An Internet Content Integration System: the Mediator and Wrappers.

by

Nikolaos T. Ntarmos

Submitted to the
Department of Electronic and Computer Engineering
in Partial Fulfillment of the Requirements for
the Diploma of Electronic and Computer Engineering

at the Technical University of Crete.

Guidance Committee

Professor Peter Triantafillou (Supervisor)
Associate Professor Manolis Koubarakis
Assistant Professor Euripides Petrakis

April 2002

Acknowledgements

[would like to thank Professor Peter Triantafillou, for supervising this effort and for his
guidance and support; they were more than indispensable to the completion of this thesis.

I would also like to thank in advance Assistant Professor Euripides Petrakis and Associate
Professor Manolis Koubarakis for participating in my jury.

Special thanks also go to my house-mate, Vassilis Heliades, for his support and patience

(sleeping through the day and working at night isn’t something everyone could cope with...).

i

Abstract

Information integration and dissemination over the web is increasingly receiving more atten-
tion from academics and related industry. With such emerging enabling technologies as XML
and all of it’s descendants (XQuery/XML-QL, XPath, XPointer, XSL/XSLT, etc.), we seem
to be moving into an era of relative data uniformity. However, the unstructured and het-
erogeneous nature and the immense proportions of data currently available through the web,
make information integration a vital part of many modern data management systems and
data warehouses.

The most wide-spread approach to automated data integration and dissemination utilizes
a mediator and wrappers for the back-end sites. The former stands between the wrappers
and the end-user, while the latter deal with data extraction from the back-end sites and data
transformation into the mediator’s internal data model.

In this text, we shall present the Content Integration Architecture (C.I.A.) - an approach
to a domain-independent caching mediator system - as well as two applications based upon

it: HyperHotel and HyperTV.

il

Contents

Acknowledgements

Abstract
List Of Figures

1 Introduction
1.1 Overview .
1.2 Necessity /

Current Situation

1.3 Thesis outline,

2 Architectural Overview

2.1 Thewuserclient
2.2 The front-end
2.2.1 Theuserinterface
2.2.2 The query generatoro
2.3 Theback-end
2.3.1 Themediator
2.3.2 Thedatarepository
233 Theagents.
2.3.4 The wrappers

2.4 The e-sites

3 HIT/CIA: The Mediator

3.1 Front-End Interface (F.E.IN.)
3.2 DOM-Tree Populator (DO.T.-POP.)
3.2.1 The DomDB XML File,
3.3 Back-end Interface (B.IN.)
3.3.1 Wrapper Generation Toolkits
3.4 Querying Models
3.4.1 DOM-Tree Approach
3.4.2 Relational Database Approach
3.4.3 Fully On-Line Approach
3.4.4 Hybrid Approach
3.5 Putting it all together.

4 Champion Applications.

4.1 Overview .
4.2 HyperHotel
4.3 Hyper'TV

o
=23 o
=13 =23

=,

S Oy

© 00 00~~~ OO ot

29
29
29
31

v

- VAR VA V7V J4L &AM

5.1 Full-Scale Integration 33
5.1.1 TSIMMIS e 33
5.1.2 DISCo. e 35
5.1.3 ENOSYS Markets 37
5.1.4 ShopBot 39

5.2 Wrapper Generation Toolkits 40
5.2.1 Grammar-Based 40

5.2.1.1 Lex-Yacc e 41

5.2.1.2 JEDI 41

5.2.1.3 YAT 42

5.2.1.4 Minerva e 43

5.2.2 Learning-Based Lo 44
5.2.2.1 NoDose e 45

0.222 XWrap 46

6 Conclusions and Future Work 47

Appendix A

Technological & Software Choices 20
A.1 Technologies Used 50
A2 Software Used e 51
Appendix B
Models of Database Connectivity 52
B.1 Direct JDBC Connection 02
B.2 Web Server Model 03
B.3 Specialized Application Server Model 55
Reference List 55

List Of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

5.1
5.2
5.3
5.4
5.9
5.6
5.7
5.8

B.1
B.2
B.3

Mediator Architecture 6
Integrating third-party Wrappers into a Mediator-Based System. 9
FEIN . . . e 12
DOT-POP e 15
Sample DomDB XML File 16
BN, . e 18
Minerva Sample Definition File 19
Jedi Sample Definition File oL 20
Minerva Sample Input 21
Minerva Sample Output 22
The Mediator 28
The TSIMMIS System. o o 34
The DISCO System. 36
The ENOSYS System. 38
JEDI Architecture 42
YAT architecture 43
YAT translation scenario 44
The steps of using NoDose 45
XWrap architectureo o 46
Direct JDBC Connection. 23
Intermediate Web Server Connection. 54
Intermediate Specialized Application Server Connection. 55

vi

Chapter 1

Introduction

1.1 Overview

The world wide web has evolved to the world’s most massive database, but also to the most
non-homogeneous one. Several attempts have been made to develop technologies that will
integrate related data available online in an automated or semi-automated way and facili-
tate/provide uniform access to this data.

Some of them aim to implement a domain-based integrator; they make use of artificial
intelligence and domain-based knowledge to automatically extract the structure of available
data and integrate it.

Others try to create a more generic infrastructure on which numerous domain-based in-
tegration applications will be based; they rely on wrapper-generation toolkits and a custom
internal design / data model.

What we try to do is to build an independent mediator model, using third-party off-the-self
wrappers and/or wrapper generation toolkits to extract information from e-sites, and standard
XML-based[1] technologies to integrate them with our data model. The purpose of this work is
to automate the task of selectively querying multiple data sources on the web and presenting
the results in a uniform way. In later stages of development, the system will make use of
caching and distribution techniques for increased throughput and decreased response time to

user queries.

= At WYL AL VAL sty APy vy oy vy iiasaL v AU A sty e vaty A A Vs VAt Ay Ay et ety

of this part of a mediator system and allows us to exploit available technology, making our
work market-relevant, and to concentrate on the building of the mediator itself. By utilizing
XML-based technologies, the only requirement the mediator must face is to deal with XML
data, complying to a predefined set of DTDs. Queries can then be formulated in many ways
(including XSL, XPath, XQuery and DTD-compliant XML documents).

We will demonstrate the functionality of this system with two applications: HyperHotel and
HyperTV; two dynamic mediator-based information integration and dissemination systems for

e-hotels and television program listings, respectively.

1.2 Necessity / Current Situation

Due to the diversity of data available online through the World Wide Web, should one want
to retrieve information on a specific subject, one would have to search in many different sites,
keeping track of search and comparison results while most of the time dealing with outdated
and /or obsolete data. This situation calls for a new way of designing and implementing data
retrieval systems.

Let’s assume, for example, that an individual intends to purchase something online (e.g. a

book, cdrom etc.). Using currently available solutions, the process is as follows:

1. Visit all relevant e-sites. This is an inherently inefficient task, since the set of available
e-sites constantly changes. This usually results in the individual visiting only a small,

random subset of them, therefore excluding important amounts of available data.

2. Search for the wanted item. This step forces the user to deal with many different
interfaces across the different sites. Should an e-site not be very well designed or its
search engine be stricter than usual, the user would probably fail in finding the desired

information.

3. Compare and choose. The choice could be based upon such criteria as the price or the

proximity of the e-shop, the available paying methods etc. In any case, the user has to

2

SRy VARV S RS St p ALY SRS U A S VAR A P AR VAN) T Y s B M AR VA S

and choose.

Let’s assume, however, that there were a central e-site, interfacing with all back-end e-sites in
a way that is transparent to the end-user. The user would then only have to search once for
the desired information; the central e-site would undertake the task of querying all registered
back-end sites and presenting the results in a uniform way, so that direct comparison would
be made possible, if not completely automated.

The second scenario is obviously much more preferable than the first one, as far as ease
of use is concerned, but what about efficiency? Suppose two subsequent users are looking
for the same information. Asking the same question twice over the internet would be very
inefficient due to the network overhead. There are cases in which identical successive queries
should both be run online. However, for all the other cases, by using an appropriate caching
scheme, we can reduce the network overhead and response times significantly. In any case,
should there be no central e-site, the users would have to individually deal with the network
overhead themselves.

The goal of the C.I.LA. endeavor is to build a domain-independent, dynamic, mediator
system with caching, with an emphasis on speed, platform independence and ease of deploy-
ment. For modularity and ease of maintenance, C.I.A. was built as three independent but

cooperating parts:

1. a graphical user interface (GUI), based on Java Servlets([2, 3]) and/or JavaServer

Pages([4, 5]), HTML forms and XML-based technologies,

2. an XML-enabled mediator, utilizing third-party wrappers and standard XML-derived

technologies, and

3. a caching subsystem, based on off-the-self database management systems and novel cache

management techniques.

The work reported here is primarily concerned with the second part: the Mediator.

A eJ A LAV Vuviiiivo

We will continue as follows: in Ch. 2 we will discuss the architecture of C.I.A. outlining
it’s building parts and the way they interface with each-other and with the end-users and
back-end e-sites. In Ch. 3 we’ll delve into the details of the Mediator’s architecture and
the technologies used therein, also describing the querying models supported by the overall
system as well as the results obtained by extensively testing these models. We will then (Ch.
4) present two data integration applications implemented using our system: HyperHotel and
HyperTV, integrating e-hotels and TV program listings from TV e-sites respectively. We shall
conclude with a brief presentation of work related to C.I.LA. (Ch. 5) and proposals for future
work(Ch. 6). Appendices A and B give some more technical details on the implementation of

the Mediator and C.I.A. as a whole.

Chapter 2

Architectural Overview

As we already mentioned, C.I.A. is a mediator-based data integration and dissemination ap-
plication for diverse data on the web. Written totally in Java(|6]), it guarantees maximum
platform independence and portability. Briefly, C.I.A. is a client/server architecture, consist-

ing of the following components:

e The user client.

e The user interface.

e The query generator.
e The mediator system.
e The data repository.
e The agents.

e The wrappers.

e The back-end e-sites.

A schematic view of this architecture is presented in figure 2.1.

2.1 The user client

This is usually a web browser. Any browser available today (even text-based ones, such as

Lynx) can contact the C.I.A. server, using the HT'TP /1.1(|7]) or higher protocol, HTML 3.0 or

5

Clients e--sites

HTML/XML 7~ o omemsmsmss z ez e e e e e e e e e e = ovsr-lifl\l/leuwx(';/lbl_
over the Web i ! s

Web

HHH\HR W

Web
Browser

Wrapper
pp

Generator |

(L nw

(I nw

! : !

Figure 2.1: Mediator Architecture

higher and Javascript 1.0 or higher; the system uses server-side technologies, therefore moving
the burden of almost all tasks into the server. This is a great advantage of the system, since it

allows access from lightweight clients, such as PDAs and even WAP-enabled mobile phones.

2.2 The front-end

This is the server-side part of the user interface. A more detailed description of this part of

the system is provided in [8].

2.2.1 The user interface

The user interface consists of HTML pages/forms and server-side technologies, such as JSPs
and Java Servlets. This frontend is the only interface with the user. We have tried to make
it as user-friendly as possible, given that this is an educational project and not a commercial

one.

2.2.2 The query generator

This module validates the user query passed to it from the user interface, and generates a

query in XML, according to a predefined grammar (DTD). It then forwards this query to

yvith Lt ppsvR e viiv 4LVLAUVALWUNL . 4 v attvlLA Yy iy ViR LAV Wiy e ML AUVLa VAL idibis v vt A AAAL

cache-storage system and the mediator will be engaged by it only in a cache (partial/full)

miss.

