nition language (ODL), a query language(OQL) and a language binding.DISCO's approa
h to mediation is very similar to that of TSIMMIS, to the extent that bothsystems use wrappers,
ontrolled by mediators,
ontrolled by a �super-mediator� (i.e. theCatalog). However, DISCO mediators are not semi-automati
ally generated, as is the
ase withTSIMMIS's mediators. As already mentioned, the C.I.A. makes no use of �super-mediators�,sin
e multiple C.I.A. instan
es are deployed for equal semanti

ategories. Moreover, DISCO,by extending the ODMG standards, uses a less proprietary data model than TSIMMIS's OEM,but it's still far more
ompli
ated than the �at XML data repositories of C.I.A.
36

Another major di�eren
e between the DISCO approa
h and that of the TSIMMIS and theC.I.A. systems, is the intended ba
k-end data sour
es; DISCO is designed for the integrationof DBMS-based information systems. The issues that arise in the integration of su
h systemsare very similar to those arising in the integration of data sour
es over the web (as thosedealt with by TSIMMIS and the C.I.A.), with the ex
eption of the semistru
tured nature ofweb-based sour
es; data retrieved by dire
tly querying a DBMS-based data sour
e is alwaysstru
tured, while data transfer is done through proprietary APIs, spe
i�
 to the DBMS. Assu
h, we
onsider the DISCO system to be more of a data wrapping servi
e than a full-s
alemediator.5.1.3 ENOSYS MarketsENOSYS is the
ommer
ial o�spring of the resear
h made for the TSIMMIS proje
t. As su
h,the ENOSYS system also deploys wrappers (XMLizers) for the extra
tion of information fromthe ba
k-end data sour
es, and mediators (XMediators) for the integration of extra
ted data.It also features an XML
a
he database, mu
h like the C.I.A. platform.The main building blo
ks of the ENOSYS platform
omprise of:� The XMLizers: ENOSYS Markets' XMLizers (wrappers) deal with the extra
tion ofdata from ba
k-end data sour
es and the transformation of extra
ted data to the me-diator's internal data model. XMLizers exist for various types of data sour
es, su
has RDBMSs, XML �les et
. XMLizers are semi-automati
ally generated, using user-friendly visual tools and a de
larative sour
e de�nition language.� The XMediator : all information extra
ted by the XMLizers is then passed to the XMe-diator, ENOSYS Markets' mediator. The XMediator then exports this information inthe form of �views� on the integrated data, thus resembling a database. As a matterof fa
t, the server-side
omponents of the ENOSYS system is
alled Virtual IntegratedXML Database (VIX Database) in the ENOSYS literature, thus the
orresponding viewson integrated data are
alled VIX Views. 37

XMLizer XMLizer XMLizer

RDBMS Legacy App.

XMediator

XML File

XCacheDB

Virtual Integrated XML (VIX) Database

Virtual Integrated XML (VIX) Database

Application

Custom

XSDesign

HTML Forms
& Reports

XML Query XML Query

VIX View VIX View VIX View

Figure 5.3: The ENOSYS System.� The XCa
heDB : when the wrapped data sour
es are either stati
 or slow, their XMLviews are
a
hed in the XML Ca
he DataBase, the XCa
heDB. Of
ourse,
a
hing isdone transparently,
onsidering the rest of the system's
omponents.There is great resemblan
e between the ENOSYS Markets' system and the C.I.A., apartfrom both being
lassi
 representatives of full-blown mediator systems; both systems utilize
a
hing te
hniques to
ompensate for high-rea
tion-time or stati
 data sour
es. However, theC.I.A. takes
a
hing one step further, by
a
hing ea
h and every query and it's
orrespond-ing response, using state-of-the-art
a
hing te
hniques and partial hit/miss re
ognition andby ta
kling the integration problem in a distributed manner (through
a
he repli
ation andmultiple mediator instan
es).On the other hand, the ENOSYS system, being a
ommer
ial produ
t, is a mu
h more
omplete data integration system than any of the systems presented here. In a nutshell, it alsofeatures visual tools to simplify wrapper generation and data a
quisition and maintenan
e,38

su
h as the XSDesign: a graphi
al web-form generator. This
omponent allows power-usersof the ENOSYS system to
reate web/HTML-based forms for the a

