
Reverse Nearest Neighbor Search
in Metric Spaces

Yufei Tao, Man Lung Yiu, and Nikos Mamoulis

Abstract—Given a set D of objects, a reverse nearest neighbor (RNN) query returns the objects o in D such that o is closer to a query

object q than to any other object in D, according to a certain similarity metric. The existing RNN solutions are not sufficient because

they either 1) rely on precomputed information that is expensive to maintain in the presence of updates or 2) are applicable only when

the data consists of “Euclidean objects” and similarity is measured using the L2 norm. In this paper, we present the first algorithms for

efficient RNN search in generic metric spaces. Our techniques require no detailed representations of objects, and can be applied as

long as their mutual distances can be computed and the distance metric satisfies the triangle inequality. We confirm the effectiveness

of the proposed methods with extensive experiments.

Index Terms—Reverse nearest neighbor, metric space.

�

1 INTRODUCTION

A reverse nearest neighbor (RNN) query returns objects in
a data set that have a query object q as their nearest

neighbors (NN) respectively, according to some similarity
metric. Consider, for example, Fig. 1a where the data set
consists of 4 points p1, . . . , p4. Assuming that the similarity
between two points corresponds to their Euclidean dis-
tance, the RNN query q (the black dot) returns p1 and p2. In
particular, p1 (similarly, p2) is a result because q is its
NN—p1 is closer to q than to any other object in the data set.
It is important to note that the NN of q (i.e., p3) is not
necessarily the RNN of q (the NN of p3 is p4, instead of q).
The concept can be easily generalized to “reverse k nearest
neighbors” (RkNN), i.e., a point p is an RkNN of a query
point q if q is one of the k NNs of p.

RNN processing has received considerable attention in
the past few years [2], [11], [12], [17], [18], [19], [20] because
it is a fundamental operation in data mining [14].
Intuitively, the RNNs of an object o are those objects on
which o has significant “influence” (by being their nearest
neighbors). Such “influence sets” may lead to useful
observations on the correlation among data, as shown by
Korn and Muthukrishnan in their pioneering paper [11].
Indeed, RNN search is inherent to any applications where
the similarity between two objects can be quantified into a
single value, using an appropriate evaluating process.

The first motivation of this paper is that, except for
several methods relying on precomputation (and, thus,
incurring expensive space/update overhead), the existing
solutions have rather limited applicability. As discussed in
the next section, they assume that similarity is computed
according to the L2 norm (i.e., Euclidean distance), which is

not true for many applications in practice. We illustrate this
using two representative applications given in [11].

Application 1 (business location planning). Consider
evaluating the impact of opening a supermarket at a
selected location. For this purpose, the manager would
examine how many residential areas would find the new
outlet as their nearest choice. The traveling distance,
obviously, is not the Euclidean distance between a
residential area and the supermarket. Its precise computa-
tion should take into account the underlying road network,
i.e., the traveling distance is the length of the shortest path
connecting the two locations.

Application 2 (profile-based marketing). Consider that
a cell phone company has collected the profiles of customers
regarding the services they prefer. To predict the popularity
of a new plan, the market analyst would like to know how
many profiles have the plan as their best match, against the
existing plans in the market. Most likely, Euclidean distance
is not the best metric for capturing the matching degree of a
profile.

Our second motivation is that, somewhat surprisingly,
the existing research on RNN processing targets only
“Euclidean objects,” which can be represented as points in
a multidimensional space, where an RNN query can be
accelerated by deploying various geometric properties to
effectively prune the search space. Unfortunately, these
properties are restricted to Euclidean spaces, rendering the
previous methods inapplicable to complex data (such as
time series, DNA sequences, etc.) that do not have obvious
Euclidean modeling. This problem is currently preventing
the analysis of such data using the data mining tools [14]
based on RNN search.

Application 3 (clustering and outlier detection). Since it
is difficult to visualize metric data, we use a Euclidean
example in Fig 1b (the discussion extends to metric spaces
directly). Points in the two clusters at the bottom of the
figure are very close to each other, whereas objects’ mutual
distances are relatively larger for the cluster at the top.
Nanopoulos et al. [14] suggest that, given an appropriate
value of k, points that do not have any RkNN are outliers (an
outlier is an object that does not belong to any cluster). For

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006 1

. Y. Tao is with the City University of Hong Kong, Tat Chee Avenue, Hong
Kong. E-mail: taoyf@cs.cityu.edu.hk.

. M.L. Yiu and Nikos Mamoulis are with the University of Hong Kong,
Pofulam Road, Hong Kong. E-mail: {myliu2, nikos}@cs.hku.hk.

Manuscript received 11 May 2005; revised 5 Dec. 2005; accepted 7 Apr. 2006;
published online 19 June 2006.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0182-0505.

1041-4347/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

example, for k ¼ 3, points A and B are outliers in Fig. 1b. In
particular, A is a global outlier whereas B is a local outlier.1

The rest of this paper is organized as follows: Section 2
reviews the previous results that are directly related to ours.
Section 3 formally defines the problem and clarifies several
properties fundamental to our techniques. Section 4
elaborates the detailed algorithms, whose performance is
improved in Section 5 with statistics. Section 6 presents the
results of our experimental evaluation, and Section 7
concludes the paper with directions for future work.

2 RELATED WORK

Section 2.1 first describes the previous RNN solutions in
Euclidean spaces and points out their defects. Then,
Section 2.2 reviews the existing indexes in metric spaces.

2.1 Euclidean RNN Algorithms

Early RNN algorithms [11], [12], [13], [20] are based on
precomputation. For each data point p, such a method
materializes its NN distance, equal to the distance from p to
its nearest point in the data set. Then, checking whether p is
the RNN of a query q can be easily achieved by examining if
q falls in the circle that centers at p and has a radius equal to
the NN distance of p. The NN distances of all objects,
however, occupy considerable space and require expensive
maintenance overhead whenever an object is inserted or
deleted.

We are interested in solutions that do not require
precomputation. The first algorithm of this type is due to
Stanoi et al. [18], who observe an interesting connection
between the RNNs of a point and its “constrained nearest
neighbors” [8] in various subregions of the universe.
Unfortunately, their approach is limited to 2D spaces and
cannot be applied to higher dimensionalities.

An any-dimensionality solution TPL is developed in [19].
To illustrate its rationale, consider points p and q in Fig. 2a.
Let us denote ?ðp; qÞ as the perpendicular bisector (accord-
ing to Euclidean distance) of the segment connecting p
and q. The bisector cuts the data space into two half-planes.
Any other point p0 that falls in the half-plane containing p
cannot be an RNN of q. This is because at least p is closer to
p0 than q is, and hence, q is not the NN of p0.

Based on this observation, TPL finds the RNNs of a
query q by continuously truncating the search space. We
illustrate its idea with Fig. 2b, using the same data as in
Fig. 1b. Applying the best-first search paradigm [9], TPL
assumes an R-tree [1] on the data set and examines the
objects in ascending order of their distances to q. In this
example, the first point inspected is p3, which is added to a
candidate set Scan. Then, TPL obtains the bisector ?ðq; p3Þ
(i.e., line l1), and truncates the data space (box ABCD) into a
trapezoid EDCF , where E (F) is the intersection between l1
and the left (right) boundary of the universe. Note that,
other potential RNNs can lie only in EDCF since, by the
reasoning illustrated in Fig. 2a, no point in the half-plane
bounded by l1 containing p3 can possibly be a result
(therefore, p4 does not need to be considered).

Next, among the objects in EDCF , TPL identifies the
point p1 with the smallest distance to q, and includes it in
Scan. The bisector ?ðp1; qÞ (line l2) further shrinks the search
region (from EDCF) to quadrilateral GHCF , where G
(or H) is the intersection between l2 and l1 (or the lower
edge of the universe). Finally, TPL adds p2 as a candidate
(since it is the only point in GHCF) and cuts the search
region into GHJI.

Since GHJI does not cover any data point, TPL enters
the next “refinement step,” where it verifies whether each
candidate in Scan is indeed a result. For this purpose, it
simply retrieves the actual NN of the candidate and
compares it with q. In Fig. 2, for instance, p3 is a “false
hit” because it is closer to its NN p4 than to q. The other
candidates p1 and p2, on the other hand, are confirmed to be
the final RNNs.2

Clearly, TPL is restricted to Euclidean objects because
bisectors are simply not defined for objects that cannot be
represented as multidimensional vectors. Furthermore,
even in Euclidean spaces, TPL has a serious defect:
truncating the current search region (using the bisector
introduced by a new candidate) can be computationally
expensive in high-dimensional spaces.

