
DSANLS: Accelerating Distributed Nonnegative Matrix
Factorization via Sketching

Yuqiu Qian
†
, Conghui Tan

‡
, Nikos Mamoulis

♯
, David W. Cheung

†

†
The University of Hong Kong

‡
The Chinese University of Hong Kong

♯
University of Ioannina

†
{yqqian, dcheung}@cs.hku.hk

‡
chtan@se.cuhk.edu.hk

♯
nikos@cs.uoi.gr

ABSTRACT
Nonnegative matrix factorization (NMF) has been successfully ap-

plied in different fields, such as text mining, image processing, and

video analysis. NMF is the problem of determining two nonnega-

tive low rank matricesU and V , for a given input matrixM , such

thatM ≈ UV⊤. There is an increasing interest in parallel and dis-

tributed NMF algorithms, due to the high cost of centralized NMF

on large matrices. In this paper, we propose a distributed sketched
alternating nonnegative least squares (DSANLS) framework for NMF,

which utilizes a matrix sketching technique to reduce the size of

nonnegative least squares subproblems in each iteration for U and

V . We design and analyze two different random matrix generation

techniques and two subproblem solvers. Our theoretical analysis

shows that DSANLS converges to the stationary point of the orig-

inal NMF problem and it greatly reduces the computational cost

in each subproblem as well as the communication cost within the

cluster. DSANLS is implemented using MPI for communication, and

tested on both dense and sparse real datasets. The results demon-

strate the efficiency and scalability of our framework, compared to

the state-of-art distributed NMF MPI implementation.

ACM Reference Format:
YuqiuQian, Conghui Tan, NikosMamoulis, DavidW. Cheung. 2018. DSANLS:

Accelerating Distributed Nonnegative Matrix Factorization via Sketching.

In Proceedings of WSDM’18. ACM, New York, NY, USA, 9 pages. https:

//doi.org/10.1145/3159652.3159662

1 INTRODUCTION
Nonnegative matrix factorization (NMF) is a technique for discov-

ering nonnegative latent factors and/or performing dimensionality

reduction. NMF finds applications in text mining [30], image/video

processing [19], and analysis of social networks [34]. Unlike gen-

eral matrix factorization (MF), NMF restricts the two output matrix

factors to be nonnegative. Nonnegativity is inherent in the feature

space of many real-world applications, therefore the resulting fac-

tors can have a natural interpretation. Specifically, the goal of NMF

is to decompose a huge matrixM ∈ Rm×n+ into the product of two

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WSDM’18, February 5–9, 2018, Marina Del Rey, CA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5581-0/18/02. . . $15.00
https://doi.org/10.1145/3159652.3159662

matrices U ∈ Rm×k+ and V ∈ Rn×k+ such that M ≈ UV⊤. Rm×n+

denotes the set ofm ×n matrices with nonnegative real values, and

k is a user-specified dimensionality, where typically k ≪m,n.
Generally, NMF can be defined as an optimization problem [21]

as follows:

min

U ∈Rm×k+ ,V ∈Rn×k+

M −UV⊤

F , (1)

where ∥X ∥F =
(∑

i j x
2

i j

)
1/2

is the Frobenius norm of X . How-

ever, Problem (1) is hard to solve directly because it is non-convex.

Therefore, almost all NMF algorithms leverage two-block coordi-

nate descent schemes: they optimize over one of the two factors,U
orV , while keeping the other fixed [8]. By fixingV , we can optimize

U by solving a nonnegative least squares (NLS) subproblem:

min

U ∈Rm×k+

M −UV⊤

F . (2)

Modern data analysis tasks apply on big matrix data with in-

creasing scale and dimensionality. Examples include community

detection in a billion-node social network, background separation

on a 4K video in which every frame has approximately 27 million

rows [15], text mining on a bag-of-words matrix with millions of

words. The volume of data is anticipated to increase in the ‘big

data’ era, making it impossible to store the whole matrix in the

main memory throughout NMF. Therefore, there is a need for high-

performance and scalable distributed NMF algorithms.

In this paper, we propose a distributed framework for NMF. We

choose Message Passing Interface using C (MPI/C) for our dis-

tributed implementation for efficiency, generality and privacy rea-

sons. MPI/C does not require reading/writing data to/from disk or

global shuffles of data matrix entries, as what Spark or MapReduce

do. Nodes can collaborate without sharing their local input data,

which is important for applications that involve sensitive data and

have privacy considerations. Besides, high performance numeri-

cal computing routines like Intelr Math Kernel Library can be

leveraged. The state-of-art implementation of distributed NMF is

MPI-FAUN [15], a general framework that iteratively solves NLS

subproblems for U and V . The main idea behind MPI-FAUN is to

exploit the independence of local updates for rows of U and V ,
in order to minimize the communication requirements of matrix

multiplication operations within the NMF algorithms.

Our idea is to speed up distributed NMF in a new, orthogonal

direction: by reducing the problem size of each NLS subproblem

within NMF, which in turn decreases the overall computation cost.

In a nutshell, we reduce the size of each NLS subproblem, by em-

ploying a matrix sketching technique: the involved matrices in the

https://doi.org/10.1145/3159652.3159662
https://doi.org/10.1145/3159652.3159662
https://doi.org/10.1145/3159652.3159662

subproblem are multiplied by a specially designed random matrix

at each iteration, which greatly reduces their dimensionality. As a

result, the computational cost of each subproblem drops.

However, applying matrix sketching comes with several issues.

First, although the size of each subproblem is significantly reduced,

sketching involves matrix multiplication which brings computa-

tional overhead. Second, unlike in a single machine setting, the data

are distributed to different nodes, which may have to communicate

extensively in a poorly designed solution. In particular, each node

only retains part of both the input matrix and the generated ap-

proximate matrices, causing difficulties due to data dependencies in

the computation process. Besides, the generated random matrices

should be the same for all nodes in every iteration, while broadcast-

ing the random matrix to all nodes brings severe communication

overhead and can become the bottleneck of distributed NMF. Fur-

thermore, after reducing each original subproblem to a sketched

random new subproblem, it is not clear whether the algorithm still

converges and whether it converges to stationary points of the

original NMF problem.

Our distributed sketched alternating nonnegative least squares
(DSANLS) overcomes these problems. First, the extra computation

cost due to sketching is reduced with a proper choice of the random

matrices. Second, the same random matrices used for sketching are

generated independently at each node, thus there is no need for

transferring them between nodes during distributed NMF. Having

the complete random matrix at each node, an NMF iteration can

be done locally with the help of a matrix multiplication rule with

proper data partitioning. Therefore, our matrix sketching approach

reduces not only the computational, but also the communication

cost. Moreover, due to the fact that sketching also shifts the optimal

solution of each original NMF subproblem, we propose subproblem

solvers paired with theoretical guarantees of their convergence to

a stationary point of the original subproblems.