ess of integrated data.5.1.4 ShopBotThe ShopBot was developed by R.B. Doorenbos, O. Etzioni and D.S. Weld at the Universityof Washington. It was a World-Wide-Web shopping agent that enabled users to shop onlinefor CD's and
omputer software, but was retired in 1998. However, it
ontributed to the devel-opment of more advan
ed shopping agents, su
h as the Jango (http://www.jango.ex
ite.
om).The ShopBot utilized advan
ed arti�
ial intelligen
e te
hniques to understand informationpublished at ba
k-end sites; information extra
tion was more-or-less automati
, based onlimited domain-spe
i�
 knowledge and
ertain assumptions as to the stru
ture and
ontent ofthe integrated data. It did however su�er from some major problems:� Data analysis was not detailed enough and
ould lead to wrong output (e.g. upgrades ofa program, being less expensive than the program itself, appeared higher in ShopBot'ssorted list of available produ
ts).� The rules on whi
h ShopBot's de
isions were based, were too stri
t, leading to in
om-pleteness of the output (e.g. when the formatting of a web page wasn't within the limitsre
ognized by the ShopBot, parts of the integrated data
ould be mistaken to belong tothe useless
ontent of the page).� The ShopBot
ould only integrate sites with a sear
hable index. This not being the
asefor many all of the available e-shops, the ShopBot
ould only integrate a fra
tion of theset of e-shops.� ShopBot's performan
e was linear in the number of integrated data sour
es, thus nots
aling well for large numbers of ba
k-end e-sites.� Wrapper generation was heavily based on the assumption that all data sour
es exportinformation in HTML form. This means that the ShopBot would never be able tointegrate a data sour
e embedding information in Java Applets, images et
. 39

5.2 Wrapper Generation ToolkitsWe
ontinue with a presentation of the major wrapper-generation toolkits available today,whi
h where also
andidates for adoption by the C.I.A.. All of them have the following
hara
teristi
s:� They are written in Java, therefore guaranteeing platform-independen
e and maximumintegration
apabilities with the rest of the system.� They are available free of
harge for edu
ational reasons. Although C.I.A. might evolveto a
ommer
ial platform, in this stage of development no
ommer
ial produ
ts shouldbe used.We separate toolkits in two major
ategories, a

ording to the way they intera
t with the userin order to generate the wrapper:1. Grammar-based toolkits.2. Learning-based toolkits.5.2.1 Grammar-BasedThese toolkits take as input a des
ription of the grammar of the wrapped sour
e and a de�-nition of the output format. They then generate a wrapper that mat
hes the given grammarrules to the e-site web-pages and returns the parsed data, a

ording to the output format def-inition. Grammar and output de�nitions are made in toolkit-spe
i�
 formats. The ease-of-useof this format plays a very important role in
hoosing one toolkit over another.With these toolkits, wrappers are harder to
ode, sin
e they require grammar rules indu
-tion by the user, but allow maximum
ontrol over the generated wrapper.The most prominent representatives of this
ategory are the Lex-Ya

 parser generationsuite, the GMD-IPSI's JEDI([55℄), INRIA's YAT([56, 57, 58℄) and the Universita di Roma'sMinerva([59, 60, 61, 62, 63, 64℄) wrapper generation toolkits. 40

5.2.1.1 Lex-Ya

The Lex-Ya

 parser/
ompiler generation suite has been around for quite a long time. Most
ompilers available today are developed and maintained using these very two tools or theirvarious ports (e.g Flex/Bison for GNU/Linux et
.). As expe
ted, they have also been portedto Java by various developers (e.g. Co
o/Java, CUP, the JavaCC et
.).Due to the low-level nature of these tools, they are the most powerful of the presentedtoolkits as to the features of the generated parsers. However, programming in Lex-Ya

anbe very time
onsuming, while the advan
ed possibilities of this toolkit would surely be neverused in the
ontext of web-page data-sour
e wrapper generation.5.2.1.2 JEDIJEDI stands for Java-based Extra
tion and Dissemination of Information. It was developed atthe Integrated Publi
ation and Information Systems Institute (IPSI) of the German NationalResear
h Center for Information Te
hnology (GMD). Quoting from the JEDI Handout:JEDI adopts a lightweight approa
h to wrapping and mediation, requiring onlybasi
 web-browser te
hnology. It has been entirely implemented in Java.JEDI's wrapper
onsists of a powerful and fault tolerant parser. Using attributed,nested rules that des
ribe the sour
e stru
ture of do
uments, the parser segmentsthem to any desired level, and
ollates the parsed data into a network of obje
ts.Unlike parsers for formal languages, JEDI's parser
an
ope with in
omplete andambiguous sour
e spe
i�
ations. This is a

omplished by a novel parsing te
hniquethat
hooses always the most spe
i�
 rule among several appli
able rules. When�nding no appli
able rule for some do
ument portion, it skips as little as ne
essaryto
ontinue with an appli
able rule.Wrappers and mediators have been
arefully designed to tolerate stru
tural devia-tions and in
omplete spe
i�
ations without trading expressive power. The immedi-ate advantage of this is that users
an
on
entrate on what they want to reuse and 41

merge, and need to
are little about how rules and obje
t-types are applied. Butin addition, JEDI's fault-toleran
e leads itself to applying ma
hine-learning te
h-niques that explore information spa
es to generate re
ognition rules and mappingspe
i�
ations semi-automati
ally.JEDI's ar
hite
ture is shown in Fig. 5.4. For a more detailed des
ription of JEDI, refer to[55℄.