To explain this, note that, given two d-dimensional
points p1, p2, their perpendicular bisector under an
Lp norm conforms to

Xd
i¼1

ðjx½i� � p1½i�jÞp ¼
Xd
i¼1

ðjx½i� � p2½i�jÞp; ð1Þ

where x is any point on the bisector and x½i� (1 � i � d) its
coordinate on the ith dimension (similarly for p1½i� and
p2½i�). The bisector in general is a complex hypercurve (a

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

Fig. 1. RNN definition and its relevance to data mining. (a) An example.

(b) Clustering and outlier detection.

1. A global outlier has the largest distance to its nearest neighbor in the
data set [15]. Such outliers can be found by performing a NN query for each
object. A local outlier [4] does not have this property, e.g., B has a smaller
NN-distance than the points in the upper cluster. Instead, a local outlier
demonstrates irregular patterns compared to the data in its neighborhood.
Nanopoulos et al. [14] propose an algorithm for discovering local outliers
with RNN retrieval.

Fig. 2. The TPL algorithm. (a) The basic idea. (b) An example.

2. TPL adopts more complex algorithms to combine the filter and
refinement phases (see [19] for details).

d-dimensional polynomial with degree p� 1) and, as a
result, the truncated search region (maintained during the
execution of TPL) becomes excessively complex polytopes
bounded by these hypercurves. The truncating process
requires computing the intersection between a curve
(described by (1)) and such a polytope, which is extremely
difficult in high-dimensional spaces (in fact, the problem is
already very hard in a 3D space [3]).

The authors of [19] remedy this problem by approximat-
ing the polytope with a hyper-rectangle. Unfortunately, the
approximation is applicable only to the L2 norm. Deriving
the corresponding approximation for Lp norms with p 6¼ 2
is much more challenging. Furthermore, even if the
approximation for a particular Lp norm can be derived, it
is not applicable to another Lp0 norm with p0 6¼ p, which,
hence, requires its own approximation. The implication is
that TPL cannot support arbitrary Lp norms in a uniform
manner, but requires special (difficult) implementation for
each value of p. The techniques proposed in this paper, on
the other hand, handle all types (non-Euclidean/Euclidean)
of objects and distance metrics (satisfying the triangle
inequality) with exactly the same algorithms.

Among other RNN studies, Singh et al. [17] propose an
approximate algorithm, which cannot guarantee the exact
results. Finally, Benetis et al. [2] address RNN processing on
moving objects. As with the above methods, these algo-
rithms are applicable to Euclidean objects only.

2.2 Metric Space Indexing

The problem of indexing objects in a generic metric space
has been extensively studied and numerous effective
solutions exist, as discussed in an excellent survey [10].
These indexes utilize only objects’ mutual distances, and do
not require the detailed information of individual objects. In
this paper, we focus on the M-tree [6], since it is a dynamic
structure specifically designed for external-memory envir-
onments.

In an M-tree, an intermediate entry e records 1) a routing
object e:RO that is a selected object in the subtree sube of e, 2)
a covering radius e:r that equals the maximum distance
between e and the objects in sube, and 3) a parent distance
e:pD corresponding to the distance between e and the
routing object of the parent entry ep referencing the node
containing e. Obviously, all the objects in sube lie in the
cluster sphere of e that centers at its routing object, and has
radius e:r. A leaf entry o, on the other hand, stores the
details of an object and its parent distance o:pD with respect
to its parent entry. No covering radius is defined for leaf
entries.

We illustrate the above definitions using a Euclidean
data set containing nine points o1, . . . , o9 (Fig. 3). The circles
demonstrate the cluster spheres of the nonleaf entries. For
instance, e1 is associated with routing object o1 (¼ e1:RO),
its covering radius e1:r equals the distance dðo1; o2Þ between
o1 and o2, and parent distance e1:pD corresponds to
dðe1:RO; e5:ROÞ. Similarly, the routing object of e5 is o4,
e5:r is equivalent to dðe5:RO; o2Þ, and e5:pD ¼ 1 (since e5 is
a root entry). As leaf entry examples, consider the child
node of e1, where the parent distance o1:pD for o1 is 0
(because o1 is the routing object of e1), while o2:pD and
o3:pD equal dðe1:RO; o2Þ and dðe1:RO; o3Þ, respectively.
Ciaccia et al. [7] point out that the M-tree construction
algorithms aim at minimizing the overlap among the cluster
spheres of the intermediate entries at the same level of the
tree (e.g., in Fig. 3, there is little overlap among the cluster
spheres of e1, e2, e3 and e4).

All the query algorithms of M-trees are based on
minimum distances formulated for intermediate entries.
Specifically, the minimum distance minDðe; qÞ of an
entry e with respect to a query object q equals the smallest
possible distance between q and any object in the subtree of
e, as can be derived only from the information stored in e.
Specifically (assuming the distance metric satisfies the
triangle inequality),

minDðe; qÞ ¼ dðe:RO; qÞ � e:r if dðe:RO; qÞ > e:r
0 otherwise:

�
ð2Þ

The equation can be intuitively understood with an analogy
to calculating the minimum distance between a point q and
a circle centering at e:RO with radius e:r.

We demonstrate query processing with minD by
explaining the best-first algorithm [9], [10] for nearest
neighbor search. Assume that we want to find the NN of
object o9 in Fig. 3. The search starts by inserting the root
entries of the M-tree into a min-heap H, using their
minimum distances to o9 as the sorting key (the sorted
order is H ¼ fe6; e5g). Then, the algorithm removes the top
entry e6 of H and accesses its child node whose entries are
also added to H in the same manner (now H ¼ fe4; e3; e5g).
Similarly, the next node visited is (the child of) e4, en-
heaping the objects encountered there (o9 is not en-heaped
because it is the query): H ¼ fo8, e3, e5g. Since the top of H
is an object o8, the algorithm reports it as the final answer
and terminates. Note that the minimum distance from o9 to
any remaining entry in H is larger than dðo9; o8Þ, indicating
that no other object can be closer to o9 (than o8).

Although the above discussion uses the M-tree as the
representative metric index, it is worth mentioning that the
NN algorithms of other metric indexes follow similar
rationales. In particular, the essence of these algorithms is
to derive upper and lower bounds about the distance
between the query and any object in a subtree. The index is
traversed in a depth-first [16] or best-first order, guided by
the upper/lower bounds. A subtree is pruned if we can
assert that it cannot contain any query result. We refer our
readers to [10], where the authors present a detailed
analysis of all the upper/lower bounds and capture them
into four crucial lemmas.

3 PROBLEM DEFINITION AND CHARACTERISTICS

Consider a database D with jDj objects o1, o2, . . . , ojDj. The
similarity between two objects oi, oj is defined as their
distance dðoi; ojÞ, i.e., oi and oj are more similar if dðoi; ojÞ is
smaller. Function d is a metric, meaning that it satisfies the
triangle inequality dðoi; ojÞ � dðoi; okÞ þ dðok; ojÞ, for arbi-
trary oi, oj, and ok. For each object o 2 D, we define its

TAO ET AL.: REVERSE NEAREST NEIGHBOR SEARCH IN METRIC SPACES 3

Fig. 3. An M-tree example.

kNN-distance as the distance between o and its kth NN in
D� fog (i.e., o cannot be a NN of itself).

Given a query object q and a parameter k, a reverse k
nearest neighbor (RkNN) query retrieves all objects o from D
such that dðo; qÞ is smaller than the kNN-distance of o. Our
objective is to minimize the I/O and CPU cost of such
queries.

We make three assumptions: First, except for their
mutual distances, no other information about the objects
can be deployed to process a query. Second, an M-tree has
been constructed on D. Third, the parameter k of an RkNN
query is smaller than the minimum node fanout fmin of the
M-tree, i.e., the smallest number of entries in a node (if it is
not the root). In fact, practical values of k are expected to be
fairly small (e.g., less than 10 [11], [19]), while a typical fmin
is at the order of 100. We will briefly explain how to solve a
query with k > fmin in Section 4.3, but such queries are not
the focus of optimization.

Query processing in metric spaces is inherently more
difficult (than in Euclidean spaces), due to the lack of
geometric properties (e.g., the bisector rules in Fig. 2 are no
longer applicable). In the sequel, we design alternative
pruning heuristics following a distance-based strategy.
Section 3.1 first introduces the basic concept of max
k-nearest neighbor distance. Based on this concept,
Sections 3.2 and 3.3 explain the detailed heuristics, focusing
on intermediate and leaf entries, respectively. Table 1 lists
the symbols to be used frequently in the discussion.