2.3 The back-end !

2.3.1 The mediator

This part is named after its task: it stands between the user-interface and the back-end agents,
selecting which, if any, agents to involve in each query, and formatting their output, according
to a predefined grammar (DTD), in order to be presented to the user in a uniform way. The

selection of the agents is based on meta-data, kept by the mediator, and on the user query.

2.3.2 The data repository

This includes the meta-data database, as well as a (optional) data-cache for e-sites. There are

three approaches for the implementation of the data repository:

1. The RDBMS approach, which uses an off-the-self relational database (e.g. MySQL or
Microsoft SQL Server). Data access is done through JDBC and XML. This is assumed

to be the fastest approach, as far as runtime efficiency is concerned.

2. The native XML approach, which utilizes off-the-self native XML databases, such as
Lore([9, 10]), Quilt(|11]) and dbXML. Data access is done through vendor-specific APIs
or the X-API. This approach is considered by the authors as the best of the three, since it
can be platform-independent (if the database is implemented in Java) while using XML-
derived technologies, making it easier to code and integrate with the rest of the system.
It’s only shortcomings are the low runtime efficiency and the lack of commercial support

(the above mentioned implementations are far from being stable or ready for production

!Though the mediator and the database could be considered middleware, they are so closely
interconnected with the agents and the wrappers that are dealt with as parts of the back-end.

ety A ARV Y Ly WA AAAVE Y A LAY -~ AtAviALA Ve AT e AR VA R,y VAL ALy yaarrtiio vy Wt

bound to be extinct.

3. The DOM? approach, in which all data is kept in DOM trees, without the support
of an underlying native XML database, and parsed at will. This is the worst of the
three approaches, as it is memory-consuming (DOM trees are kept in main memory),
requires extra time for the parsing of the XML data (should the desired DOM tree not
be loaded at the time of the query) and execution times are much greater, since queries
are executed on DOM trees, with no query optimization or scheduling. On the other
hand, it is the easiest of the three to code for simple queries (we believe that the so-called

simple queries, will be the vast majority of all queries that will run on the database).

2.3.3 The agents

Agents decide whether and what data will be drawn from the web or the local data cache. In
the first case, agents make use of selected back-end wrappers to extract the desired information.
Secondly, the execute a query on the local database. In both cases, an agent has to format
its output according to a predefined grammar (DTD), so that the front-end modules will be

presented with results in a uniform way.

2.3.4 The wrappers

Automatically generated or hardcoded, these are the most vital part of CIA. They extract
information from the e-sites and transform it to the C.I.A. internal data model. Agents and
wrappers will be discussed further in the following chapter. For a more technical overview of
wrappers, see appendix 5.2.

Due to the authors’ previous experience with such tools as Lex and Yacc and the demand
for maximum control on the generated wrapper, grammar-based toolkits were preferred over

learning-based ones. After extensively testing many available solutions, we ended up using

2For more information on DOM and DOM-related technologies, please refer to [12, 13, 14, 15, 16, 17].

vy Py vy oy bvauaL VLA UM, ARttt e s A8 R v A A sttt Ang g v st L VR LAV U ARAELS Y

the mediator has the ability to choose between Jedi and Minerva based wrappers at runtime.

Of course, grammar-based toolkits require the user to have knowledge on programming
and grammar rules. This is no disadvantage at this stage of development. However, should
C.ILA. ever go commercial, a more user-friendly toolkit would be preferable.

The integration of wrappers with the rest of the system is shown in Fig. 2.2 and 2.1.

m —

Oy

Queriess
lavigat Lon

Mediation

Fesult
Integrated Domain Descriptions Formatting

Fesult Lapout

w Integrat ion

[

Wrapping
Domain
Descriptions

Wrapping
Fules=

Mapping Fewrite

Tomiment
=t ructure
Descript ion

=N
-]l == =
L[]

W Ll

Farsing Farsing

Se@mi-Ftructured] ‘E
Doeme .t |
__|

Sources

I
]

Figure 2.2: Integrating third-party Wrappers into a Mediator-Based System.

2.4 The e-sites

These are the original sources of information; the back-end e-sites that we query, in order to

extract the desired information. They can be HTML or XML web servers, using any kind

9

~a MRS PR ViR oYYy MRV ARy Vel MR AR RtV A ARSI A Y S R Ay B AR R SRS

Flash-enabled web page can’t be queried, since it is impossible to parse with our wrappers).

10

Chapter 3

HIT /CIA: The Mediator

The Mediator is the heart of the C.I.A. It is responsible for the retrieval of information from the
back-end e-sites and the integration of data extracted by the latter ant its reformation accord-
ing to its internal data model. For the shake of modularity, the Mediator is also implemented

as a set of independent but cooperating components. These are:

1. the Front-End Interface,
2. the DOM-Tree Populator/Data Manager, implementing the local data repository, and

3. the Back-end Interface.

3.1 Front-End Interface (F.E.IN.)

To facilitate and modularize the communication between the mediator and the user interface
modules, all data interchange is done using XML documents complying to a set of prede-
fined DTDs (the naming scheme is < Application Name >-Query.dtd). Thus, the user interface
modules need not know anything about the query execution methods or the internals of wrap-
ping, while the mediator doesn’t have to deal with HTML form elements and HTTP message
parsing.

However, query execution is done using off-the-self technologies, such as XPath, XSL(T),
XQuery or JDBC, depending on the implementation of the data repository. This calls for a

translator from Query.dtd - compliant XML documents to the appropriate query language.

11

- aha VRIS AR MRS BPES A EYE VA VAas e AR ARSI P S AR A ARV R B e Ty P Y AR AR A

'feign’). FEIN consists of a set of translators, one for each application - query method pair.
Since query DTDs are application - dependent, this part of the mediator is the only one with
a need for domain-based knowledge.

In more details, FEIN functions in two levels:

1. Level 1: XML input manipulation, common to all translators within an application. At
this level, the XML document given as input to the translator is parsed and all relevant
information is extracted and stored. This information is then exposed to the second

level via predefined Java methods.

2. Level 2: query generation, specific to the query language used. Using the information
extracted during the first level of the translation, the modules functioning at this level
generate the corresponding queries in the output query language. For the moment

F.E.IN. supports XSL(T) and XPath, with XQuery support being under development.

e e 4 1 0 18 40 44 104 4 1 0 48 414 44 4 14 8 4 44 1 148 001 001

FEIN

Level 1 Level 2

Query.dtd

i

i

i XPath Quet
Compliant 1 Information ry

i

i

i

XPath Generator

XML Document Extraction Java

-y |
5K

3
i

N s e s 1

Extracted
Information
XSL Query

,,,,,,,,,, XSL Generator

g/@ =T
i

Figure 3.1: FEIN

As already stated, the use of the Query.dtd compliant XML documents as a means of com-

munication between the user interface modules and the mediator, provides many advantages:

e it adds an extra level of abstraction between the user-interface modules and the mediator.
After the query DTDs are defined, communication is done using DTD - compliant XML
documents, independent of the actual query language used or the HTML form layout.
This will be made clear at Ch. 4, where we use different query languages and HTML

form layouts (actually one of the forms is static while another is generated on-the-fly)

12

SME VALY ALtttV Wy vyt s vt il Aty v At it YAy Pttt st & MU et VAt

user-interface and the mediator.

e it allows for transparent and easy addition of a caching subsystem between the user
interface and the mediator, since the API used by the former to access the later is

altered so that it redirects all queries to the cache.

e XML manipulation (generation, parsing etc.) is much easier than any other query lan-
guage. The fully structured nature of XML makes it an ideal choice since manipulation
is pretty simple while XML generation is straightforward once we have a result or query

tree.

e addition of another query language doesn’t affect the user interface at all, since what

will actually be added is a Level 2 query generator for the corresponding language.

The only disadvantage of this method is that it requires parsing of the query DTD compliant
XML document at all stages of the query execution (i.e. when the cache is added, the XML
query is first parsed at the cache level, then (in the case of a cache miss or partial miss)
regenerated and reparsed at the mediator level by FEIN). However, by using third-party
XML parsers (namely Apache Project’s Xerces parser, in deferred-node mode), the parsing-
generation-reparsing overhead is reduced to a few milliseconds. As we have seen, the bottleneck

of our system is the network transfer layer and not FEIN.

3.2 DOM-Tree Populator (DO.T.-POP.)

The output of FEIN is a query, executed on the data repository to extract the desired output.
The mediator’s repository is implemented as a forest of DOM trees, one for each back-end e-
site. The system always does a cold start-up (i.e. the repository is empty when the mediator’s
server comes up). The population of these DOM trees, is done by the second part of the

system: the DOM-Tree Populator (DOT-POP).

13

A 4L 42 VA AW VAaiaivais LAV ALYy YV VAR A A AR Y s A 2 A AV e Ay Ay A A VAL

applications. The functionality of this part can be analyzed in the following stages:

1. Top-level selection: during this stage, DOT-POP selects the back-end sites that are
involved in the executed query. This is done using the XPath output of FEIN to select
all DOM tree roots that satisfy the top-level constraints defined by the user. At this stage
of execution all DOM trees are almost empty; they contain only information included
in the DomDB XML file (the exact functionality of this file will be further discussed in

3.2.1).

2. URL generation: at this stage, using the query constraints and a set of predefined
rules, DOT-POP generates the URLs of the back-end HTML pages to be wrapped. The
functionality of this stage is equivalent to the filling and submission of HTML forms in the
back-end sites. We make heavy use of the capabilities provided by the java.reflect package
to guarantee that this part of DOT-POP is also domain-independent. All information
needed throughout this stage is extracted at runtime either from the user query or from

corresponding metadata kept in external XML files.

3. BIN invocation: after defining the wrapped URLSs, control is transferred to the Back-end
Interface (the functionality of BIN will be further discussed in 3.3). What we need to
know for the moment is that BIN returns a set of XML documents, complying to an

application - specific DTD, representing the data extracted from back-end sites.

4. DOM tree population and normalization: at the final stage of DOT-POP, all data ex-
tracted at the previous stage is added to the DOM tree. The system offers the ability to
normalize the populated DOM tree, using XSL transformations. Information concerning

the normalization as well as the corresponding XSLT document, are defined at runtime.

Please note that by normalization we mean any kind of XSL transformation on the resulting
tree. XSL queries generated by FEIN are actually executed at stage 4 of DOT-POP.
As we can deduce from the above, when all four stages of DOT-POP are over, what we

have is a DOM tree containing the result of the user-defined query. Correctness of the result

14

f

Stage 3: 1 N : :
‘ BIN Invocation “' """"" - '//"I BIN [

a0t

Stage 4:
Population & ‘
Normalization

r
N \

: H XML Metadata
Xpaih Query DOT-POP :
: Stage 1: i
1 Top-level selection J |
i i
i i
i i
i i
i, i :
N A Y - I
i H Extracted : Stage 2: :
i FEIN ; URL Generation] 1
N :
1
i

XSL Query

T -,

User
. Interface |

Result
DOM Tree

Figure 3.2: DOT-POP

set is guaranteed by the operations leading up to DOT-POP as well as by the four stages of
the latter. Completeness however is a completely different story; since data is fetched over
the web, we sometimes deal with network timeouts, web server misconfigurations or back-
end e-site downtime. To account for these cases, DOT-POP characterizes DOM trees that
are empty, as a result of data transfer errors, as incomplete. This prevents the caching and

storing of these parts of the result set, so the data repository is always in a consistent state.