Figure 5.4: JEDI Ar
hite
tureJEDI and related demos and do
umentation,
an be found at� http://www.darmstadt.gmd.de/oasys, and� http://www.darmstadt.gmd.de/~hu
k.5.2.1.3 YATYAT was developed by INRIA, as part of the OPAL proje
t. YAT stands for Yet AnotherTree-based system. Its ar
hite
ture is shown in Fig. 5.5.Quoting from [57℄: 42

Figure 5.5: YAT ar
hite
tureIt relies on a middleware model, a de
larative language, a
ustomization te
hniqueand a graphi
al interfa
e. The model is based on named trees with ordered andlabeled nodes. Like semistru
tured data models, it is simple enough to fa
ilitatethe representation of any data. Its main originality is that it allows to reasonat various levels of representation. The YAT
onversion language (
alled YATL)is de
larative, rule-based and features enhan
ed pattern mat
hing fa
ilities andpowerful restru
turing primitives. It allows to preserve or re
onstru
t the orderof
olle
tions. The
ustomization me
hanism relies on program instantiations: anexisting program may be instantiated into a more spe
i�
 one, and then easilymodi�ed.A sample translation s
enario is des
ribed in Fig. 5.6. For the time being, the YAT systemisn't yet available to the publi
. Therefore, the authors have no experien
e on its fun
tionalityand
oding fa
ilities.5.2.1.4 MinervaMinerva was developed at the University di Roma Tre, in
ooperation with Universita dellaBasili
ata, as part of the Araneus proje
t. It builds on the idea of dealing with ex
eptions
aused by the parsing of a do
ument. It allows for both an EBNF grammar approa
h and apro
edural manipulation of do
ument data.
43

Figure 5.6: YAT translation s
enarioBeing an EBNF-based wrapper generation toolkit, Minerva allows for maximum �exibilityand powerful wrapper generation. However, it's greatest advantage over the rest of the EBNF-type wrapper generation toolkits, is it's support for inline Java
ode. Thus, it
ombines theease of use of the Jedi toolkit, with the power and robustness of the Lex-Ya

 suite. Moreover,it allows for exe
ution-time manipulation of malformed input, through the support for parsingex
eptions([65℄).Sample input and output �les of the Minerva toolkit were presented earlier.5.2.2 Learning-BasedThe toolkits that belong to this
ategory use ma
hine-learning algorithms and AI
on
epts inorder to extra
t the grammar rules used to generate a wrapper. They usually intera
t with theuser through a GUI. In order to assure that the rules extra
ted are
orre
t, they prompt theuser for suggestions and
orre
tions, through whi
h they �learn� what parts of the wrappedsite the user is interested in. The output format is also de�ned by the user, through the sameGUI.
44

These toolkits require little or no
oding. However, pe
uliarities in wrapped web pagesmake learning very di�
ult, so they don't always su

eed in indu
ing the
orre
t grammarrules, even after several suggestions and
orre
tions from the user.NoDose([66, 67℄) and XWrap([68℄) are two of the most well-known toolkits of this
ategory.5.2.2.1 NoDoseNoDose stands for Northwestern Do
ument Stru
ture Extra
tor. It was developed at theComputer S
ien
e Dept. of the Northwestern University. Quoting from [67℄ and [66℄:NoDose allows non-programmers to build
omponents that
an
onvert data fromthe sour
e format to XML or another generi
 format. Further the generated
odeperforms a set of statisti
al
he
ks at runtime that attempt to �nd
onversionerrors before they are propagated ba
k to users ([67℄).Using a GUI, the user hierar
hi
ally de
omposes the �le, outlining its interestingregions and then des
ribing their semanti
s. This task is expedited by a mining
omponent that attempts to infer the grammar of the �le from the informationthe user has input so far. On
e the format of a do
ument has been determined,its data
an be extra
ted into a number of useful forms ([66℄).

Figure 5.7: The steps of using NoDoseA

ording to the authors' experien
e from using this toolkit, wrapper indu
tion with No-Dose is a trivial task when the wrapped sour
e is relatively semi-stru
tured. However, whenthe sour
e was highly unstru
tured, NoDose required a larger time frame to tea
h, sin
e itlearns by example. 45

5.2.2.2 XWrapXWrap is another wrapper generation toolkit that builds on the idea of intera
ting with theuser through a GUI and generating wrappers through learning. Its ar
hite
tural outline isshown in Fig. 5.8. The main idea behind XWrap is separating
ommon wrapping tasks fromsour
e-spe
i�
 ones; the wrapper generation pro
ess is done in two steps:1. The user de�nes the regions of interest in the wrapped sour
e, using the GUI. Behind thes
ene, the user's sele
tions are translated into de
larative information extra
tion rules.2. The XWrap system then
ombines these rules with the XWrap
omponent library and
onstru
ts a pro
edural wrapper program (in Java).The system also provides the ability to
ome ba
k and tune the generated wrapper at runtime.