Our contributions can be summarized as follows:

•We propose DSANLS, a novel high-performance distributed NMF

algorithm. DSANLS is the first distributed NMF algorithm that

leverages matrix sketching to reduce the problem size of each NLS

subproblem and can be applied to both dense and sparse input

matrices with a convergence guarantee.

• We propose a novel and specially designed subproblem solver

(proximal coordinate descent), which helps DSANLS to converge

faster. We also discuss the use of projected gradient descent as sub-
problem solver, showing that it is equivalent to stochastic gradient

descent (SGD) on the original (non-sketched) NLS subproblem.

•We present a detailed theoretical analysis of DSANLS, and prove

that DSANLS converges to a stationary point of the original NMF

problem. This convergence proof is novel and non-trivial because

of the involvement of matrix sketching at each iteration.

• We conduct an experimental evaluation using several (dense

and sparse) real datasets, which demonstrates the efficiency and

scalability of DSANLS.

The remainder of the paper is organized as follows. Section 2

briefly reviews NMF algorithms, discusses distributed NMF tech-

niques, and introduces thematrix sketching technique. OurDSANLS

algorithm is presented in Section 3. Detailed theoretical analysis of

DSANLS algorithm is discussed in Section 4. Section 5 evaluates

DSANLS. Finally, Section 6 concludes the paper.

2 BACKGROUND AND RELATEDWORK
2.1 NMF Algorithms
Within two-block coordinate descent schemes (exact or inexact,

shown as Algorithm 1), different subproblem solvers are proposed.

Algorithm 1: Two-Block Coordinate Descent: Framework of

Most NMF Algorithms

initialize U0 ≥ 0, V0 ≥ 0;

for t = 0 to T − 1 do
Ut+1 ← update(M , Ut , Vt);
Vt+1 ← update(M , Ut+1, Vt);

end
return UT and VT

The first widely used update rule is Multiplicative Updates (MU),

which was first applied for solving NLS problems in [6]. Later, MU

was rediscovered and used for NMF in [21]. MU is based on the

majorization-minimization framework. Its application guarantees

that the objective function monotonically decreases [6, 21].

Another extensively studied method is alternating nonnegative

least squares (ANLS), which represents a class of methods where

the subproblems forU andV are solved exactly following the frame-

work described in Algorithm 1. ANLS is guaranteed to converge

to a stationary point [10] and has been shown to perform very

well in practice with active set [16, 18], projected gradient [24],

quasi-Newton [41], or accelerated gradient [12] methods as the

subproblem solver.

Hierarchical alternating least squares (HALS) [4] solves each

NLS subproblem using an exact coordinate descent method that

updates one individual column ofU at a time. The optimal solutions

of the corresponding subproblems can be written in a closed form.

2.2 Distributed NMF
Parallel NMF algorithms are well studied in the literature [13, 36].

However, different from a parallel and single machine setting, data

sharing and communication have considerable cost in a distributed

setting. Therefore, we need specialized NMF algorithms for massive

scale data handling in a distributed environment. The first method

in this direction [25] is based on the MU algorithm. It mainly fo-

cuses on sparse matrices and applies a careful partitioning of the

data in order to maximize data locality and parallelism. Later, Cloud-

NMF [23], a MapReduce-based NMF algorithm similar to [25], was

implemented and tested on large-scale biological datasets. Another

distributed NMF algorithm [40] leverages block-wise updates for

local aggregation and parallelism. It also performs frequent updates

using whenever possible the most recently updated data, which is

more efficient than traditional concurrent counterparts. Apart from

MapReduce implementations, Spark is also attracting attention for

its advantage in iterative algorithms, e.g., using MLlib [28]. Finally,

there are implementations using X10 [11] and on GPU [27].

Themost recent and relatedwork in this direction isMPI-FAUN [14,

15], which is the first implementation of NMF using MPI for inter-

processor communication. MPI-FAUN is flexible and can be utilized

for a broad class of NMF algorithms that iteratively solve NLS sub-

problems including MU, HALS, and ANLS/BPP. MPI-FAUN exploits

the independence of local update computation for rows ofU andV

to apply communication-optimal matrix multiplication. In a nut-

shell, the full matrix M is split across a two-dimensional grid of

processors and multiple copies of bothU andV are kept at different

nodes, in order to reduce the communication between nodes during

the iterations of NMF algorithms.

2.3 Matrix Sketching
Matrix sketching is a technique that has been previously used in

numerical linear algebra [9], statistics [32] and optimization [33].

Its basic idea is described as follows. Suppose we need to find a

solution x to the equation:

Ax = b, (A ∈ Rm×n , b ∈ Rm). (3)

Instead of solving this equation directly, in each iteration of matrix

sketching, a random matrix S ∈ Rd×m (d ≪m) is generated, and
we instead solve the following problem:

(SA)x = Sb . (4)

Obviously, the solution of (3) is also a solution to (4), but not vice

versa. However, the problem size has now decreased fromm × n to

d×n.With a properly generated randommatrix S and an appropriate
method to solve subproblem (4), it can be guaranteed that we will

progressively approach the solution to (3) by iteratively applying

this sketching technique.

To the best of our knowledge, there is only one piece of pre-

vious work [38] which incorporates dual random projection into

the NMF problem, in a centralized environment, sharing similar

ideas as SANLS, the centralized version of our DSANLS algorithm.

However, Wang et al. [38] did not provide an efficient subprob-

lem solver, and their method was less effective than non-sketched

methods in practical experiments. Besides, data sparsity was not

taken into consideration in their work. Furthermore, no theoreti-

cal guarantee was provided for NMF with dual random projection.

In short, SANLS is not same as [38] and DSANLS is much more

than a distributed version of [38]. The methods that we propose

in this paper are efficient in practice and have strong theoretical

guarantees.

3 DSANLS: DISTRIBUTED SKETCHED ANLS
3.1 Notations
For a matrix A, we use Ai :j to denote the entry at the i-th row and

j-th column of A. Besides, either i or j can be omitted to denote

a column or a row, i.e., Ai : is the i-th row of A, and A:j is its j-th
column. Furthermore, i or j can be replaced by a subset of indices.

For example, if I ⊂ {1, 2, . . . ,m}, AI : denotes the sub-matrix of A
formed by all rows in I , whereas A:J is the sub-matrix of A formed

by all columns in a subset J ⊂ {1, 2, . . . ,n}.