3.1 Max k Nearest Neighbor Distance

We define the max-k-nndist of an object o, denoted as
maxNDkðoÞ, as any value larger than the kNN-distance of o.
Similarly, for an intermediate entry e in the M-tree,
its max-k-nndist maxNDkðeÞ can be any value larger than
the kNN-distances of all objects in the subtree sube of e.
Obviously, the values of maxNDkðeÞ and maxNDkðoÞ are
not unique.

Our RNN algorithms originate from a simple observation:

Lemma 1. The subtree sube of an intermediate entry e cannot
contain any result of an RkNN query q if the minimum dis-
tance minDðe; qÞ between e and q is at least maxNDkðeÞ.
Similarly, an object o cannot satisfy q if dðo; qÞ � maxNDkðoÞ.

Proof. Obvious from the definitions of minDðe; qÞ,
maxNDkðeÞ, and maxNDkðoÞ. tu

Designing pruning heuristics based on Lemma 1 is not
trivial. We must derive values of maxNDkðoÞ and
maxNDkðeÞ that can be efficiently calculated and, yet, are
as low as possible to obtain strong pruning power. Ideally,
maxNDkðoÞ and maxNDkðeÞ should match their lower
bounds, equal to the actual kNN distance of o and the largest
kNN distance of all objects in sube, respectively. Unfortu-
nately, as will be explained in Section 5.4, achieving the
lower bounds is not practical, since they require expensive
overhead to compute and maintain. In the next sections, we
derive values of maxNDkðeÞ and maxNDkðoÞ that can be
obtained with small cost and permit effective pruning.

3.2 Pruning Intermediate Entries

For k ¼ 1, we can set maxND1ðeÞ to e:r, i.e., the largest
distance between the routing object e:RO and any object o in
sube. Thus, Lemma 1 becomes a concrete heuristic:

Rule 1. For an RNN query q (k ¼ 1), the subtree sube of an
intermediate entry e can be pruned if dðe:RO; qÞ � 2e:r.

The rule becomes clear by rewriting the above inequality
as dðe:RO; qÞ � e:r � e:r, where the left side equals
minDðe; qÞ (see (2)), and the right side equals maxND1ðeÞ.

For any k 2 ½2; fminÞ, maxNDkðeÞ can be set to 2e:r. To
verify this, notice that, for any objects o1, o2 in sube, by the
triangle inequality dðo1; o2Þ is at most

dðe:RO; o1Þ þ dðe:RO; o2Þ;

which, in turn, is bounded by 2e:r. Since we consider
k < fmin (the minimum node fanout), there are at least
fmin objects in sube. This means that, for any object in
sube, its distances to any k other objects in sube are all
bounded by 2e:r, which establishes the correctness of
maxNDkðeÞ ¼ 2e:r.

Following the reasoning behind the derivation of Rule 1,
we have:

Rule 2. For an RkNN query q with any k 2 ½2; fminÞ, the subtree
sube can be pruned if dðe:RO; qÞ � 3e:r, where fmin is the
minimum node fanout.

The previous formulation of maxNDkðeÞ considers only
e itself. Given, on the other hand, k� 1 arbitrary data
objects o1, o2, . . . , ok�1 different from e:RO, we can compute
maxNDkðeÞ based on the distances dðe:RO; o1Þ, . . . ,
dðe:RO; ok�1). Since the derivation is not trivial, we present
it as a lemma.

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

TABLE 1
Frequently Used Symbols

Lemma 2. Let o1, o2, . . . , ok�1 be k� 1 (2 � k < fmin) objects in

D that are different from the routing object of an intermediate

entry e. Then, maxNDkðeÞ can be set to

maxk�1
i¼1 ðe:rþ dðe:RO; oiÞÞ:

Proof. Let o be an object in sube, and

� ¼ max
k�1

i¼1
ðe:rþ dðe:RO; oiÞÞ:

To prove the lemma, it suffices to find k objects different

from o such that the distance between o and each object is

at most �. For this purpose, we proceed with three cases.
First, assume that o is different from e:RO, o1, . . . ,

ok�1. For each oi (1 � i � k� 1),

dðo; oiÞ � dðe:RO; oÞ þ dðe:RO; oiÞ � e:rþ dðe:RO; oiÞ � �:

Since dðo; e:ROÞ � e:r � �, we have found k objects e:RO,

o1, . . . , ok�1 whose distances to o are at most �.
Second, if o ¼ o1 (the scenario o ¼ oi for 2 � i � k� 1

is the same), by the reasoning of the first case, its
distances to o2, . . . , ok�1, and e:RO are smaller than or
equal to �. Furthermore, let o0 be any object in sube
different from e:RO and o1, o2, . . . , ok�1. Since sube
contains at least fmin > k objects, such an o0 always exists.
Then,

dðo1; o
0Þ � dðo0; e:ROÞ þ dðe:RO; o1Þ � e:rþ dðe:RO; o1Þ � �:

Hence, we have also found k objects (o2, . . . , ok�1, e:RO,

and o0) whose distances to o are bounded by �.
Finally, if o ¼ e:RO, dðe:RO; o0Þ � e:r � � holds for

any object o0 in sube, which completes the proof. tu

Combining Lemmas 1 and 2, we obtain the following

heuristic:

Rule 3. Let o1, o2, . . . , ok�1 be k� 1 objects as described in

Lemma 2. For an RkNN query q with k 2 ½2; fminÞ, the subtree

sube can be pruned if

dðe:RO; qÞ � maxk�1
i¼1 ð2e:rþ dðe:RO; oiÞÞ:

Example. Consider Fig. 4, where all the objects in the

subtree sube of an intermediate entry e lie in the

shaded circle that centers at e:RO, and has radius e:r.

Also centering at e:RO, circles O1, O2, O3 have radii

2e:r, 2e:rþ dðe:RO; o1Þ, and 3e:r, respectively. Consider

the query q denoted as the black dot. If the parameter

k of q equals 1, sube does not need to be visited
because it cannot contain any results according to Rule
1 (i.e., distðe:RO; qÞ > 2e:r). For any k � 2, Rule 2
cannot eliminate e since q falls inside O3 (i.e.,
distðe:RO; qÞ < 3e:r). However, if we have encountered
data point o1 before (i.e., o1 does not belong to sube,
but has been retrieved from other parts of the tree), e
can still be pruned for k ¼ 2 based on Rule 3 (i.e.,
distðe:RO; qÞ > 2e:rþ distðe:RO; o1Þ, as q falls out of
circle O2). Notice that with only o1, Rule 3 cannot be
applied to any k � 3; in general, k� 1 objects are
needed for this rule to be useful.

Each of the above heuristics has a variation, which
utilizes the parent entry ep of the node containing the
intermediate entry e. Note that the distance dðe:RO; qÞ is at
least jdðep:RO; qÞ � dðe:RO; ep:ROÞj by the triangle inequal-
ity. Thus, Rules 1-3 are still correct by replacing dðe:RO; qÞ
with this lower bound:

Rule 4. Let ep be the parent entry of the node containing an
intermediate entry e. Rules 1-3 are still valid by replacing
dðe:RO; qÞ with jdðep:RO; qÞ � e:pDj, where e:pD is the
parent distance of e (equal to dðe:RO; ep:ROÞ).

For each of Rules 1-3, its version in Rule 4 has weaker
pruning power, i.e., if Rule 4 can prune e, so can the
original rule. However, the advantage of Rule 4 is that its
application does not require any distance computation.
Specifically, during RNN search, when examining e, the
algorithm must have already calculated dðep:RO; qÞ (recall
that ep is at a level higher than e). Since e:pD is associated
with e in the M-tree, all the values needed in Rule 4 are
directly available. On the other hand, applying Rules 1-3
requires evaluating the distance between e:RO and q. In
particular, Rule 3 also requires calculating the distances
from e:RO to the k� 1 objects defined in Lemma 2.

3.3 Pruning Leaf Entries

Unlike the max-k-nndist of an intermediate entry e, which
can be derived from e itself, the maxNDkðoÞ of an object o
must be formulated by taking into account other objects.

Lemma 3. Consider a leaf node (whose parent entry is e)
containing f objects o1, o2, . . . , of , sorted in ascending order
of their parent distances (i.e., o1 is the routing object of e).
Then:

. For k ¼ 1: maxND1ðo1Þ can be set to o2:pD, and
maxND1ðoiÞ to oi:pD (2 � i � f);

. For k 2 ½2; fmin�:maxNDkðoiÞ can be set to oi:pDþ �,
where � equals okþ1:pD for i 2 ½1; k�, and ok:pD for
i 2 ½kþ 1; f �.