3.2.1 The DomDB XML File

To avoid any unnecessary back-end e-site access and reduce network overhead, we need a
means to select only those sites whose result-set will contain answers to the user query. Since
such knowledge is not available a-priori, what we do is to deselect those sites whose result-set

will certainly NOT contain any useful information. To do this, we need some extra data about

15

YaEY MRVRSR A AEAA AV AR VAR AR AR S VA Y Y AR (e PSS AR VR ARV e & AR SRR VAR R A

kept in XML files (one for each C.I.A. application), namely the DomDB XML files.

The DomDB files are static XML files. They contain metadata (i.e. data about data) and
any static (i.e. not changing) information concerning the back-end sites. They are loaded
by the DOT-POP on-demand at runtime, every time a new query arrives. Data kept therein
consists of all top-level information about the back-end sites (e.g. site name, URL, snail-mail
address etc.), plus directives for the wrapping phase (e.g the class name of the wrapper, the
class name of the URL generator etc.).

The use of DomDB files greatly improves the system’s overall performance, by allowing
selective querying of back-end sites with the (tiny) extra cost of loading and parsing the XML
data they contain. An excerpt from the DomDB file used by one of C.I.A.’s applications -

HyperHotel - is shown in fig. 3.3.

<Hotel Locaticn="Lasithi® Category="a" Wame="Kalimera Kriti"
Address="Elcunda" Specificlecaticn="Sissi"
URL="http: / fwww. sterlinghotels.com/ " HasConfRoom="TRUEY HasSwimPococl="TRUE"
HasSea="TRUE" HasRestaurant="TRUE">
<Wrapper Online="True" WGET="Minerva" ScriptWame="TravelWek"
WrappedURL="URLGeneratcrs.KalimeraKritiGeneratocr® />
</Hotelx

<Hotel Locaticon="Chania® Category="C" Wame="&lkicno"
Address="Katc Stalos" Specificlocaticn="5talcs"
URL="http:/www.hetelalkicn.com® HasCenfRecm="FALSE" HasSwimPcol="TRUE"
HasSea="TRUE" HasRestaurant="TRUE">
<Wrapper Online="False"” WET="Jedi" ScriptWame="hctelalkicn.new. jedi"
WrappedURL="file:Html/Femote/hotels/www.hotelalkicn.com/Rooms. htm" />
</Hotelx

<Hotel Locaticon="Chania® Category="B* Wame="Halepa“
hddress="164 El1. Venizelcu str." Specificlocaticn="Halepa"
URL="http://www.halepa.com” HasCeonfRoom="TRUE" HasSwimPococl="FALSE"
HasSea="TRUE" HasRestaurant="TRUE">
<Wrapper Online="False® WGT="Minerwva" ScriptWName="Halepa"
WrappedURL="http: / fwww.halepa. com/Halepalotel . hEml®Y />
</Hotelx

Figure 3.3: Sample DomDB XML File

3.3 Back-end Interface (B.IN.)

So far we have seen how we manipulate the user query, how we select the back-end sites to

query and how we put together the resulting XML document. However, we haven’t discussed

16

Yt dr Ay AtaliAs L RtV vy auar Uit Aty Lo At vt At iy aaauA e A A Ay ALy My Yat uaaa A

part of the mediator, the Back-end Interface (BIN).

BIN is responsible for fetching the data corresponding to the URLs defined at stage 2 of
DOT-POP, extracting useful information and converting it to a predefined data model. BIN
operations execute in two stages, to compensate for the network delays, while maintaining

maximum parallelism for improved efficiency:

1. Stage 1: data fetching. During this stage BIN accesses the back-end sites, using the
URLs generated by DOT-POP. It fetches and stores this information for use by the next
stage. All retrieval operations are done in a parallel and thread-safe way, so that, given
enough network bandwidth on the mediator’s side, the overall network delay equals the

maximum of the set of delays for each of the transfers.

2. Stage 2: wrapping. This is were wrappers are deployed. Wrappers are constructed
using third-party wrapper generation toolkits (WGTs), usually available free of charge
for educational and non-commercial purposes. Wrappers are responsible for parsing
the data fetched during stage 1 of BIN’s execution, using a set of predefined grammar
and output rules. They usually generate forests of DOM trees, corresponding to the
document fragments they parsed and wrapped. Since these operations usually involve
numerous back-end sites, wrappers are deployed in parallel, using the multithreading
mechanisms provided by the Java programming language. However, the WG'Ts used
to implement C.I.A. suffer from certain inefficiencies as far as thread-safe execution is
concerned. In order to accomplish maximum parallelism, the thread-unsafe parts of the
wrapping process have been isolated and serialized using synchronized Java methods.
Thus, the overall wrapping delay equals the sum of the maximum of the set of delays for
the thread-safe parts of wrapping, plus the sum of delays from the thread-unsafe parts

of wrapping.

17

EBNF

o) Sté{ge 1 Stége 2
URL ».DAata Retrieval data Information Extract'i‘on.
7 over the WWW and Integration -
. Wrapped Data / N

| Back—end e-site

Figure 3.4: B.IN.

3.3.1 Wrapper Generation Toolkits

The wrapper generation toolkits used in the implementation of C.I.A. take as input a wrapping
definition file. This file is a mixture of EBNF style grammar rules, Java or Java-like instructions
and method calls, and output formatting definition instructions (see fig. 3.5 and fig. 3.6 !).
For a more technical and detailed description of all examined wrapper generation toolkits,
refer to Ch. 5.2.

The use of EBNF-supporting wrapper generation toolkits was the result of the following

factors:

e the high grade of acquaintance with (E)BNF-based tools (e.g. Lex/Yacc etc.) minimizes
learning overhead (the best-case scenario would be one in which the implementer would

know a-priori exactly how to use the available tools). For example, of the two presented

LAll Minerva figures and files were taken from the Minerva distribution. The Jedi file shown in fig. 3.6 was
taken from the Jedi distribution. For licensing details, refer to the corresponding web sites (see App. 5.2 for
more info on Minerva and Jedi).

18

- REMOVE;BLANKS
TRBULATOR (* [*, “1[*, *]1tn")

BAGE AllConferences

/¢ This wrapper refers to the DBLP site at Trier

I (http: /S . informatik. uni-trier.des/ ley/db/) .

i It extracts data from the page containing

i the list of all ceonferences in the site

I iconf/index.a.html], mirrered in this distrikuticn
I in Eile araneusWTK\examplesihtmliconf-index.html

ShllConferences: *<hr> ($ConfWithInitial]+ ;

$ConfWithInitial:
<h3z> fi see X, ¥, Z
<al lname="[a-z]"»5Initial«(.«<a| Jname="[a-z]">[A-E]</ax>]*
</n3x

t

“ulx

(<lir<a] Jhref="3ConEURL">$hcronym</a» 3TapConfName
{ $ConfWame.replaceAll (*[(I*[}]1%,"**);) $TP1

)

«fulz

17

$Initial: [A-Z];

S TpCon fame @ - (\s]7? SConflame:

EMCEPTION ()

{
$Conflame.reset () ;
SAcronym. cutAll () ; Jf Append SAcronym ..
$Conflame .paste () ;
STmpConfiane . cutadlli) ; /¢ ... and 3TmpCeonflame documents. ..
SConflWame .put (* *); /f ... separated by a space...
SConfWame .paste 1 ; £/ ... to form $ConfWame

]

STP1:

[
$Initial charil),
SAcronym chariloo),
$ConfWame chari(255),
$ConfURL char(255]

END

Figure 3.5: Minerva Sample Definition File

wrapper generation toolkits, we tend to use Minerva more than Jedi, since it fully sup-
ports the Java programming language rather than the syntactically Java-like language

of the latter.

e grammar-based WGTs allow for maximum control on the input manipulation and output
generation. Since this is a research project, we are more interested in using tools that

allow us a great degree of control; user-friendliness is not required.

e the ability to mix grammar rules and programming language instructions gives maximum

flexibility as to the integration and formatting capabilities of the generated wrapper.

e because of their deterministic nature, EBNF-based wrappers execute faster and require
less memory than their learning-based counterparts, due to the simplicity of the data-

structures required for their implementation.

The sample input and the corresponding output for the Minerva file shown in fig. 3.5, are

depicted in figures 3.7 and 3.8.

19

AR AR A A A A A AR A A A A A A A e
£f mle BibBrtry
/f Thiz rule metches the dete of one biblicgraphy record.
£f It extracts relevant dete by assigning date portions to
ff varisbles which are vsed in & ‘do’ ... ‘end’ embedded code
£f bBlock which prints the data nicely formatted to stdout
L T L T T T T T e P T P PP P PPR
rule BibBntry : result is
4 Repeated avthor entries may sppear that start with = /!
#F These are collected in warisble ‘awthors’.
SF The += ignment operator crestes & sequence which
#f contains sach match [_+]
*H avthors += _+ 1+

4f an affiliation is cptional and starts with ‘8°
PR aEEQil = ¢ 17

A The title starts with '™' and ends with ***
T title = L Y

/¢ skip irrelevent date
-+

#f References start with '/ and are further seperated by **°
[LA*] refs += .*)+

#f Rarely used comment entry
(*=' comment = .+]7

“»* ¢f This char ends any comment or ref =zection

da
ff Frinting of formestted record deta to stdout.
/f This code block iz only execvted if the rvle metches.
Erintln(
Ychreched, title, Yo ibropat,
authors_jein(¥, %1,
2££il 7 tewt (M[Y,aEEQil, V1Y) @ 44,
refs 7 text (Yculeclis¥, refs join (olisc/linzY), Ye/livciulsy)
comment T test (YCIY, comment,¥</IRY) @ ¥Y
1i
end

=nd

A A A A A A At

£ rule BibList

/f BibLizt matches = list of bibliograghy records.

T T Tt T LT L T T T S PP PP PP PP P TN

mle BibList : result is

result = BibEntry i)+

/¢ Thiz predection takes implicitly advantage of Jedi's
f# built-in failere tolerant persing.
#f Looking at the 'BibEmtry’ rule, 2 record starts with = * !
#f and ends with a >
#f BHowever, in the source 2 ‘!‘ does not follow immedistely
ff after a ‘»'_ These chatacters are skipped avtomatically
#f by the fallback of rule ‘BibEmtry’ .

=nd

DT T D PP P P PP TP PP

#f Script statements
I T T L T LT E T T P P P P

+ Generation of HIML headers ...
Erintln (“chtml>¢headsctit LesRESULT ! </t itle< headshody>"];
Erintln (“<hr»<H2+*Bibliography Rewrite Result:</HEZ»Y];

Rules are objects with metheds for persing.
We use HibList 245 an entry point to the grammer,

ng the content of the VRL giwven.

_EaTse WRLMhttp: / fwww . darmstadt .gmd . de/ “heck /dedi/biblicgraphy]] ;

+ Completing HIML ...
Erintlni¥</body></html=Y];

Figure 3.6: Jedi Sample Definition File

3.4 Querying Models

As we already mentioned, user queries are executed by DOT-POP in two stages:

1. Stage 1: filling-out back-end sites’ forms using user-supplied values.

2. Stage 2: running a user-defined query on the outcome of the wrapping process.

The first stage is done internally by DOT-POP. However, the second stage can be implemented

in a variety of ways:

e the DOM tree approach.

