
Noname manuscript No.
(will be inserted by the editor)

Evaluating Pattern Matching Queries for Spatial Databases

Yixiang Fang · Yun Li · Reynold Cheng · Nikos Mamoulis · Gao Cong

Received: Mar 10, 2018 / Accepted: date

Abstract In this paper, we study the spatial pattern

matching (SPM) query. Given a set D of spatial ob-

jects (e.g., houses and shops), each with a textual de-

scription, we aim at finding all combinations of objects

from D that match a user-defined spatial pattern P . A

pattern P is a graph whose vertices represent spatial ob-

jects, and edges denote distance relationships between

them. The SPM query returns the instances that sat-

isfy P . An example of P can be “a house within 10-

minute walk from a school, which is at least 2km away

from a hospital”. The SPM query can benefit users such

as house buyers, urban planners, and archaeologists.

We prove that answering such queries is computation-

ally intractable, and propose two efficient algorithms for

their evaluation. Moreover, we study efficient solutions

to address two related problems of the SPM: (1) Find

top-k matches that are close to a query location, and

(2) Return partial matches for a query pattern. Exper-

iments and case studies on real datasets show that our

proposed solutions are highly effective and efficient.

Yixiang Fang
Department of Computer Science, The University of Hong
Kong. E-mail: yxfang@cs.hku.hk
Yun Li
Department of Computer Science and Technology, Nanjing
University. E-mail: liycser@gmail.com
Reynold Cheng
Department of Computer Science, The University of Hong
Kong. E-mail: ckcheng@cs.hku.hk
Nikos Mamoulis
Department of Computer Science & Engineering, University
of Ioannina. E-mail: nikos@cs.uoi.gr
Gao Cong
School of Computer Science and Engineering, Nanyang Tech-
nological University. E-mail: gaocong@ntu.edu.sg

school

house

parkstation

[0.2, 0.5]

[0.0, 0.2][0.2, 0.4]

{school, gym}

house

park

0.2 0.40.0 0.6

house
{cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

[10, 20]

office

house waterworks

[15, 40][10, 20]

waterworks

house

office

CBD

Inner area

Outer
suburb

20km

15km

15km

school

house

[0.2, 0.5]

(b) A pattern P

school

house

[0.2, 0.5]

(c) A pattern P’

{school, gym}

house

park
0.2

0.40.0 0.6

house
{cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

{school, gym}

house

park

0.2 0.40.0 0.6

house
{cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

(a) Spatial object set D

Fig. 1 An mCK query with Q={house, school, hospital}.

1 Introduction

Emerging location-based services (e.g., Google Maps)

have raised plenty of research interest on the spatial-

keyword query (SKQ) (e.g., [43,19,12,10]). In general,

an SKQ returns sets of spatial objects whose locations
are close to each other, and whose descriptions are rel-

evant to a set of user-given text strings (called keyword

set). The keyword set reflects the kinds of objects that a

user is interested. A typical SKQ is the mCK query [43,

19], which finds, given a spatial database D and a key-

word set Q, the set of spatial objects from D, such

that they cover all the keywords of Q, and the maxi-

mum distance between any pair of objects is minimized.

In Fig. 1, for example, D comprises spatial objects la-

beled with different keywords (e.g., park and school).

Suppose that Q={house, school, hospital}, an answer

to the mCK query is the set of objects circled by the

dashed line in the figure.