Figure 5.8: XWrap ar
hite
tureFor the time being, XWrap is available as an online resour
e (i.e. XWrap is not availablefor download. Wrapper generation is made through an HTML interfa
e on the XWrap webhost).
46

Chapter 6Con
lusions and Future Work
The heterogeneity and unstru
tured form of data available online through the world wide webhas re
ently evolved to a hot subje
t of resear
h by a
ademi
s and relevant industry. Themost wide-spread solution to the problems posed by these attributes and by the vast amountsof available information, is the deployment of data integration s
hemes, mainly in the form ofmediators and relevant wrappers.In this thesis we have des
ribed the design and implementation of an independent mediatormodel, using third-party o�-the-self wrappers and/or wrapper generation toolkits: the ContentIntegration Ar
hite
ture (C.I.A.). Emphasis has been given on speed, platform independen
eand ease of deployment. The purpose of this work is to automate the task of sele
tivelyquerying multiple data sour
es on the web and presenting the results in a uniform way. Wehave also demonstrated the fun
tionality of this system with two appli
ations: HyperHotel andHyperTV; two dynami
 mediator-based information integration and dissemination systems fore-hotels and television program listings, respe
tively.Throughout the design and implementation stages of this work, we have rea
hed the fol-lowing
on
lusions:� Despite the emergen
e of XML and XML-related te
hnologies as the preferred means ofdata ex
hange of the web, the majority of web
ontent is still available in its traditionalunstru
tured or semi-stru
tured form. We
onsider that this situation is likely to
hangein the next few years. However, due to the amount of data to be
onverted to XMLformat, we believe that this transition will take quite some time. 47

� Wrapper generation toolkits are still unusable by non-programmers. Sin
e data integra-tion is still the subje
t of resear
h, user-friendliness is not a requirement. Thus, almostall available wrapper generation toolkits require advan
ed knowledge of
omputer s
ien
e�elds by their prospe
tive users.� The
urrently available wrapper generation toolkits are not usable in produ
tion environ-ments, sin
e minor
hanges in the formatting of the sour
e do
uments require wrapperrewriting, a not-so-easy task.� Sin
e wrapper generation toolkits haven't been around for enough time, they la
k basi
system integration
apabilities; they usually in
lude non-thread-safe parts and exportwrapped data in
ustom formats.� Currently available HTTP-related Java
lasses don't provide the extended support forHTTP handshaking required by data integration appli
ations. For example, support forHTTP
onne
tion timeouts, HTTP proxies and
ookies, features supported by most web-browsers, have to be
oded expli
itly by the designer/implementor of the data integrationappli
ations.Future plans in
lude:� Extensive
a
hing/prefet
hing, using novel algorithms for storage, retrieval andfull/partial hit/miss re
ognition1.� Moving the system to a distributed environment, where multiple C.I.A. servers will
ooperate to answer to user queries in a lo
ality-based, distributed, fault-tolerant way.� Development of a thread-safe wrapper generation toolkit, exporting real DOM tree stru
-tures instead of XML data.� Development of a faster query exe
ution engine, sin
e we expe
t XSL not to s
ale wellfor large DOM trees.1For a detailed des
ription, please refer to [18℄. 48

� Use of an XML-native database, with a Java-based X-Query interfa
e.

49

Appendix ATe
hnologi
al & Software Choi
es
As already mentioned, the ease of integration of our appli
ation in many di�erent environmentsand a
ross many platforms was one of our primary design targets. That's why we usedte
hnologies and software that are either platform-independent or available for a great deal ofsoftware-hardware
ombinations.A.1 Te
hnologies UsedAs far as te
hnologies are
on
erned, we used either solutions based on the Java programminglanguage, or on general-purpose
ommuni
ation proto
ols featuring implementations on mostlyall known platforms.In more details, we used the following te
hnologies:� the Java Programming Language, as implemented by the Java Development Kit v1.3and v1.4 (Java 2 SE platform) spe
i�
ation.� JavaServer Pages (JSPs) v1.1 (�nal).� Java Servlets v2.2.� Enterprise JavaBeans (EJBs), a

ording to the JavaBeans Development Kit v1.1 spe
i-�
ation.� Java DataBase Conne
tivity (JDBC) v2.0.1. 50

� HTTP v1.1.� Se
ure So
ket Layer (SSL).A.2 Software UsedThe software used in
ludes:1. JDK v1.3.1 and v1.4.02. JBDK v1.1.3. Tom
at Appli
ation Server v3.4.4. Apa
he Web Server v1.3.19.5. JDBC v2.0.1.All of the above
hoi
es were preferred so that they satisfy the following requirements:� They are based on the Java programming language and are therefore portable a
ross allplatforms for whi
h the Java Run-Time Environment (JRE) is available.� Alternatively, they are distributed under the terms and
onditions of the GNU GeneralPubli
 Li
ense (GPL) or its modi�
ations and are therefore available in sour
e
ode inthe publi
 domain .� They have been tested under real
ir
umstan
es and work loads by reliable internet sites,
ompanies and organizations et
.