Proof. The scenario of k ¼ 1 is straightforward. Since o1 is
the routing object of e, its distance to o2 equals the parent
distance of o2, which thus is a legal value for
maxNDðo1Þ. For every other object oi (2 � i � f), at least
e:RO is within distance oi:pD from oi, validating the
choice of maxND1ðoiÞ.

For k > 1, we discuss only objects oi for 1 � i � k,
since the case where i > k can be proved in the same
way. Denote � as oi:pDþ �, where � is defined in the

TAO ET AL.: REVERSE NEAREST NEIGHBOR SEARCH IN METRIC SPACES 5

Fig. 4. Illustration of Rules 1-3.

lemma. For any of the k objects oj (j ¼ 1, . . . , i� 1, iþ 1,
. . . , kþ 1), we have

dðoi; ojÞ � dðe:RO; oiÞ þ dðe:RO; ojÞ ¼ oi:pDþ oj:pD:

Due to the way the objects are sorted, oj:pD � okþ1:pD.
Adding oi:pD to both sides of the inequality leads to
oi:pDþ oj:pD � �. Hence, setting maxNDkðoiÞ to � is
correct. tu
Notice that obtaining the max-k-nndist of an object incurs

no distance evaluation at all, since only the information
stored in the M-tree is used. We explain the k > 1 case of
Lemma 3 using a concrete example (the case of k ¼ 1 is
straightforward).

Example. Consider Fig. 5 where a leaf node contains objects
o1, . . . , o4, and o1 is the routing object associated with the
parent entry e. Assume k = 2; to compute objects’
max-2-nndist, we sort the objects in ascending order of
their parent distances; in this case, the sorted order is
fo1; o2; o3; o4g. For o1 (o2), by Lemma 3, its max-2-nndist
equals its parent distance plus that of o3 (the third, or
(kþ 1)st, object in the sorted list). For o3 (o4), on the other
hand, its max-2-nndist is the sum of its parent distance and
o2:pD (o2 is the second, or the kth object in the sorted list).

Combining Lemmas 1 and 3 leads to:

Rule 5. Given an RkNN query q with k < fmin, an object o can-
not be a result if dðo; qÞ � maxNDkðoÞ, where maxNDkðoÞ is
calculated in Lemma 3.

Similar to Rule 4, a weaker version of the above rule
exists:

Rule 6. Let e be the parent entry of the leaf node that contains o.
The previous heuristic still holds by replacing dðo; qÞ with
jdðe:RO; qÞ � o:pDj.

Similar to the reasons explained at the end of Section 3.2,
the application of Rule 6 does not incur any distance
evaluation.

4 RkNN SEARCH USING M-TREES

Based on the results in the previous section, Fig. 6
presents the pseudocode of an algorithm RkNN, which
follows a filter-refinement framework. In the filter step,
RkNN retrieves a set Scan of candidates (any object not in
Scan can be safely discarded), which are verified in the

refinement step. In the next section, we discuss the details
of the filter step. Then, Section 4.2 elaborates the
refinement phase.

4.1 The Filter Step

RkNN-Filter performs a depth-first traversal over the
underlying M-tree, starting from the root. In general,
assume that a node N has been fetched from the disk. If
N is not the root (Line 1 of RkNN-Filter in Fig. 6, the
algorithm attempts to prune it using Rule 3. For this
purpose, Line 2 obtains the parent entry ep of N . Then,
Line 3 sorts all the entries in N in ascending order of their
parent distances (i.e., their distances to ep:RO). Let ek be the
kth entry in the sorted order. According to Rule 3, the
subtree subep of ep can be pruned if

dðep:RO; qÞ � 2ep:rþ ek:pD

(Line 4). Note that dðep:RO; qÞ must have been computed
prior to accessing N . Hence, the application of Rule 3 here
requires no distance evaluation.

If N is a leaf node (Line 5), RkNN-Filter invokes the
algorithm Add-Cand to collect the candidate objects from N
(Line 6). We defer the discussion of Add-Cand until later.

In case N is an intermediate node, RkNN-Filter examines

each of its entries ei (1 � i � f) in turn (Line 7), and decides

whether it is necessary to visit its child node. If k ¼ 1 (or

> 1), the decision is based on Rule 1 (or Rule 2), and its

weaker version in Rule 4. At Line 8 of the pseudocode, the

value of � controls the rules to be used (notice that � is the

constant on the right of the inequality in Rule 1 or 2). Line 9

first applies Rule 4 since, as discussed at the end of

Section 3.2, application of this rule incurs no distance

evaluation. If Rule 4 successfully prunes ei (Line 10), the

algorithm continues to check the next entry in N at Line 7.

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

Fig. 5. Max-k-nndist derivation for leaf entries.

Fig. 6. The RkNN algorithm.

If Rule 4 cannot prune ei, then it is necessary to compute
the distance between ei:RO and q (Line 11) in order to
(Line 12) deploy Rule 1 or 2 (depending on k = 1 or k > 1),
which has stronger pruning power than Rule 4. Again, if
pruning succeeds, RkNN-Filter goes back to Line 7 to
consider the next entry in N . Otherwise, the algorithm
recursively visits the child node of ei (Line 13).

As mentioned earlier, if a leaf node N cannot be pruned
by Rule 3, Add-Cand (Fig. 7) is invoked to identify the
candidate objects in N that may satisfy the query. Note that,
at this time, the objects in N have been sorted in ascending
order of their parent distances (the sorting is performed at
Line 3 of RkNN-Filter).

Line 1 of Fig. 7 identifies the parent entry ep of N . Then,
Line 2 computes the max-k-nndist for all objects in N based
on Lemma 3. Next, Add-Cand inspects (Line 3) each object oi
(1 � i � f , where f is the number of objects in N), and
attempts to disqualify oi using Rule 5 and its weaker
version, Rule 6. Specifically, at Line 4, Rule 6 is first applied
because it does not demand any distance computation. If
Rule 6 successfully prunes oi, the algorithm proceeds with
the next object in N (Line 5). Otherwise, dðoi; qÞ is evaluated
(Line 6), and Rule 5 is applied (Line 7).

Finally, Lines 8 through 12 perform the following tasks:
For each object oi that has not been pruned by Rule 5, we
check whether it is closer to k other objects in N than to q. If
yes, oi cannot be a query result; otherwise, it is added to Scnd
to be refined, as discussed in the next section.

4.2 The Refinement Step

To verify if a candidate o is an RkNN of q, a straightforward
approach is to find the kth NN o0 of o. Then, o can be
confirmed as a result if and only if dðo; qÞ < dðo; o0Þ.

Fig. 8 presents an alternative solution Adapted-kNN,
which requires fewer I/O accesses and distance computa-
tions. Adapted-kNN is very similar to the best-first kNN
algorithm reviewed in Section 2, but differs from that
algorithm in its ability to terminate earlier if the candidate is
a false hit.

Specifically, Adapted-kNN achieves early termination
with two optimizations. To illustrate the first optimization,
let e be an intermediate entry; a candidate o must be a false
hit if dðe:RO; oÞ þ e:r � dðo; qÞ holds (Line 10 in Fig. 8). To
understand this, consider any object o0 in the subtree sube of
e. The distance dðo; o0Þ between o and o0 is bounded by

dðe:RO; oÞ þ dðe:RO; o0Þ, which, in turn, is bounded by
dðe:RO; oÞ þ e:r. Hence, the previous inequality establishes
the fact that dðo; o0Þ � dðo; qÞ. Since there are at least fmin > k
objects in sube, q cannot be closer to o than the kth NN of o.

The second optimization utilizes the property of M-trees
that the routing object of each intermediate entry e is an
object in sube. Specifically, Adapted-kNN maintains a set S,
which stores all the objects that have been seen so far and
are closer to o than q. Note that these objects may have been
collected from the leaf nodes accessed (Line 14), or from the
routing objects of the intermediate entries visited (Line 9).
Once the size of S reaches k, Adapted-kNN terminates
(Line 15), since o cannot be a query result in this case.

4.3 Discussion

I/O-pruning in RkNN-Filter essentially relies on Rules 1
and 2. In particular, for an RkNN query q with k ¼ 1 (or
> 1), the child node of an entry e is visited if and only if
dðe:RO; qÞ < 2e:r (or dðe:RO; qÞ < 3e:r) holds. Rule 3 is
applied only to reduce CPU time; as mentioned in
Section 4.1, its application does not require any distance
evaluation.

TAO ET AL.: REVERSE NEAREST NEIGHBOR SEARCH IN METRIC SPACES 7

Fig. 7. Algorithm for discovering candidates.