1.1 Motivation

Although SKQs are useful, they may not be able

to precisely capture the user’s intentions. Suppose that

a user wishes to purchase a house, which is close to

2 Yixiang Fang et al.

school

house

parkstation

[0.3, 0.5]

[0.0, 0.2][0.2, 0.4]

{school, gym}

house

park

0.2 0.40.0 0.6

house {cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

[10, 20]

office

house waterworks

[15, 40][10, 20]

waterworks

house

office

CBD

Inner area

Outer
suburb

20km

15km

15km

{school, gym}

house

park

0.2 0.40.0 0.6

house {cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

school

house

[0.3, 0.5]{school, gym}

house

park

0.2 0.40.0 0.6

house {cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

(a) Spatial object set D (b) A pattern P

school

house

parkstation

[0.3, 0.5]

[0.0, 0.2][0.2, 0.4]

{school, gym}

house

park

0.2 0.40.0 0.6

house {cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

[10, 20]

office

house waterworks

[15, 40][10, 20]

waterworks

house

office

CBD

Inner area

Outer
suburb

20km

15km

15km

{school, gym}

house

park

0.2 0.40.0 0.6

house {cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

school

house

[0.3, 0.5]{school, gym}

house

park

0.2 0.40.0 0.6

house {cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

(a) Spatial object set D (b) A pattern P

(a) human settlement area (b) a spatial pattern

Fig. 2 The human settlement and a spatial pattern [3].

a school. Moreover, while the user does not want a

hospital to be too close to her living space (e.g., for

hygienic reasons), she wishes a hospital to be within

a distance that makes it easily accessible. A hospital

between 0.5km and 2km from the house would be de-

sirable. This request may not be answered by an SKQ

(e.g., [19]), which finds sets of objects which are all close

to each other. In our example, the user would like to

get as an answer the objects circled in the solid ellipse

of Fig. 1.

Let us consider another example where specifying

spatial relationships for query keywords is important.

In geography domain, human settlement is the study of

the human land-use patterns, or the “evidence within

a given region of the physical remnants of communi-

ties and networks” [28,31]. This topic is interesting to

urban planners and archaeologists. Fig. 2 illustrates a

human settlement [3]. An urban planning expert may

conjecture that in a certain city, an office is located

in the CBD (Central Business District); a house is in

the inner city; a waterworks site is built in the outer

suburbs. Hence, the expert might want to retrieve ob-

jects for (office, house, waterworks), which are located

in the CBD, the inner city, and the outer suburbs, re-

spectively. The objects retrieved can be the subject of

further analysis and case studies. In this example, the

three kinds of objects interesting to the user, located

in different areas, are separated by some distance con-

straints (e.g., each pair of object has a distance in a

certain range). However, these distance relationships

between keywords cannot be expressed in by existing

SKQ formulations.

1.2 Proposal

To allow spatial relationships among keywords to

be conveniently specified, we propose the spatial pat-

tern matching (SPM) query. As shown in Fig. 3, given

a spatial database D (in (a)) and a spatial pattern P

(in (b)), SPM finds all the instances of P in D. Notice

that P is a graph, where each vertex corresponds to

an object with a keyword attached, and each edge is

augmented with a spatial distance relationship. For ex-

school

house

parkstation

[0.2, 0.5]

[0.0, 0.2][0.2, 0.4]

{school, gym}

house

park

0.2 0.40.0 0.6

house
{cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

[10, 20]

office

house waterworks

[15, 40][10, 20]

waterworks

house

office

CBD

Inner area

Outer
suburb

20km

15km

15km

school

house

[0.2, 0.5]

(b) A pattern P

school

house

[0.2, 0.5]

(c) A pattern P’

{school, gym}

house

park

0.40.0 0.6

house
{cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

{school, gym}

house

park

0.2 0.40.0 0.6

house
{cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

(a) Spatial object set D

0.2

school

house

parkstation

[0.2, 0.5]

[0.0, 0.2][0.2, 0.4]

{school, gym}

house

park

0.2 0.40.0 0.6

house {cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

[10, 20]

office

house waterworks

[15, 40][10, 20]

waterworks

house

office

CBD

Inner area

Outer
suburb

20km

15km

15km

{school, gym}

house

park

0.2 0.40.0 0.6

house {cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

school

house

[0.2, 0.5]{school, gym}

house

park

0.2 0.40.0 0.6

house {cinema, shop}

school

0.0

0.2

0.4

0.6

0.8

station

hospital

(km)

(a) Spatial object set D (b) A pattern P

(a) Spatial object set D (b) Spatial pattern P

Fig. 3 Illustrating the SPM query.

ample, the user can specify that the house found should

be within the vicinity of [0.2, 0.5] (km) from a school.