51

Appendix BModels of Database Conne
tivity
The main di�eren
e between these models is the way we
onne
t to the database managementsystems (DBMS). In any
ase, the
lient-user
onne
ts to a World Wide Web server, a

ord-ing to the HTTP/1.1 proto
ol, also using SSL (Se
ure So
ket Layer) for in
reased se
urity.Furthermore, the �nal
onne
tion to the DBMS server is always done via a JDBC driver. Thefollowing models di�er, then, in the kind of intermediates between the initial web server andthe DBMS server. The resulting models are:� The Dire
t JDBC Conne
tion Model.� The Conne
tion through Web Server Model.� The Conne
tion through Spe
ialized Appli
ation Server Model.B.1 Dire
t JDBC Conne
tionAs we
an see in the following diagram, this model is very simplisti
. The
lient sends arequest to the initial server (
alled DSWS - Department Store Web Server), using the HTTPproto
ol. DSWS then
onne
ts dire
tly to the DBMS (DataBase Management Server) usinga Java Servlet utilizing a JDBC driver.The main
hara
teristi
s of this model are:� (+) E�
ien
y due to the la
k of any mediating parts. 52

� (+) In
reased parallelism
apabilities, sin
e the
on
urren
y of the system is limited onlyby the DBMS's
apabilities.� (+) Simple design and easy implementation.� (-) In
reased parallelism
an overload the DBMS to the point of a system
rash (whenthe number of
on
urrent
lients is overwhelming).� (-) To a
hieve a satisfa
tory se
urity grade for the system, we must use pure SSL orSSL-tunneled
onne
tions, to en
ode the
onne
tion elements. This me
hanism, apartfrom being slow, is not one of the standard
onne
tion methods and therefore there is apossibility that it won't be available for some platforms.� (-) Mixing the programming logi
 and the presentation makes the
ode
omplex andunreadable, and therefore hard to maintain.Due to the above
ompli
ations, this model was used only in the initial development stages.Figure B.1: Dire
t JDBC Conne
tion.
JDBC 2.0
over SSH

HTTP/1.1
over SSL

RDBMS

DBMS
(DB Management Server)

Web
Server

RDBMS

JSP/Servlet
Engine

 Direct JDBC Connection.

Browser

DSWS
(Department Store Web Server)

Client Machine

B.2 Web Server ModelThis solution is more
omplex than the previous one but is also the most generi
 of the tree
onne
tion methods dis
ussed here. We see below a diagram, in whi
h the DSWS
ommuni-
ates with the DBMS via an intermediate web server. The main
hara
teristi
s of this methodare: 53

� (+) Maximum �exibility, due to the ability to distribute the DBMSs and the DSWSs tomany and di�erent hosts and the
apability to support many di�erent database man-agement systems, provided that there exists a
orresponding JDBC driver.� (+) By using properly
on�gured network ar
hite
ture (i.e. existen
e of a �rewall, in-stallation of the web server and the DBMS on the same
omputer and
on�guring thelatter to only a

ept
onne
tions from the former, et
.), this solution
an prove to bese
ure against a wide range of know atta
ks.� (+) The
on
urren
y level is furthermore limited by the web server, whi
h is a mu
he�
ient method, sin
e web servers have been extensively developed and tested in pro-du
tion environments.� (+) By using su
h te
hniques as
onne
tion pooling, we
an improve overall e�
ien
yand a
hieve better throughput than with the �rst method.� (+) Limited
on
urren
y redu
es the risk of a su

essful denial of servi
e (DOS) atta
k.� (+) An e-shop
an exist independently of an ele
troni
 department store.� (-) The intermediate web server,
an be a bottlene
k for the overall performan
e.� (-) The existen
e of many di�erent web servers
an
ompli
ate porting the appli
ationto many platforms.Figure B.2: Intermediate Web Server Conne
tion.
HTTP/1.1
over SSL

Web
Server

RDBMS

JSP/Servlet
Engine

DSWS
(Department Store Web Server)

HTTP/1.1
over SSL

Web
Server

JSP/Servlet
Engine

RDBMS

JDBC

connection)
local
(possibly

 Intermediate Web Server.