Fig. 8. Algorithm for verifying candidates.

In fact, a natural attempt to use Rule 3 for I/O pruning is
to deploy the following heuristic: Given a query with k > 1,
when trying to prune an intermediate entry e, we may
resort to Scan (the set of candidates discovered so far).
Specifically, if there are k objects o 2 Scan satisfying
dðe:RO; qÞ � 2e:rþ dðe:RO; oÞ, then e can be eliminated
according to Rule 3. It turns out that this heuristic offers
almost no I/O improvement, while increasing the number
of distance computations significantly.3

The phenomenon is caused by the fact that the
I/O-pruning power of Rule 3 is usually subsumed by
Rule 2. This is because, as explained shortly, the distance
between e:RO and any candidate o not in sube is most likely
larger than e:r. In this case, the inequality dðe:RO; qÞ �
2e:rþ ðe:RO; oÞ leads to dðe:RO; qÞ � 3e:r, i.e., if Rule 3 can
prune e, so can Rule 2.

Why is dðe:RO; oÞ > e:r usually true (when o is not in the
subtree of e)? As mentioned in Section 2.2, M-trees aim at
minimizing the overlap among the cluster spheres of the
intermediate entries at the same level. Let e0 be the entry at
the same level as e, such that the subtree of e0 contains o.
Since the cluster sphere of e0 has little overlap with that of e,
(with a high probability) o falls out of the cluster sphere of e,
resulting in dðe:RO; oÞ > e:r.

Our discussion so far considers that k is smaller than the
minimum node fanout fmin (remember that fmin is on the
order of 100 in practice). In the unlikely event where
k > fmin, we can extend the above algorithms using a
simple observation: All the pruning rules are still valid by
replacing fmin with the smallest number nmin of leaf entries
in the subtree of an intermediate entry e. For example, if e is
at the ith level (leaves are at level 0), then nmin equals fimin.

We close this section by pointing out the differences
between RkNN and TPL (reviewed in Section 2.1). First,
RkNN is not based on truncating the data space, which is
the core of TPL. In fact, “truncating” is simply impossible in
metric spaces, because there is no such a concept as “the
intersection between two regions.” Second, RkNN does not
deploy any geometric properties (e.g., the bisector rule in
Fig. 2a), but utilizes only the distances among objects.

5 STATISTICS-AIDED ALGORITHMS

In this section, we aim at reducing the I/O cost of the filter
step, which dominates the overall query overhead as shown
in the experiments. The reduction is made possible by
maintaining a small number of statistics. In Section 5.1, we
explain the type of statistics needed and why they can be
used to improve search performance. Then, Section 5.2
derives a cost model that quantifies the I/O performance of
the filter step. Based on the model, Section 5.3 elaborates the
statistics computation and the improved RkNN algorithm.
Finally, Section 5.4 presents a special optimization for
static data.

5.1 k-Covering Distances

We target RkNN queries with k � 2. For these queries,
I/O pruning in RkNN-Filter of Fig. 6 is achieved using only
Rule 2, where the subtree sube of an intermediate entry e is

pruned if dðe:RO; qÞ � 3e:r. Although RkNN-Filter also
applies Rule 3, the application is limited to reducing
CPU time. Next, we show how this rule can be used to
improve I/O performance too.

Given an intermediate entry e, we define its k-covering
distance, denoted as cDkðeÞ, as a value such that at least
k� 1 objects different from e:RO in sube are within distance
cDkðeÞ from e:RO. Our objective is to obtain a cDkðeÞ that is
much smaller than the covering radius e:r of e. As a result,
in processing a query q, sube can be eliminated if
dðe:RO; qÞ � 2e:rþ cDkðeÞ, according to Rule 3. This in-
equality is stronger than the inequality dðe:RO; qÞ � 3e:r
that underlies Rule 2.

Due to the reasons discussed in Section 4.3,, a cDkðeÞ that
fulfills our objective cannot be derived during query
execution. Hence, we compute it in a preprocessing step.
Specifically, for each intermediate entry e, this step
calculates cDkðeÞ for all k 2 ½2; fminÞ, i.e., e is associated
with fmin � 2 covering distances. These precomputed
values are retained in memory and deployed as described
earlier in query processing.

The value of cDkðeÞ is not unique. In our implementa-
tion, cDkðeÞ is set to the kth smallest parent distance of the
entries in the child node of e. As a result, all the covering
distances can be obtained in a single traversal of the M-tree.
As an example, consider Fig. 9, where e is the parent entry
of an intermediate node containing entries e1, e2, and e3,
whose routing objects are represented as white dots. In
particular, the routing object of e1 is identical to that of e. By
sorting these entries in ascending order of their parent
distances, we obtain the sorted order fe1, e2, e3g. Hence,
according to our formulation, the value of cD2ðeÞ equals
e2:pD. This value is consistent with the definition of cD2ðeÞ,
because at least e2:RO (which resides in sube and is different
from e:RO) is within distance e2:pD from e:RO.

In general, since k < fmin, cDkðeÞ is always bounded by
e:r. For smaller k, the difference between cDkðeÞ and e:r is
more significant, resulting in larger difference in the
pruning power of Rules 3 and 2. Once calculated, cDkðeÞ
can be easily maintained during object insertions and
deletions: Whenever the content of the child node of e
changes, cDkðeÞ is modified accordingly.

Let SfullcD be the set of cDkðeÞ for all intermediate entries e
and k 2 ½2; fminÞ. In practice, it may not be possible to
preserve the entire SfullcD in memory, if the memory has a
limited size. Denote M as the largest number of covering
distances that can be accommodated in memory. When M is
smaller than jSfullcD j, we identify a subset ScD of SfullcD that has
M values (the other jSfullcD jM covering distances in SfullcD are
discarded) and leads to the smallest I/O cost of the filter
step. For this purpose, in the next section, we derive a cost
model that represents the I/O cost as a function of ScD.

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

3. Note that we should not introduce a large number of distance
computations simply because they enable us to save a couple of
I/O accesses, since, for complex distance metrics, computing a distance
may also be expensive.

Fig. 9. Illustration of a 2-covering distance.

5.2 A Cost Model of the Filter Step

Given an i 2 ½2; fminÞ, an i-covering distance cDiðeÞ can be
used to accelerate RkNN queries with k � i. For example,
imagine that we keep cD3ðeÞ in memory but not cD2ðeÞ. For
an R2NN query q, the subtree of e can still be eliminated if
dðe:RO; qÞ � 2e:rþ cD3ðeÞ holds. Since cD2ðeÞ � cD3ðeÞ, the
previous inequality implies dðe:RO; qÞ � 2e:rþ cD2ðeÞ,
which is the basis of using Rule 3 for pruning, as discussed
in the previous section. The implication is that, if two
covering distances cDiðeÞ and cDjðeÞ (i < j) are close
enough, we may keep only cDjðeÞ (i.e., the larger one),
without compromising I/O performance significantly, since
the I/O-pruning for RiNN search can be performed (almost)
equally well using cDjðeÞ.

Assume that we have already selected a subset ScD.
Given an integer i, let die be the smallest integer j such that
1) j � i, and 2) cDjðeÞ 2 ScD. Then, for an RiNN query q, the
child node of e needs to be visited if and only if q is within
distance 2e:rþ cDdieðeÞ from e:RO. In case die does not exist,
the child node of e is accessed if distðe:RO; qÞ � 3e:r
according to Rule 2.

Now, we are ready to predict the I/O cost of the filter
step when an ScD is available. Let Pqðo; rÞ be the probability
that the distance between a query q and a particular object o
is at most r. Then, the probability Pacsðe; ijScDÞ that the child
node of e is visited by an RiNN query, given the covering
distances in ScD, is

Pacsðe:RO; ijScDÞ ¼
Pqðe:RO; 2e:rþ cDdieðeÞÞ if die exists
Pqðe:RO; 3e:rÞ otherwise:

�

ð3Þ

Denote PkðiÞ (2 � i < fmin) as the probability that an RiNN
query is issued. Then, the overall probability PacsðejScDÞ
that the child node of e is visited in an arbitrary RkNN
query (with any k 2 ½2; fminÞ), equals

PacsðejScDÞ ¼
Xfmin�1

i¼2

Pacsðe; ijScDÞ � PkðiÞð Þ: ð4Þ

Summing up PacsðejScDÞ for all intermediate entries e, we
obtain the expected number Cfilter

IO ðScDÞ of nodes accessed
in the filter step:

Cfilter
IO ðScDÞ ¼

X
nonleaf e

PacsðejScDÞ: ð5Þ

The cost model requires 1) Pqðo; rÞ, the probability that q
appears within distance r from a given object o, and 2) PkðiÞ,
the probability of receiving an RiNN query. Both probabil-
ities can be accurately estimated by maintaining a sample
set of the previously answered queries. Specifically, Pqðo; rÞ
(or PkðiÞ) can be approximated as the percentage of the
sampled queries that are within distance r from o (or, the
percentage of RiNN queries).