In a number of countries (e.g., Singapore), if a student

lives within a particular distance (e.g., 0.5km or 1km)

of a school p, then he/she has a high chance to be ad-

mitted to p [26]. The user may also want the house to

be at least 0.2km from the school to avoid noise. In this

example, the four objects connected in solid lines, which

satisfy all the constraints of the spatial pattern P , is an

instance (or a match) of P . In Fig. 2(b), the spatial

pattern for the human settlement example is shown.

As discussed before, an SKQ (e.g., [43,19,12,10])

can only return objects that are spatially close to each

other. SPM queries are reminiscent to multi-way spatial

joins studied in previous work [30,25]. However, those

solutions are not designed to use keywords and exclu-

sion relationship (to be discussed later) to find spa-

tial pattern instances. As a result, pure spatial indexes,

such as the R-tree, cannot be used unless they are built

on-the-fly for each vertex, which is typically expen-

sive. Another related topic is graph pattern matching

(GPM) [45,7], which aims at finding subgraphs match-

ing a query pattern from a large graph. However, using

GPM techniques to solve SPM problems is not straight-

forward because (1) the spatial patterns associated with

distance intervals and inclusion/exclusion-relationship

are different from graph patterns, and (2) the solutions

to the GPM problem are mainly designed for graphs,

rather than spatial objects which are often indexed by

R-tree like structures. To adapt the GPM solutions for

solving the SPM queries, we first have to transform the

set of spatial objects involved (e.g., Fig. 3(a)) into a

graph, and then run a GPM algorithm on it. Moreover,

as shown by our experiments in Section 7, the adapted

GPM solutions (i.e., [45,7]) are very inefficient, calling

for faster solutions.

1.3 Contributions

We present a formal definition of a spatial pattern.

We propose several distance constraints for a spatial

pattern, which specify (1) minimum and maximum dis-

Evaluating Pattern Matching Queries for Spatial Databases 3

Fig. 4 The user interface of SpaceKey [16].

tances between two object types; and (2) exclusion and

inclusion. Fig. 3(b) illustrates the exclusion relation-

ship (→), which expresses that (1) a school should be

at least 0.2km from a house but not more than 0.5km;

and (2) no school should be in the vicinity of 0.2km of a

house. We then define the SPM problem and show that

it is NP-hard. To answer the query, we propose two ef-

ficient algorithms. The first one, called multi-pair-join

(or MPJ), is adapted from multi-way join approaches [38,

45] considering edges of the spatial pattern. We also

develop a sampling-based estimation method to guide

the execution order of the joins. Since this solution fol-

lows the multi-way join paradigm directly, it is easy

to implement. In addition, we develop a faster solution

customized for SPM queries. This solution, called the

multi-star-join (or MSJ), derives the lower and upper

bounds of distances between object instances based on

dynamic programming. We also introduce two pruning

criteria to improve query performance.

We have implemented our solutions in a system,

called SpaceKey. Its user interface is illustrated in Fig.

4. To draw a pattern, a user can drag icons (representing

keywords) from the panel (bottom-left) to create ver-

tices (top-left), and then create edges by linking pairs

of icons. Their distance intervals and relationship can

be edited using the pop-up panel, which overlaps with

the map in Fig. 4. 1 After clicking the “Query” button,

the user can view the matches on the map one by one.

The SpaceKey system also allows users to visually com-

pare the results of different SKQs. For more details of

SpaceKey, please refer to [16].

