
An Internet Content Integration System: the Mediator and Wrappers.byNikolaos T. Ntarmos

Submitted to theDepartment of Eletroni and Computer Engineeringin Partial Ful�llment of the Requirements forthe Diploma of Eletroni and Computer Engineeringat the Tehnial University of Crete.Guidane CommitteeProfessor Peter Trianta�llou (Supervisor)Assoiate Professor Manolis KoubarakisAssistant Professor Euripides PetrakisApril 2002

AknowledgementsI would like to thank Professor Peter Trianta�llou, for supervising this e�ort and for hisguidane and support; they were more than indispensable to the ompletion of this thesis.I would also like to thank in advane Assistant Professor Euripides Petrakis and AssoiateProfessor Manolis Koubarakis for partiipating in my jury.Speial thanks also go to my house-mate, Vassilis Heliades, for his support and patiene(sleeping through the day and working at night isn't something everyone ould ope with...).

ii

AbstratInformation integration and dissemination over the web is inreasingly reeiving more atten-tion from aademis and related industry. With suh emerging enabling tehnologies as XMLand all of it's desendants (XQuery/XML-QL, XPath, XPointer, XSL/XSLT, et.), we seemto be moving into an era of relative data uniformity. However, the unstrutured and het-erogeneous nature and the immense proportions of data urrently available through the web,make information integration a vital part of many modern data management systems anddata warehouses.The most wide-spread approah to automated data integration and dissemination utilizesa mediator and wrappers for the bak-end sites. The former stands between the wrappersand the end-user, while the latter deal with data extration from the bak-end sites and datatransformation into the mediator's internal data model.In this text, we shall present the Content Integration Arhiteture (C.I.A.) - an approahto a domain-independent ahing mediator system - as well as two appliations based uponit: HyperHotel and HyperTV.

iii

Contents
Aknowledgements iiAbstrat iiiList Of Figures vi1 Introdution 11.1 Overview . 11.2 Neessity / Current Situation . 21.3 Thesis outline . 42 Arhitetural Overview 52.1 The user lient . 52.2 The front-end . 62.2.1 The user interfae . 62.2.2 The query generator . 62.3 The bak-end . 72.3.1 The mediator . 72.3.2 The data repository . 72.3.3 The agents . 82.3.4 The wrappers . 82.4 The e-sites . 93 HIT/CIA: The Mediator 113.1 Front-End Interfae (F.E.IN.) . 113.2 DOM-Tree Populator (DO.T.-POP.) . 133.2.1 The DomDB XML File . 153.3 Bak-end Interfae (B.IN.) . 163.3.1 Wrapper Generation Toolkits . 183.4 Querying Models . 203.4.1 DOM-Tree Approah . 213.4.2 Relational Database Approah . 233.4.3 Fully On-Line Approah . 243.4.4 Hybrid Approah . 253.5 Putting it all together. 264 Champion Appliations. 294.1 Overview . 294.2 HyperHotel . 294.3 HyperTV . 31iv

5 Related Work 335.1 Full-Sale Integration . 335.1.1 TSIMMIS . 335.1.2 Diso . 355.1.3 ENOSYS Markets . 375.1.4 ShopBot . 395.2 Wrapper Generation Toolkits . 405.2.1 Grammar-Based . 405.2.1.1 Lex-Ya . 415.2.1.2 JEDI . 415.2.1.3 YAT . 425.2.1.4 Minerva . 435.2.2 Learning-Based . 445.2.2.1 NoDose . 455.2.2.2 XWrap . 466 Conlusions and Future Work 47Appendix ATehnologial & Software Choies . 50A.1 Tehnologies Used . 50A.2 Software Used . 51Appendix BModels of Database Connetivity . 52B.1 Diret JDBC Connetion . 52B.2 Web Server Model . 53B.3 Speialized Appliation Server Model . 55Referene List 55

v

List Of Figures
2.1 Mediator Arhiteture . 62.2 Integrating third-party Wrappers into a Mediator-Based System. 93.1 FEIN . 123.2 DOT-POP . 153.3 Sample DomDB XML File . 163.4 B.IN. 183.5 Minerva Sample De�nition File . 193.6 Jedi Sample De�nition File . 203.7 Minerva Sample Input . 213.8 Minerva Sample Output . 223.9 The Mediator . 285.1 The TSIMMIS System. 345.2 The DISCO System. 365.3 The ENOSYS System. 385.4 JEDI Arhiteture . 425.5 YAT arhiteture . 435.6 YAT translation senario . 445.7 The steps of using NoDose . 455.8 XWrap arhiteture . 46B.1 Diret JDBC Connetion. 53B.2 Intermediate Web Server Connetion. 54B.3 Intermediate Speialized Appliation Server Connetion. 55

vi

Chapter 1Introdution
1.1 OverviewThe world wide web has evolved to the world's most massive database, but also to the mostnon-homogeneous one. Several attempts have been made to develop tehnologies that willintegrate related data available online in an automated or semi-automated way and faili-tate/provide uniform aess to this data.Some of them aim to implement a domain-based integrator; they make use of arti�ialintelligene and domain-based knowledge to automatially extrat the struture of availabledata and integrate it.Others try to reate a more generi infrastruture on whih numerous domain-based in-tegration appliations will be based; they rely on wrapper-generation toolkits and a ustominternal design / data model.What we try to do is to build an independent mediator model, using third-party o�-the-selfwrappers and/or wrapper generation toolkits to extrat information from e-sites, and standardXML-based[1℄ tehnologies to integrate them with our data model. The purpose of this work isto automate the task of seletively querying multiple data soures on the web and presentingthe results in a uniform way. In later stages of development, the system will make use ofahing and distribution tehniques for inreased throughput and dereased response time touser queries.

1

The use of third-party wrapper generation toolkits removes the burden of the developmentof this part of a mediator system and allows us to exploit available tehnology, making ourwork market-relevant, and to onentrate on the building of the mediator itself. By utilizingXML-based tehnologies, the only requirement the mediator must fae is to deal with XMLdata, omplying to a prede�ned set of DTDs. Queries an then be formulated in many ways(inluding XSL, XPath, XQuery and DTD-ompliant XML douments).We will demonstrate the funtionality of this system with two appliations: HyperHotel andHyperTV; two dynami mediator-based information integration and dissemination systems fore-hotels and television program listings, respetively.1.2 Neessity / Current SituationDue to the diversity of data available online through the World Wide Web, should one wantto retrieve information on a spei� subjet, one would have to searh in many di�erent sites,keeping trak of searh and omparison results while most of the time dealing with outdatedand/or obsolete data. This situation alls for a new way of designing and implementing dataretrieval systems.Let's assume, for example, that an individual intends to purhase something online (e.g. abook, drom et.). Using urrently available solutions, the proess is as follows:1. Visit all relevant e-sites. This is an inherently ine�ient task, sine the set of availablee-sites onstantly hanges. This usually results in the individual visiting only a small,random subset of them, therefore exluding important amounts of available data.2. Searh for the wanted item. This step fores the user to deal with many di�erentinterfaes aross the di�erent sites. Should an e-site not be very well designed or itssearh engine be striter than usual, the user would probably fail in �nding the desiredinformation.3. Compare and hoose. The hoie ould be based upon suh riteria as the prie or theproximity of the e-shop, the available paying methods et. In any ase, the user has to2

keep trak of all relevant results from the previous step(s) in order to be able to ompareand hoose.Let's assume, however, that there were a entral e-site, interfaing with all bak-end e-sites ina way that is transparent to the end-user. The user would then only have to searh one forthe desired information; the entral e-site would undertake the task of querying all registeredbak-end sites and presenting the results in a uniform way, so that diret omparison wouldbe made possible, if not ompletely automated.The seond senario is obviously muh more preferable than the �rst one, as far as easeof use is onerned, but what about e�ieny? Suppose two subsequent users are lookingfor the same information. Asking the same question twie over the internet would be veryine�ient due to the network overhead. There are ases in whih idential suessive queriesshould both be run online. However, for all the other ases, by using an appropriate ahingsheme, we an redue the network overhead and response times signi�antly. In any ase,should there be no entral e-site, the users would have to individually deal with the networkoverhead themselves.The goal of the C.I.A. endeavor is to build a domain-independent, dynami, mediatorsystem with ahing, with an emphasis on speed, platform independene and ease of deploy-ment. For modularity and ease of maintenane, C.I.A. was built as three independent butooperating parts:1. a graphial user interfae (GUI), based on Java Servlets([2, 3℄) and/or JavaServerPages([4, 5℄), HTML forms and XML-based tehnologies,2. an XML-enabled mediator, utilizing third-party wrappers and standard XML-derivedtehnologies, and3. a ahing subsystem, based on o�-the-self database management systems and novel ahemanagement tehniques.The work reported here is primarily onerned with the seond part: the Mediator. 3

1.3 Thesis outlineWe will ontinue as follows: in Ch. 2 we will disuss the arhiteture of C.I.A. outliningit's building parts and the way they interfae with eah-other and with the end-users andbak-end e-sites. In Ch. 3 we'll delve into the details of the Mediator's arhiteture andthe tehnologies used therein, also desribing the querying models supported by the overallsystem as well as the results obtained by extensively testing these models. We will then (Ch.4) present two data integration appliations implemented using our system: HyperHotel andHyperTV, integrating e-hotels and TV program listings from TV e-sites respetively. We shallonlude with a brief presentation of work related to C.I.A. (Ch. 5) and proposals for futurework(Ch. 6). Appendies A and B give some more tehnial details on the implementation ofthe Mediator and C.I.A. as a whole.