3.2 Data Partitioning
Assume there are N computing nodes in the cluster. We partition

the row indices {1, 2, . . . ,m} of the input matrixM into N disjoint

sets I1, I2, . . . , IN , where Ir ⊂ {1, 2, . . . ,m} is the subset of rows
assigned to node r , as in [25]. Similarly, we partition the column

indices {1, 2, . . . ,n} into disjoint sets J1, J2, . . . , JN and assign col-

umn set Jr to node r . The number of rows and columns in each

node are near the same in order to achieve load balancing, i.e.,

|Ir | ≈m/N and |Jr | ≈ n/N for each node r . The factor matricesU
andV are also assigned to nodes accordingly, i.e., node r stores and
updatesUIr : and VJr : as shown in Figure 1.

Figure 1: Data partitioning to N nodes
Data partitioning in distributed NMF differs from that in parallel

NMF. Previous works on parallel NMF [13, 36] choose to partitionU
andV along the long dimension, but we adopt the row-partitioning

ofU and V as in [25]. To see why, take theU -subproblem (2) as an

example and observe that it is row-independent in nature, i.e., the

r -th row block of its solutionUIr : is given by

UIr : = arg min

UIr :∈R
|Ir |×k
+

MIr : −UIr :V
⊤

2

F (5)

and thus can be solved independently without referring to any

other row blocks of U . The same holds for the V -subproblem. In

addition, no communication is needed concerningM when solving

(5) becauseMIr : is already present in node r .
On the other hand, solving (5) requires the entireV of size n × k ,

meaning that every node needs to gather V from all other nodes.

This process can easily be the bottleneck of a naive distributed

ANLS implementation. As we will explain shortly, our DSALNS

algorithm alleviates this problem, since we use a sketched matrix

of reduced size instead of the original complete matrix V .

3.3 SANLS: Sketched ANLS
To better understand DSANLS, we first introduce the Sketched

ANLS (SANLS), i.e., a centralized version of our algorithm. Recall

that in section 2.1, at each step of ANLS, eitherU orV is fixed andwe

solve a nonnegative least square problem (2) over the other variable.

Intuitively, it is unnecessary to solve this subproblem with high

accuracy, because we may not have reached the optimal solution

for the fixed variable so far. Hence, when the fixed variable changes

in the next step, this accurate solution from the previous step will

not be optimal anymore and will have to be re-computed. Our idea

is to apply matrix sketching for each subproblem, in order to obtain

an approximate solution for it at a much lower computational and

communication cost.

Specifically, suppose we are at the t-th iteration of ANLS, and

our current estimations forU andV areU t
andV t

respectively. We

must solve subproblem (2) in order to update U t
to a new matrix

U t+1
. We apply matrix sketching to the residual term of subproblem

(2). The subproblem now becomes:

min

U ∈Rm×k+

MSt −U
(
V t⊤St

)

2

F , (6)

where St ∈ Rn×d is a randomly-generated matrix. Hence, the

problem size decreases from n × k to d × k . d is chosen to be much

smaller than n, in order to sufficiently reduce the computational

cost
1
. Similarly, we transform the V -subproblem into

min

V ∈Rn×k+

M⊤S ′t −V (
U t⊤S ′t

)

2

F , (7)

where S ′t ∈ Rm×d
′

is also a random matrix with d ′ ≪m.

3.4 DSANLS: Distributed SANLS
Now, we come to our proposal: the distributed version of SANLS

called DSANLS. Since the U -subproblem (6) is the same as the

V -subproblem (7) in nature, here we restrict our attention to the

U -subproblem. The first observation about subproblem (6) is that

it is still row-independent, thus node r only needs to solve

min

UIr :∈R
|Ir |×k
+

(MSt
)
Ir :
−UIr :

(
V t⊤St

)

2

F
.

For simplicity, we denote

Atr ,
(
MSt

)
Ir :

and Bt , V t⊤St , (8)

and the above subproblem can be written as:

min

UIr :∈R
|Ir |×k
+

Atr −UIr :B
t

2

F . (9)

Thus, node r needs to know matrices Atr and Bt in order to solve

the subproblem.

For Atr , by applying matrix multiplication rules, we get

Atr =
(
MSt

)
Ir :
= MIr :S

t

Therefore, if St is stored at node r , Atr can be computed without

any communication.

On the other hand, computing Bt =
(
V t⊤St

)
requires communi-

cation across the whole cluster, since the rows ofV t
are distributed

across different nodes. Fortunately, if we assume that St is stored
at all nodes again, we can compute Bt in a much cheaper way.

Following block matrix multiplication rules, we can rewrite Bt as:

Bt = V t⊤St

=

[(
V t
J1:

)⊤
· · ·

(
V t
JN :

)⊤] 
StJ1:

...

StJN :


=

N∑
r=1

(
V t
Jr :

)⊤
StJr :
.

Note that the summand B̄tr ,
(
V t
Jr :

)⊤
StJr :

is a matrix of size k × d

and can be computed locally. As a result, communication is only

needed for summing up the matrices B̄tr of size k × d by using MPI

all-reduce operation, which is much cheaper than transmitting the

whole Vt of size n × k .

1
However, we should not choose an extremely small d , otherwise the the size of

sketched subproblem would become so small that it can hardly represent the original

subproblem, preventing NMF from converging to a good result. In practice, we can

set d = 0.1n for medium-sized matrices and d = 0.01n for large matrices ifm ≈ n.
Whenm and n differ a lot, e.g.,m ≪ n without loss of generality, we should not

apply sketching technique to the V subproblem (since solving theU subproblem is

much more expensive) and simply choose d =m ≪ n.

Now, the only remaining problem is the transmission of St . Since
St can be dense, even larger than V t

, broadcasting it across the

whole cluster can be quite expensive. However, it turns out that

we can avoid this. Recall that St is a randomly-generated matrix;

each node can generate exactly the same matrix, if we use the same

pseudo-random generator and the same seed. Therefore, we only

need to broadcast the random seed, which is just an integer, at

the beginning of the whole program. This ensures that each node

generates exactly the same random number sequence and hence

the same random matrices St at each iteration.

In short, the communication cost of each node is reduced from

O(nk) to O(dk) by adopting our sketching technique for the U -

subproblem. Likewise, the communication cost of eachV -subproblem

is decreased from O (mk) to O (d ′k). The general framework of our

DSANLS algorithm is listed in Algorithm 2.