Our experience with SpaceKey is that sometimes

the number of results returned by an SPM query is

1 The user can input the lower/upper bounds of the in-
tervals based on his experience and expertise. Alternatively,
the system can be designed to give suggestions, based on, for
instance, the previous users’ inputs or query results.

enormous. We say that an SPM query is over-matched,

if it has a huge number (e.g., thousands) of results. A
user may have difficulty to rank the numerous results

and choose the best ones. To address this issue, we pro-

pose the top-k SPM problem. Given a pattern and an

integer k, the top-k SPM aims at returning the top-k

matches, whose values for a scoring function are the

lowest. An example scoring function is one that mea-

sures the the average distance of a matched object from

the location that a query is issued. To answer top-k

SPM queries, we design fast algorithms, which are more

efficient than brute-force approaches.

In SpaceKey, an SPM query may not return any

result. This can be because the query pattern is rare,

and consequently there are no instances that precisely

match it. A user may either have to accept that no re-

sult is returned, or modify her/his query, with the hope

that a result is yielded. We call these queries under-

matched, and address the problem by proposing the
partial PSM (or PSPM) query. Given a pattern P , the

PSPM query returns objects that have a “close” match

with P . More specifically, the PSPM query finds object

sets that match the largest sub-graph of P . This in-

creases the chance that a result is returned for an SPM

query. A user can first run an SPM query. If no result

is returned, SpaceKey will ask the user whether a less-

precise result is acceptable, and if this is the case, an

PSPM query will be executed. In this paper, we study

how PSPM queries can be efficiently evaluated.

We experimentally evaluate our proposed SPM al-

gorithms on real datasets. The results show that our

best approach is over an order of magnitude faster than

baseline techniques adapted from GPM. We conducted

a case study that evaluates the practicality of SPM

queries, showing that SPM queries often return bet-

ter results for target applications than SKQ queries.

We also test the proposed algorithms for answering the

top-k SPM and PSPM queries, and show that they are

faster than baseline approaches.

An earlier version of this paper is [13]; see also our

SpaceKey demonstration [16]. Compared to [13,16], the

additional contributions of this paper are the introduc-

tion of the top-k SPM and PSPM queries and the pro-

posal of efficient solutions for them. We also extensively

evaluate the performance of these solutions by experi-

ments on real datasets.

Organization. We formulate the SPM problem in

Section 2. Sections 3 and 4 present our SPM solutions

MPJ and MSJ respectively. We introduce the problem

definitions and solutions for top-k SPM and PSPM in

Sections 5 and 6 respectively. The experimental results

are reported in Section 7. We review related work in

Section 8 and conclude in Section 9.

4 Yixiang Fang et al.

2 The SPM Problem

2.1 Problem Definition

Let D be a database of spatial objects (or objects

for brevity). Each object oi ∈ D (1≤ i ≤ |D|) has 2D

coordinates (xi, yi), and is associated with a set of key-

words, denoted by doc(oi). In Fig. 3(a), for example,

the object at (0.6, 0.1) has a keyword “house”. We say

that oi matches with a keyword w, if w ∈ doc(oi). Given

two objects oi and oj , we use |oi, oj | to denote their Eu-

clidean distance. We denote a spatial circle with center

o and radius r by O(o, r). Table 1 summarizes the no-

tations used in the paper.

Let us now define spatial patterns.

Definition 1 (spatial pattern2) A spatial pattern P

is a graph P (V , E) of n vertices {v1, v2, · · · , vn} and
m edges, such that the following constraints hold:

– Each vertex vi ∈ V has a keyword wi;

– Each edge (vi, vj) ∈ E has a distance interval [li,j , ui,j],

where li,j (ui,j) is the lower (respectively upper)

bound of distances between two matching objects

in D;

– Each edge (vi, vj) ∈ E is associated with one of the

signs: (1) vi→vj ; (2) vi←vj ; (3) vi↔vj ; and (4) vi–

vj .