5.3 Statistics Computation and an Improved RkNN
Algorithm

As mentioned at the end of Section 5.1, when the amount M

of available memory is smaller than jSfullcD j, we compute an

ScD � SfullcD such that ScD consists of M covering distances

and minimizes Cfilter
IO ðScDÞ.

We achieve this purpose with a greedy approach.

Initially, ScD is set to SfullcD . Then, we perform jSfullcD j �M
iterations. Every iteration expunges the element (a covering

distance) in ScD whose removal causes the smallest increase

of Cfilter
IO ðScDÞ. After all iterations, the remaining M covering

distances constitute the final ScD.
We associate each element in ScD with a penalty, which

equals the growth of Cfilter
IO ðScDÞ if the element is expunged.

Hence, the element to expunge at the next iteration is the
one having the smallest penalty among all the elements in
ScD. Specifically, let cDxðeÞ be an arbitrary covering distance
in ScD. Based on (5), the penalty of cDxðeÞ, denoted as
penxðeÞ, is represented:

penxðeÞ ¼
X

nonleaf e0
Pacsðe0jScD � fcDxðeÞgÞ

�
X

nonleaf e0
Pacsðe0jScDÞ:

To simplify notation, denote S0cD as ScD � fcDxðeÞg. For any
e0 6¼ e, Pacsðe0jS0cDÞ is equivalent to Pacsðe0jScDÞ, because
neither of them is related to cDxðeÞ. Hence, the above
equation can be converted to

penxðeÞ ¼ PacsðejS0cDÞ � PacsðejScDÞ

(By (4)) ¼
Xfmin�1

i¼2

�
Pacsðe; ijx0cDÞ � Pacsðe; ijScDÞ

�
� PkðiÞ:

ð6Þ

Pacsðe; ijS0cDÞ and Pacsðe; ijScDÞ are computed according
to (3). In particular, for any i 2 ½xþ 1; fminÞ, the value of die
in (3) remains the same after removing cDxðeÞ from ScD and,
hence, Pacsðe; ijS0cDÞ ¼ Pacsðe; ijScDÞ.

Let us define bxc as the largest integer j such that j < x
and cDjðeÞ exists in ScD (in case j does not exist, bxc ¼ 1).
Then, for any i 2 ½2; bxc�, the value of die also remains the
same after discarding cDxðeÞ. As a result, (6) can be
rewritten as

penxðeÞ ¼
Xx

i¼bxcþ1

�
Pacsðe; ijS0cDÞ � Pacsðe; ijScDÞ

�
� PkðiÞ: ð7Þ

In fact, for any i 2 ½bxc þ 1; x�, die ¼ x and, hence, by (3),
Pacsðe; ijScDÞ equals Pqðe:RO; 2e:rþ cDxðeÞÞ. On the other
hand, Pacsðe; ijS0cDÞ depends on two cases. First, if dxe exists,
after removing cDxðeÞ, die ¼ dxe and, thus, Pacsðe; ijS0cDÞ
evaluates to Pqðe:RO; 2e:rþ cDdxeðeÞÞ. Otherwise (dxe does
not exist), Pacsðe; ijS0cDÞ is Pqðe:RO; 3e:rÞ. As a result, (7)
becomes:

penxðeÞ ¼

�
Pqðe:RO; 2e:rþ cDdxeðeÞÞ

�Pqðe:RO; 2e:rþ cDxðeÞ
�

�
Xx

i¼bxcþ1
PkðiÞ

if dxe exists;

�
Pqðe:RO; 3e:rÞ

�Pqðe:RO; 2e:rþ cDxðeÞ
�

�
Xx

i¼bxcþ1
PkðiÞ

otherwise:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð8Þ

TAO ET AL.: REVERSE NEAREST NEIGHBOR SEARCH IN METRIC SPACES 9

It is clear that, after each iteration, the removal of an
element, say cDyðeÞ, from ScD affects the penalties of, at
most, two remaining covering distances cDbycðeÞ and
cDdyeðeÞ in ScD. For any other remaining element cDxðeÞ,
its dxe and bxc remain unchanged and, hence, its penalty
stays identical.

Fig. 10 formally summarizes the algorithm Select-Stat
for computing ScD, based on the above discussion. Fig. 11
presents the modified RkNN-Filter that deploys Rule 3 for
I/O pruning, using the ScD returned by Select-Stat. We
refer to the modified RkNN-Filter as Stat-Filter.

After its computation, ScD can be maintained along with
object insertions/deletions, since its elements (covering
distances) can be incrementally updated, as explained in
Section 5.1. The efficiency of RkNN-Filter, however, may
deteriorate with the number of updates. This is because ScD
is selected to optimize the query performance only at its
computation time. Nevertheless, as will be demonstrated in
the experiments, the performance degradation is very slow.

5.4 Optimization for Static Data

Recall that Lemma 1, the foundation of all our pruning
heuristics, achieves highest efficiency if maxNDkðoÞ and
maxNDkðeÞ reach their lower bounds for all objects o and
intermediate entries e, respectively. The lower bound of
maxNDkðoÞ is the actual kNN-distance of o, while the lower
bound of maxNDkðeÞ equals the maximum of the
kNN-distances of all objects in the subtree of e. In the rest
of this section, all occurrences of maxNDkðoÞ and
maxNDkðeÞ represent their lower bounds.

Maintaining these lower bounds is unrealistic for data
sets with frequent updates, since it entails considerable
overhead. For example, the insertion of an object o must be
followed by retrieval of its kNN-distance, whereas deleting
an object o demands recomputing the kNN-distances of all
the RkNNs of o. Similarly, a single object update may
influence the maxNDkðeÞ of multiple intermediate entries.

However, if the data set is static, computing the lower
bounds for the max-k-NNdist of all intermediate entries
becomes “one-time cost.” In this case, it is worthy because
search performance may be improved significantly. Speci-
fically, by Lemma 1, the subtree of an intermediate entry
can be pruned if minDðe; qÞ � maxNDkðeÞ, which is more
effective than all the pruning rules proposed earlier.
Naturally, for each intermediate entry e, we may precom-
pute maxNDkðeÞ for all k 2 ½2; fminÞ. Let SfullND be the set of
resulting values, which are stored in memory for query
processing.

Here, we encounter a problem similar to the one solved
in the previous sections: the available memory may not be
large enough to hold the entire SfullND . We tackle the problem
using the same approach. Let M be the number of values
that can be retained in memory. We aim at obtaining a
subset SND of SfullND that contains M values and minimizes
the expected I/O cost. In fact, SND can be computed using
exactly the same algorithm in Fig. 10, replacing ScD and
cDiðeÞwith SND and maxNDiðeÞ, respectively. Accordingly,
the RkNN-Filter of Fig. 11 needs to be slightly revised:
Line 10 should be changed to “� ¼ e:rþmaxNDdieðeÞ.”

6 EXPERIMENTS

This section experimentally evaluates the efficiency of the
proposed techniques, using both real and synthetic data. The
first data set SF contains points representing 174 k locations
in San Francisco.4 The similarity between two points is
measured as their L1 distance (which simulates their
shortest road network distance, when most road segments
are axis parallel). The second data set TS is a time series
containing 76 k values corresponding to Dow Jones indexes5

norms. The third data set Color involves 4D vectors6

representing the color histograms of 68 k images, where
the similarity is evaluated with the L1 norm.

Following the experiment settings of [5], we also
generate a Signature data set, where each object is a string
with 65 English letters. We first obtain 20 “anchor
signatures,” whose letters are randomly chosen from the
alphabet. Then, each anchor produces a cluster with
2.5 k objects (resulting in the total cardinality 50 k), each
of which is obtained by randomly changing x positions in
the corresponding anchor signature to other random letters,
where x is uniformly distributed in range ½1; 18�. The
similarity between two strings is calculated as their edit
distance, i.e., the smallest number of editorial changes (e.g.,
adding, removing, or modifying a letter) required to
convert one string to the other.