4

Chapter 2Arhitetural Overview
As we already mentioned, C.I.A. is a mediator-based data integration and dissemination ap-pliation for diverse data on the web. Written totally in Java([6℄), it guarantees maximumplatform independene and portability. Brie�y, C.I.A. is a lient/server arhiteture, onsist-ing of the following omponents:� The user lient.� The user interfae.� The query generator.� The mediator system.� The data repository.� The agents.� The wrappers.� The bak-end e-sites.A shemati view of this arhiteture is presented in �gure 2.1.2.1 The user lientThis is usually a web browser. Any browser available today (even text-based ones, suh asLynx) an ontat the C.I.A. server, using the HTTP/1.1([7℄) or higher protool, HTML 3.0 or5

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

Query
Generator Mediator Agent

Agent

Agent

Wrapper

Wrapper

Wrapper

Wrapper

Wrapper

Wrapper

Web

Browser

Web

Browser

Web

Browser

HTML/XML
over the Web

HTML/XML
over the Web

back−end
e−sites

Data
Repository

Clients

Mediator Server

Figure 2.1: Mediator Arhiteturehigher and Javasript 1.0 or higher; the system uses server-side tehnologies, therefore movingthe burden of almost all tasks into the server. This is a great advantage of the system, sine itallows aess from lightweight lients, suh as PDAs and even WAP-enabled mobile phones.2.2 The front-endThis is the server-side part of the user interfae. A more detailed desription of this part ofthe system is provided in [8℄.2.2.1 The user interfaeThe user interfae onsists of HTML pages/forms and server-side tehnologies, suh as JSPsand Java Servlets. This frontend is the only interfae with the user. We have tried to makeit as user-friendly as possible, given that this is an eduational projet and not a ommerialone.2.2.2 The query generatorThis module validates the user query passed to it from the user interfae, and generates aquery in XML, aording to a prede�ned grammar (DTD). It then forwards this query to6

the next part: the Mediator. Alternatively the XML query an be forwarded to the loalahe-storage system and the mediator will be engaged by it only in a ahe (partial/full)miss.2.3 The bak-end 12.3.1 The mediatorThis part is named after its task: it stands between the user-interfae and the bak-end agents,seleting whih, if any, agents to involve in eah query, and formatting their output, aordingto a prede�ned grammar (DTD), in order to be presented to the user in a uniform way. Theseletion of the agents is based on meta-data, kept by the mediator, and on the user query.2.3.2 The data repositoryThis inludes the meta-data database, as well as a (optional) data-ahe for e-sites. There arethree approahes for the implementation of the data repository:1. The RDBMS approah, whih uses an o�-the-self relational database (e.g. MySQL orMirosoft SQL Server). Data aess is done through JDBC and XML. This is assumedto be the fastest approah, as far as runtime e�ieny is onerned.2. The native XML approah, whih utilizes o�-the-self native XML databases, suh asLore([9, 10℄), Quilt([11℄) and dbXML. Data aess is done through vendor-spei� APIsor the X-API. This approah is onsidered by the authors as the best of the three, sine itan be platform-independent (if the database is implemented in Java) while using XML-derived tehnologies, making it easier to ode and integrate with the rest of the system.It's only shortomings are the low runtime e�ieny and the lak of ommerial support(the above mentioned implementations are far from being stable or ready for prodution1Though the mediator and the database ould be onsidered middleware, they are so loselyinteronneted with the agents and the wrappers that are dealt with as parts of the bak-end.7

use). However, as native XML databases evolve and spread, both disadvantages arebound to be extint.3. The DOM2 approah, in whih all data is kept in DOM trees, without the supportof an underlying native XML database, and parsed at will. This is the worst of thethree approahes, as it is memory-onsuming (DOM trees are kept in main memory),requires extra time for the parsing of the XML data (should the desired DOM tree notbe loaded at the time of the query) and exeution times are muh greater, sine queriesare exeuted on DOM trees, with no query optimization or sheduling. On the otherhand, it is the easiest of the three to ode for simple queries (we believe that the so-alledsimple queries, will be the vast majority of all queries that will run on the database).2.3.3 The agentsAgents deide whether and what data will be drawn from the web or the loal data ahe. Inthe �rst ase, agents make use of seleted bak-end wrappers to extrat the desired information.Seondly, the exeute a query on the loal database. In both ases, an agent has to formatits output aording to a prede�ned grammar (DTD), so that the front-end modules will bepresented with results in a uniform way.2.3.4 The wrappersAutomatially generated or hardoded, these are the most vital part of CIA. They extratinformation from the e-sites and transform it to the C.I.A. internal data model. Agents andwrappers will be disussed further in the following hapter. For a more tehnial overview ofwrappers, see appendix 5.2.Due to the authors' previous experiene with suh tools as Lex and Ya and the demandfor maximum ontrol on the generated wrapper, grammar-based toolkits were preferred overlearning-based ones. After extensively testing many available solutions, we ended up using2For more information on DOM and DOM-related tehnologies, please refer to [12, 13, 14, 15, 16, 17℄. 8

two wrapper generation toolkits, namely GMD-IPSI's JEDI and Araneus's Minerva. Atually,the mediator has the ability to hoose between Jedi and Minerva based wrappers at runtime.Of ourse, grammar-based toolkits require the user to have knowledge on programmingand grammar rules. This is no disadvantage at this stage of development. However, shouldC.I.A. ever go ommerial, a more user-friendly toolkit would be preferable.The integration of wrappers with the rest of the system is shown in Fig. 2.2 and 2.1.

Figure 2.2: Integrating third-party Wrappers into a Mediator-Based System.
2.4 The e-sitesThese are the original soures of information; the bak-end e-sites that we query, in order toextrat the desired information. They an be HTML or XML web servers, using any kind9

of server-side tehnologies, but only text-based lient-side ones (for example, a MaromediaFlash-enabled web page an't be queried, sine it is impossible to parse with our wrappers).

10

Chapter 3HIT/CIA: The Mediator
The Mediator is the heart of the C.I.A. It is responsible for the retrieval of information from thebak-end e-sites and the integration of data extrated by the latter ant its reformation aord-ing to its internal data model. For the shake of modularity, the Mediator is also implementedas a set of independent but ooperating omponents. These are:1. the Front-End Interfae,2. the DOM-Tree Populator/Data Manager, implementing the loal data repository, and3. the Bak-end Interfae.3.1 Front-End Interfae (F.E.IN.)To failitate and modularize the ommuniation between the mediator and the user interfaemodules, all data interhange is done using XML douments omplying to a set of prede-�ned DTDs (the naming sheme is <Appliation Name>-Query.dtd). Thus, the user interfaemodules need not know anything about the query exeution methods or the internals of wrap-ping, while the mediator doesn't have to deal with HTML form elements and HTTP messageparsing.However, query exeution is done using o�-the-self tehnologies, suh as XPath, XSL(T),XQuery or JDBC, depending on the implementation of the data repository. This alls for atranslator from Query.dtd - ompliant XML douments to the appropriate query language.11

This task has been assigned to the mediator's Front-End Interfae (F.E.IN., pronouned'feign'). FEIN onsists of a set of translators, one for eah appliation - query method pair.Sine query DTDs are appliation - dependent, this part of the mediator is the only one witha need for domain-based knowledge.In more details, FEIN funtions in two levels:1. Level 1: XML input manipulation, ommon to all translators within an appliation. Atthis level, the XML doument given as input to the translator is parsed and all relevantinformation is extrated and stored. This information is then exposed to the seondlevel via prede�ned Java methods.2. Level 2: query generation, spei� to the query language used. Using the informationextrated during the �rst level of the translation, the modules funtioning at this levelgenerate the orresponding queries in the output query language. For the momentF.E.IN. supports XSL(T) and XPath, with XQuery support being under development.
Information
Extraction

FEIN

Java
Methods

Extracted
Information

User
Interface

Compliant
XML Document

Query.dtd

����
����
����
����

����
����
����
����

����
����
����

����
����
����

Level 1

XSL Generator

XPath Generator

Level 2

XSL Query

XPath Query

Parsing

Figure 3.1: FEINAs already stated, the use of the Query.dtd ompliant XML douments as a means of om-muniation between the user interfae modules and the mediator, provides many advantages:� it adds an extra level of abstration between the user-interfae modules and the mediator.After the query DTDs are de�ned, ommuniation is done using DTD - ompliant XMLdouments, independent of the atual query language used or the HTML form layout.This will be made lear at Ch. 4, where we use di�erent query languages and HTMLform layouts (atually one of the forms is stati while another is generated on-the-�y)12

for the di�erent appliations presented there, while keeping the same API between theuser-interfae and the mediator.� it allows for transparent and easy addition of a ahing subsystem between the userinterfae and the mediator, sine the API used by the former to aess the later isaltered so that it redirets all queries to the ahe.� XML manipulation (generation, parsing et.) is muh easier than any other query lan-guage. The fully strutured nature of XML makes it an ideal hoie sine manipulationis pretty simple while XML generation is straightforward one we have a result or querytree.� addition of another query language doesn't a�et the user interfae at all, sine whatwill atually be added is a Level 2 query generator for the orresponding language.The only disadvantage of this method is that it requires parsing of the query DTD ompliantXML doument at all stages of the query exeution (i.e. when the ahe is added, the XMLquery is �rst parsed at the ahe level, then (in the ase of a ahe miss or partial miss)regenerated and reparsed at the mediator level by FEIN). However, by using third-partyXML parsers (namely Apahe Projet's Xeres parser, in deferred-node mode), the parsing-generation-reparsing overhead is redued to a few milliseonds. As we have seen, the bottlenekof our system is the network transfer layer and not FEIN.3.2 DOM-Tree Populator (DO.T.-POP.)The output of FEIN is a query, exeuted on the data repository to extrat the desired output.The mediator's repository is implemented as a forest of DOM trees, one for eah bak-end e-site. The system always does a old start-up (i.e. the repository is empty when the mediator'sserver omes up). The population of these DOM trees, is done by the seond part of thesystem: the DOM-Tree Populator (DOT-POP).
13