For example, consider the edge house→school with

distance interval [0.2, 0.5] (km) in the pattern of Fig.
3(b). Intuitively, the user wishes to retrieve two objects

(say, os and ot) such that: (1) os and ot have keywords

house and school respectively; (2) the distance of os
from ot is between 0.2km and 0.5km; and (3) there

does not exist any object with keyword school, which

is less than 0.2km from os. The arrow in house→school

is expressed as house excludes school, and captures the

user’s intention of not getting any match for which the

house has a school object less than 0.2km from it. This

condition is useful to a user who wants to find a house

not too close to any school (e.g., to avoid the noise

and crowd caused by school). Let (vi, vj) be an edge

in E, with distance interval [li,j , ui,j]. Also, let ok and

ol be the two objects returned in a match of E, where

wi ∈ doc(ok) and wj ∈ doc(ol). We now discuss the four

possible signs of an edge in Definition 1:

– vi→vj [vi excludes vj]: No object with keyword wj

in D should have a distance less than li,j from ok.

– vi←vj [vj excludes vi]: No object with keyword wi

in D should have a distance less than li,j from ol.

– vi↔vj [mutual exclusion]: No object with keyword

wj in D should have a distance less than li,j from

2 In context without ambiguity, we simply call it a pattern.

ok, and the distance of any object with keyword wi

in D should be at least li,j away from ol.
– vi–vj [mutual inclusion]: The occurrence of any ob-

ject (other than ok and ol) with keywords wi and

wj in D with distance shorter than li,j is allowed.

For example, in the pattern of Fig. 3(b), house ex-

cludes school, and house has a mutual inclusion with

park.

Remarks. The notion of spatial pattern can be ex-

tended to support other query requirements. For ex-

ample, each vertex of P may carry multiple keywords.

Also, the distance constraint can be changed, in or-

der to express that the distance between two objects is

within multiple distance intervals. Although we assume

the distance metric is Euclidean, other measures, such

as the road network distance, can also be considered.

For convenience, we use nb(vi) to denote the set of

neighbors of vertex vi ∈ P . We define an e-match of an

edge (vi, vj), as follows:

Definition 2 (e-match) Two objects ok and ol con-

stitute an e-match of (vi, vj), if doc(ok) and doc(ol) in-

clude wi and wj , respectively, and the objects satisfy

the distance constraints of (vi, vj).

Definition 3 (match) Given a spatial pattern P (V,E)

and a set S of objects, S is a match of P if there exists

an injection ϕ : V → S, such that for all v, v′ ∈ V , if

(v, v′)∈ E, then the object pair (ϕ(v), ϕ(v′)) forms an

e-match of (v, v′).

Problem 1 (Spatial Pattern Matching) Given a
database D of spatial objects and a spatial pattern P ,

SPM returns all the matches of P in D.

In Fig. 3(a), for instance, the four objects connected

in solid lines are a match of the pattern in Fig. 3(b) and

they form an answer to this SPM query. We call a set
of objects a partial match of P , if it is a match of a

subgraph of P . For example, in Fig. 3(a), any two or

three linked objects are a partial match of the pattern

in Fig. 3(b).

Lemma 1 (Hardness) The SPM problem is NP-hard.

Proof. Please refer to our technical report [39].

A naive solution to solve the SPM problem takes up

to O(|D|n) time, which is exponential to the number of

vertices n. However, in practice n is not large, motivat-

ing us to develop efficient exact algorithms despite the

intractability.

Evaluating Pattern Matching Queries for Spatial Databases 5

Table 1 Frequently used notations and their meanings.

Notation Meaning

D set of spatial objects

oi(xi, yi) spatial object in D, with 2D coordinates (xi, yi)

doc(oi) set of keywords of oi

P (V,E) spatial pattern with vertex and edge sets V and E

n, m number of vertices and edges in V and E

vi, wi vertex vi with keyword wi in P

[li,j , ui,j] distance interval on edge (vi, vj)

nb(vi) set of neighbor vertices of vi ∈ P

P̂ bounded pattern of P

O(o, r) circle with center o and radius r

|oi, oj | the Euclidean distance between oi and oj

Γ join order (in the form of a list of edges)