Browser

IWS
(Intermediate Web Server)

DBMS
(DataBase Management Server)

Client Machine

This was the solution-of-
hoi
e for the implementation of this appli
ation. 54

B.3 Spe
ialized Appli
ation Server ModelThis solution, sin
e it is also based on the use of an intermediate part (the SAS (Spe
ializedAppli
ation Server)), has all the advantages and disadvantages of the previous one, with thefollowing di�eren
es:� (+) The SAS allows for further optimizing the system's e�
ien
y.� (+) Se
urity
an be further hardened by using
ertain te
hniques in the SAS.� (-) The SAS probably would also
all for a spe
ialized
ommuni
ation proto
ol.� (-) The development time is further augmented by the amount
orresponding to thedevelopment and testing of the SAS.� (-) No e-shop
an exist and fun
tion in an independent manner.� (-) Spe
ialized
lient-side software is demanded.Figure B.3: Intermediate Spe
ialized Appli
ation Server Conne
tion.
HTTP/1.1
over SSL

Web
Server

RDBMS

JSP/Servlet
Engine

DSWS
(Department Store Web Server)

HTTP/1.1
over SSL

Specialized

Server
Application

JDBC
(possibly
local
connectioni)

RDBMS

DBMS
(DataBase Management Server)

 Specialized Application Server.

Browser

Client Machine SAS
(Specialized Application Server)

55

Referen
e List[1℄ World Wide Web Consortium, http://www.w3.org/TR/1998/REC-xml-19980210. Ex-tensible Markup Language (XML) 1.0, February 1998. W3C Re
ommendation.[2℄ J.D. Davidson and D. Coward. Java Servlet Spe
i�
ation. Sun Mi
rosystems, In
., v2.2(�nal release) edition, De
ember 1999.[3℄ M. Hall. Core Servlets and JavaServer Pages. Sum Mi
rosystems / Prenti
e Hall PTR,2000.[4℄ E. Pelegri-Llopart and L. Cable. JavaServer Pages Spe
i�
ation. Sun Mi
rosystems, In
.,v1.1 edition, November 1999.[5℄ K. Avedal, D. Ayers, T. Briggs, C. Burnham, A. Halberstadt, R. Haynes, P . Henderson,M. Holden, S. Li, D. Malks, T. Myers, A. Nakhimovsky, S. Osmont, G. Palmer, J. Tim-ney, S. Tyagi, G. Van Damme, M. Wil
ox, S. Wilkinson, S. Zeiger, and J. Zukowski.Professional JSP. Wrox Press Ltd., 2000.[6℄ Sun Mi
rosystems, In
. The Java 2 Enterprise Edition Developer's Guide, May 2000.[7℄ et al. R. Fielding. HyperText Transfer Proto
ol (HTTP). Network Working Group, 1.1edition, 1999. RFC 2616.[8℄ K. Mpletsas. An Internet Content Integration System: the Front-End. Diploma Thesis,Te
hni
al University of Crete, 2002.[9℄ S. Abiteboul, D. Quass, J. M
Hugh, J. Widom, and J.L. Wiener. The Lorel querylanguage for semistru
tured data. International Journal on Digital Libraries, 1(1):68�88,April 1997. http://www-db.stanford.edu/ widom/pubs.html.[10℄ S. Abiteboul. Query semi-stru
tured data. In Pro
eedings of the ICDT, 1997.[11℄ J. Robie, D. Chamberlin, and D. Flores
u. Quilt: an XML query language for heteroge-neous data sour
es. In Pro
eedings of XML Europe. Graphi
 Communi
ations Asso
ia-tion, 2000.[12℄ World Wide Web Consortium, http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113. Do
ument Obje
t Model (DOM) Level 2 Core Spe
i�
ation, November 2000.W3C Re
ommendation.[13℄ World Wide Web Consortium, http://www.w3.org/TR/2000/REC-DOM-Level-2-Views-20001113. Do
ument Obje
t Model (DOM) Level 2 Views Spe
i�
ation, November 2000.W3C Re
ommendation.[14℄ World Wide Web Consortium, http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113. Do
ument Obje
t Model (DOM) Level 2 Events Spe
i�
ation, November2000. W3C Re
ommendation. 56

[15℄ World Wide Web Consortium, http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113. Do
ument Obje
t Model (DOM) Level 2 Style Spe
i�
ation, November 2000.W3C Re
ommendation.[16℄ World Wide Web Consortium, http://www.w3.org/TR/2000/REC-DOM-Level-2-Html-20001113. Do
ument Obje
t Model (DOM) Level 2 HTML Spe
i�
ation, November 2000.W3C Re
ommendation.[17℄ World Wide Web Consortium, http://www.w3.org/TR/2000/REC-DOM-Level-2-Traversal-Range-20001113. Do
ument Obje
t Model (DOM) Level 2 Traversal and RangeSpe
i�
ation, November 2000. W3C Re
ommendation.[18℄ J. Giannakopoulos. An Internet Content Integration System: the Ca
he Manager.Diploma Thesis, Te
hni
al University of Crete, 2002.[19℄ World Wide Web Consortium, http://www.w3.org/TR/1998/NOTE-xml-ql-19980819.XML-QL: A Query Language for XML, August 1998. W3C Note.[20℄ Z.G. Ives and Y. Lu. Xml query languages in pra
ti
e: an evaluation.[21℄ World Wide Web Consortium, http://www.w3.org/TR/2001/WD-xmlquery-req-20010215. XML Query Requirements, February 2001. W3C Working Draft.[22℄ D. Chang and D. Herkey. Client/Server Data A