DOT-POP is domain - independent, so there is a unique DOT-POP for all implementedappliations. The funtionality of this part an be analyzed in the following stages:1. Top-level seletion: during this stage, DOT-POP selets the bak-end sites that areinvolved in the exeuted query. This is done using the XPath output of FEIN to seletall DOM tree roots that satisfy the top-level onstraints de�ned by the user. At this stageof exeution all DOM trees are almost empty; they ontain only information inludedin the DomDB XML �le (the exat funtionality of this �le will be further disussed in3.2.1).2. URL generation: at this stage, using the query onstraints and a set of prede�nedrules, DOT-POP generates the URLs of the bak-end HTML pages to be wrapped. Thefuntionality of this stage is equivalent to the �lling and submission of HTML forms in thebak-end sites. We make heavy use of the apabilities provided by the java.re�et pakageto guarantee that this part of DOT-POP is also domain-independent. All informationneeded throughout this stage is extrated at runtime either from the user query or fromorresponding metadata kept in external XML �les.3. BIN invoation: after de�ning the wrapped URLs, ontrol is transferred to the Bak-endInterfae (the funtionality of BIN will be further disussed in 3.3). What we need toknow for the moment is that BIN returns a set of XML douments, omplying to anappliation - spei� DTD, representing the data extrated from bak-end sites.4. DOM tree population and normalization: at the �nal stage of DOT-POP, all data ex-trated at the previous stage is added to the DOM tree. The system o�ers the ability tonormalize the populated DOM tree, using XSL transformations. Information onerningthe normalization as well as the orresponding XSLT doument, are de�ned at runtime.Please note that by normalization we mean any kind of XSL transformation on the resultingtree. XSL queries generated by FEIN are atually exeuted at stage 4 of DOT-POP.As we an dedue from the above, when all four stages of DOT-POP are over, what wehave is a DOM tree ontaining the result of the user-de�ned query. Corretness of the result14

XPath Query

Stage 1:
Top−level selection

Extracted
InformationFEIN Stage 2:

URL Generation

Stage 3:
BIN Invocation

XSL Query

Stage 4:
Population &

Normalization

DOT−POP XML Metadata

BIN

User
Interface

Result
DOM Tree

N

Figure 3.2: DOT-POPset is guaranteed by the operations leading up to DOT-POP as well as by the four stages ofthe latter. Completeness however is a ompletely di�erent story; sine data is fethed overthe web, we sometimes deal with network timeouts, web server mison�gurations or bak-end e-site downtime. To aount for these ases, DOT-POP haraterizes DOM trees thatare empty, as a result of data transfer errors, as inomplete. This prevents the ahing andstoring of these parts of the result set, so the data repository is always in a onsistent state.3.2.1 The DomDB XML FileTo avoid any unneessary bak-end e-site aess and redue network overhead, we need ameans to selet only those sites whose result-set will ontain answers to the user query. Sinesuh knowledge is not available a-priori, what we do is to deselet those sites whose result-setwill ertainly NOT ontain any useful information. To do this, we need some extra data about15

the bak-end sites and the information they provide (i.e. some meta-data). This metadata iskept in XML �les (one for eah C.I.A. appliation), namely the DomDB XML �les.The DomDB �les are stati XML �les. They ontain metadata (i.e. data about data) andany stati (i.e. not hanging) information onerning the bak-end sites. They are loadedby the DOT-POP on-demand at runtime, every time a new query arrives. Data kept thereinonsists of all top-level information about the bak-end sites (e.g. site name, URL, snail-mailaddress et.), plus diretives for the wrapping phase (e.g the lass name of the wrapper, thelass name of the URL generator et.).The use of DomDB �les greatly improves the system's overall performane, by allowingseletive querying of bak-end sites with the (tiny) extra ost of loading and parsing the XMLdata they ontain. An exerpt from the DomDB �le used by one of C.I.A.'s appliations -HyperHotel - is shown in �g. 3.3.

Figure 3.3: Sample DomDB XML File
3.3 Bak-end Interfae (B.IN.)So far we have seen how we manipulate the user query, how we selet the bak-end sites toquery and how we put together the resulting XML doument. However, we haven't disussed16

the way data is integrated with the mediator's internal data model. This is done by the thirdpart of the mediator, the Bak-end Interfae (BIN).BIN is responsible for fething the data orresponding to the URLs de�ned at stage 2 ofDOT-POP, extrating useful information and onverting it to a prede�ned data model. BINoperations exeute in two stages, to ompensate for the network delays, while maintainingmaximum parallelism for improved e�ieny:1. Stage 1: data fething. During this stage BIN aesses the bak-end sites, using theURLs generated by DOT-POP. It fethes and stores this information for use by the nextstage. All retrieval operations are done in a parallel and thread-safe way, so that, givenenough network bandwidth on the mediator's side, the overall network delay equals themaximum of the set of delays for eah of the transfers.2. Stage 2: wrapping. This is were wrappers are deployed. Wrappers are onstrutedusing third-party wrapper generation toolkits (WGTs), usually available free of hargefor eduational and non-ommerial purposes. Wrappers are responsible for parsingthe data fethed during stage 1 of BIN's exeution, using a set of prede�ned grammarand output rules. They usually generate forests of DOM trees, orresponding to thedoument fragments they parsed and wrapped. Sine these operations usually involvenumerous bak-end sites, wrappers are deployed in parallel, using the multithreadingmehanisms provided by the Java programming language. However, the WGTs usedto implement C.I.A. su�er from ertain ine�ienies as far as thread-safe exeution isonerned. In order to aomplish maximum parallelism, the thread-unsafe parts of thewrapping proess have been isolated and serialized using synhronized Java methods.Thus, the overall wrapping delay equals the sum of the maximum of the set of delays forthe thread-safe parts of wrapping, plus the sum of delays from the thread-unsafe partsof wrapping.
17

BIN

BIN

BIN

BIN

Back−end e−site

Data Retrieval
over the WWW

Stage 1

URL

Stage 2

Information Extraction
and Integration

BIN

DOT−POP

EBNF

data

Wrapped Data

Figure 3.4: B.IN.3.3.1 Wrapper Generation ToolkitsThe wrapper generation toolkits used in the implementation of C.I.A. take as input a wrappingde�nition �le. This �le is a mixture of EBNF style grammar rules, Java or Java-like instrutionsand method alls, and output formatting de�nition instrutions (see �g. 3.5 and �g. 3.6 1).For a more tehnial and detailed desription of all examined wrapper generation toolkits,refer to Ch. 5.2.The use of EBNF-supporting wrapper generation toolkits was the result of the followingfators:� the high grade of aquaintane with (E)BNF-based tools (e.g. Lex/Ya et.) minimizeslearning overhead (the best-ase senario would be one in whih the implementer wouldknow a-priori exatly how to use the available tools). For example, of the two presented1All Minerva �gures and �les were taken from the Minerva distribution. The Jedi �le shown in �g. 3.6 wastaken from the Jedi distribution. For liensing details, refer to the orresponding web sites (see App. 5.2 formore info on Minerva and Jedi). 18

Figure 3.5: Minerva Sample De�nition Filewrapper generation toolkits, we tend to use Minerva more than Jedi, sine it fully sup-ports the Java programming language rather than the syntatially Java-like languageof the latter.� grammar-basedWGTs allow for maximum ontrol on the input manipulation and outputgeneration. Sine this is a researh projet, we are more interested in using tools thatallow us a great degree of ontrol; user-friendliness is not required.� the ability to mix grammar rules and programming language instrutions gives maximum�exibility as to the integration and formatting apabilities of the generated wrapper.� beause of their deterministi nature, EBNF-based wrappers exeute faster and requireless memory than their learning-based ounterparts, due to the simpliity of the data-strutures required for their implementation.The sample input and the orresponding output for the Minerva �le shown in �g. 3.5, aredepited in �gures 3.7 and 3.8.
19

Figure 3.6: Jedi Sample De�nition File3.4 Querying ModelsAs we already mentioned, user queries are exeuted by DOT-POP in two stages:1. Stage 1: �lling-out bak-end sites' forms using user-supplied values.2. Stage 2: running a user-de�ned query on the outome of the wrapping proess.The �rst stage is done internally by DOT-POP. However, the seond stage an be implementedin a variety of ways:� the DOM tree approah. 20

Figure 3.7: Minerva Sample Input� the native XML database approah.� the relational database approah.� the fully-online approah.� a hybrid approah ombining two or more of the above methods.3.4.1 DOM-Tree ApproahIn this approah, all data from the e-sites being integrated, is prefethed and kept in a DOMtree. All queries thereafter are exeuted against this populated DOM tree, using some kindof XML-based query language, suh as XSL(T).This approah o�ers several advantages:� It's extremely easy to program. Sine wrappers return data in the form of XML do-uments or DOM trees, the population of the main DOM tree is straightforward andblazing-fast.� It allows for easy querying. Java, through XML pakages (suh as Xalan) provides avariety of methods to exeute XPath or XSL(T) queries against a given DOM tree; all21

Figure 3.8: Minerva Sample Outputa programmer has to do is put together the query and pass it as an argument to therelevant Java method.� It allows for easy transformation from and to XML/HTML and other human-readableforms. This means that the presentation of the query results an be done using a simpleXSL stylesheet and o�-the-shelf tools.� It is reusable. By implementing the funtionality required to support a DOM-baseddatabase, we an use the exat same omponents for even more tasks (e.g. informationextration from traditional databases, transformation of data into many di�erent formset.).It does however su�er from some very important disadvantages:� In order to support updates at runtime, the DOM Tree approah requires the designand implementation of omponents performing ompliated manipulations of the DOMtrees. The easiest solution is to rebuild the whole DOM tree every time an update isperformed. However, the ine�ienies of this method are quite obvious. On the other22

hand, implementing DOM tree updates makes all soure-ode level maintenane tasks avery di�ult endeavor.� Memory requirements an beome prohibitive. For the proof-of-onept appliationsimplemented for this thesis, the amount of memory used was not very big. However,we expet memory requirements to grow almost linearly to the growth of the numberof e-sites wrapped. A possible solution for this problem would be to use some formof persistent DOM trees, saving all information on some external storage devie. Thisould irumvent the memory onsumption matter, but the query exeution time wouldinrease.� There is no query optimization mehanism other than that provided by the defaultXML manipulation Java pakages. A traditional relational database an exeute thesame queries in fragments of the time required by the DOM tree approah to exeute itsXSL transformations.3.4.2 Relational Database ApproahAs the header implies, in this approah all data is prefethed and kept in a traditional relationaldatabase. All queries thereafter are exeuted using JDBC and SQL query language ([18℄).This approah o�ers the following advantages:� O�-the-shelf solution. Using third-party produts removes the burden of maintenaneand support of these parts of the system. This allows us to onentrate on the devel-opment of the data integration side of C.I.A., using the low-level database aess as ablak box.� Industrial-strength quality. Sine this is a third-party produt, it has probably beenthoroughly tested and debugged by the ompany that developed it. The importane ofthis fat may not be obvious at this time. However, onsider the possibility of C.I.A. go-ing ommerial; everyone would prefer a system based on a well-known, highly optimizedrelational database over an experimental and not-so-stable DOM-Tree based one. 23