20

. Eile Edit ¥iew Search Go Bookmarks Tasks Help Debug Q&

W 2 . A B [Minervarexamplesthimi/cont-index himl

£ Back Forward Reload Stop

7 4% Home | i Bookmarks (f JavaDoc (f Web Usage (f Compag-Linux (f Alpha-Linux (5 Free Somware 4 Seti@Home

dblp.uni-trier.de

A

= AAAT - National Conference on Artificial Intelligence
« AADEBUG - Automated and Algorithmic Debugging
« AC - Advanced Courses
= ACL - Meeting of the Association for Computational Linguistics
« ACM Pacific
« ADE - Applications of Databases
= ADBIS - Advances in Databases and Information Systems
« ADBT - Advances in Data Base Theory
= ADC - Australasian Database Conference
» ADL - Advances in Digital Libraries
ents - International Conference on Autonomous Agents
= AISC - Artificial Intelligence and Symbolic Computation
ALP - Algebraic and Logic Programming
= ALPUEK - UK Cenference on Logic Programming
» ALT - Algorithmic Learning Theory
= AMAST - Algebraic Methodology and Software Technology
= ARTDB - Active and Real-Time Database Systems
« ASIACRYPT
= ASIAN - Asian Computing Science Conference
» ASP-DAC - Asia and South Pacific Design Automation Conference

%

= AusWeb - Australian World Wide Web Conference - link
« AVI - Working Conference on Advanced Visual Interfaces

= Berkeley Workshop on Distributed Data Management and Computer Netwiorks
= BIWIT - Basque International “Workshop on Information Technology
« BNCOD - British National Conference on Databases

& 2 (5 | Document Done (2633 secs)

Computer Science Conferences & Workshops

= ASPLOS - Architectural Support for Programming L anguages and Operating Systems

= BTW - Datenbanksysteme in Biiro, Technik und “Wissenschaft (German D atabese Conference)

I -

Figure 3.7: Minerva Sample Input

the native XML database approach.

the relational database approach.

the fully-online approach.

3.4.1 DOM-Tree Approach

of XML-based query language, such as XSL(T).

This approach offers several advantages:

a hybrid approach combining two or more of the above methods.

In this approach, all data from the e-sites being integrated, is prefetched and kept in a DOM

tree. All queries thereafter are executed against this populated DOM tree, using some kind

e [t’s extremely easy to program. Since wrappers return data in the form of XML doc-

uments or DOM trees, the population of the main DOM tree is straightforward and

blazing-fast.

e It allows for easy querying. Java, through XML packages (such as Xalan) provides a

variety of methods to execute XPath or XSL(T) queries against a given DOM tree; all

21

S = B e R s S

[A] [RADEBUG] [Autcmated and Algorithmic Debugging] [aadebugy/index. html]

[&] [AC] [Advanced Courses] [ac/index.html]

[&] [ACL] [Meeting of the Asscciation for Computational Linguisties][acl/index.html]
[A][][ACM Pacific Meeting of the Asscciation for Computatiecnal Linguistics] [pacific/pacif
ic75.hitml]

[A] [ADB] [Applicaticns of Databases] [adk/index. html]

[A] [ADBIS] [Advances in Datakases and Informatien Systems] [adkis/index.html]

[A] [RDBT] [Rdvances in Data Base Theory] [adbt/index.html]

[4] [ADC] [Australasian Database Conference] [adc/index.html]

[A] [ADL] [Advances in Digital Libraries][adl/index.html]

[&] [Agents] [Internaticnal Cenference on Autcnomous Agents] [agents/index.html]

[a] [AISC] [Artificial Intelligence and Symbolic Computaticon] [aisc/index.html]

[A] [ALP] [Algebraic and Legic Pregravming] [alpd/index. html]

[&] [ALPUK] [UK Cecnference con Logic Preogramming] [alpuk/indes.html]

[&] [ALT] [Algorithmic Learning Theory] [alt/index.html]

[A] [AMAST] [Algebraic Methodology and Scitware Technclogy] [amast/index.html]

[A] [ARTDB] [Active and Real-Time Datakase Systems] [artdb/index.html]

[A] [][ASIACRYPT Active and Real-Time Database Systems] [asiacrypt/index.html]

[A] [ASIAN] [Asian Computing Science Cenference] [asian/index.html]

[A] [ASP-DAC] [Asia and Scuth Pacific Design Autcmaticn Ceonference] [aspdac/index. html]

[A] [ASPLOS] [Architectural Suppcrt for Pregramming Languages and Operating Systems] [asples
findex. html]

[A] [RusWek] [Australian Werld Wide Web Conference - link] [hittp://www.scu.edu.au/auswen35/]
[A] [AVI] [Working Conference con Advanced Visual Interfaces] [avi/index.html]

[B][][Berkeley Workshep cn

Distributed Data Management and Computer WetworksWorking Conference on Advanced Visual In
terfaces] [berkeley/index. html]

[B] [BIWIT] [Basgque Internaticnal Workshop on Infermation Techneolegy] [biwit/index.html]

[BE] [BMCOD] [Eritish Waticnal Conference on Datakases] [bnced/index.html]

[B] [BTW] [Datenbanksysteme in B&kuuml:;ro, Technik und Wissenschaft

] [btw/index.html]

[CI[][C++ CenferenceDatenbanksysteme in Büro, Technik und Wissenschaft

] [c++/index.html]

[C][CAAP] [Colloguium on Trees in Algebra and Programming] [caap/index.html]

[C][CADE] [Conference on Automated Deduction] [cade/index.html]

[C][CAiSE] [Conference cn Advanced Information Systems Engineering] [caise/index.html]
[C][CAV] [Computer Aided Verification] [cav/index.html]

[C][CC] [Compiler Constructicon][cefindex.html]

[C]([CCL] [Constraints in Computational Logics][ccl/index.html]

[C][CDB] [Constraint Databases and Applications] [cdb/index. html]

Figure 3.8: Minerva Sample Output

a programmer has to do is put together the query and pass it as an argument to the

relevant Java method.

e It allows for easy transformation from and to XML/HTML and other human-readable
forms. This means that the presentation of the query results can be done using a simple

XSL stylesheet and off-the-shelf tools.

e [t is reusable. By implementing the functionality required to support a DOM-based
database, we can use the exact same components for even more tasks (e.g. information
extraction from traditional databases, transformation of data into many different forms

etc.).

It does however suffer from some very important disadvantages:

e In order to support updates at runtime, the DOM Tree approach requires the design
and implementation of components performing complicated manipulations of the DOM
trees. The easiest solution is to rebuild the whole DOM tree every time an update is

performed. However, the inefficiencies of this method are quite obvious. On the other

22

ARtALLALy ARV A VA Y et Aty At vyt v Ay 2 b e et v At VA

very difficult endeavor.

e Memory requirements can become prohibitive. For the proof-of-concept applications
implemented for this thesis, the amount of memory used was not very big. However,
we expect memory requirements to grow almost linearly to the growth of the number
of e-sites wrapped. A possible solution for this problem would be to use some form
of persistent DOM trees, saving all information on some external storage device. This
could circumvent the memory consumption matter, but the query execution time would

increase.

e There is no query optimization mechanism other than that provided by the default
XML manipulation Java packages. A traditional relational database can execute the
same queries in fragments of the time required by the DOM tree approach to execute its

XSL transformations.

3.4.2 Relational Database Approach

As the header implies, in this approach all data is prefetched and kept in a traditional relational
database. All queries thereafter are executed using JDBC and SQL query language (|18]).

This approach offers the following advantages:

e Off-the-shelf solution. Using third-party products removes the burden of maintenance
and support of these parts of the system. This allows us to concentrate on the devel-
opment of the data integration side of C.I.A., using the low-level database access as a

black box.

e Industrial-strength quality. Since this is a third-party product, it has probably been
thoroughly tested and debugged by the company that developed it. The importance of
this fact may not be obvious at this time. However, consider the possibility of C.I.A. go-
ing commercial; everyone would prefer a system based on a well-known, highly optimized

relational database over an experimental and not-so-stable DOM-Tree based one.

23

- B Ry A Ay YA U Attty Yy v s ysas Ll M2 iy Rttty VaRE VS
different interfaces. Just to mention a few, we generally can run queries written in
SQL, XPath, XML-QL([19]) and XML Query(|20, 21]), via ODBC, JDBC, CORBA and

RMI([22]).

e Fast queries. The fact that these products are separately developed, allows their de-
velopers to delve into such details as query scheduling and optimization, transaction
control, storage optimization etc. The outcome of all these: a blazing-fast query execu-

tion engine.

e Powerful queries, if JDBC or ODBC is used. XPath, XML-QL and XSL are not as
powerful query languages as SQL and XML Query(|23]). Therefore, the use of a rela-
tional database for our metadata repository also allows us to easily execute powerful and

complex queries in a straightforward manner.

e Easier updates. Of course a relational database management system (RDBMS) offering
all of the above, could do nothing else than to also offer a powerful and highly optimized
update mechanism. This solves the greatest inefficiency of the DOM-Tree approach in

the best possible way.
It’s main disadvantages include:

e Extra bindings and extra costs, due to the use of third-party commercial software.

e No source code is available since these are full-blown commercial products. This may
prove really annoying in cases where a certain functionality is not implemented by the
software in use (in which case we should either change the RDBMS used, or redesign

the rest of the system, both of which being very expensive).

3.4.3 Fully On-Line Approach

All solutions presented so far, are based on some kind of prefetching and cache-storage tech-

nologies. If we completely remove this part of the system, what results is the Fully On-Line

24

et gl nddit el Bt S R o Y AL (@ ettt et SR e

server has is the initial metadata, as made available by the DomDB XML files.

The advantages of this approach include:

e Extreme reusability. Since all tasks are done on-line, this approach needs only the
DomDB XML files and the corresponding wrappers to function properly. If these two
requirements are met, the Fully On-Line approach can act as a full-fledge, domain-

independent mediator?.

e It allows for selective queries and/or updates. Of course, the real update will be done
against a server-side database, as those described earlier. However, the Full On-Line
approach makes it possible to query only a portion of the back-end sites, thus allowing

for selective execution of user or system-defined queries.

e It allows for better caching algorithms. Since no caching is implemented in the database,
the task of caching is moved outside the Mediator, where more complicated and propri-

etary algorithms can be used.

e Low memory requirements. Since no caching is done on the Mediator server’s side, the
memory requirements of this approach are extremely low, compared to the requirements

of the approaches presented so far.

However, this solution has the worst run-time efficiency of all previous approaches; each and
every query takes extra overhead (network transfer, metadata parsing, data wrapping, wrap-

ping output manipulation, etc.), making query execution a time-expensive process.

3.4.4 Hybrid Approach

C.I.LA. uses none of these approaches as they were presented above. We rather invented a
hybrid approach, combining the advantages of all of the mentioned approaches, while avoiding

most of their shortcomings:

2As we shall see, the Fully On-Line part of the Mediator was used in an as-is basis in both of the sample
applications of C.I.A.

25

Dy A G D diidadh Bt ettt A A € i adaidadad |

e an internal DOM-Tree database, for the static or slowly changing parts of the wrapped

information, and

e an external Relational database for the caching of wrapped data.

This approach offers all advantages of the individual approaches, with the following differen-

tiations:

e [t doesn’t suffer from the run-time inefficiency of the Fully On-Line approach, since the

back-end sites are contacted less frequently.

e The memory requirements are decreased to a minimum, since only static data is kept in

IMemory.
e [t provides ultra-fast execution of queries concerning cached or static data.

e The use of an external Relational database as a cache, moves the development and
maintenance cost from the Mediator to the external Cache. Modularity is one of the

developers’ main goals.

3.5 Putting it all together.

Our Mediator is the assembly of all of the above. A schematic view is depicted in fig. 3.9.

Information integration, as presented above (Ch. 3.2), suffers from a serious inefficiency.
Although all data is stored and manipulated as DOM trees, there is no specific method for
all the parts and stages of mediation to share the same DOM tree in a thread-safe way. This
means that data is converted from and to XML whenever the processing context changes (i.e.
from DOT-POP to BIN, from BIN to DOT-POP etc.).