Algorithm 2: Distributed SANLS on Node r

Initialize U 0

Ir :
, V 0

Jr :

Broadcast the random seed

for t = 0 to T − 1 do
Generate random matrix S t ∈ Rn×d

Compute Atr ← MIr :S t

Compute B̄tr ←
(
V t
Jr :

)⊤
S tJr :

All-Reduce: Bt ←
∑N
i=1

B̄ti
Update U t+1

Ir :
by solving minUIr :

∥Atr −UIr :Bt ∥

Generate random matrix S ′t ∈ Rm×d
′

Compute A′tr ←
(
M:Jr

)⊤ S ′t
Compute B̄′tr ←

(
U t
Ir :

)⊤
S ′tIr :

All-Reduce: B′t ←
∑N
i=1

B̄′ti
Update V t+1

Jr :
by solving minVJr :

∥A′tr −VJr :B′t ∥

end
return UT

Ir :
and VT

Jr :

3.5 Generation of Random Matrices
A key problem in Algorithm 2 is how to generate random matrices

St ∈ Rn×d and S ′t ∈ Rm×d
′

. Here we focus on generating a random

St ∈ Rd×n satisfying Assumption 1. The reason for choosing such

a random matrix is that the corresponding sketched problem would

be equivalent to the original problem on expectation; we will prove

this in Section 3.6.

Assumption 1. Assume the random matrices are normalized and
have bounded variance, i.e., there exists a constant σ 2 such that

E
[
StSt⊤

]
= I and V

[
StSt⊤

]
≤ σ 2

for all t , where I is the identity matrix.

Different options exist for such matrices, which have different

computation costs in forming sketched matrices Atr = MIr :S
t
and

B̄tr =
(
V t
Jr :

)⊤
StJr :

. Since MIr : is much larger than V t
Jr :

and thus

computing Atr is more expensive, we only consider the cost of

constructing Atr here.
The most classical choice for a random matrix is one with i.i.d.

Gaussian entries having mean 0 and variance 1/d . It is easy to show
that E

[
StSt⊤

]
= I . Besides, Gaussian random matrix has bounded

variance because Gaussian distribution has finite fourth-order mo-

ment. However, since each entry of such a matrix is totally random

and thus no special structure exists in St , matrix multiplication will

be expensive. That is, when givenMIr : of size |Ir | ×n, computing its

sketched matrix Atr = MIr :S
t
requires O(|Ir |nd) basic operations.

A seemingly better choice for St would be a subsampling random
matrix. Each column of such random matrix is uniformly sampled

from {e1, e2, . . . , en } without replacement, where ei ∈ R
n
is the

i-th canonical basis vector (i.e., a vector having its i-th element 1

and all others 0). We can easily show that such an St also satisfies

E
[
StSt⊤

]
= I and the variance V

[
StSt⊤

]
is bounded, but this

time constructing the sketched matrix Atr = MIr :S
t
only requires

O (|Ir |d). Besides, subsampling random matrix can preserve the

sparsity of original matrix. Hence, a subsampling random matrix

would be favored over a Gaussian random matrix by most appli-

cations, especially for very large-scale or sparse problems. On the

other hand, we observed in our experiments that a Gaussian ran-

dom matrix can result in a faster per-iteration convergence rate,

because each column of the sketched matrix Atr contains entries

from multiple columns of the original matrix and thus is more infor-

mative. Hence, it would be better to use a Gaussian matrix when the

sketch size d is small and thus a O(|Ir |nd) complexity is acceptable,

or when the network speed of the cluster is poor, hence we should

trade more local computation cost for less communication cost.

Although we only test two representative types of random ma-

trices (i.e., Gaussian and subsampling random matrices), our frame-

work is readily applicable for other choices, such as subsampled

randomized Hadamard transform (SRHT) [1, 26] and count sketch

[3, 5, 31]. The choice of random matrices is not the focus of this

paper and left for future investigation.

3.6 Solving Subproblems
Before describing how to solve subproblem (9), let us make an

important observation. As discussed in Section 2.3, the sketching

technique has been applied in solving linear systems before. How-

ever, the situation is different in matrix factorization. Note that for

the distributed matrix factorization problem we usually have

min

UIr :∈R
|Ir |×k
+

MIr : −UIr :V
t⊤

2

F , 0.

So, for the sketched subproblem (9), which can be equivalently

written as

min

UIr :∈R
|Ir |×k
+

(MIr : −UIr :V
t⊤) St

2

F ,

the non-zero entries of the residual matrix

(
MIr : −UIr :V

t⊤)
will

be scaled by the matrix St at different levels. As a consequence,

the optimal solution will be shifted because of sketching. This fact

alerts us that for SANLS, we need to updateU t+1
by exploiting the

sketched subproblem (9) to step towards the true optimal solution

and avoid convergence to the solution of the sketched subproblem.

3.6.1 Projected Gradient Descent. A natural method is to use one
step2 of projected gradient descent for the sketched subproblem:

U t+1

Ir :
= max

{
U t
Ir :
− ηt ∇UIr :

Atr −UIr :B
t

2

F

���
UIr :=U t

Ir :

, 0

}
= max

{
U t
Ir :
− 2ηt

[
U t
Ir :
BtBt⊤ −AtrB

t⊤
]
, 0

}
, (10)

where ηt > 0 is the step size and max{·, ·} denotes the entry-

wise maximum operation. In the gradient descent step (10), the

computational cost mainly comes from two matrix multiplications:

BtBt⊤ andAt,rB
t⊤

. Note thatAtr and B
t
are of sizes |Ir |×d andk×d

respectively, thus the gradient descent step takes O (kd(|Ir | + k))
in total.

To exploit the nature of this algorithm, we further expand the

gradient:

∇UIr :

Atr −UIr :B
t

2

F = 2

[
UIr :B

tBt⊤ −AtrB
t⊤]

(8)

=2

[
UIr :

(
V t⊤St

) (
V t⊤St

)⊤
−
(
MIr :S

t) (V t⊤St
)⊤]

=2

[
UIr :V

t⊤ (
StSt⊤

)
V t −MIr :

(
StSt⊤

)
V t] .

By taking the expectation of the above equation, and using the fact

E
[
StSt⊤

]
= I , we have:

E
[
∇UIr :

Atr −UIr :B
t

2

F

]
= 2

[
UIr :V

t⊤V t −MIr :V
t]

=∇UIr :

MIr : −UIr :V
t⊤

2

F ,

which means that the gradient of the sketched subproblem is equiv-

alent to the gradient of the original problem on expectation. There-

fore, such a step of gradient descent can be interpreted as a (gener-

alized) stochastic gradient descent (SGD) [29] method on the original

subproblem. Thus, according to the theory of SGD, we naturally

require the step sizes {ηt } to be diminishing, i.e., ηt → 0 as t
increases.