Ψ SPM query result set

ξ maximum number of partial matches generated

2.2 Baseline Solutions: S-MDJ and S-VF3

We first propose basic SPM evaluation techniques

by adapting existing GPM solutions [45,7]. Given an

SPM query pattern P , we can follow three steps: first

create a graph G using P , then convert pattern P to

another pattern P ′ by removing its distance intervals

and signs, and finally find all the matches of P ′ in G

using a GPM solver. Specifically:

Step-1: For each edge (vi, vj) of P , we find a set Oi of

objects that match with wi. For each object o ∈ Oi we

perform two range queries in O(o, li,j) and O(o, ui,j),

to get their answers Li,j and Ui,j which contain objects

matched with wj , respectively. Note that, if vi excludes

vj (i.e., vi→vj) and Li,j ̸= ∅, then we skip o (the cases

where the sign of the edge is vi ← vj or vi ↔ vj are

handled similarly). Next, for each object o′ in Ui,j\Li,j ,

(o, o′) forms an e-match of (vi, vj). As a result, we can

get all the e-matches of this edge.

Step-2: For the two objects in each e-match, we create

two vertices with wi and wj in G and link them with

an edge.

Step-3: We generate pattern P ′ by removing distance

intervals and signs from P . Afterwards, any GPM algo-

rithm can be applied to extract all matches of P ′ from

G. Note that, for each edge of P , all its e-matches have

been included into G, so all the matches of P could be

extracted from G.

In this paper, we consider two GPM approaches

MD-Join [45] and VF3 [7] and denote them by S-MDJ

and S-VF3, respectively. Their time complexities could

be up to O(m|D|2+ |D|n), since there are at most |D|2

e-matches for each edge, and the maximum number of

matches is |Dn|.
In Step-1, we need to perform keyword search and

range queries over the dataset D. To facilitate this step,

we use the IR-tree structure [9] to index the objects in

D. To build the IR-tree, we first build an R-tree and

0 1 2 3 4 5
0

1

2

3

4

o2:{a, c}

o1:{a, b}

o4:{c, d}

o3:{b, d}
R1 R2

o1 o2 o3 o4R1

R2

R3

a: o1,o2
b: o1
c: o2

b: o3
c: o4
d: o3,o4

a: R1
b: R1,R2
c: R1,R2
d: R2

0 1 2 3 4 5
0

1

2

3

4

o2:{a, c}

o1:{a, b}

o4:{c, d}

o3:{b, d}
R1 R2

o1 o2 o3 o4R1

R2

R3

a: o1,o2
b: o1
c: o2

b: o3
c: o4
d: o3,o4

a: R1
b: R1,R2
c: R1,R2
d: R2

(a) A set of objects (b) An IR-tree

Fig. 5 An example of IR-tree.

then associate an inverted file to each node 3 as follows.

In each leaf node, each keyword is associated with a

postings list, i.e., the list of objects containing the key-

word. In the inverted file of each non-leaf node, each

keyword is associated the list of child nodes containing

it. Fig. 5(a) gives an example of four objects {o1, · · · ,
o4}, and the IR-tree built for these objects is depicted

in Fig. 5(b). The inverted files of nodes are described

in the dashed rectangle boxes.

3 The MPJ Algorithm

The main problem of the GPM-based solutions is

that, to answer an SPM query, they need to generate a

graph G and a pattern P ′, before running a GPM al-

gorithm. This may not be efficient, when D is large. To

improve the performance, in this section we propose a

multi-pair-join (MPJ) algorithm by adapting the classic

multi-way join [45], which is easy to implement.

d -

d +

p.mbr

q.mbr

li,j
ui,j

ui,j

li,j

p.mbr p.mbr

school

house

parkstation

[0.3, 1.0]

[0.0, 0.2][0.2, 0.4]

[0.0, 0.3]

house

parkstation

[0.2, 0.4]

[0.0, 0.3]

house

station

[0.2, 0.4]

house

parkstation

[0.2, 0.4]

[0.0, 0.3]

[0.0, 0.2]

school

house

marketstation

[0.2, 1.0]

[0.0, 0.3][0.2, 0.5]

[0.0, 0.3]

(d)(c)(b)(a)

Fig. 6 Illustrating the process of MPJ.