The main reason why this occurs is the lack of access to the source code of the wrapper gen-
eration toolkits as well as the lack of appropriate Java methods which would export processed

data as DOM trees. However, for the time being, with C.I.A. still in the ’proof-of-concept’

26

PV Y Vi MW P AVt eitly Vit MWLy R vyvativibad s U VARt My vt My Vaakey Al Ay s ttotM Yy MAaRt e VAL

number of back-end e-sites is not great. If efficiency ever becomes critical to the evaluation
of C.ILA. as a whole, this is a section whose improvement would provide an important overall
performance gain.

The Mediator and C.I.A. as a whole were designed with tree main factors in mind:

1. Platform independence: the final outcome should be easily portable among different soft-
ware and hardware platforms. The use of Java and XML derived technologies guarantees

maximum platform independence.

2. Architecture openness: modules should be easily alterable, while the set of wrapped
back-end sites should be as dynamic as possible. This is achieved by using the DomDB

files and in conjunction with the overall architecture design.

3. License freedom: all parts used should be either open/free source or freely available for
educational reasons. The Mediator was developed in Java, using Sun’s publicly available

JDK, and non-commercial wrapper generation toolkits.

27

8¢

6'¢ 2In31

10YRIPOIN oY,

Query.dtd
Compliant
XML Document

Result
DOM Tree

Level 1

Information
Extraction

XPath Query DOT_pOp
FEIN
Stage 1
| Level 2 Top-level selection
_ XPath Generator
Java Y
@ <)
(‘Extracted | Stage 2.

Mediator

XSL Generator

nformation |

| URL Generation

XSL Query

Stage 3:
BIN Invocation

Q&j\’

P

7
opulation &
Normalization

XML Metadata

Back-end e-site

Back-end e-site

information Extraction
and Integration

Wrapped Data

Chapter 4

Champion Applications.

4.1 Overview

We shall now present two proof-of-concept novel data integration applications, implemented

using the C.I.LA., as it was described in the previous chapters:

e HyperHotel: a data integration application, bringing together the vast amounts of in-
formation available online by real-world hotels. Users will have the ability to search for
their residence-of-choice in multiple e-hotels, without having to visit the web sites of

each and every one of them, and

e HyperTV: an application integrating data available on the world-wide-web, concerning
television channels’ programs. Users will eventually be able to search and select the TV
programs they’ll watch, by selectively querying TV stations’ web sites, in a uniform,

centralized and user-friendly manner.

4.2 HyperHotel

A classic example of data freely available through the world-wide-web in unstructured or semi-
structured form, is data about accommodation facilities, such as hotels and rent-rooms. The
common practice for such companies is to have a web site offering location-related informa-
tion (such as address, transportation, proximity to known sites etc.), room rates, availability

checking, online booking etc. Since tourism is a quickly growing sector of modern economies,

29

Vit Aaiitaiiie UL W vt asaviA vy VA wasasUsL AR s J Y r) o WA Pdiild AL VIV A A S o Oy R

HyperHotel’s goal is to answer to this demand in a semi-automated way, surpassing currently
available paradigms utilizing data-entry and/or proprietary communication protocols between
the integrator and the back-end sites.

Being an application of C.I.A., HyperHotel has the following advantages:

e It uses standard world-wide-web technologies and protocols (i.e. HTTP/1.1, SSL etc.)
to communicate with the back-end sites and with the clients. This means that a hotel
needs only have a web site to be a candidate for integration, while all a user needs is a

web browser and access to the Internet.

e [t is written totally in Java, hence guaranteeing maximum platform independence on

the server side.

e Since all data is drawn from publicly available sources (i.e. the hotels’ web sites), it is

free of possible copyright and licensing issues.

To achieve better performance, the HyperHotel Mediator prefetches, integrates and stores all
“static” data (i.e. data available through static HTML pages) at start-up, while still offering
the capability of online dynamic querying through HTML form interfaces.

HyperHotel makes it possible for a user to query multiple hotel websites, based on such

criteria as:

1. locality (currently more than 40 hotels from more than 5 areas in Greece are dynamically

included in queries).
2. hotel category (e.g. A/B/C class etc.)
3. amenities available (e.g. swimming pool, conference room, restaurant etc.)
4. closeness to the sea.
5. proximity to the nearest city.

6. room size (i.e. number of beds).

30

s Wil AWV LVLY VLI WLULVJLLILLLL S IAWWUV LS LL.

8. final room rates (including support for ranging rates, e.g. spanning multiple seasons).

A demonstration of HyperHotel is available online at http://hit.softnet.tuc.gr/Applications/HyperHotel.

4.3 HyperTV

HyperTV is another proof-of-concept application based on C.I.LA.. It deals with the integra-
tion and uniform querying of television channel programmes, available online through the
corresponding television channel website.

Currently almost all television channels have a website, mainly providing information about
the channel’s programme. Moving into the era of digital television, users will have access to
hundreds of channels, through the corresponding digital platforms. The diversity and large
amount of programmes will then make printed TV guides and individual channel websites
obsolete or unusable. HyperTV covers this gap, by providing a “centralized” way of selectively
querying multiple programmes, transparently to the end-user.

HyperTV allows for queries based on such criteria as:

1. channel name (currently more than 10 channels are integrated).
2. channel type (i.e. satellite, cable, digital, subscriber-based etc.)
3. program start/end hour.

4. program name.

5. program type and/or description.

6. predefined queries, concerning high-volume high-frequency user queries (e.g. “What

movies are there tonight?” or “What football matches are on tomorrow?”).

To achieve maximum query execution performance and minimum response time, HyperTV

prefetches, integrates and stores all relevant data, for a predefined amount of time (usually

31

I e S0 2 B e wiaidddetad ettt o B Al it St Al Uil & Rttt o St A Eadd g

users will seldom see any degradation in performance. The stored data is then deleted and /
or updated in a circular way, on a per-day basis: at the end of each programme day (when the
programme for a day becomes obsolete), the system prefetches the programme for the seventh
day (i.e. the programme of the first day of the next week, starting from the current day). This
technique guarantees completeness and correctness for the prefetched and stored data.

A demonstration of HyperTV is available online at http://hit.softnet.tuc.gr/Applications/HyperTV.

32

Chapter 5

Related Work

We proceed with the description of related work and its comparison to C.I.LA.. We classify
relevant projects in two major categories, as to their functionality: full-scale integration and

wrapper generation.

5.1 Full-Scale Integration

Data integration has been a hot-spot of information technology for many years. Many attempts

have been made to create a full-blown mediator system. Due to the size of relevant work, we
choose only to refer to the most well-known among them': TSIMMIS(|48, 49]), DISCO(]50,

51]), Enosys Markets([52]) and ShopBot([53]).

5.1.1 TSIMMIS

TSIMMIS stands for The Stanford-IBM Manager for Multiple Information Sources. As its
name implies, TSIMMIS was developed by the Stanford University in cooperation with IBM.
TSIMMIS is a classic representative of a full-scale mediator system, consisting of the fol-

lowing components:

'For more information on the subject, please refer to [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47].

33

(I W

Application —.

Mediator

Mediator
Generator

Definition

Constraint
Manager

Mediator

Local
Constraint
Manager

Translator Translator
Generator

’ Definition
Information Information
Source Source

[Classifier/Extractor } [Classifier/Extractor

Figure 5.1: The TSIMMIS System.

Local
Constraint
Manager

Translator

Information
Source

The Translator Generator and the generated Translators. Back-end sites are accessed
through wrappers (referred to as “Translators” in the TSIMMIS literature), semi-
automatically generated by the Translator Generator, a wrapper generation toolkit.
Translators deal with the tasks of converting queries to a form executable on the back-

end sites and then converting the extracted data to the TSIMMIS object model.

The Mediator Generator and the generated Mediators. Mediators are semi-automatically
generated super-wrappers, dealing with the task of selectively including sets of Transla-
tors in query execution time, based on semantic criteria (e.g. query semantic category

and Translators available for relative back-end sites).

The Constraint Managers. These components deal with integrity constraints imposed

on the integrated data by front-end applications.

34

o ey Ree Ryl e A AV e - AV WA Y AR ARV AL ey vt it bha v Ve Wiy et W

tributes from unstructured data sources (e.g. plain-text files), so that such information

could be used by a Translator in subsequent queries.

e The data model. TSIMMIS uses a self-describing (tagged) object model, called the
Object Exchange Model, or OEM. OEM allows simple object nesting, thus being a very
simple object model. Queries against OFEM repositories are issued in OEM-QL, and

SQL-like language, specific to the TSIMMIS project.

The design of TSIMMIS is very close to that of the C.I.LA.; both platforms use wrappers,
semi-automatically generated using wrapper generation toolkits, to access back-end e-sites. In
the C.I.LA., constraint management is done during stages 2 and 4 of the DOT-POP execution,
while there is no need for Mediators, since multiple C.I.A. instances are deployed for different
semantic categories.

Moreover, both platforms use self-describing object models. However, TSIMMIS’s OEM
calls for a model-specific proprietary query language, while XML is an industry standard, with
querying capabilities controlled by the W3C XML group. Another major difference between
TSIMMIS and the C.I.A. is the use of Classifiers/Extractors, since C.I.A. currently doesn’t
support integration of unstructured data. This is due to the fact that currently publicly

available wrapper generation toolkits don’t support efficient wrapping of unstructured data.

5.1.2 Disco

DISCO stands for Distributed Information Search COmponent and was developed by Inria
Rocgencourt and the University of Maryland.

DISCO is another representative of a full-scale mediator system. It features:

e The Catalog: a collection of data concerning the Mediators. The Application uses data

available in the Catalog to select which Mediators to include in every query execution.

e The Mediators. DISCO’s Mediators deal with the tasks of selecting which wrappers to

use for every query and the conversion of wrapped data to the system’s data model.

35

Mediator

Wrapper Wrapper Wrapper
Database Database Database
—

Figure 5.2: The DISCO System.

e The Wrappers. These components deal with the conversion of queries, from a subset of
the general query language used by the Mediator, to the particular language used by the
corresponding data source, and with the conversion of data thus acquired to the format

expected by the corresponding Mediator.

e The data model. DISCO’s data model is based on the ODMG-93 standard|[54], consisting
of an object data model (ODM), an object definition language (ODL), a query language

(OQL) and a language binding.

DISCQO’s approach to mediation is very similar to that of TSIMMIS, to the extent that both
systems use wrappers, controlled by mediators, controlled by a “super-mediator” (i.e. the
Catalog). However, DISCO mediators are not semi-automatically generated, as is the case with
TSIMMIS’s mediators. As already mentioned, the C.I.A. makes no use of “super-mediators”,
since multiple C.I.A. instances are deployed for equal semantic categories. Moreover, DISCO,
by extending the ODMG standards, uses a less proprietary data model than TSIMMIS’s OEM,

but it’s still far more complicated than the flat XML data repositories of C.I.A.

36

4 Vit Ay At i MUY s Vi A S s Yt s vaavl U VAt A s A L N~ Lilild villv

C.ILA. systems, is the intended back-end data sources; DISCO is designed for the integration
of DBMS-based information systems. The issues that arise in the integration of such systems
are very similar to those arising in the integration of data sources over the web (as those
dealt with by TSIMMIS and the C.I.A.), with the exception of the semistructured nature of
web-based sources; data retrieved by directly querying a DBMS-based data source is always
structured, while data transfer is done through proprietary APIs, specific to the DBMS. As
such, we consider the DISCO system to be more of a data wrapping service than a full-scale

mediator.