ess with Java and XML. Wiley Com-puter Publishing, 1998.[23℄ A. Bonifati and S. Ceri. Comparative analysis of �ve XML query languages. In Pro
eed-ings of the ACM SIGMOD Conferen
e, volume 1 of 29, pages 68�79, 2000.[24℄ N. Ashish and C. Knoblo
k. Semi-automati
 wrapper generation for internet informationsystems. In Pro
eedings of Cooperative Information Systems, 1997.[25℄ N. Kushmeri
k, D.S. Weld, and R. Dorenbos. Wrapper indu
tion for information extra
-tion. In Pro
eeding of IJCAI, 1997.[26℄ C. Quix and M. S
hoop. Metadata management for fa
ilitating data integration in ele
-troni
 marketpla
es. Informatik V, RWTH Aa
hen, 2001.[27℄ A. Levy, A. Rajaraman, and J.J. Ordille. Querying heterogeneous information sour
esusing sour
e des
riptions. In Pro
eedings of the 22nd VLDB Conferen
e, 1996.[28℄ M. Fernandez, D. Flores
u, J. Kang, A. Levy, and D. Su
iu. STRUDEL: a web-sitemanagement system. In Pro
eedings of the ACM SIGMOD Conferen
e, 1997.[29℄ M. Fernandez, D. Flores
u, J. Kang, A. Levy, and D. Su
iu. Cat
hing the boat withSTRUDEL: experien
es with a web-site management system. 1998.[30℄ M. Fernandez, D. Flores
u, J. Kang, A. Levy, and D. Su
iu. Overview of STRUDEL - aweb-site management system. 1998.[31℄ M. Fernandez, D. Flores
u, A. Levy, and D. Su
iu. Web-site management: the STRUDELapproa
h. 1998.[32℄ M. Fernandez, D. Flores
u, A. Levy, and D. Su
iu. De
larative spe
i�
ation of web siteswith STRUDEL. In Pro
eedings of VLDB, 2000. 57

[33℄ H.P. S
hnurr, S. Staab, and R. Studer. Ontology-based pro
ess support. Institut AIFB,Univ. Karlsruhe, 1999.[34℄ M. Erdmann and R. Studer. Ontologies as
on
eptual models for XML do
uments. In-stitut AIFB, Univ. Karlsruhe.[35℄ D. Fensel, S. De
ker, M. Erdmann, and R. Studer. Ontobroker: the very high idea. InPro
eedings of the 11th International Flairs Conferen
e, 1998.[36℄ D. Fensel, J. Angele, S. De
ker, M. Erdmann, H.P. S
hnurr, S. Staab, R. Studer, andA. Witt. On2broker: Semanti
-based a

ess to information sour
es at the www. InstitutAIFB, Univ. Karlsruhe.[37℄ S. De
ker, M. Erdmann, D. Fensel, and R. Studer. ONTOBROKER: Ontology-basedA

ess to Distributed and Semi-Stru
tured Information. Kluwer A
ademi
 Press, 1998.[38℄ V.R. Benjamins, B. Wielenga, J. Wielemaker, and D. Fensel. Towards brokering problem-solving knowledge on the internet.[39℄ Y. Papakonstantinou, H. Gar
ia-Molina, and J. Widom. Obje
t ex
hange a
ross hetero-geneous information sour
es. In Pro
eedings of the IEEE Data Engineering Conferen
e,pages 251�260, Mar
h 1995.[40℄ Y. Papakonstantinou and P. Velikhov. Enhan
ing semistru
tured data mediators withDo
ument Type De�nitions. In Pro
eedings of the IEEE Data Engineering Conferen
e,1999.[41℄ Y. Papakonstantinou, H. Gar
ia-Molina, and J. Ullman. MedMaker: A mediation sys-tem based on de
larative spe
i�
ations. In Pro
eedings of the IEEE Data EngineeringConferen
e, pages 132�141, Mar
h 1996.[42℄ Y. Papakonstantinou, A. Gupta, H. Gar
ia-Molina, and J. Ullman. A query translations
heme for rapid implementation of wrappers. In Pro
eedings of the Dedu
tive and Obje
t-Oriented Database Conferen
e, pages 161�186, De
ember 1995.[43℄ Y. Papakonstantinou and V. Vassalos. Query rewriting for semistru
tured data. InPro
eedings of the ACM SIGMOD Conferen
e, 1999.[44℄ L. Gravano and Y. Papakonstantinou. Mediating and metasear
hing on the internet. Bul-letin of the IEEE Computer So
iety, Te
hni
al Commitee on Data Engineering, 21(2):28�36, 1998.[45℄ B. Ludas
her, Y. Papakonstantinou, P Velikhov, and V. Vianu. View de�nition and DTDinferen
e for XML. In Pro
eedings of the Post-ICDT Workshop on Query Pro
essing forSemistru
tured Data and Non-Standard Data Formats, 1999.[46℄ K. Konopni
ki and O. Shmueli. Information gathering in the world-wide web: the W3QLquery language and the W3QS system. Computer S
ien
e Dept., Te
hnion - Israel Insti-tute of Te
hnology.[47℄ A. Saguguet and F. Azavant. Building light-weight wrappers for lega
y web data-sour
esusing W4F. In Pro
eedings of VLDB, 1999.[48℄ J. Hammer, H. Gar
ia-Molina, S. Nestorov, and R. Yerneni. Template-based wrappersin the TSIMMIS system. Department of Computer S
ien
e, Stanford University. 58