� Easy querying. These produts usually support a variety of query languages throughdi�erent interfaes. Just to mention a few, we generally an run queries written inSQL, XPath, XML-QL([19℄) and XML Query([20, 21℄), via ODBC, JDBC, CORBA andRMI([22℄).� Fast queries. The fat that these produts are separately developed, allows their de-velopers to delve into suh details as query sheduling and optimization, transationontrol, storage optimization et. The outome of all these: a blazing-fast query exeu-tion engine.� Powerful queries, if JDBC or ODBC is used. XPath, XML-QL and XSL are not aspowerful query languages as SQL and XML Query([23℄). Therefore, the use of a rela-tional database for our metadata repository also allows us to easily exeute powerful andomplex queries in a straightforward manner.� Easier updates. Of ourse a relational database management system (RDBMS) o�eringall of the above, ould do nothing else than to also o�er a powerful and highly optimizedupdate mehanism. This solves the greatest ine�ieny of the DOM-Tree approah inthe best possible way.It's main disadvantages inlude:� Extra bindings and extra osts, due to the use of third-party ommerial software.� No soure ode is available sine these are full-blown ommerial produts. This mayprove really annoying in ases where a ertain funtionality is not implemented by thesoftware in use (in whih ase we should either hange the RDBMS used, or redesignthe rest of the system, both of whih being very expensive).3.4.3 Fully On-Line ApproahAll solutions presented so far, are based on some kind of prefething and ahe-storage teh-nologies. If we ompletely remove this part of the system, what results is the Fully On-Line24

approah; no data prefething or ahing is done on the server side. The only information theserver has is the initial metadata, as made available by the DomDB XML �les.The advantages of this approah inlude:� Extreme reusability. Sine all tasks are done on-line, this approah needs only theDomDB XML �les and the orresponding wrappers to funtion properly. If these tworequirements are met, the Fully On-Line approah an at as a full-�edge, domain-independent mediator2.� It allows for seletive queries and/or updates. Of ourse, the real update will be doneagainst a server-side database, as those desribed earlier. However, the Full On-Lineapproah makes it possible to query only a portion of the bak-end sites, thus allowingfor seletive exeution of user or system-de�ned queries.� It allows for better ahing algorithms. Sine no ahing is implemented in the database,the task of ahing is moved outside the Mediator, where more ompliated and propri-etary algorithms an be used.� Low memory requirements. Sine no ahing is done on the Mediator server's side, thememory requirements of this approah are extremely low, ompared to the requirementsof the approahes presented so far.However, this solution has the worst run-time e�ieny of all previous approahes; eah andevery query takes extra overhead (network transfer, metadata parsing, data wrapping, wrap-ping output manipulation, et.), making query exeution a time-expensive proess.3.4.4 Hybrid ApproahC.I.A. uses none of these approahes as they were presented above. We rather invented ahybrid approah, ombining the advantages of all of the mentioned approahes, while avoidingmost of their shortomings:2As we shall see, the Fully On-Line part of the Mediator was used in an as-is basis in both of the sampleappliations of C.I.A. 25

� Fully On-Line queries, as an interfae with the bak-end sites,� an internal DOM-Tree database, for the stati or slowly hanging parts of the wrappedinformation, and� an external Relational database for the ahing of wrapped data.This approah o�ers all advantages of the individual approahes, with the following di�eren-tiations:� It doesn't su�er from the run-time ine�ieny of the Fully On-Line approah, sine thebak-end sites are ontated less frequently.� The memory requirements are dereased to a minimum, sine only stati data is kept inmemory.� It provides ultra-fast exeution of queries onerning ahed or stati data.� The use of an external Relational database as a ahe, moves the development andmaintenane ost from the Mediator to the external Cahe. Modularity is one of thedevelopers' main goals.3.5 Putting it all together.Our Mediator is the assembly of all of the above. A shemati view is depited in �g. 3.9.Information integration, as presented above (Ch. 3.2), su�ers from a serious ine�ieny.Although all data is stored and manipulated as DOM trees, there is no spei� method forall the parts and stages of mediation to share the same DOM tree in a thread-safe way. Thismeans that data is onverted from and to XML whenever the proessing ontext hanges (i.e.from DOT-POP to BIN, from BIN to DOT-POP et.).The main reason why this ours is the lak of aess to the soure ode of the wrapper gen-eration toolkits as well as the lak of appropriate Java methods whih would export proesseddata as DOM trees. However, for the time being, with C.I.A. still in the 'proof-of-onept'26

stage of development, the delay presented to the system by this fat is negligible, sine thenumber of bak-end e-sites is not great. If e�ieny ever beomes ritial to the evaluationof C.I.A. as a whole, this is a setion whose improvement would provide an important overallperformane gain.The Mediator and C.I.A. as a whole were designed with tree main fators in mind:1. Platform independene: the �nal outome should be easily portable among di�erent soft-ware and hardware platforms. The use of Java and XML derived tehnologies guaranteesmaximum platform independene.2. Arhiteture openness: modules should be easily alterable, while the set of wrappedbak-end sites should be as dynami as possible. This is ahieved by using the DomDB�les and in onjuntion with the overall arhiteture design.3. Liense freedom: all parts used should be either open/free soure or freely available foreduational reasons. The Mediator was developed in Java, using Sun's publily availableJDK, and non-ommerial wrapper generation toolkits.

27

User
Interface

Compliant
XML Document

Query.dtd
Information
Extraction

FEIN

Java
Methods

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

Level 1

XSL Generator

XPath Generator

Level 2

Parsing

Extracted
Information

XPath Query

XSL Query

Stage 1:
Top−level selection

Stage 2:
URL Generation

Stage 3:
BIN Invocation

Stage 4:
Population &

Normalization

DOT−POP XML Metadata

BIN

BIN

BIN

BIN

Data Retrieval
over the WWW

Stage 1

URL

Stage 2

Information Extraction
and Integration

BIN
Result

DOM Tree

Mediator

Back−end e−site

Back−end e−site

Back−end e−site

Back−end e−site

EBNF

data

Wrapped Data

Figure3.9:TheMediator
28

Chapter 4Champion Appliations.
4.1 OverviewWe shall now present two proof-of-onept novel data integration appliations, implementedusing the C.I.A., as it was desribed in the previous hapters:� HyperHotel: a data integration appliation, bringing together the vast amounts of in-formation available online by real-world hotels. Users will have the ability to searh fortheir residene-of-hoie in multiple e-hotels, without having to visit the web sites ofeah and every one of them, and� HyperTV: an appliation integrating data available on the world-wide-web, onerningtelevision hannels' programs. Users will eventually be able to searh and selet the TVprograms they'll wath, by seletively querying TV stations' web sites, in a uniform,entralized and user-friendly manner.4.2 HyperHotelA lassi example of data freely available through the world-wide-web in unstrutured or semi-strutured form, is data about aommodation failities, suh as hotels and rent-rooms. Theommon pratie for suh ompanies is to have a web site o�ering loation-related informa-tion (suh as address, transportation, proximity to known sites et.), room rates, availabilityheking, online booking et. Sine tourism is a quikly growing setor of modern eonomies,29

the demand for a entralized way of uniformly querying all suh failities is beoming greater.HyperHotel's goal is to answer to this demand in a semi-automated way, surpassing urrentlyavailable paradigms utilizing data-entry and/or proprietary ommuniation protools betweenthe integrator and the bak-end sites.Being an appliation of C.I.A., HyperHotel has the following advantages:� It uses standard world-wide-web tehnologies and protools (i.e. HTTP/1.1, SSL et.)to ommuniate with the bak-end sites and with the lients. This means that a hotelneeds only have a web site to be a andidate for integration, while all a user needs is aweb browser and aess to the Internet.� It is written totally in Java, hene guaranteeing maximum platform independene onthe server side.� Sine all data is drawn from publily available soures (i.e. the hotels' web sites), it isfree of possible opyright and liensing issues.To ahieve better performane, the HyperHotel Mediator prefethes, integrates and stores all�stati� data (i.e. data available through stati HTML pages) at start-up, while still o�eringthe apability of online dynami querying through HTML form interfaes.HyperHotel makes it possible for a user to query multiple hotel websites, based on suhriteria as:1. loality (urrently more than 40 hotels from more than 5 areas in Greee are dynamiallyinluded in queries).2. hotel ategory (e.g. A/B/C lass et.)3. amenities available (e.g. swimming pool, onferene room, restaurant et.)4. loseness to the sea.5. proximity to the nearest ity.6. room size (i.e. number of beds). 30

7. atual dates of aommodation.8. �nal room rates (inluding support for ranging rates, e.g. spanning multiple seasons).A demonstration of HyperHotel is available online at http://hit.softnet.tu.gr/Appliations/HyperHotel.4.3 HyperTVHyperTV is another proof-of-onept appliation based on C.I.A.. It deals with the integra-tion and uniform querying of television hannel programmes, available online through theorresponding television hannel website.Currently almost all television hannels have a website, mainly providing information aboutthe hannel's programme. Moving into the era of digital television, users will have aess tohundreds of hannels, through the orresponding digital platforms. The diversity and largeamount of programmes will then make printed TV guides and individual hannel websitesobsolete or unusable. HyperTV overs this gap, by providing a �entralized� way of seletivelyquerying multiple programmes, transparently to the end-user.HyperTV allows for queries based on suh riteria as:1. hannel name (urrently more than 10 hannels are integrated).2. hannel type (i.e. satellite, able, digital, subsriber-based et.)3. program start/end hour.4. program name.5. program type and/or desription.6. prede�ned queries, onerning high-volume high-frequeny user queries (e.g. �Whatmovies are there tonight?� or �What football mathes are on tomorrow?�).To ahieve maximum query exeution performane and minimum response time, HyperTVprefethes, integrates and stores all relevant data, for a prede�ned amount of time (usually31

seven days)[18℄. This proess is done during low-ativity time periods (e.g. at night), so thatusers will seldom see any degradation in performane. The stored data is then deleted and /or updated in a irular way, on a per-day basis: at the end of eah programme day (when theprogramme for a day beomes obsolete), the system prefethes the programme for the seventhday (i.e. the programme of the �rst day of the next week, starting from the urrent day). Thistehnique guarantees ompleteness and orretness for the prefethed and stored data.A demonstration of HyperTV is available online at http://hit.softnet.tu.gr/Appliations/HyperTV.