5.1.3 ENOSYS Markets

ENOSYS is the commercial offspring of the research made for the TSIMMIS project. As such,
the ENOSY'S system also deploys wrappers (XMLizers) for the extraction of information from
the back-end data sources, and mediators (XMediators) for the integration of extracted data.
It also features an XML cache database, much like the C.I.A. platform.

The main building blocks of the ENOSYS platform comprise of:

e The XMLizers: ENOSYS Markets’ XMLizers (wrappers) deal with the extraction of
data from back-end data sources and the transformation of extracted data to the me-
diator’s internal data model. XMLizers exist for various types of data sources, such
as RDBMSs, XML files etc. XMLizers are semi-automatically generated, using user-

friendly visual tools and a declarative source definition language.

e The XMediator: all information extracted by the XMLizers is then passed to the XMe-
diator, ENOSYS Markets” mediator. The XMediator then exports this information in
the form of “views” on the integrated data, thus resembling a database. As a matter
of fact, the server-side components of the ENOSYS system is called Virtual Integrated
XML Database (VIX Database) in the ENOSYS literature, thus the corresponding views

on integrated data are called VIX Views.

37

e

Custom

H !
i i i

T

HTML Forms | | i Application i
& Reports ; e

'\ f

XML Query XML Query

Virtual Integrated XML (VIX) Database

: Virtual Integrated XML (VIX) Database

XCacheDB ™~ XMediator

XMLizer [XMLizer

RDBMS XML File

—/

[XMLizer j

i

Figure 5.3: The ENOSYS System.

e The XCacheDB: when the wrapped data sources are either static or slow, their XML
views are cached in the XML Cache DataBase, the XCacheDB. Of course, caching is

done transparently, considering the rest of the system’s components.

There is great resemblance between the ENOSYS Markets’ system and the C.I.LA., apart
from both being classic representatives of full-blown mediator systems; both systems utilize
caching techniques to compensate for high-reaction-time or static data sources. However, the
C.I.A. takes caching one step further, by caching each and every query and it’s correspond-
ing response, using state-of-the-art caching techniques and partial hit/miss recognition and
by tackling the integration problem in a distributed manner (through cache replication and
multiple mediator instances).

On the other hand, the ENOSYS system, being a commercial product, is a much more
complete data integration system than any of the systems presented here. In a nutshell, it also

features visual tools to simplify wrapper generation and data acquisition and maintenance,

38

P A VAt LA iy e W oYy Re it vis AL A oY R VS . - AAa AL Y AU ALY L vy L L

of the ENOSYS system to create web/HTML-based forms for the access of integrated data.

5.1.4 ShopBot

The ShopBot was developed by R.B. Doorenbos, O. Etzioni and D.S. Weld at the University
of Washington. It was a World-Wide-Web shopping agent that enabled users to shop online
for CD’s and computer software, but was retired in 1998. However, it contributed to the devel-
opment of more advanced shopping agents, such as the Jango (http://www.jango.excite.com).

The ShopBot utilized advanced artificial intelligence techniques to understand information
published at back-end sites; information extraction was more-or-less automatic, based on
limited domain-specific knowledge and certain assumptions as to the structure and content of

the integrated data. It did however suffer from some major problems:

e Data analysis was not detailed enough and could lead to wrong output (e.g. upgrades of
a program, being less expensive than the program itself, appeared higher in ShopBot’s

sorted list of available products).

e The rules on which ShopBot’s decisions were based, were too strict, leading to incom-
pleteness of the output (e.g. when the formatting of a web page wasn’t within the limits
recognized by the ShopBot, parts of the integrated data could be mistaken to belong to

the useless content of the page).

e The ShopBot could only integrate sites with a searchable index. This not being the case
for many all of the available e-shops, the ShopBot could only integrate a fraction of the

set of e-shops.

e ShopBot’s performance was linear in the number of integrated data sources, thus not

scaling well for large numbers of back-end e-sites.

e Wrapper generation was heavily based on the assumption that all data sources export
information in HTML form. This means that the ShopBot would never be able to

integrate a data source embedding information in Java Applets, images etc.

39

ol VVLGPPCL NACLLLIUVUL QWLU1IUVLL A VUUVLILIALULD

We continue with a presentation of the major wrapper-generation toolkits available today,
which where also candidates for adoption by the C.I.LA.. All of them have the following

characteristics:

e They are written in Java, therefore guaranteeing platform-independence and maximum

integration capabilities with the rest of the system.

e They are available free of charge for educational reasons. Although C.I.A. might evolve
to a commercial platform, in this stage of development no commercial products should

be used.

We separate toolkits in two major categories, according to the way they interact with the user

in order to generate the wrapper:

1. Grammar-based toolkits.

2. Learning-based toolkits.

5.2.1 Grammar-Based

These toolkits take as input a description of the grammar of the wrapped source and a defi-
nition of the output format. They then generate a wrapper that matches the given grammar
rules to the e-site web-pages and returns the parsed data, according to the output format def-
inition. Grammar and output definitions are made in toolkit-specific formats. The ease-of-use
of this format plays a very important role in choosing one toolkit over another.

With these toolkits, wrappers are harder to code, since they require grammar rules induc-
tion by the user, but allow maximum control over the generated wrapper.

The most prominent representatives of this category are the Lex-Yacc parser generation
suite, the GMD-IPSI’s JEDI(|55]), INRIA’s YAT(|56, 57, 58|) and the Universita di Roma’s

Minerva([59, 60, 61, 62, 63, 64]) wrapper generation toolkits.

40

Vo due AL oL Al A Lh & AR

The Lex-Yacc parser/compiler generation suite has been around for quite a long time. Most
compilers available today are developed and maintained using these very two tools or their
various ports (e.g Flex/Bison for GNU/Linux etc.). As expected, they have also been ported
to Java by various developers (e.g. Coco/Java, CUP, the JavaCC etc.).

Due to the low-level nature of these tools, they are the most powerful of the presented
toolkits as to the features of the generated parsers. However, programming in Lex-Yacc can
be very time consuming, while the advanced possibilities of this toolkit would surely be never

used in the context of web-page data-source wrapper generation.

5.2.1.2 JEDI

JEDI stands for Java-based Extraction and Dissemination of Information. It was developed at
the Integrated Publication and Information Systems Institute (IPSI) of the German National

Research Center for Information Technology (GMD). Quoting from the JEDI Handout:

JEDI adopts a lightweight approach to wrapping and mediation, requiring only

basic web-browser technology. It has been entirely implemented in Java.

JEDI’s wrapper consists of a powerful and fault tolerant parser. Using attributed,
nested rules that describe the source structure of documents, the parser segments
them to any desired level, and collates the parsed data into a network of objects.
Unlike parsers for formal languages, JEDI’s parser can cope with incomplete and
ambiguous source specifications. This is accomplished by a novel parsing technique
that chooses always the most specific rule among several applicable rules. When
finding no applicable rule for some document portion, it skips as little as necessary

to continue with an applicable rule.

Wrappers and mediators have been carefully designed to tolerate structural devia-
tions and incomplete specifications without trading expressive power. The immedi-

ate advantage of this is that users can concentrate on what they want to reuse and

41

RtV EoYy WA AL U EAL L At UVA AR ARy ALl A My v V) vy e A Ae SR

in addition, JEDI’s fault-tolerance leads itself to applying machine-learning tech-
niques that explore information spaces to generate recognition rules and mapping

specifications semi-automatically.

JEDI’s architecture is shown in Fig. 5.4. For a more detailed description of JEDI, refer to

[55].
User
Medlation ;
r— - — - - — - - - — — — — — a
| Infegrated Yiews |
[Integratian, Querying, Presentation | |
L — |
Tlnﬁagrstnn
Wrapplng _ _ _ _ _ _ 1 = _ _ _ _ 4
LUnifo . -
| wg;"mdm Object Model Instantiation |
|
| anrichrn-ant% fmspping |
| |
| Extension Libraries Jedi Parser |
L — — — — — — —_— — — — — —
} ganarbT wrapping T spaciﬁcﬂfrsppirg
r— - = — — — - - — — — — 1
relaticnal CORER XML, HTML P rop rietary, |
DEME Syetems Deum ent= ireqularly =troctuned
| Docume nt=
| Different Data Modsls |
K nd Exchange Formats r

Figure 5.4: JEDI Architecture

JEDI and related demos and documentation, can be found at

e http://www.darmstadt.gmd.de/oasys, and

e http://www.darmstadt.gmd.de/ " huck.

5.2.1.3 YAT

YAT was developed by INRIA, as part of the OPAL project. YAT stands for Yet Another
Tree-based system. Its architecture is shown in Fig. 5.5.
Quoting from [57]:

42

=xpart
W I pe

aoification Enuranmeant " .
Sp Auntme Envronmant

traphical fhac

IntazEaca KT pmttecns/YAIL rolas | Tyew

nanaganant madols e S

Static IAIL pragran [IAIL Ixtarnal Funtians &
Iypim instantistian madula Intarpratar | Fredicatas svwloatian
IKI pattarna/IAIL rolas
nanmagenant nodnla

I impart impart

I wWrappEr wWrappEr

Lihvewy gf puegrems ene' mosels
Somcel Somrce?

Figure 5.5: YAT architecture

It relies on a middleware model, a declarative language, a customization technique
and a graphical interface. The model is based on named trees with ordered and
labeled nodes. Like semistructured data models, it is simple enough to facilitate
the representation of any data. Its main originality is that it allows to reason
at various levels of representation. The YAT conversion language (called YATL)
is declarative, rule-based and features enhanced pattern matching facilities and
powerful restructuring primitives. It allows to preserve or reconstruct the order
of collections. The customization mechanism relies on program instantiations: an
existing program may be instantiated into a more specific one, and then easily

modified.

A sample translation scenario is described in Fig. 5.6. For the time being, the YAT system
isn’t yet available to the public. Therefore, the authors have no experience on its functionality

and coding facilities.

5.2.1.4 Minerva

Minerva was developed at the University di Roma Tre, in cooperation with Universita della
Basilicata, as part of the Araneus project. It builds on the idea of dealing with exceptions
caused by the parsing of a document. It allows for both an EBNF grammar approach and a

procedural manipulation of document data.

43

o
ROSM S

\ ¥ ATIO DG

¥ATrebiamal irmparit=xpard
e 13 bl
PR /G}b YATL rarmbian

f
o
'l

ral4=gml —» admg
IKB YATL frarsdafan
admg —=himl
(2
¥ATISEML YATHTML
imparitexpard i

impartexzar
wrpe YAT patterna Twrapeer
midd lewana) ‘.‘-\.‘

SOML files HIM L files

i’ e

Figure 5.6: YAT translation scenario

Being an EBNF-based wrapper generation toolkit, Minerva allows for maximum flexibility
and powerful wrapper generation. However, it’s greatest advantage over the rest of the EBNF-
type wrapper generation toolkits, is it’s support for inline Java code. Thus, it combines the
ease of use of the Jedi toolkit, with the power and robustness of the Lex-Yacc suite. Moreover,
it allows for execution-time manipulation of malformed input, through the support for parsing
exceptions(|65]).

Sample input and output files of the Minerva toolkit were presented earlier.

5.2.2 Learning-Based

The toolkits that belong to this category use machine-learning algorithms and Al concepts in
order to extract the grammar rules used to generate a wrapper. They usually interact with the
user through a GUI. In order to assure that the rules extracted are correct, they prompt the
user for suggestions and corrections, through which they “learn” what parts of the wrapped

site the user is interested in. The output format is also defined by the user, through the same

GUL

44

ittt G it btd @ I Sl B Rttt S it nll Rt hditd @ Rt

make learning very difficult, so they don’t always succeed in inducing the correct grammar
rules, even after several suggestions and corrections from the user.