[49℄ J. Hammer, H. Gar
ia-Molina, K. Ireland, Y. Papakonstantinou, J. Ullman, andJ. Widom. Information translation, mediation and Mosai
-based browsing in the TSIM-MIS system. SIGMOD Demo Proposal (�nal version).[50℄ A. Tomasi
, L. Ras
hid, and P. Valduriez. S
aling heterogeneous databased and thedesign of Dis
o. INRIA.[51℄ A. Tomasi
, L. Ras
hid, and R Valduriez. A data model and query pro
essing te
hniquesfor s
aling a

ess to distributed heterogeneous databased in Dis
o. In IEEE Transa
tionson Computers, spe
ial issue on Distributed Computing Systems, 1997.[52℄ Enosys Markets. Enosys Markets: Ar
hite
ture and produ
t overview. Enosys Markets,In
., 2000.[53℄ R. Dorenbos, O. Etzioni, and D.S. Weld. A s
alable
omparison-shopping agent forthe world wide web. In Pro
eedings of the 1st International Conferen
e on AutonomousAgents, 1997.[54℄ et al. R. Catell. The Obje
t Database Standard - ODMG 93. Morgan Kau�man, 1993.[55℄ G. Hu
k, P. Fankhauser, K. Aberer, and E. Neuhold. Jedi: Extra
ting and synthesizinginformation from the web. GMD-IPSI.[56℄ S. Cluet, S. Ja
qmin, and J. Simeon. The new YATL: Design and spe
i�
ations. Te
hni
alreport, INRIA, 1999.[57℄ S. Cluet, C. Delobel, J. Simeon, and K. Smaga. Your mediators need data
onversion. InPro
eedings of the ACM SIGMOD Conferen
e, 1998.[58℄ J. Simeon. Integration de sour
es de donees hegerogenes ou
omment marier simpli
iteet e�
a
ite. PhD thesis, L' Universite Paris XI, January 1999.[59℄ The ARANEUS Proje
t Home Page. http://www.dia.uniroma3.it/araneus.[60℄ G. Me

a, P. Merialdo, and P. Atzeni. Araneus in the era of XML. 1999.[61℄ G. Me

a and P. Atzenti. Cut and paste. Journal of Computing and System S
ien
es,page 85, 1999.[62℄ G. Me

a, P. Atzeni, P. Merialdo, A. Mas
i, and G. Sindoni. From databases to web-bases: the ARANEUS experien
e. D.I.A. - Universita di Roma Tre, May 1998.[63℄ G. Me

a, P. Atzeni, P. Merialdo, A. Mas
i, and G. Sindoni. The ARANEWS web-basedmanagement system. In Pro
eedings of the ACM SIGMOD Conferen
e, 1998.[64℄ V. Cres
enzi and G. Me

a. The ARANEUS wrapper toolkit: A tutorial. Adapted from[65℄, July 1999.[65℄ V. Cres
enzi and G. Me

a. Grammars have ex
eptions. Journal of Information Systems,1998.[66℄ B. Adelberg. NoDoSE - a tool for semi-automati
ally extra
ting stru
tured and semistru
-tured data from text do
uments. In Pro
eedings of the ACM SIGMOD Conferen
e, 1998.[67℄ B. Adelberg and M. Denny. Building robust wrappers for text sour
es. Computer S
ien
eDept., Northwestern University.[68℄ L. Liew, C. Pu, and W. Han. XWRAP: An XML-enabled wrapper
onstru
tion systemfor web information sour
es. Oregon Graduate Institute of S
ien
e and Te
hnology. 59