3.6.2 Proximal Coordinate Descent. However, it is well known
that the gradient descent method converges slowly, while the co-

ordinate descent method, namely the HALS method for NMF, is

quite efficient [8]. Still, because of its very fast convergence, HALS

should not be applied to the sketched subproblem directly because

it shifts the solution away from the true optimal solution. Therefore,

we would like to develop a method which resembles HALS but will

not converge towards the solutions of the sketched subproblems.

To achieve this, we add a regularization term to the sketched

subproblem (9). The new subproblem becomes:

min

UIr :∈R
|Ir |×k
+

Atr −UIr :B
t

2

F + µt

UIr : −U
t
Ir :

2

F
, (11)

where µt > 0 is a parameter. Such regularization is reminiscent to

the proximal point method [37] and parameter µt controls the step
size as 1/ηt in projected gradient descent. We therefore require

µt → +∞ to enforce the convergence of the algorithm, e.g., µt = t .
At each step of proximal coordinate descent, only one column

ofUIr :, sayUIr , j where j ∈ {1, 2, . . . ,k}, is updated:

min

UIr :j ∈R
|Ir |
+

Atr −UIr :jB
t
j : −

∑
l,j

UIr :lB
t
l :

2

F
+ µt

UIr :j −U
t
Ir :j

2

2

.

2
Note that we only apply one step of projected gradient descent here to avoid solution

shifted.

It is not hard to see that the above problem is still row-independent,

which means that each entry of the row vectorUIr :j can be solved

independently at each node. For example, for any i ∈ Ir , the solution
ofU t+1

i :j is given by:

U t+1

i :j = arg min

Ui :j ≥0

 (Atr)i : −Ui :jBtj : −∑
l,j

Ui :lB
t
l :

2

2

+ µt

Ui :j −U t
i :j

2

2

= max

{
µtU

t
i :j +

(
Atr

)
i : B

t⊤
j : −

∑
l,j Ui :lB

t
l :B

t⊤
j :

Btj :B
t⊤
j : + µt

, 0

}
. (12)

At each step of coordinate descent, we choose the column j from
{1, 2, . . . ,k} successively. When updating column j at iteration t ,
the columns l < j have already been updated and thusUIr :l = U

t+1

Ir :l ,

while the columns l > j are old soUIr :l = U
t
Ir :l .

The complete proximal coordinate descent algorithm for the U -

subproblem is summarized in Algorithm 3. When updating column

j , computing the matrix-vector multiplicationAtrB
t⊤
j : takes O(d |Ir |).

The whole inner loop takes O (k (d + |Ir |)) because one vector dot
product of length d is required for computing each summand and

the summation itself needs O (k |Ir |). Considering that there are

k columns in total, the overall complexity of coordinate descent

is O (k((k + d) |Ir | + kd)). Typically, we choose d > k , so the com-

plexity can be simplified to O (kd (|Ir | + k)), which is the same as

that of gradient descent.

Since proximal coordinate descent is much more efficient than

projected gradient descent, we adopt it as the default subproblem

solver within DSANLS.

Algorithm 3: Proximal Coordinate Descent for Local Subprob-

lem (9) on Node r

Parameter: µt > 0

for j = 1 to k do
T ← µtU t

Ir :j + A
t
r B

t⊤
j :

for l = 1 to j − 1 do
T ← T −

(
Btl :B

t⊤
j :

)
U t+1

Ir :l

end
for l = j + 1 to k do

T ← T −
(
Btl :B

t⊤
j :

)
U t
Ir :l

end

U t+1

Ir :j ← max

{
T /

(
Btj :B

t⊤
j : + µt

)
, 0

}
end
return U t+1

Ir :

4 THEORETICAL ANALYSIS
4.1 Complexity Analysis
We now analyze the computational and communication costs of

our DSANLS algorithm, when using subsampling random sketch

matrices. The computational complexity at each node is:

O
(generating S t︷︸︸︷

d +

constructing At
r and Bt︷︸︸︷

|Ir |d +

solving subproblem︷ ︸︸ ︷
kd(|Ir | + k)

)
= O (kd(|Ir | + k)) ≈ O

(
kd

(m
N
+ k

))
(13)

Moreover, as we have shown in Section 3.4, the communication

cost of DSANLS is O (kd).
On the other hand, for a classical implementation of distributed

HALS [7], the computational cost is

O (kn (|Ir | + k)) ≈ O
(
kn

(m
N
+ k

))
(14)

and the communication cost is O (kn) due to the all-gathering of

V t
’s.

Comparing the above quantities, we observe ann/d ≫ 1 speedup

of our DSANLS algorithm over HALS in both computation and

communication. However, we empirically observed that DSANLS

has a slower per-iteration convergence rate (i.e., it needs more

iterations to converge). Still, as we will show in the next section,

in practice, DSANLS is superior to alternative distributed NMF

algorithms, after taking all factors into account.

4.2 Convergence Analysis
Here we provide theoretical convergence guarantees for the pro-

posed SANLS and DSANLS algorithms. We show that SANLS and

DSANLS converge to a stationary point.

To establish convergence result, Assumption 2 is needed first.

Assumption 2. Assume all the iteratesU t andV t have uniformly
bounded norms, which means that there exists a constant R such that

∥U t ∥F ≤ R and ∥V t ∥F ≤ R

for all t .

We experimentally observed that this assumption holds in prac-

tice, as long as the step sizes used are not too large. Besides, As-

sumption 2 can also be enforced by imposing additional constraints,

e.g.:

Ui :l ≤
√

2∥M ∥F and Vj :l ≤
√

2∥M ∥F ∀i, j, l , (15)

with which we have R = max{m,n}k
√

2∥M ∥F . Such constraints

can be very easily handled by both of our projected gradient descent

and regularized coordinate descent solvers. Lemma 4.1 shows that

imposing such extra constraints does not prevent us from finding

the global optimal solution.

Lemma 4.1. If the optimal solution to the original problem (1)

exists, there is at least one global optimal solution in the domain (15).

Based on Assumptions 1 (see Section 3.5) and Assumption 2, we

now can formally show our main convergence result:

Theorem 4.2. Under Assumptions 1 and 2, if the step sizes satisfy
∞∑
t=1

ηt = ∞ and
∞∑
t=1

η2

t < ∞,

for projected gradient descent, or
∞∑
t=1

1/µt = ∞ and
∞∑
t=1

1/µ2

t < ∞,

for regularized coordinate descent, then SANLS and DSANLS with ei-
ther sub-problem solver will converge to a stationary point of problem
(1) with probability 1.

The proofs of Lemma 4.1 and Theorem 4.2 can be found in our

technical report [35].