32

Chapter 5Related Work
We proeed with the desription of related work and its omparison to C.I.A.. We lassifyrelevant projets in two major ategories, as to their funtionality: full-sale integration andwrapper generation.5.1 Full-Sale IntegrationData integration has been a hot-spot of information tehnology for many years. Many attemptshave been made to reate a full-blown mediator system. Due to the size of relevant work, wehoose only to refer to the most well-known among them1: TSIMMIS([48, 49℄), DISCO([50,51℄), Enosys Markets([52℄) and ShopBot([53℄).5.1.1 TSIMMISTSIMMIS stands for The Stanford-IBM Manager for Multiple Information Soures. As itsname implies, TSIMMIS was developed by the Stanford University in ooperation with IBM.TSIMMIS is a lassi representative of a full-sale mediator system, onsisting of the fol-lowing omponents:1For more information on the subjet, please refer to [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,38, 39, 40, 41, 42, 43, 44, 45, 46, 47℄.

33

Translator

Information
Source

Classifier/Extractor Plain Text

Generator
Translator

Definition

Local
Constraint

Manager

Local
Constraint

Manager

Translator

Information
Source

Information
Source

Translator

Constraint
Manager Mediator

Application

Classifier/Extractor Plain Text

Mediator
Mediator

Generator

Definition

Figure 5.1: The TSIMMIS System.� The Translator Generator and the generated Translators. Bak-end sites are aessedthrough wrappers (referred to as �Translators� in the TSIMMIS literature), semi-automatially generated by the Translator Generator, a wrapper generation toolkit.Translators deal with the tasks of onverting queries to a form exeutable on the bak-end sites and then onverting the extrated data to the TSIMMIS objet model.� TheMediator Generator and the generatedMediators. Mediators are semi-automatiallygenerated super-wrappers, dealing with the task of seletively inluding sets of Transla-tors in query exeution time, based on semanti riteria (e.g. query semanti ategoryand Translators available for relative bak-end sites).� The Constraint Managers. These omponents deal with integrity onstraints imposedon the integrated data by front-end appliations. 34

� The Classi�ers/Extrators. These omponents deal with the extration of useful at-tributes from unstrutured data soures (e.g. plain-text �les), so that suh informationould be used by a Translator in subsequent queries.� The data model. TSIMMIS uses a self-desribing (tagged) objet model, alled theObjet Exhange Model, or OEM. OEM allows simple objet nesting, thus being a verysimple objet model. Queries against OEM repositories are issued in OEM-QL, andSQL-like language, spei� to the TSIMMIS projet.The design of TSIMMIS is very lose to that of the C.I.A.; both platforms use wrappers,semi-automatially generated using wrapper generation toolkits, to aess bak-end e-sites. Inthe C.I.A., onstraint management is done during stages 2 and 4 of the DOT-POP exeution,while there is no need for Mediators, sine multiple C.I.A. instanes are deployed for di�erentsemanti ategories.Moreover, both platforms use self-desribing objet models. However, TSIMMIS's OEMalls for a model-spei� proprietary query language, while XML is an industry standard, withquerying apabilities ontrolled by the W3C XML group. Another major di�erene betweenTSIMMIS and the C.I.A. is the use of Classi�ers/Extrators, sine C.I.A. urrently doesn'tsupport integration of unstrutured data. This is due to the fat that urrently publilyavailable wrapper generation toolkits don't support e�ient wrapping of unstrutured data.5.1.2 DisoDISCO stands for Distributed Information Searh COmponent and was developed by InriaRoqenourt and the University of Maryland.DISCO is another representative of a full-sale mediator system. It features:� The Catalog : a olletion of data onerning the Mediators. The Appliation uses dataavailable in the Catalog to selet whih Mediators to inlude in every query exeution.� The Mediators. DISCO's Mediators deal with the tasks of seleting whih wrappers touse for every query and the onversion of wrapped data to the system's data model. 35

Catalog

Mediator Mediator

Application

Wrapper Wrapper Wrapper

DatabaseDatabaseDatabase Figure 5.2: The DISCO System.� The Wrappers. These omponents deal with the onversion of queries, from a subset ofthe general query language used by the Mediator, to the partiular language used by theorresponding data soure, and with the onversion of data thus aquired to the formatexpeted by the orresponding Mediator.� The data model. DISCO's data model is based on the ODMG-93 standard[54℄, onsistingof an objet data model (ODM), an objet de�nition language (ODL), a query language(OQL) and a language binding.DISCO's approah to mediation is very similar to that of TSIMMIS, to the extent that bothsystems use wrappers, ontrolled by mediators, ontrolled by a �super-mediator� (i.e. theCatalog). However, DISCO mediators are not semi-automatially generated, as is the ase withTSIMMIS's mediators. As already mentioned, the C.I.A. makes no use of �super-mediators�,sine multiple C.I.A. instanes are deployed for equal semanti ategories. Moreover, DISCO,by extending the ODMG standards, uses a less proprietary data model than TSIMMIS's OEM,but it's still far more ompliated than the �at XML data repositories of C.I.A.
36

Another major di�erene between the DISCO approah and that of the TSIMMIS and theC.I.A. systems, is the intended bak-end data soures; DISCO is designed for the integrationof DBMS-based information systems. The issues that arise in the integration of suh systemsare very similar to those arising in the integration of data soures over the web (as thosedealt with by TSIMMIS and the C.I.A.), with the exeption of the semistrutured nature ofweb-based soures; data retrieved by diretly querying a DBMS-based data soure is alwaysstrutured, while data transfer is done through proprietary APIs, spei� to the DBMS. Assuh, we onsider the DISCO system to be more of a data wrapping servie than a full-salemediator.5.1.3 ENOSYS MarketsENOSYS is the ommerial o�spring of the researh made for the TSIMMIS projet. As suh,the ENOSYS system also deploys wrappers (XMLizers) for the extration of information fromthe bak-end data soures, and mediators (XMediators) for the integration of extrated data.It also features an XML ahe database, muh like the C.I.A. platform.The main building bloks of the ENOSYS platform omprise of:� The XMLizers: ENOSYS Markets' XMLizers (wrappers) deal with the extration ofdata from bak-end data soures and the transformation of extrated data to the me-diator's internal data model. XMLizers exist for various types of data soures, suhas RDBMSs, XML �les et. XMLizers are semi-automatially generated, using user-friendly visual tools and a delarative soure de�nition language.� The XMediator : all information extrated by the XMLizers is then passed to the XMe-diator, ENOSYS Markets' mediator. The XMediator then exports this information inthe form of �views� on the integrated data, thus resembling a database. As a matterof fat, the server-side omponents of the ENOSYS system is alled Virtual IntegratedXML Database (VIX Database) in the ENOSYS literature, thus the orresponding viewson integrated data are alled VIX Views. 37

XMLizer XMLizer XMLizer

RDBMS Legacy App.

XMediator

XML File

XCacheDB

Virtual Integrated XML (VIX) Database

Virtual Integrated XML (VIX) Database

Application

Custom

XSDesign

HTML Forms
& Reports

XML Query XML Query

VIX View VIX View VIX View

Figure 5.3: The ENOSYS System.� The XCaheDB : when the wrapped data soures are either stati or slow, their XMLviews are ahed in the XML Cahe DataBase, the XCaheDB. Of ourse, ahing isdone transparently, onsidering the rest of the system's omponents.There is great resemblane between the ENOSYS Markets' system and the C.I.A., apartfrom both being lassi representatives of full-blown mediator systems; both systems utilizeahing tehniques to ompensate for high-reation-time or stati data soures. However, theC.I.A. takes ahing one step further, by ahing eah and every query and it's orrespond-ing response, using state-of-the-art ahing tehniques and partial hit/miss reognition andby takling the integration problem in a distributed manner (through ahe repliation andmultiple mediator instanes).On the other hand, the ENOSYS system, being a ommerial produt, is a muh moreomplete data integration system than any of the systems presented here. In a nutshell, it alsofeatures visual tools to simplify wrapper generation and data aquisition and maintenane,38

suh as the XSDesign: a graphial web-form generator. This omponent allows power-usersof the ENOSYS system to reate web/HTML-based forms for the aess of integrated data.5.1.4 ShopBotThe ShopBot was developed by R.B. Doorenbos, O. Etzioni and D.S. Weld at the Universityof Washington. It was a World-Wide-Web shopping agent that enabled users to shop onlinefor CD's and omputer software, but was retired in 1998. However, it ontributed to the devel-opment of more advaned shopping agents, suh as the Jango (http://www.jango.exite.om).The ShopBot utilized advaned arti�ial intelligene tehniques to understand informationpublished at bak-end sites; information extration was more-or-less automati, based onlimited domain-spei� knowledge and ertain assumptions as to the struture and ontent ofthe integrated data. It did however su�er from some major problems:� Data analysis was not detailed enough and ould lead to wrong output (e.g. upgrades ofa program, being less expensive than the program itself, appeared higher in ShopBot'ssorted list of available produts).� The rules on whih ShopBot's deisions were based, were too strit, leading to inom-pleteness of the output (e.g. when the formatting of a web page wasn't within the limitsreognized by the ShopBot, parts of the integrated data ould be mistaken to belong tothe useless ontent of the page).� The ShopBot ould only integrate sites with a searhable index. This not being the asefor many all of the available e-shops, the ShopBot ould only integrate a fration of theset of e-shops.� ShopBot's performane was linear in the number of integrated data soures, thus notsaling well for large numbers of bak-end e-sites.� Wrapper generation was heavily based on the assumption that all data soures exportinformation in HTML form. This means that the ShopBot would never be able tointegrate a data soure embedding information in Java Applets, images et. 39