We index each data set using an M-tree. The disk page
size is fixed to 4 k bytes, such that the maximum node
capacities for SF, TS, Color, Signature equal 255, 146, 170,
and 56 entries, respectively. A workload contains
500 queries. The query objects are sampled directly from
the underlying data set. The distribution of the
parameter k of the queries in a workload depends on
concrete experiments and will be clarified later. Unless
specifically stated, each reported value is the average
result of all the queries in a workload. All experiments

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

4. Available at http://www.census.gov/geo/www/tiger/.
5. http://finance.yahoo.com.
6. Color and Signature (to be introduced shortly) can be downloaded at

http://www.cs.cityu.edu.hk/~taoyf/ds.html.

Fig. 10. Algorithm for computing ScD.

Fig. 11. Algorithm of the filter step with statistics.

are performed on a machine with a Pentium IV 2.8 GHz

CPU and 512 Megabytes memory.

6.1 Effectiveness of Pruning Rules

In the experiments of this section, a workload consists of

RkNN queries with the same k, which is varied as a

workload parameter. The first experiment aims at illustrat-

ing the effectiveness of the pruning heuristics. We measure

the effectiveness of a heuristic by how often it is success-

fully applied in RkNN-Filter (Fig. 6). For Rules 1 through 4, a

successful application is counted when they prune an

intermediate entry, whereas, for Rules 5 and 6, one success

is counted when they disqualify an object without comput-

ing its distance from the query.
Focusing on data set SF, Fig. 12a shows the average

number of times that each heuristic is successfully applied

as a function of k. The efficiency of Rules 1 and 2 is

illustrated together with the same curve because they are

based on the same rationale but are deployed for k ¼ 1 and

k > 1, respectively. There is no result for Rule 3 at k ¼ 1,

since it is applicable only for k > 1. Figs. 12b, 12c, and 12d

demonstrate the results of the same experiments for TS,

Color, and Signature, respectively. Evidently, all heuristics

are utilized a large number of times in a query, confirming

their usefulness. Rules 5 and 6 are applied more frequently

because RkNN-Filter encounters more leaf entries than

intermediate ones.
To study the behavior of individual queries, we focus on

the workloads with k ¼ 4. From each workload, we

randomly sample 50 queries (i.e., 10 percent of the work-

load), and examine their application frequencies of each

heuristic. Fig. 13 demonstrates the results for the four data

sets, confirming that all the heuristics are important because

each heuristic is applied a large number of times in all

queries.

6.2 Query Performance of the Basic RkNN

We proceed to evaluate the efficiency of the proposed

algorithm RkNN in Section 4. Since no existing algorithm is

applicable to RNN search in metric spaces (due to the

reasons discussed in Section 2.1), we compare RkNN against

a baseline approach that retrieves the kth NN of each object,

and reports the object as a result if it is closer to the query

than to its kth NN. All queries in a workload have the same

parameter k, as with the workloads used in the previous

sections.
Concentrating on SF, Fig. 14a shows the number of node

accesses in the filter/refinement step, as a function of k. The

TAO ET AL.: REVERSE NEAREST NEIGHBOR SEARCH IN METRIC SPACES 11

Fig. 13. Rule application frequencies of individual queries (k ¼ 4). (a) SF.

(b) TS. (c) Color. (d) Signature.

Fig 12. Application frequencies of pruning rules. (a) SF. (b) TS. (c) Color.

(d) Signature.

Fig. 14. I/O cost versus k. (a) SF. (b) TS. (c) Color. (d) Signature.

number beside each dot in the curve of RkNN-Filter (or
RkNN-Refine) indicates the average number of candidates
(or final results) for the queries in the corresponding
workload.

The cost of RkNN-Filter demonstrates stepwise beha-
vior. Specifically, it increases as k changes from 1 to 2 but
then stabilizes as k grows further. Recall that, as
mentioned in Section 4.1, I/O pruning in RkNN-Filter is
performed only by Rule 1 or 2 for k ¼ 1 or k > 1,
respectively, which explains the cost difference between
the two cases. Furthermore, the pruning power of Rule 2
is independent of k, which explains the stable perfor-
mance of RkNN-Filter for all k > 1. The overhead of
RkNN-Refine, however, continuously increases with k
because a higher k results in a larger number of
candidates and hence, more expensive refinement cost.

As expected, the baseline algorithm is worse than our
solution by several orders of magnitude. Therefore, it is
omitted in the following experiments. Figs. 14b, 14c, and 14d
demonstrate similar results for the other data sets.

Fig. 15 shows the CPU time (measured as the number of
distance computations) in the experiments of Fig. 14. The
CPU overhead of both RkNN-Filter and RkNN-Refine
escalates with k. Interestingly, while usually the filter step
incurs higher I/O cost, the refinement phase requires more
distance computations.

In Fig. 16, we plot the query response time as a function
of k, where each result is broken into two components,
capturing the overall cost of the filter and refinement steps,
respectively. The value on top of each column is the
percentage that the filter step accounts for in the total
execution time. In most cases, RkNN-Filter dominates (up to
90 percent of) the overall overhead. The only exception is at
k ¼ 16 in Fig. 16d, which is caused by the characteristics of
data set Signature. Specifically, the average kNN distance of
the objects in Signature increases very fast with k, which, in
turn, renders the refinement cost to grow rapidly with k

(remember that each refinement performs several adapted
kNN queries, each of which is more expensive if the average
kNN distance is large). As a result, for large k, the total
refinement cost exceeds that of filtering.

6.3 Performance of the Statistics-Aided Algorithms

Let us call the algorithm studied in the previous section the
basic solution. Next, we evaluate the efficiency of the
improved algorithm in Section 5 that utilizes statistics.
The following experiments focus on the filter step (Stat-
Filter in Fig. 11), because the refinement step is identical to
that of the basic solution. Furthermore, we concentrate on
the I/O performance, since this is the target of optimization
in Stat-Filter.

As Stat-Filter aims at optimizing RkNN queries with
different k at the same time, each workload in the following
experiments contains an (approximately) equal number of
RiNN queries, for every i 2 ½2; kmax�, where kmax is a
parameter. Note that a workload does not contain any
RNN query, for which Stat-Filter has the same performance
as the basic solution.

The efficiency of Stat-Filter depends on the size M of
available memory. In Section 5, M equals the number of
values that can be stored in memory. Since it is reasonable
to allocate more memory for a larger data set, we relate M
to the data set cardinality, and represent it as a percentage.
For example, for data set TS with cardinality 76 k, M ¼
2 percent means that the memory can accommodate
1,520 values. Note that this is not equivalent to the space
occupied by 2 percent of the data set. In fact, since TS
consists of 5D points, 1,520 values are sufficient to represent
only 304 points, or 0.4 percent of the data set.

In fact, when a certain amount of memory is available,
I/O performance can also be improved by simply using the
memory as a buffer. Hence, we compare Stat-Filter against
the following BUFFER approach. BUFFER is the basic

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

Fig. 15. CPU performance versus k. (a) SF. (b) TS. (c) Color.

(d) Signature.
Fig. 16. Overall execution time versus k. (a) SF. (b) TS. (c) Color.

(d) Signature.

RkNN-Filter algorithm, coupled with an adapted LRU cache
replacement strategy. Specifically, when the cache over-
flows, the strategy first evicts pages corresponding to nodes
at a lower level of the tree. Among pages at the same level,
the one least frequently visited is evicted first. Such a
strategy aims at pinning the first few levels of the tree in the
memory. For a fair comparison, we assign the same amount
of memory for both Stat-Filter and BUFFER.

Fixing the parameter kmax to 8, Fig. 17a demonstrates the
I/O cost, measured as the number of page faults, as a
function of M for all data sets. The result at M ¼ 0 is
essentially the performance of the basic algorithm that is not
aided by statistics. The efficiency of Stat-Filter improves
significantly as M increases. In particular, when M equals
2 percent, Stat-Filter is faster than the basic algorithm by a
factor up to 2. On the other hand, BUFFER receives little
improvement. As mentioned earlier, even for the largest M,
the memory is sufficient for storing only 0.4 percent of data
set TS. The corresponding percentages for SF, Color, and
Signature equal 1 percent, 0.5 percent, and 0.2 percent,
respectively. Buffering has almost no effect with such small
amounts of memory. Since BUFFER has the same behavior
in all our experiments, it is omitted from the following
discussion.

In Fig. 18, we set M to 0.5 percent and measure the
I/O cost of Stat-Filter on all data sets by varying kmax from 2
to 16. Stat-Filter performs more I/Os for a workload with
larger kmax, which is consistent with the results in Fig. 14.