Table 1: Statistics of Datasets
Task Dataset #Rows #Columns Non-zero values Sparsity

Video analysis BOATS 216,000 300 64,800,000 0%

Image processing

MIT CBCL FACE 2,429 361 876,869 0%

MNIST 70,000 784 10,505,375 80.86%

GISETTE 13,500 5,000 8,770,559 87.01%

Text mining Reuters(RCV1) 804,414 47,236 60,915,113 99.84%

Community detection DBLP Collaboration Network 317,080 317,080 2,416,812 99.9976%

5 EXPERIMENTAL EVALUATION
This section includes an experimental evaluation of our algorithm

on both dense and sparse real data matrices. The code can be down-

loaded from https://github.com/qianyuqiu79/DSANLS.

5.1 Datasets
We use real public datasets corresponding to different NMF tasks

in our evaluation. Their statistics are summarized in Table 1.

Video Analysis. NMF can be used on video data for background

subtraction (i.e., to detect moving objects) [17].We here use BOATS
3

video dataset [2], which includes boats moving through water. The

video has 15 fps and it is saved as a sequence of png files, whose

format is RGB with a frame size of 360×200. We use ‘Boats2’ which

contains one boat close to the camera for 300 frames and reshape

the matrix such that every RGB frame is a column of our matrix;

the final matrix is dense with size 216, 000 × 300.

Image Processing. The first dataset we use for this application
is MIT CBCL FACE DATABASE

4
as in [20]. To form the vectorized

matrix, we use all 2,429 face images (each with 19 × 19 pixels) in

the original training set. The second dataset is MINST
5
, which

is a widely used handwritten digits dataset. All 70,000 samples

including both training and test set are used to form the vectorized

matrix. The third one is GISETTE
6
, another widely used dataset in

handwritten digit recognition problem. We use all 13,500 pictures

in the training, validation, and test datasets and form the vectorized

matrix.

Text Mining. We use the Reuters document corpora
7
as in [39].

Reuters Corpus Volume I (RCV1) [22] is an archive of 804,414 man-

ually categorized newswire stories made available by Reuters, Ltd.

for research purposes. The official LYRL2004 chronological split is

utilized. Non-zero values contain cosine-normalized, log TF-IDF

vectors.

Community Detection. We convert the DBLP collaboration

network
8
into its adjacency matrix. It is a co-authorship graph

where two authors are connected if they have published at least

one paper together.

5.2 Setup
We conduct our experiments on the Linux cluster of our institute

with a total of 96 nodes. Each node contains 8-core Intelr Core
TM

i7-3770 CPU@ 1.60GHz cores and 16 GB of memory. Our algorithm

is implemented in C using the IntelrMath Kernel Library (MKL)

3
http://visal.cs.cityu.edu.hk/downloads/

4
http://cbcl.mit.edu/software-datasets/FaceData2.html

5
http://yann.lecun.com/exdb/mnist/

6
http://clopinet.com/isabelle/Projects/NIPS2003/#challenge

7
we use the second version RCV1-v2, which can be found in http://jmlr.csail.mit.edu/

papers/volume5/lewis04a/

8
http://snap.stanford.edu/data/com-DBLP.html

and Message Passing Interface (MPI). We use 10 nodes by default.

Since tuning the factorization rank k is outside the scope of this

paper, we use 100 as default value of k . Because of the large sizes
of RCV1 and DBLP, we only use subsampling random matrices for

them, as the use of Gaussian random matrices is too slow.

We evaluate DSANLS with subsampling and Gaussian random

matrices, denoted by DSANLS/S and DSANLS/G, respectively, us-

ing proximal coordinate descent as the default subproblem solver.

As mentioned in [14, 15], it is unfair to compare with a Hadoop

implementation. We only compare DSANLS with MPI-FAUN
9
(all

MPI-FAUN-MU, MPI-FAUN-HALS, and MPI-FAUN-ABPP imple-

mentations), which is the first and the state-of-the-art C++/MPI

implementation with MKL and Armadillo. For parameters pc and pr
in MPI-FAUN, we use the optimal values for each dataset, according

to the recommendations in [14, 15].

5.3 Results
5.3.1 Performance Comparison. We use the relative error of the

low rank approximation compared to the original matrix to measure

the effectiveness of NMF by DSANLS with MPI-FAUN. This error

measure was been widely used in previous work [14, 15, 17] and is

formally defined as

M −UV⊤

F /∥M ∥F .
Since the time for each iteration is significantly reduced by our

proposed DSANLS compared to MPI-FAUN, in Figure 2, we show

the relative error over time for DSANLS and MPI-FAUN implemen-

tations of MU, HALS, and ANLS/BPP on the 6 real public datasets.

Observe that DSANLS/S performs best in all 6 datasets, although

DSANLS/G has faster per-iteration convergence rate. MU converges

relatively slowly and usually has a bad convergence result; on the

other hand HALS may oscillate in the early rounds
10
, but converges

quite fast and to a good solution. Surprisingly, although ANLS/BPP

is considered to be the state-of-art NMF algorithm, it does not per-

form well in all 6 datasets. As we will see, this is due to its high

per-iteration cost.

5.3.2 Scalability Comparison. We vary the number of nodes

used in the cluster from 2 to 16 and record the average time for

100 iterations of each algorithm. Figure 3 shows the reciprocal

of per-iteration time as a function of the number of nodes used.

All algorithms exhibit good scalability for all datasets (nearly a

straight line), except for FACE (i.e., Figure 3(a)). FACE is the smallest

dataset, whose number of columns is 300, while k is set to 100 by

default. When n/N is smaller than k , the complexity is dominated

by k , hence, increasing the number of nodes does not reduce the

computational cost, but may increase the communication overhead.

9
public code available at https://github.com/ramkikannan/nmflibrary

10
HALS does not guarantee the objective function to decrease monotonically.

https://github.com/qianyuqiu79/DSANLS
http://visal.cs.cityu.edu.hk/downloads/
http://cbcl.mit.edu/software-datasets/FaceData2.html
http://yann.lecun.com/exdb/mnist/
http://clopinet.com/isabelle/Projects/NIPS2003/#challenge
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/
http://snap.stanford.edu/data/com-DBLP.html
https://github.com/ramkikannan/nmflibrary

0 10 20 30 40
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
E

rr
or

DSANLS/S
DSANLS/G
MU
HALS
ANLS/BPP

(a) BOATS

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
E

rr
or

DSANLS/S
DSANLS/G
MU
HALS
ANLS/BPP

(b) FACE

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
E

rr
or

DSANLS/S
DSANLS/G
MU
HALS
ANLS/BPP

(c) MNIST

0 1 2 3 4 5 6 7 8
Time (s)

0.5

0.6

0.7

0.8

0.9

1.0

R
el

at
iv

e
E

rr
or

DSANLS/S
DSANLS/G
MU
HALS
ANLS/BPP

(d) GISETTE

0 100 200 300 400 500
Time (s)