5.2 Wrapper Generation ToolkitsWe ontinue with a presentation of the major wrapper-generation toolkits available today,whih where also andidates for adoption by the C.I.A.. All of them have the followingharateristis:� They are written in Java, therefore guaranteeing platform-independene and maximumintegration apabilities with the rest of the system.� They are available free of harge for eduational reasons. Although C.I.A. might evolveto a ommerial platform, in this stage of development no ommerial produts shouldbe used.We separate toolkits in two major ategories, aording to the way they interat with the userin order to generate the wrapper:1. Grammar-based toolkits.2. Learning-based toolkits.5.2.1 Grammar-BasedThese toolkits take as input a desription of the grammar of the wrapped soure and a de�-nition of the output format. They then generate a wrapper that mathes the given grammarrules to the e-site web-pages and returns the parsed data, aording to the output format def-inition. Grammar and output de�nitions are made in toolkit-spei� formats. The ease-of-useof this format plays a very important role in hoosing one toolkit over another.With these toolkits, wrappers are harder to ode, sine they require grammar rules indu-tion by the user, but allow maximum ontrol over the generated wrapper.The most prominent representatives of this ategory are the Lex-Ya parser generationsuite, the GMD-IPSI's JEDI([55℄), INRIA's YAT([56, 57, 58℄) and the Universita di Roma'sMinerva([59, 60, 61, 62, 63, 64℄) wrapper generation toolkits. 40

5.2.1.1 Lex-YaThe Lex-Ya parser/ompiler generation suite has been around for quite a long time. Mostompilers available today are developed and maintained using these very two tools or theirvarious ports (e.g Flex/Bison for GNU/Linux et.). As expeted, they have also been portedto Java by various developers (e.g. Coo/Java, CUP, the JavaCC et.).Due to the low-level nature of these tools, they are the most powerful of the presentedtoolkits as to the features of the generated parsers. However, programming in Lex-Ya anbe very time onsuming, while the advaned possibilities of this toolkit would surely be neverused in the ontext of web-page data-soure wrapper generation.5.2.1.2 JEDIJEDI stands for Java-based Extration and Dissemination of Information. It was developed atthe Integrated Publiation and Information Systems Institute (IPSI) of the German NationalResearh Center for Information Tehnology (GMD). Quoting from the JEDI Handout:JEDI adopts a lightweight approah to wrapping and mediation, requiring onlybasi web-browser tehnology. It has been entirely implemented in Java.JEDI's wrapper onsists of a powerful and fault tolerant parser. Using attributed,nested rules that desribe the soure struture of douments, the parser segmentsthem to any desired level, and ollates the parsed data into a network of objets.Unlike parsers for formal languages, JEDI's parser an ope with inomplete andambiguous soure spei�ations. This is aomplished by a novel parsing tehniquethat hooses always the most spei� rule among several appliable rules. When�nding no appliable rule for some doument portion, it skips as little as neessaryto ontinue with an appliable rule.Wrappers and mediators have been arefully designed to tolerate strutural devia-tions and inomplete spei�ations without trading expressive power. The immedi-ate advantage of this is that users an onentrate on what they want to reuse and 41

merge, and need to are little about how rules and objet-types are applied. Butin addition, JEDI's fault-tolerane leads itself to applying mahine-learning teh-niques that explore information spaes to generate reognition rules and mappingspei�ations semi-automatially.JEDI's arhiteture is shown in Fig. 5.4. For a more detailed desription of JEDI, refer to[55℄.

Figure 5.4: JEDI ArhitetureJEDI and related demos and doumentation, an be found at� http://www.darmstadt.gmd.de/oasys, and� http://www.darmstadt.gmd.de/~huk.5.2.1.3 YATYAT was developed by INRIA, as part of the OPAL projet. YAT stands for Yet AnotherTree-based system. Its arhiteture is shown in Fig. 5.5.Quoting from [57℄: 42

Figure 5.5: YAT arhitetureIt relies on a middleware model, a delarative language, a ustomization tehniqueand a graphial interfae. The model is based on named trees with ordered andlabeled nodes. Like semistrutured data models, it is simple enough to failitatethe representation of any data. Its main originality is that it allows to reasonat various levels of representation. The YAT onversion language (alled YATL)is delarative, rule-based and features enhaned pattern mathing failities andpowerful restruturing primitives. It allows to preserve or reonstrut the orderof olletions. The ustomization mehanism relies on program instantiations: anexisting program may be instantiated into a more spei� one, and then easilymodi�ed.A sample translation senario is desribed in Fig. 5.6. For the time being, the YAT systemisn't yet available to the publi. Therefore, the authors have no experiene on its funtionalityand oding failities.5.2.1.4 MinervaMinerva was developed at the University di Roma Tre, in ooperation with Universita dellaBasiliata, as part of the Araneus projet. It builds on the idea of dealing with exeptionsaused by the parsing of a doument. It allows for both an EBNF grammar approah and aproedural manipulation of doument data.
43

Figure 5.6: YAT translation senarioBeing an EBNF-based wrapper generation toolkit, Minerva allows for maximum �exibilityand powerful wrapper generation. However, it's greatest advantage over the rest of the EBNF-type wrapper generation toolkits, is it's support for inline Java ode. Thus, it ombines theease of use of the Jedi toolkit, with the power and robustness of the Lex-Ya suite. Moreover,it allows for exeution-time manipulation of malformed input, through the support for parsingexeptions([65℄).Sample input and output �les of the Minerva toolkit were presented earlier.5.2.2 Learning-BasedThe toolkits that belong to this ategory use mahine-learning algorithms and AI onepts inorder to extrat the grammar rules used to generate a wrapper. They usually interat with theuser through a GUI. In order to assure that the rules extrated are orret, they prompt theuser for suggestions and orretions, through whih they �learn� what parts of the wrappedsite the user is interested in. The output format is also de�ned by the user, through the sameGUI.
44

These toolkits require little or no oding. However, peuliarities in wrapped web pagesmake learning very di�ult, so they don't always sueed in induing the orret grammarrules, even after several suggestions and orretions from the user.NoDose([66, 67℄) and XWrap([68℄) are two of the most well-known toolkits of this ategory.5.2.2.1 NoDoseNoDose stands for Northwestern Doument Struture Extrator. It was developed at theComputer Siene Dept. of the Northwestern University. Quoting from [67℄ and [66℄:NoDose allows non-programmers to build omponents that an onvert data fromthe soure format to XML or another generi format. Further the generated odeperforms a set of statistial heks at runtime that attempt to �nd onversionerrors before they are propagated bak to users ([67℄).Using a GUI, the user hierarhially deomposes the �le, outlining its interestingregions and then desribing their semantis. This task is expedited by a miningomponent that attempts to infer the grammar of the �le from the informationthe user has input so far. One the format of a doument has been determined,its data an be extrated into a number of useful forms ([66℄).

Figure 5.7: The steps of using NoDoseAording to the authors' experiene from using this toolkit, wrapper indution with No-Dose is a trivial task when the wrapped soure is relatively semi-strutured. However, whenthe soure was highly unstrutured, NoDose required a larger time frame to teah, sine itlearns by example. 45

5.2.2.2 XWrapXWrap is another wrapper generation toolkit that builds on the idea of interating with theuser through a GUI and generating wrappers through learning. Its arhitetural outline isshown in Fig. 5.8. The main idea behind XWrap is separating ommon wrapping tasks fromsoure-spei� ones; the wrapper generation proess is done in two steps:1. The user de�nes the regions of interest in the wrapped soure, using the GUI. Behind thesene, the user's seletions are translated into delarative information extration rules.2. The XWrap system then ombines these rules with the XWrap omponent library andonstruts a proedural wrapper program (in Java).The system also provides the ability to ome bak and tune the generated wrapper at runtime.