As mentioned in Section 5.3, Stat-Filter has the best
performance right after the statistics are computed but may
gradually deteriorate as objects are inserted/deleted
to/from the M-tree. The next set of experiments quantifies
the degradation rate, using M ¼ 2 percent. Toward this, we
first create an M-tree on 75 percent of the objects in a data
set, after which the statistics required by Stat-Filter are
computed. Next, the remaining objects are inserted but each
insertion is accompanied by a deletion that removes an
existing object from the tree (i.e., the number of objects in
the tree remains fixed). The statistics are dynamically
maintained during these updates. We measure the
I/O cost of Stat-Filter for a workload with kmax ¼ 8, after
75 percent (i.e., the time of statistics computation),
80 percent, . . . , 100 percent of the data set have been
inserted, respectively. The results are presented in Fig. 19.
Evidently, the performance of Stat-Filter deteriorates very
slowly, such that its I/O cost increases by around only
10 percent after all updates, compared to the cost at
75 percent.

Finally, we study the effectiveness of Stat-Filter on static
data, applying the optimization discussed in Section 5.4.
Fixing kmax ¼ 8, Fig. 20 shows the number of node accesses
performed by Stat-Filter as a function of M. Clearly, the
I/O cost decreases quickly as M increases. The phenomen-
on is similar to that in Fig. 17, except that here, given the
same M 6¼ 0, the improvement over the basic solution
(corresponding to M ¼ 0) is even more significant.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a careful study of processing
RkNN queries in metric spaces. We proposed algorithms

TAO ET AL.: REVERSE NEAREST NEIGHBOR SEARCH IN METRIC SPACES 13

Fig. 17. I/O cost of Stat-Filter versus M (M ¼ number of values kept in

memory / data set cardinality, kmax ¼ 8). (a) SF. (b) TS. (c) Color.

(d) Signature.

Fig. 18. I/O cost of Stat-Filter versus kmax (M ¼ 0:5 percent).

Fig. 19. Performance degradation of Stat-Filter with updates (kmax ¼ 8,

M ¼ 2 percent).

Fig. 20. Performance of Stat-Filter on static data (kmax ¼ 8).

that do not require representations of the underlying
objects, are applicable as long as the similarity between
two objects can be evaluated, and satisfy the triangle
inequality. Our technique leverages only a metric index
and, hence, trivially supports object updates by resorting to
the insertion/deletion procedures of the index. Our solu-
tions require small implementation efforts, since they
support any types of objects and any similarity metrics in
a uniform manner.

This work motivates several directions for future work.
First, the efficiency of RkNN search may be further
enhanced if more powerful pruning heuristics can be
discovered. Second, the problem we addressed corresponds
to “monochromatic RNN search” defined in [11]. Extending
the solutions to the “bichromatic” case [11] is a challenging
but exciting topic. Last but not the least, it would be
interesting to explore the possibility of using our algorithms
for mining the correlation among metric data.

ACKNOWLEDGMENTS

Yufei Tao was supported by Grant CityU 1163/04E from
the RGC of the HKSAR government, and SRG Grant
7001843 from the City University of Hong Kong. Man Lung
Yiu and Nikos Mamoulis were supported by Grant HKU
7149/03E from the RGC of the HKSAR government.

REFERENCES

[1] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-
Tree: An Efficient and Robust Access Method for Points and
Rectangles, ” Proc. SIGMOD Conf., pp. 322-331, 1990.

[2] R. Benetis, C.S. Jensen, G. Karciauskas, and S. Saltenis, “Nearest
Neighbor and Reverse Nearest Neighbor Queries for Moving
Objects,” Proc. Int’l Database Eng. and Applications Symp. (IDEAS),
pp. 44-53, 2002.

[3] M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf,
Computational Geometry: Algorithms and Applications. Springer,
2000.

[4] M.M. Breunig, H.-P. Kriegel, R.T. Ng, and J. Sander, “LOF:
Identifying Density-Based Local Outliers,” Proc. SIGMOD Conf.,
pp. 93-104, 2000.

[5] P. Ciaccia and M. Patella, “Searching in Metric Spaces with User-
Defined and Approximate Distances,” ACM Trans. Database
Systems, vol. 27, no. 4, pp. 398-437, 2002.

[6] P. Ciaccia, M. Patella, and P. Zezula, “M-Tree: An Efficient Access
Method for Similarity Search in Metric Spaces,” Proc. Very Large
Data Bases Conf. (VLDB), pp. 426-435, 1997.

[7] P. Ciaccia, M. Patella, and P. Zezula, “A Cost Model for Similarity
Queries in Metric Spaces,” Proc. Symp. Principles of Database
Systems (PODS), pp. 59-68, 1998.

[8] H. Ferhatosmanoglu, I. Stanoi, D. Agrawal, and A.E. Abbadi,
“Constrained Nearest Neighbor Queries, Proc. Symp. Spatial and
Temporal Databases (SSTD), pp. 257-278, 2001.

[9] G.R. Hjaltason and H. Samet, “Distance Browsing in Spatial
Databases,” ACM Trans. Database Systems, vol. 24, no. 2, pp. 265-
318, 1999.

[10] G.R. Hjaltason and H. Samet, “Index-Driven Similarity Search in
Metric Spaces,” ACM Trans. Database Systems, vol. 28, no. 4,
pp. 517-580, 2003.

[11] F. Korn and S. Muthukrishnan, “Influence Sets Based on Reverse
Nearest Neighbor Queries,” Proc. SIGMOD Conf., pp. 201-212,
2000.

[12] K.-I. Lin, M. Nolen, and C. Yang, “Applying Bulk Insertion
Techniques for Dynamic Reverse Nearest Neighbor Problems,”
Proc. Int’l Database Eng. and Applications Symp. (IDEAS), pp. 128-
132, 2002.

[13] A. Maheshwari, J. Vahrenhold, and N. Zeh, “On Reverse Nearest
Neighbor Queries,” Proc. Canadian Conf. Computational Geometry
(CCCG), pp. 128-132, 2002.

[14] A. Nanopoulos, Y. Theodoridis, and Y. Manolopoulos, “C2P:
Clustering Based on Closest Pairs,” Proc. Very Large Data Bases
Conf. (VLDB), pp. 331-340, 2001.

[15] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient Algorithms for
Mining Outliers from Large Data Sets,” Proc. SIGMOD Conf.,
pp. 427-438, 2000.

[16] N. Roussopoulos, S. Kelley, and F. Vincent, Nearest Neighbor
Queries, Proc. SIGMOD Conf., pp. 71-79, 1995.

[17] A. Singh, H. Ferhatosmanoglu, and A.S. Tosun, “High Dimen-
sional Reverse Nearest Neighbor Queries,” Proc. Conf. Information
and Knowledge Management (CIKM), pp. 91-98, 2003.

[18] I. Stanoi, D. Agrawal, and A.E. Abbadi, “Reverse Nearest
Neighbor Queries for Dynamic Databases,” Proc. ACM SIGMOD
Workshop, pp. 744-755, 2000.

[19] Y. Tao, D. Papadias, and X. Lian, “Reverse kNN Search in
Arbitrary Dimensionality,” Proc. Very Large Data Bases Conf.
(VLDB), pp. 744-755, 2004.

[20] C. Yang and K.-I. Lin, “An Index Structure for Efficient Reverse
Nearest Neighbor Queries,” Proc. Int’l Conf. Data Eng. (ICDE),
pp. 485-492, 2001.

Yufei Tao received the PhD degree in computer
science from the Hong Kong University of
Science and Technology. During 2002-2003,
he was a visiting scientist at the Carnegie Mellon
University, Pittsburgh. Since September 2003,
he has been an assistant professor in the
Department of Computer Science at the City
University of Hong Kong. He is the winner of the
Hong Kong Young Scientist Award 2002, con-
ferred by the Hong Kong Institution of Science.

Man Lung Yiu received the bachelor’s degree in
computer engineering from the University of
Hong Kong, China, in 2002. He is currently a
PhD candidate in the Department of Computer
Science at the University of Hong Kong. His
research interests include databases and data
mining.

Nikos Mamoulis received the diploma in com-
puter engineering and informatics in 1995 from
the University of Patras, Greece, and the
PhD degree in computer science in 2000 from
the Hong Kong University of Science and
Technology. Since September 2001, he has
been an assistant professor in the Department of
Computer Science at the University of Hong
Kong. In the past, he has worked as a
postdoctoral researcher at the Centrum voor

Wiskunde en Informatica (CWI), the Netherlands. His research interests
include complex data management, data mining, advanced indexing and
query processing, and constraint satisfaction problems. He has
published more than 60 articles in reputable international conferences
and journals and served in the program committees of major database
and data mining conferences.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