0.80

0.85

0.90

0.95

1.00

1.05

R
el

at
iv

e
E

rr
or

SANLS/S
MU
HALS
ANLS/BPP

(e) RCV1

0 10 20 30 40 50 60 70 80
Time (s)

0.94

0.96

0.98

1.00

1.02

1.04

R
el

at
iv

e
E

rr
or

SANLS/S
MU
HALS
ANLS/BPP

(f) DBLP

Figure 2: Relative error over time

2 4 6 8 10 12 14 16
Node number

50

100

150

200

1/
tim

e
(s
−

1)

DSANLS/S
DSANLS/G
MU
HALS
ANLS/BPP

(a) FACE

2 4 6 8 10 12 14 16
Node number

0

5

10

15

20

1/
tim

e
(s
−

1)

DSANLS/S
DSANLS/G
MU
HALS
ANLS/BPP

(b) MNIST

2 4 6 8 10 12 14 16
Node number

0.00

0.05

0.10

0.15

0.20

0.25

1/
tim

e
(s
−

1)

DSANLS/S
MU
HALS
ANLS/BPP

(c) RCV1

2 4 6 8 10 12 14 16
Node number

0.0

0.2

0.4

0.6

0.8

1.0

1/
tim

e
(s
−

1) DSANLS/S
MU
HALS
ANLS/BPP

(d) DBLP

Figure 3: Reciprocal of per-iteration time as a function of cluster size

In general, we can observe that DSANLS/Subsampling has the

lowest per-iteration cost compared to all other algorithms, and

DSANLS/Gaussian has similar cost to MU and HALS. ANLS/BPP

has the highest per-iteration cost, explaining the bad performance

of ANLS/BPP in Figure 2.

5.3.3 Performance Varying the Value of k . Although tuning the

factorization rank k is outside the scope of this paper, we compare

the performance of DSANLS with MPI-FAUN varying the value of

k from 20 to 500 on RCV1. Observe from Figure 4 and Figure 2(e)

that DSANLS outperforms the state-of-art algorithms for all values

of k . Naturally, the relative error of all algorithms decreases with

the increase of k , but they also take longer to converge.

5.3.4 Comparison with Projected Gradient Descent. In Section

3.6, we claimed that our proximal coordinate descent approach

(denoted as DSANLS-RCD) is faster than projected gradient descent

(also presented in the same section, denoted as DSANLS-PGD).

Figure 5 confirms the difference in the convergence rate of the two

approaches regardless of the random matrix generation approach.

6 CONCLUSION
In this paper, we presented a novel distributed NMF algorithm

that can be used for scalable analytics of high dimensional matrix

data. Our approach follows the general framework of ANLS, but

utilizes matrix sketching to reduce the problem size of each NLS

subproblem. We discussed and compared two different approaches

for generating random matrices (i.e. Gaussian and subsampling

random matrices). Then, we presented two subproblem solvers for

our general framework, and theoretically proved that our algorithm

is convergent. We analyzed the per-iteration computational and

communication cost of our approach and its convergence, showing

its superiority compared to the previous state-of-the-art. Our ex-

periments on several real datasets show that our method converges

fast to an accurate solution and scales well with the number of

cluster nodes used. In the future, we plan to study the application

of DSANLS to dense or sparse tensors.

ACKNOWLEDGEMENTS
This work is partially supported by GRF Grants 17201414 and

17205015 from Hong Kong Research Grant Council. It has also

received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement No 657347.

REFERENCES
[1] N. Ailon and B. Chazelle. Approximate nearest neighbors and the fast johnson-

lindenstrauss transform. In STOC, pages 557–563. ACM, 2006.

0 20 40 60 80 100
Time (s)

0.90

0.92

0.94

0.96

0.98

1.00

R
el

at
iv

e
E

rr
or

DSANLS/S
MU
HALS
ANLS/BPP

(a) k=20

0 50 100 150 200 250
Time (s)

0.88

0.90

0.92

0.94

0.96

0.98

1.00

R
el

at
iv

e
E

rr
or

DSANLS/S
MU
HALS
ANLS/BPP

(b) k=50

0 200 400 600 800 1000 1200 1400
Time (s)

0.75

0.80

0.85

0.90

0.95

1.00

R
el

at
iv

e
E

rr
or

DSANLS/S
MU
HALS
ANLS/BPP

(c) k=200

0 1000 2000 3000 4000
Time (s)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
el

at
iv

e
E

rr
or

DSANLS/S
MU
HALS
ANLS/BPP

(d) k=500
Figure 4: Relative error over time, varying k value

0 20 40 60 80 100
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

R
el

at
iv

e
E

rr
or

DSANLS-RCD/S
DSANLS-RCD/G
DSANLS-PGD/S
DSANLS-PGD/G

(a) BOATS

0 20 40 60 80 100
Iteration

0.00

0.02

0.04

0.06

0.08

0.10
R

el
at

iv
e

E
rr

or

DSANLS-RCD/S
DSANLS-RCD/G
DSANLS-PGD/S
DSANLS-PGD/G

(b) FACE

0 20 40 60 80 100
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
el

at
iv

e
E

rr
or

DSANLS-RCD/S
DSANLS-RCD/G
DSANLS-PGD/S
DSANLS-PGD/G

(c) GISETTE

0 20 40 60 80 100
Iteration

0.80

0.85

0.90

0.95

1.00

1.05

R
el

at
iv

e
E

rr
or

DSANLS-RCD/S
DSANLS-PGD/S

(d) RCV1

Figure 5: Relative error per-iteration of different subproblem solvers

[2] A. B. Chan, V. Mahadevan, and N. Vasconcelos. Generalized stauffer–grimson

background subtraction for dynamic scenes. Machine Vision and Applications,
22(5):751–766, 2011.

[3] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data

streams. Theoretical Computer Science, 312(1):3–15, 2004.
[4] A. Cichocki and P. Anh-Huy. Fast local algorithms for large scale nonnegative

matrix and tensor factorizations. IEICE transactions on fundamentals of electronics,
communications and computer sciences, 92(3):708–721, 2009.

[5] K. L. Clarkson and D. P. Woodruff. Low rank approximation and regression in

input sparsity time. In STOC, pages 81–90. ACM, 2013.

[6] M. E. Daube-Witherspoon and G. Muehllehner. An iterative image space recon-

struction algorthm suitable for volume ect. IEEE transactions on medical imaging,
5(2):61–66, 1986.