Figure 5.8: XWrap arhitetureFor the time being, XWrap is available as an online resoure (i.e. XWrap is not availablefor download. Wrapper generation is made through an HTML interfae on the XWrap webhost).
46

Chapter 6Conlusions and Future Work
The heterogeneity and unstrutured form of data available online through the world wide webhas reently evolved to a hot subjet of researh by aademis and relevant industry. Themost wide-spread solution to the problems posed by these attributes and by the vast amountsof available information, is the deployment of data integration shemes, mainly in the form ofmediators and relevant wrappers.In this thesis we have desribed the design and implementation of an independent mediatormodel, using third-party o�-the-self wrappers and/or wrapper generation toolkits: the ContentIntegration Arhiteture (C.I.A.). Emphasis has been given on speed, platform independeneand ease of deployment. The purpose of this work is to automate the task of seletivelyquerying multiple data soures on the web and presenting the results in a uniform way. Wehave also demonstrated the funtionality of this system with two appliations: HyperHotel andHyperTV; two dynami mediator-based information integration and dissemination systems fore-hotels and television program listings, respetively.Throughout the design and implementation stages of this work, we have reahed the fol-lowing onlusions:� Despite the emergene of XML and XML-related tehnologies as the preferred means ofdata exhange of the web, the majority of web ontent is still available in its traditionalunstrutured or semi-strutured form. We onsider that this situation is likely to hangein the next few years. However, due to the amount of data to be onverted to XMLformat, we believe that this transition will take quite some time. 47

� Wrapper generation toolkits are still unusable by non-programmers. Sine data integra-tion is still the subjet of researh, user-friendliness is not a requirement. Thus, almostall available wrapper generation toolkits require advaned knowledge of omputer siene�elds by their prospetive users.� The urrently available wrapper generation toolkits are not usable in prodution environ-ments, sine minor hanges in the formatting of the soure douments require wrapperrewriting, a not-so-easy task.� Sine wrapper generation toolkits haven't been around for enough time, they lak basisystem integration apabilities; they usually inlude non-thread-safe parts and exportwrapped data in ustom formats.� Currently available HTTP-related Java lasses don't provide the extended support forHTTP handshaking required by data integration appliations. For example, support forHTTP onnetion timeouts, HTTP proxies and ookies, features supported by most web-browsers, have to be oded expliitly by the designer/implementor of the data integrationappliations.Future plans inlude:� Extensive ahing/prefething, using novel algorithms for storage, retrieval andfull/partial hit/miss reognition1.� Moving the system to a distributed environment, where multiple C.I.A. servers willooperate to answer to user queries in a loality-based, distributed, fault-tolerant way.� Development of a thread-safe wrapper generation toolkit, exporting real DOM tree stru-tures instead of XML data.� Development of a faster query exeution engine, sine we expet XSL not to sale wellfor large DOM trees.1For a detailed desription, please refer to [18℄. 48

� Use of an XML-native database, with a Java-based X-Query interfae.

49

Appendix ATehnologial & Software Choies
As already mentioned, the ease of integration of our appliation in many di�erent environmentsand aross many platforms was one of our primary design targets. That's why we usedtehnologies and software that are either platform-independent or available for a great deal ofsoftware-hardware ombinations.A.1 Tehnologies UsedAs far as tehnologies are onerned, we used either solutions based on the Java programminglanguage, or on general-purpose ommuniation protools featuring implementations on mostlyall known platforms.In more details, we used the following tehnologies:� the Java Programming Language, as implemented by the Java Development Kit v1.3and v1.4 (Java 2 SE platform) spei�ation.� JavaServer Pages (JSPs) v1.1 (�nal).� Java Servlets v2.2.� Enterprise JavaBeans (EJBs), aording to the JavaBeans Development Kit v1.1 spei-�ation.� Java DataBase Connetivity (JDBC) v2.0.1. 50

� HTTP v1.1.� Seure Soket Layer (SSL).A.2 Software UsedThe software used inludes:1. JDK v1.3.1 and v1.4.02. JBDK v1.1.3. Tomat Appliation Server v3.4.4. Apahe Web Server v1.3.19.5. JDBC v2.0.1.All of the above hoies were preferred so that they satisfy the following requirements:� They are based on the Java programming language and are therefore portable aross allplatforms for whih the Java Run-Time Environment (JRE) is available.� Alternatively, they are distributed under the terms and onditions of the GNU GeneralPubli Liense (GPL) or its modi�ations and are therefore available in soure ode inthe publi domain .� They have been tested under real irumstanes and work loads by reliable internet sites,ompanies and organizations et.

51

Appendix BModels of Database Connetivity
The main di�erene between these models is the way we onnet to the database managementsystems (DBMS). In any ase, the lient-user onnets to a World Wide Web server, aord-ing to the HTTP/1.1 protool, also using SSL (Seure Soket Layer) for inreased seurity.Furthermore, the �nal onnetion to the DBMS server is always done via a JDBC driver. Thefollowing models di�er, then, in the kind of intermediates between the initial web server andthe DBMS server. The resulting models are:� The Diret JDBC Connetion Model.� The Connetion through Web Server Model.� The Connetion through Speialized Appliation Server Model.B.1 Diret JDBC ConnetionAs we an see in the following diagram, this model is very simplisti. The lient sends arequest to the initial server (alled DSWS - Department Store Web Server), using the HTTPprotool. DSWS then onnets diretly to the DBMS (DataBase Management Server) usinga Java Servlet utilizing a JDBC driver.The main harateristis of this model are:� (+) E�ieny due to the lak of any mediating parts. 52

� (+) Inreased parallelism apabilities, sine the onurreny of the system is limited onlyby the DBMS's apabilities.� (+) Simple design and easy implementation.� (-) Inreased parallelism an overload the DBMS to the point of a system rash (whenthe number of onurrent lients is overwhelming).� (-) To ahieve a satisfatory seurity grade for the system, we must use pure SSL orSSL-tunneled onnetions, to enode the onnetion elements. This mehanism, apartfrom being slow, is not one of the standard onnetion methods and therefore there is apossibility that it won't be available for some platforms.� (-) Mixing the programming logi and the presentation makes the ode omplex andunreadable, and therefore hard to maintain.Due to the above ompliations, this model was used only in the initial development stages.Figure B.1: Diret JDBC Connetion.
JDBC 2.0
over SSH

HTTP/1.1
over SSL

RDBMS

DBMS
(DB Management Server)

Web
Server

RDBMS

JSP/Servlet
Engine

 Direct JDBC Connection.

Browser

DSWS
(Department Store Web Server)

Client Machine

B.2 Web Server ModelThis solution is more omplex than the previous one but is also the most generi of the treeonnetion methods disussed here. We see below a diagram, in whih the DSWS ommuni-ates with the DBMS via an intermediate web server. The main harateristis of this methodare: 53

� (+) Maximum �exibility, due to the ability to distribute the DBMSs and the DSWSs tomany and di�erent hosts and the apability to support many di�erent database man-agement systems, provided that there exists a orresponding JDBC driver.� (+) By using properly on�gured network arhiteture (i.e. existene of a �rewall, in-stallation of the web server and the DBMS on the same omputer and on�guring thelatter to only aept onnetions from the former, et.), this solution an prove to beseure against a wide range of know attaks.� (+) The onurreny level is furthermore limited by the web server, whih is a muhe�ient method, sine web servers have been extensively developed and tested in pro-dution environments.� (+) By using suh tehniques as onnetion pooling, we an improve overall e�ienyand ahieve better throughput than with the �rst method.� (+) Limited onurreny redues the risk of a suessful denial of servie (DOS) attak.� (+) An e-shop an exist independently of an eletroni department store.� (-) The intermediate web server, an be a bottlenek for the overall performane.� (-) The existene of many di�erent web servers an ompliate porting the appliationto many platforms.Figure B.2: Intermediate Web Server Connetion.
HTTP/1.1
over SSL

Web
Server

RDBMS

JSP/Servlet
Engine

DSWS
(Department Store Web Server)

HTTP/1.1
over SSL

Web
Server

JSP/Servlet
Engine

RDBMS

JDBC

connection)
local
(possibly

 Intermediate Web Server.

Browser

IWS
(Intermediate Web Server)

DBMS
(DataBase Management Server)

Client Machine

This was the solution-of-hoie for the implementation of this appliation. 54

B.3 Speialized Appliation Server ModelThis solution, sine it is also based on the use of an intermediate part (the SAS (SpeializedAppliation Server)), has all the advantages and disadvantages of the previous one, with thefollowing di�erenes:� (+) The SAS allows for further optimizing the system's e�ieny.� (+) Seurity an be further hardened by using ertain tehniques in the SAS.� (-) The SAS probably would also all for a speialized ommuniation protool.� (-) The development time is further augmented by the amount orresponding to thedevelopment and testing of the SAS.� (-) No e-shop an exist and funtion in an independent manner.� (-) Speialized lient-side software is demanded.Figure B.3: Intermediate Speialized Appliation Server Connetion.
HTTP/1.1
over SSL

Web
Server

RDBMS

JSP/Servlet
Engine

DSWS
(Department Store Web Server)

HTTP/1.1
over SSL

Specialized

Server
Application

JDBC
(possibly
local
connectioni)

RDBMS

DBMS
(DataBase Management Server)

 Specialized Application Server.

Browser

Client Machine SAS
(Specialized Application Server)

55

Referene List[1℄ World Wide Web Consortium, http://www.w3.org/TR/1998/REC-xml-19980210. Ex-tensible Markup Language (XML) 1.0, February 1998. W3C Reommendation.[2℄ J.D. Davidson and D. Coward. Java Servlet Spei�ation. Sun Mirosystems, In., v2.2(�nal release) edition, Deember 1999.[3℄ M. Hall. Core Servlets and JavaServer Pages. Sum Mirosystems / Prentie Hall PTR,2000.[4℄ E. Pelegri-Llopart and L. Cable. JavaServer Pages Spei�ation. Sun Mirosystems, In.,v1.1 edition, November 1999.[5℄ K. Avedal, D. Ayers, T. Briggs, C. Burnham, A. Halberstadt, R. Haynes, P . Henderson,M. Holden, S. Li, D. Malks, T. Myers, A. Nakhimovsky, S. Osmont, G. Palmer, J. Tim-ney, S. Tyagi, G. Van Damme, M. Wilox, S. Wilkinson, S. Zeiger, and J. Zukowski.Professional JSP. Wrox Press Ltd., 2000.[6℄ Sun Mirosystems, In. The Java 2 Enterprise Edition Developer's Guide, May 2000.[7℄ et al. R. Fielding. HyperText Transfer Protool (HTTP). Network Working Group, 1.1edition, 1999. RFC 2616.[8℄ K. Mpletsas. An Internet Content Integration System: the Front-End. Diploma Thesis,Tehnial University of Crete, 2002.[9℄ S. Abiteboul, D. Quass, J. MHugh, J. Widom, and J.L. Wiener. The Lorel querylanguage for semistrutured data. International Journal on Digital Libraries, 1(1):68�88,April 1997. http://www-db.stanford.edu/ widom/pubs.html.[10℄ S. Abiteboul. Query semi-strutured data. In Proeedings of the ICDT, 1997.[11℄ J. Robie, D. Chamberlin, and D. Floresu. Quilt: an XML query language for heteroge-neous data soures. In Proeedings of XML Europe. Graphi Communiations Assoia-tion, 2000.[12℄ World Wide Web Consortium, http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113. Doument Objet Model (DOM) Level 2 Core Spei�ation, November 2000.W3C Reommendation.[13℄ World Wide Web Consortium, http://www.w3.org/TR/2000/REC-DOM-Level-2-Views-20001113. Doument Objet Model (DOM) Level 2 Views Spei�ation, November 2000.W3C Reommendation.[14℄ World Wide Web Consortium, http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113. Doument Objet Model (DOM) Level 2 Events Spei�ation, November2000. W3C Reommendation. 56