NoDose(|66, 67]) and XWrap(|68]) are two of the most well-known toolkits of this category.

5.2.2.1 NoDose

NoDose stands for Northwestern Document Structure Extractor. It was developed at the

Computer Science Dept. of the Northwestern University. Quoting from [67] and [66]:

NoDose allows non-programmers to build components that can convert data from
the source format to XML or another generic format. Further the generated code
performs a set of statistical checks at runtime that attempt to find conversion

errors before they are propagated back to users ([67]).

Using a GUI, the user hierarchically decomposes the file, outlining its interesting
regions and then describing their semantics. This task is expedited by a mining
component that attempts to infer the grammar of the file from the information
the user has input so far. Once the format of a document has been determined,

its data can be extracted into a number of useful forms ([66]).

XML L s
/ Genemtor
Parsec +
—p lofecence — =
Engine
Documents Intecnal Table
Repmsentation Genemtor —M

Figure 5.7: The steps of using NoDose

According to the authors’ experience from using this toolkit, wrapper induction with No-
Dose is a trivial task when the wrapped source is relatively semi-structured. However, when
the source was highly unstructured, NoDose required a larger time frame to teach, since it

learns by example.

45

VS ko bl © b ey

XWrap is another wrapper generation toolkit that builds on the idea of interacting with the
user through a GUI and generating wrappers through learning. Its architectural outline is
shown in Fig. 5.8. The main idea behind XWrap is separating common wrapping tasks from

source-specific ones; the wrapper generation process is done in two steps:

1. The user defines the regions of interest in the wrapped source, using the GUI. Behind the

scene, the user’s selections are translated into declarative information extraction rules.

2. The XWrap system then combines these rules with the XWrap component library and

constructs a procedural wrapper program (in Java).

The system also provides the ability to come back and tune the generated wrapper at run

time.
The Wrapper CenerataT Syatern KW
Erraciior N rowiedpe + Fordbacis By TeR
Petchical THuchile i i ;
% Emerabil| mﬁnwmlﬁ!bn R Infaipration Extachien Ereraciion reles
7 | |Emerm | R | Goneig Region | Semme | Hiearerial L
Ferch Hokes | Syroix Ermes| Parse Tees Emmagion | Emmadion FWEAR
Tesiing Frqurs: I Tremov e docemem Erokinr rules Fepion, ok em T urecure Fuel e
+ Femaback < mrirmeioy | eormeier | evrmeine
L e riel e rihex
T din g and Fachaging Code Generafion
- - D Wraoginps
Wrapper Pogram Wrappe Froaram STl | Ceerie W e
Tewing Tebeme Tprebemitn || e

Sowrer-goeeific Wrapper Fropree

Figure 5.8: XWrap architecture

For the time being, XWrap is available as an online resource (i.e. XWrap is not available
for download. Wrapper generation is made through an HTML interface on the XWrap web

host).

46

Chapter 6

Conclusions and Future Work

The heterogeneity and unstructured form of data available online through the world wide web
has recently evolved to a hot subject of research by academics and relevant industry. The
most wide-spread solution to the problems posed by these attributes and by the vast amounts
of available information, is the deployment of data integration schemes, mainly in the form of
mediators and relevant wrappers.

In this thesis we have described the design and implementation of an independent mediator
model, using third-party off-the-self wrappers and /or wrapper generation toolkits: the Content
Integration Architecture (C.I.A.). Emphasis has been given on speed, platform independence
and ease of deployment. The purpose of this work is to automate the task of selectively
querying multiple data sources on the web and presenting the results in a uniform way. We
have also demonstrated the functionality of this system with two applications: HyperHotel and
HyperTV; two dynamic mediator-based information integration and dissemination systems for
e-hotels and television program listings, respectively.

Throughout the design and implementation stages of this work, we have reached the fol-

lowing conclusions:

e Despite the emergence of XML and XML-related technologies as the preferred means of
data exchange of the web, the majority of web content is still available in its traditional
unstructured or semi-structured form. We consider that this situation is likely to change
in the next few years. However, due to the amount of data to be converted to XML

format, we believe that this transition will take quite some time.

47

2wy oYy v ALV WA st warAgiA e M) s Yo wasEsa A e stV vt vt

tion is still the subject of research, user-friendliness is not a requirement. Thus, almost
all available wrapper generation toolkits require advanced knowledge of computer science

fields by their prospective users.

e The currently available wrapper generation toolkits are not usable in production environ-
ments, since minor changes in the formatting of the source documents require wrapper

rewriting, a not-so-easy task.

e Since wrapper generation toolkits haven’t been around for enough time, they lack basic
system integration capabilities; they usually include non-thread-safe parts and export

wrapped data in custom formats.

e Currently available HT'TP-related Java classes don’t provide the extended support for
HTTP handshaking required by data integration applications. For example, support for
HTTP connection timeouts, HI'TP proxies and cookies, features supported by most web-
browsers, have to be coded explicitly by the designer /implementor of the data integration

applications.

Future plans include:

Extensive caching/prefetching, using novel algorithms for storage, retrieval and

full /partial hit/miss recognition'.

e Moving the system to a distributed environment, where multiple C.I.A. servers will

cooperate to answer to user queries in a locality-based, distributed, fault-tolerant way.

e Development of a thread-safe wrapper generation toolkit, exporting real DOM tree struc-

tures instead of XML data.

e Development of a faster query execution engine, since we expect XSL not to scale well

for large DOM trees.

'For a detailed description, please refer to [18].

48

~ v

VL LviL

< Al¥VLIALJ

44UL ¥V U AV UVRS

A i

Y

yyLuaL WA gAY iAW AL L g VR)

44UV L LAV U .

49

Appendix A

Technological & Software Choices

As already mentioned, the ease of integration of our application in many different environments
and across many platforms was one of our primary design targets. That’s why we used
technologies and software that are either platform-independent or available for a great deal of

software-hardware combinations.

A.1 Technologies Used

As far as technologies are concerned, we used either solutions based on the Java programming
language, or on general-purpose communication protocols featuring implementations on mostly
all known platforms.

In more details, we used the following technologies:

e the Java Programming Language, as implemented by the Java Development Kit v1.3

and v1.4 (Java 2 SE platform) specification.

JavaServer Pages (JSPs) v1.1 (final).

e Java Servlets v2.2.

e Enterprise JavaBeans (EJBs), according to the JavaBeans Development Kit v1.1 speci-
fication.

e Java DataBase Connectivity (JDBC) v2.0.1.

20

- 44 4L 4L 4 v L Lo

e Secure Socket Layer (SSL).

A.2 Software Used

The software used includes:

1. JDK v1.3.1 and v1.4.0

2. JBDK v1.1.

3. Tomcat Application Server v3.4.
4. Apache Web Server v1.3.19.

5. JDBC v2.0.1.

All of the above choices were preferred so that they satisfy the following requirements:

e They are based on the Java programming language and are therefore portable across all

platforms for which the Java Run-Time Environment (JRE) is available.

e Alternatively, they are distributed under the terms and conditions of the GNU General
Public License (GPL) or its modifications and are therefore available in source code in

the public domain .

e They have been tested under real circumstances and work loads by reliable internet sites,

companies and organizations etc.

ol

Appendix B

Models of Database Connectivity

The main difference between these models is the way we connect to the database management
systems (DBMS). In any case, the client-user connects to a World Wide Web server, accord-
ing to the HTTP/1.1 protocol, also using SSL (Secure Socket Layer) for increased security.
Furthermore, the final connection to the DBMS server is always done via a JDBC driver. The
following models differ, then, in the kind of intermediates between the initial web server and

the DBMS server. The resulting models are:
e The Direct JDBC Connection Model.

e The Connection through Web Server Model.

e The Connection through Specialized Application Server Model.

B.1 Direct JDBC Connection

As we can see in the following diagram, this model is very simplistic. The client sends a
request to the initial server (called DSWS - Department Store Web Server), using the HTTP
protocol. DSWS then connects directly to the DBMS (DataBase Management Server) using
a Java Servlet utilizing a JDBC driver.

The main characteristics of this model are:

e (+) Efficiency due to the lack of any mediating parts.

22

\ /) SR RAAA R AR RS SN ST) Paas e VAR AR RS S AR S VAR P PSS A AT VAL ALY

by the DBMS’s capabilities.

(+) Simple design and easy implementation.

e (-) Increased parallelism can overload the DBMS to the point of a system crash (when

the number of concurrent clients is overwhelming).

(-) To achieve a satisfactory security grade for the system, we must use pure SSL or
SSL-tunneled connections, to encode the connection elements. This mechanism, apart
from being slow, is not one of the standard connection methods and therefore there is a

possibility that it won’t be available for some platforms.

e (-) Mixing the programming logic and the presentation makes the code complex and

unreadable, and therefore hard to maintain.

Due to the above complications, this model was used only in the initial development stages.

Figure B.1: Direct JDBC Connection.

HTTP/11 JDBC 2.0

over SSL over SSH
Browser RDBMS

Client Machine DBMS
(DB Management Server)

JSP/Servlet
Engine

DSWs - N
(Department Store Web Server) © Direct JDBC Connection.

B.2 Web Server Model

This solution is more complex than the previous one but is also the most generic of the tree
connection methods discussed here. We see below a diagram, in which the DSWS communi-
cates with the DBMS via an intermediate web server. The main characteristics of this method

are:

23

D N A itttk ettt t® A Bt

wijLatly vYY AUt AR UvLY VALY S ALY

40 viiia Vil AN VY U U

many and different hosts and the capability to support many different database man-

agement systems, provided that there exists a corresponding JDBC driver.

e () By using properly configured network architecture (i.e. existence of a firewall, in-

stallation of the web server and the DBMS on the same computer and configuring the

latter to only accept connections from the former, etc.), this solution can prove to be

secure against a wide range of know attacks.

e (+) The concurrency level is furthermore limited by the web server, which is a much

efficient method, since web servers have been extensively developed and tested in pro-

duction environments.

e (+) By using such techniques as connection pooling, we can improve overall efficiency

and achieve better throughput than with the first method.

e (+) Limited concurrency reduces the risk of a successful denial of service (DOS) attack.

e () An e-shop can exist independently of an electronic department store.

e (-) The intermediate web server, can be a bottleneck for the overall performance.

e (-) The existence of many different web servers can complicate porting the application

to many platforms.

HTTP/1.1
over SSL

Figure B.2: Intermediate Web Server Connection.

(Web
Server

@

Client Machine

(Department Store Web Server)

HTTP/1.1
over SSL

IWS
(Intermediate Web Server)

JDBC
(possibly
local
connection)

DBMS
(DataBase Management Server)

O Intermediate Web Server.

This was the solution-of-choice for the implementation of this application.

o4

AT e J UPU\/IGLIDUU ﬂ]:ll:ll.lbaxl)lull MMUUL VUL 1lviUwuuavvi

This solution, since it is also based on the use of an intermediate part (the SAS (Specialized
Application Server)), has all the advantages and disadvantages of the previous one, with the

following differences:

(+) The SAS allows for further optimizing the system’s efficiency.

e () Security can be further hardened by using certain techniques in the SAS.

(-) The SAS probably would also call for a specialized communication protocol.

e (-) The development time is further augmented by the amount corresponding to the

development and testing of the SAS.

e (-) No e-shop can exist and function in an independent manner.

(-) Specialized client-side software is demanded.

Figure B.3: Intermediate Specialized Application Server Connection.