[7] J. P. Fairbanks, R. Kannan, H. Park, and D. A. Bader. Behavioral clusters in

dynamic graphs. Parallel Computing, 47:38–50, 2015.
[8] N. Gillis. The why and how of nonnegative matrix factorization. Regularization,

Optimization, Kernels, and Support Vector Machines, 12(257), 2014.
[9] R. M. Gower and P. Richtárik. Randomized iterative methods for linear systems.

SIAM Journal on Matrix Analysis and Applications, 36(4):1660–1690, 2015.
[10] L. Grippo and M. Sciandrone. On the convergence of the block nonlinear gauss–

seidel method under convex constraints. Operations research letters, 26(3):127–136,
2000.

[11] D. Grove, J. Milthorpe, and O. Tardieu. Supporting array programming in x10. In

ARRAY, page 38. ACM, 2014.

[12] N. Guan, D. Tao, Z. Luo, and B. Yuan. Nenmf: an optimal gradient method

for nonnegative matrix factorization. IEEE Transactions on Signal Processing,
60(6):2882–2898, 2012.

[13] K. Kanjani. Parallel non negative matrix factorization for document clustering.

CPSC-659 (Parallel and Distributed Numerical Algorithms) course. Texas A&M
University, Tech. Rep, 2007.

[14] R. Kannan, G. Ballard, and H. Park. A high-performance parallel algorithm for

nonnegative matrix factorization. In PPoPP, page 9. ACM, 2016.

[15] R. Kannan, G. Ballard, and H. Park. Mpi-faun: An mpi-based framework

for alternating-updating nonnegative matrix factorization. arXiv preprint
arXiv:1609.09154, 2016.

[16] H. Kim and H. Park. Nonnegative matrix factorization based on alternating

nonnegativity constrained least squares and active set method. SIAM journal on
matrix analysis and applications, 30(2):713–730, 2008.

[17] J. Kim, Y. He, and H. Park. Algorithms for nonnegative matrix and tensor

factorizations: A unified view based on block coordinate descent framework.

Journal of Global Optimization, 58(2):285–319, 2014.
[18] J. Kim and H. Park. Fast nonnegative matrix factorization: An active-set-like

method and comparisons. SIAM Journal on Scientific Computing, 33(6):3261–3281,
2011.

[19] I. Kotsia, S. Zafeiriou, and I. Pitas. A novel discriminant non-negative matrix fac-

torization algorithm with applications to facial image characterization problems.

IEEE Transactions on Information Forensics and Security, 2(3):588–595, 2007.
[20] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix

factorization. Nature, 401(6755):788–791, 1999.

[21] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In

NIPS, pages 556–562, 2001.
[22] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new benchmark collection for

text categorization research. JMLR, 5(Apr):361–397, 2004.
[23] R. Liao, Y. Zhang, J. Guan, and S. Zhou. Cloudnmf: a mapreduce implementation

of nonnegative matrix factorization for large-scale biological datasets. Genomics,
proteomics & bioinformatics, 12(1):48–51, 2014.

[24] C.-J. Lin. Projected gradient methods for nonnegative matrix factorization. Neural
computation, 19(10):2756–2779, 2007.

[25] C. Liu, H.-c. Yang, J. Fan, L.-W. He, and Y.-M. Wang. Distributed nonnegative

matrix factorization for web-scale dyadic data analysis on mapreduce. In WWW,

pages 681–690. ACM, 2010.

[26] Y. Lu, P. Dhillon, D. P. Foster, and L. Ungar. Faster ridge regression via the

subsampled randomized hadamard transform. In NIPS, pages 369–377, 2013.
[27] E. Mejía-Roa, D. Tabas-Madrid, J. Setoain, C. García, F. Tirado, and A. Pascual-

Montano. Nmf-mgpu: non-negative matrix factorization on multi-gpu systems.

BMC bioinformatics, 16(1):1, 2015.
[28] X. Meng, J. Bradley, B. Yuvaz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman,

D. Tsai, M. Amde, S. Owen, et al. Mllib: Machine learning in apache spark. JMLR,
17(34):1–7, 2016.

[29] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approx-

imation approach to stochastic programming. SIAM Journal on optimization,
19(4):1574–1609, 2009.

[30] V. P. Pauca, F. Shahnaz, M. W. Berry, and R. J. Plemmons. Text mining using

non-negative matrix factorizations. In SDM, pages 452–456. SIAM, 2004.

[31] N. Pham and R. Pagh. Fast and scalable polynomial kernels via explicit feature

maps. In ACM SIGKDD, pages 239–247. ACM, 2013.

[32] M. Pilanci and M. J. Wainwright. Iterative hessian sketch: Fast and accurate

solution approximation for constrained least-squares. JMLR, pages 1–33, 2015.
[33] M. Pilanci and M. J. Wainwright. Newton sketch: A linear-time optimization

algorithm with linear-quadratic convergence. arXiv preprint arXiv:1505.02250,
2015.

[34] I. Psorakis, S. Roberts, M. Ebden, and B. Sheldon. Overlapping community

detection using bayesian non-negative matrix factorization. Physical Review E,
83(6):066114, 2011.

[35] Y. Qian, C. Tan, N. Mamoulis, and D. W. Cheung. Dsanls: Accelerating distributed

nonnegative matrix factorization via sketching. Technical report, HKU CS, 2017.

[36] S. A. Robila and L. G. Maciak. A parallel unmixing algorithm for hyperspectral

images. In Optics East, pages 63840F–63840F. International Society for Optics

and Photonics, 2006.

[37] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM
journal on control and optimization, 14(5):877–898, 1976.

[38] F. Wang and P. Li. Efficient nonnegative matrix factorization with random

projections. In SDM, pages 281–292. SIAM, 2010.

[39] W. Xu, X. Liu, and Y. Gong. Document clustering based on non-negative matrix

factorization. In SIGIR, pages 267–273. ACM, 2003.

[40] J. Yin, L. Gao, and Z. M. Zhang. Scalable nonnegative matrix factorization with

block-wise updates. In ECML-PKDD, pages 337–352. Springer, 2014.
[41] R. Zdunek and A. Cichocki. Non-negative matrix factorization with quasi-newton

optimization. In ICAISC, pages 870–879. Springer, 2006.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 NMF Algorithms
	2.2 Distributed NMF
	2.3 Matrix Sketching

	3 DSANLS: Distributed Sketched ANLS
	3.1 Notations
	3.2 Data Partitioning
	3.3 SANLS: Sketched ANLS
	3.4 DSANLS: Distributed SANLS
	3.5 Generation of Random Matrices
	3.6 Solving Subproblems

	4 Theoretical Analysis
	4.1 Complexity Analysis
	4.2 Convergence Analysis

	5 Experimental Evaluation
	5.1 Datasets
	5.2 Setup
	5.3 Results

	6 Conclusion
	References