[15℄ World Wide Web Consortium, http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113. Doument Objet Model (DOM) Level 2 Style Spei�ation, November 2000.W3C Reommendation.[16℄ World Wide Web Consortium, http://www.w3.org/TR/2000/REC-DOM-Level-2-Html-20001113. Doument Objet Model (DOM) Level 2 HTML Spei�ation, November 2000.W3C Reommendation.[17℄ World Wide Web Consortium, http://www.w3.org/TR/2000/REC-DOM-Level-2-Traversal-Range-20001113. Doument Objet Model (DOM) Level 2 Traversal and RangeSpei�ation, November 2000. W3C Reommendation.[18℄ J. Giannakopoulos. An Internet Content Integration System: the Cahe Manager.Diploma Thesis, Tehnial University of Crete, 2002.[19℄ World Wide Web Consortium, http://www.w3.org/TR/1998/NOTE-xml-ql-19980819.XML-QL: A Query Language for XML, August 1998. W3C Note.[20℄ Z.G. Ives and Y. Lu. Xml query languages in pratie: an evaluation.[21℄ World Wide Web Consortium, http://www.w3.org/TR/2001/WD-xmlquery-req-20010215. XML Query Requirements, February 2001. W3C Working Draft.[22℄ D. Chang and D. Herkey. Client/Server Data Aess with Java and XML. Wiley Com-puter Publishing, 1998.[23℄ A. Bonifati and S. Ceri. Comparative analysis of �ve XML query languages. In Proeed-ings of the ACM SIGMOD Conferene, volume 1 of 29, pages 68�79, 2000.[24℄ N. Ashish and C. Knoblok. Semi-automati wrapper generation for internet informationsystems. In Proeedings of Cooperative Information Systems, 1997.[25℄ N. Kushmerik, D.S. Weld, and R. Dorenbos. Wrapper indution for information extra-tion. In Proeeding of IJCAI, 1997.[26℄ C. Quix and M. Shoop. Metadata management for failitating data integration in ele-troni marketplaes. Informatik V, RWTH Aahen, 2001.[27℄ A. Levy, A. Rajaraman, and J.J. Ordille. Querying heterogeneous information souresusing soure desriptions. In Proeedings of the 22nd VLDB Conferene, 1996.[28℄ M. Fernandez, D. Floresu, J. Kang, A. Levy, and D. Suiu. STRUDEL: a web-sitemanagement system. In Proeedings of the ACM SIGMOD Conferene, 1997.[29℄ M. Fernandez, D. Floresu, J. Kang, A. Levy, and D. Suiu. Cathing the boat withSTRUDEL: experienes with a web-site management system. 1998.[30℄ M. Fernandez, D. Floresu, J. Kang, A. Levy, and D. Suiu. Overview of STRUDEL - aweb-site management system. 1998.[31℄ M. Fernandez, D. Floresu, A. Levy, and D. Suiu. Web-site management: the STRUDELapproah. 1998.[32℄ M. Fernandez, D. Floresu, A. Levy, and D. Suiu. Delarative spei�ation of web siteswith STRUDEL. In Proeedings of VLDB, 2000. 57

[33℄ H.P. Shnurr, S. Staab, and R. Studer. Ontology-based proess support. Institut AIFB,Univ. Karlsruhe, 1999.[34℄ M. Erdmann and R. Studer. Ontologies as oneptual models for XML douments. In-stitut AIFB, Univ. Karlsruhe.[35℄ D. Fensel, S. Deker, M. Erdmann, and R. Studer. Ontobroker: the very high idea. InProeedings of the 11th International Flairs Conferene, 1998.[36℄ D. Fensel, J. Angele, S. Deker, M. Erdmann, H.P. Shnurr, S. Staab, R. Studer, andA. Witt. On2broker: Semanti-based aess to information soures at the www. InstitutAIFB, Univ. Karlsruhe.[37℄ S. Deker, M. Erdmann, D. Fensel, and R. Studer. ONTOBROKER: Ontology-basedAess to Distributed and Semi-Strutured Information. Kluwer Aademi Press, 1998.[38℄ V.R. Benjamins, B. Wielenga, J. Wielemaker, and D. Fensel. Towards brokering problem-solving knowledge on the internet.[39℄ Y. Papakonstantinou, H. Garia-Molina, and J. Widom. Objet exhange aross hetero-geneous information soures. In Proeedings of the IEEE Data Engineering Conferene,pages 251�260, Marh 1995.[40℄ Y. Papakonstantinou and P. Velikhov. Enhaning semistrutured data mediators withDoument Type De�nitions. In Proeedings of the IEEE Data Engineering Conferene,1999.[41℄ Y. Papakonstantinou, H. Garia-Molina, and J. Ullman. MedMaker: A mediation sys-tem based on delarative spei�ations. In Proeedings of the IEEE Data EngineeringConferene, pages 132�141, Marh 1996.[42℄ Y. Papakonstantinou, A. Gupta, H. Garia-Molina, and J. Ullman. A query translationsheme for rapid implementation of wrappers. In Proeedings of the Dedutive and Objet-Oriented Database Conferene, pages 161�186, Deember 1995.[43℄ Y. Papakonstantinou and V. Vassalos. Query rewriting for semistrutured data. InProeedings of the ACM SIGMOD Conferene, 1999.[44℄ L. Gravano and Y. Papakonstantinou. Mediating and metasearhing on the internet. Bul-letin of the IEEE Computer Soiety, Tehnial Commitee on Data Engineering, 21(2):28�36, 1998.[45℄ B. Ludasher, Y. Papakonstantinou, P Velikhov, and V. Vianu. View de�nition and DTDinferene for XML. In Proeedings of the Post-ICDT Workshop on Query Proessing forSemistrutured Data and Non-Standard Data Formats, 1999.[46℄ K. Konopniki and O. Shmueli. Information gathering in the world-wide web: the W3QLquery language and the W3QS system. Computer Siene Dept., Tehnion - Israel Insti-tute of Tehnology.[47℄ A. Saguguet and F. Azavant. Building light-weight wrappers for legay web data-souresusing W4F. In Proeedings of VLDB, 1999.[48℄ J. Hammer, H. Garia-Molina, S. Nestorov, and R. Yerneni. Template-based wrappersin the TSIMMIS system. Department of Computer Siene, Stanford University. 58

[49℄ J. Hammer, H. Garia-Molina, K. Ireland, Y. Papakonstantinou, J. Ullman, andJ. Widom. Information translation, mediation and Mosai-based browsing in the TSIM-MIS system. SIGMOD Demo Proposal (�nal version).[50℄ A. Tomasi, L. Rashid, and P. Valduriez. Saling heterogeneous databased and thedesign of Diso. INRIA.[51℄ A. Tomasi, L. Rashid, and R Valduriez. A data model and query proessing tehniquesfor saling aess to distributed heterogeneous databased in Diso. In IEEE Transationson Computers, speial issue on Distributed Computing Systems, 1997.[52℄ Enosys Markets. Enosys Markets: Arhiteture and produt overview. Enosys Markets,In., 2000.[53℄ R. Dorenbos, O. Etzioni, and D.S. Weld. A salable omparison-shopping agent forthe world wide web. In Proeedings of the 1st International Conferene on AutonomousAgents, 1997.[54℄ et al. R. Catell. The Objet Database Standard - ODMG 93. Morgan Kau�man, 1993.[55℄ G. Huk, P. Fankhauser, K. Aberer, and E. Neuhold. Jedi: Extrating and synthesizinginformation from the web. GMD-IPSI.[56℄ S. Cluet, S. Jaqmin, and J. Simeon. The new YATL: Design and spei�ations. Tehnialreport, INRIA, 1999.[57℄ S. Cluet, C. Delobel, J. Simeon, and K. Smaga. Your mediators need data onversion. InProeedings of the ACM SIGMOD Conferene, 1998.[58℄ J. Simeon. Integration de soures de donees hegerogenes ou omment marier simpliiteet e�aite. PhD thesis, L' Universite Paris XI, January 1999.[59℄ The ARANEUS Projet Home Page. http://www.dia.uniroma3.it/araneus.[60℄ G. Mea, P. Merialdo, and P. Atzeni. Araneus in the era of XML. 1999.[61℄ G. Mea and P. Atzenti. Cut and paste. Journal of Computing and System Sienes,page 85, 1999.[62℄ G. Mea, P. Atzeni, P. Merialdo, A. Masi, and G. Sindoni. From databases to web-bases: the ARANEUS experiene. D.I.A. - Universita di Roma Tre, May 1998.[63℄ G. Mea, P. Atzeni, P. Merialdo, A. Masi, and G. Sindoni. The ARANEWS web-basedmanagement system. In Proeedings of the ACM SIGMOD Conferene, 1998.[64℄ V. Cresenzi and G. Mea. The ARANEUS wrapper toolkit: A tutorial. Adapted from[65℄, July 1999.[65℄ V. Cresenzi and G. Mea. Grammars have exeptions. Journal of Information Systems,1998.[66℄ B. Adelberg. NoDoSE - a tool for semi-automatially extrating strutured and semistru-tured data from text douments. In Proeedings of the ACM SIGMOD Conferene, 1998.[67℄ B. Adelberg and M. Denny. Building robust wrappers for text soures. Computer SieneDept., Northwestern University.[68℄ L. Liew, C. Pu, and W. Han. XWRAP: An XML-enabled wrapper onstrution systemfor web information soures. Oregon Graduate Institute of Siene and Tehnology. 59