JDBC
0 (possibly
HTTP/1.1 HTTP/1.1 local

over SSL over SSL o connectioni)
Web ISPIServiet Specialized
Browser Server Engine) ’k@ RDBMS
er
Client Machine SAS DBMS
(Specialized Application Server) (DataBase Management Server)
DSws

(Department Store Web Server) © Specialized Application Server.

95

Reference List

1]

2|

13l

4]

[5]

6]
7]

8]

19]

[10]
1]

[12]

[13]

[14]

World Wide Web Consortium, http://www.w3.org/TR /1998 /REC-xml-19980210. FEz-
tensible Markup Language (XML) 1.0, February 1998. W3C Recommendation.

J.D. Davidson and D. Coward. Java Servlet Specification. Sun Microsystems, Inc., v2.2
(final release) edition, December 1999.

M. Hall. Core Serviets and JavaServer Pages. Sum Microsystems / Prentice Hall PTR,
2000.

E. Pelegri-Llopart and L. Cable. JavaServer Pages Specification. Sun Microsystems, Inc.,
v1.1 edition, November 1999.

K. Avedal, D. Ayers, T. Briggs, C. Burnham, A. Halberstadt, R. Haynes, P . Henderson,
M. Holden, S. Li, D. Malks, T. Myers, A. Nakhimovsky, S. Osmont, G. Palmer, J. Tim-
ney, S. Tyagi, G. Van Damme, M. Wilcox, S. Wilkinson, S. Zeiger, and J. Zukowski.
Professional JSP. Wrox Press Ltd., 2000.

Sun Microsystems, Inc. The Java 2 Enterprise Edition Developer’s Guide, May 2000.

et al. R. Fielding. HyperText Transfer Protocol (HTTP). Network Working Group, 1.1
edition, 1999. RFC 2616.

K. Mpletsas. An Internet Content Integration System: the Front-End. Diploma Thesis,
Technical University of Crete, 2002.

S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J.L. Wiener. The Lorel query
language for semistructured data. International Journal on Digital Libraries, 1(1):68-88,
April 1997. http://www-db.stanford.edu/ widom/pubs.html.

S. Abiteboul. Query semi-structured data. In Proceedings of the ICDT, 1997.

J. Robie, D. Chamberlin, and D. Florescu. Quilt: an XML query language for heteroge-
neous data sources. In Proceedings of XML FEurope. Graphic Communications Associa-
tion, 2000.

World Wide Web Consortium, http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-
20001113. Document Object Model (DOM) Level 2 Core Specification, November 2000.
W3C Recommendation.

World Wide Web Consortium, http://www.w3.org/TR/2000/REC-DOM-Level-2-Views-
20001113. Document Object Model (DOM) Level 2 Views Specification, November 2000.
W3C Recommendation.

World Wide Web Consortium, http://www.w3.org/TR/2000/REC-DOM-Level-2-
Events-20001113. Document Object Model (DOM) Level 2 Events Specification, November
2000. W3C Recommendation.

o6

L= ryyruvLiila A e el b B A A A Al © VA A At Y

20001113 Document Object Model (DOM) Level 2 Style Specification, November 2000
W3C Recommendation.

[16] World Wide Web Consortium, http://www.w3.org/TR/2000/REC-DOM-Level-2-Html-
20001113. Document Object Model (DOM) Level 2 HTML Specification, November 2000.
W3C Recommendation.

[17] World Wide Web Consortium, http://www.w3.org/TR/2000/REC-DOM-Level-2-
Traversal-Range-20001113. Document Object Model (DOM) Level 2 Traversal and Range
Specification, November 2000. W3C Recommendation.

[18] J. Giannakopoulos. An Internet Content Integration System: the Cache Manager.
Diploma Thesis, Technical University of Crete, 2002.

[19] World Wide Web Consortium, http://www.w3.org/TR /1998 /NOTE-xml-ql-19980819.
XML-QL: A Query Language for XML, August 1998. W3C Note.

[20] Z.G. Ives and Y. Lu. Xml query languages in practice: an evaluation.

[21] World Wide Web Consortium, http://www.w3.org/TR/2001/WD-xmlquery-req-
20010215. XML Query Requirements, February 2001. W3C Working Draft.

[22] D. Chang and D. Herkey. Client/Server Data Access with Java and XML. Wiley Com-
puter Publishing, 1998.

[23] A. Bonifati and S. Ceri. Comparative analysis of five XML query languages. In Proceed-
ings of the ACM SIGMOD Conference, volume 1 of 29, pages 68-79, 2000.

[24] N. Ashish and C. Knoblock. Semi-automatic wrapper generation for internet information
systems. In Proceedings of Cooperative Information Systems, 1997.

[25] N. Kushmerick, D.S. Weld, and R. Dorenbos. Wrapper induction for information extrac-
tion. In Proceeding of IJCAI 1997.

[26] C. Quix and M. Schoop. Metadata management for facilitating data integration in elec-
tronic marketplaces. Informatik V, RWTH Aachen, 2001.

[27] A. Levy, A. Rajaraman, and J.J. Ordille. Querying heterogeneous information sources
using source descriptions. In Proceedings of the 22nd VLDB Conference, 1996.

[28] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. STRUDEL: a web-site
management system. In Proceedings of the ACM SIGMOD Conference, 1997.

[29] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. Catching the boat with
STRUDEL: experiences with a web-site management system. 1998.

[30] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. Overview of STRUDEL - a
web-site management system. 1998.

[31] M. Fernandez, D. Florescu, A. Levy, and D. Suciu. Web-site management: the STRUDEL
approach. 1998.

[32] M. Fernandez, D. Florescu, A. Levy, and D. Suciu. Declarative specification of web sites
with STRUDEL. In Proceedings of VLDB, 2000.

57

L=

[34]

[35]

[36]

37]

38

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|46]

147]

48]

St s ML Ly e UL, fARAA Al VARV L. VWAV Sy MWW RA Yy Ay YA vee AU uviAal st =

Univ. Karlsruhe, 1999.

M. Erdmann and R. Studer. Ontologies as conceptual models for XML documents. In-
stitut AIFB, Univ. Karlsruhe.

D. Fensel, S. Decker, M. Erdmann, and R. Studer. Ontobroker: the very high idea. In
Proceedings of the 11th International Flairs Conference, 1998.

D. Fensel, J. Angele, S. Decker, M. Erdmann, H.P. Schnurr, S. Staab, R. Studer, and
A. Witt. On2broker: Semantic-based access to information sources at the www. Institut
AIFB, Univ. Karlsruhe.

S. Decker, M. Erdmann, D. Fensel, and R. Studer. ONTOBROKER: Ontology-based
Access to Distributed and Semi-Structured Information. Kluwer Academic Press, 1998.

V.R. Benjamins, B. Wielenga, J. Wielemaker, and D. Fensel. Towards brokering problem-
solving knowledge on the internet.

Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across hetero-
geneous information sources. In Proceedings of the IEEE Data Engineering Conference,
pages 251260, March 1995.

Y. Papakonstantinou and P. Velikhov. Enhancing semistructured data mediators with
Document Type Definitions. In Proceedings of the IEEE Data Engineering Conference,
1999.

Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman. MedMaker: A mediation sys-
tem based on declarative specifications. In Proceedings of the IEEE Data Engineering
Conference, pages 132-141, March 1996.

Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. Ullman. A query translation
scheme for rapid implementation of wrappers. In Proceedings of the Deductive and Object-
Oriented Database Conference, pages 161-186, December 1995.

Y. Papakonstantinou and V. Vassalos. Query rewriting for semistructured data. In
Proceedings of the ACM SIGMOD Conference, 1999.

L. Gravano and Y. Papakonstantinou. Mediating and metasearching on the internet. Bul-
letin of the IEEE Computer Society, Technical Commitee on Data Engineering, 21(2):28-
36, 1998.

B. Ludascher, Y. Papakonstantinou, P Velikhov, and V. Vianu. View definition and DTD
inference for XML. In Proceedings of the Post-ICDT Workshop on Query Processing for
Semistructured Data and Non-Standard Data Formats, 1999.

K. Konopnicki and O. Shmueli. Information gathering in the world-wide web: the W3QL
query language and the W3QS system. Computer Science Dept., Technion - Israel Insti-
tute of Technology.

A. Saguguet and F. Azavant. Building light-weight wrappers for legacy web data-sources
using W4F. In Proceedings of VLDB, 1999.

J. Hammer, H. Garcia-Molina, S. Nestorov, and R. Yerneni. Template-based wrappers
in the TSIMMIS system. Department of Computer Science, Stanford University.

o8

L] ¥+ SRSy S AR AR SERMESEEEME SR AR ARy S & MRS VAR ESE My Y A AR ESSARSy A
J. Widom. Information translation, mediation and Mosaic-based browsing in the TSIM-
MIS system. SIGMOD Demo Proposal (final version).

[50] A. Tomasic, L. Raschid, and P. Valduriez. Scaling heterogeneous databased and the
design of Disco. INRIA.

[51] A. Tomasic, L. Raschid, and R Valduriez. A data model and query processing techniques
for scaling access to distributed heterogeneous databased in Disco. In IEEE Transactions
on Computers, special issue on Distributed Computing Systems, 1997.

[52] Enosys Markets. Enosys Markets: Architecture and product overview. Enosys Markets,
Inc., 2000.

[53] R. Dorenbos, O. Etzioni, and D.S. Weld. A scalable comparison-shopping agent for
the world wide web. In Proceedings of the 1st International Conference on Autonomous
Agents, 1997.

[54] et al. R. Catell. The Object Database Standard - ODMG 93. Morgan Kauffman, 1993.

[55] G. Huck, P. Fankhauser, K. Aberer, and E. Neuhold. Jedi: Extracting and synthesizing
information from the web. GMD-IPSI.

[56] S. Cluet, S. Jacqmin, and J. Simeon. The new YATL: Design and specifications. Technical
report, INRIA, 1999.

[57] S. Cluet, C. Delobel, J. Simeon, and K. Smaga. Your mediators need data conversion. In
Proceedings of the ACM SIGMOD Conference, 1998.

[58] J. Simeon. Integration de sources de donees hegerogenes ou comment marier simplicite
et efficacite. PhD thesis, I’ Universite Paris XI, January 1999.

[59] The ARANEUS Project Home Page. http://www.dia.uniroma3.it/araneus.
[60] G. Mecca, P. Merialdo, and P. Atzeni. Araneus in the era of XML. 1999.

[61] G. Mecca and P. Atzenti. Cut and paste. Journal of Computing and System Sciences,
page 85, 1999.

[62] G. Mecca, P. Atzeni, P. Merialdo, A. Masci, and G. Sindoni. From databases to web-
bases: the ARANEUS experience. D.I.A. - Universita di Roma Tre, May 1998.

[63] G. Mecca, P. Atzeni, P. Merialdo, A. Masci, and G. Sindoni. The ARANEWS web-based
management system. In Proceedings of the ACM SIGMOD Conference, 1998.

[64] V. Crescenzi and G. Mecca. The ARANEUS wrapper toolkit: A tutorial. Adapted from
[65], July 1999.

[65] V. Crescenzi and G. Mecca. Grammars have exceptions. Journal of Information Systems,
1998.

[66] B. Adelberg. NoDoSE - a tool for semi-automatically extracting structured and semistruc-
tured data from text documents. In Proceedings of the ACM SIGMOD Conference, 1998.

[67] B. Adelberg and M. Denny. Building robust wrappers for text sources. Computer Science
Dept., Northwestern University.

[68] L. Liew, C. Pu, and W. Han. XWRAP: An XML-enabled wrapper construction system
for web information sources. Oregon Graduate Institute of Science and Technology.

29