We first propose a join algorithm called pair-join

(PJ) to find all the e-matches for each edge of P . Based

on PJ, we develop the MPJ algorithm, which joins these

e-matches of single edges, according to a particular or-

der, to obtain all the matches of P . In Fig. 6, we show

the query process of MPJ for the pattern in Fig. 6(d)

with a particular join order. We first present PJ in Sec-

tion 3.1, then discuss the join order and the MPJ algo-

rithm in Sections 3.2 and 3.3 respectively.

3 To avoid ambiguity, we use “node” to mean “IR-tree
node”, and “vertex” to mean “vertex” of the spatial pattern
in this paper.

6 Yixiang Fang et al.

3.1 The PJ Algorithm

We first consider edges with signs vi–vj and vi→vj .

We will consider the other two signs later. To compute
the e-matches of an edge, we assume that there is an

IR-tree built for D. The rationale of adopting the IR-

tree index is two-fold: (1) The IR-tree, as an R-tree

extension, can easily handle edges with both inclusion-

relationship and exclusion-relationship in the join pro-

cess; (2) The IR-tree has been shown to be very efficient

for joint spatial keyword queries [37].

Given an IR-tree and an edge with keywords wi and

wj , PJ finds all the matched pairs of IR-tree nodes level

by level in a top-down manner. Specifically, for the root

level, the root node and itself form a matched pair (as-

sume that the IR-tree has both keywords wi and wj).

Then, we find the child node pairs that match and

follow them, repeating the same process until all the

matched objects at the leaf level are found.

MinDist MaxDist

Distance pruning

label(vi)

li,j

ui,j

ui,j

UB-region LB-region

li,j

label(vj) label(vj)

A B

C

20

101000

d -

d +

p.mbr

q.mbr

li,j
ui,j

ui,j

li,j

p.mbr p.mbr

MinDist MaxDist

Distance pruning

label(vi)

li,j

ui,j

ui,j

UB-region LB-region

li,j

label(vj) label(vj)

A B

C

20

101000

d -

d +

p.mbr

q.mbr

li,j
ui,j

ui,j

li,j

p.mbr p.mbr

MinDist MaxDist

Distance pruning

label(vi)

li,j

ui,j

ui,j

UB-region LB-region

li,j

label(vj) label(vj)

A B

C

20

101000

d -

d +

p.mbr

q.mbr

li,j
ui,j

ui,j

li,j

p.mbr p.mbr

(a) d+ and d− (b) Considering ui,j (c) Considering li,j

Fig. 7 Illustrating the candidate pairs in PJ.

We now explain when a pair of nodes match. Let p

and q be two non-leaf nodes, whose inverted files con-

tain wi and wj respectively, at the same level of the

IR-tree. We define their MBRs’ maximum distance d+

as the maximum distance between any two points in

their MBRs. Their minimum distance d− can be de-

fined similarly. Fig. 7(a) illustrates d+ and d−. We call

(p, q) amatched pair of nodes, if [d−, d+]∩[li,j , ui,j] ̸= ∅.
Intuitively, if p and q’s MBRs are far from or too

close to each other, then we cannot find any pair of

objects under them that form an e-match. We illus-

trate this using Fig. 7(b) and 7(c). If q’s MBR does

not intersect the outer area bounded by the solid line

in Fig. 7(b), then q does not match with p, since the

minimum distance of their MBRs must be larger than

ui,j ; Similarly, if q’s MBR is fully covered by the outer

area bounded by the solid line in Fig. 7(c), then q does

not match with p, since the maximum distance of their

MBRs must be less than li,j .

To prune unmatched node pairs, we exploit a key

property of the IR-tree. That is, for each node in the

IR-tree, its MBR must be contained by the MBR of its

parent node. As a result, after finding all matched node

pairs at a specific tree level, for the next (lower) level,

Algorithm 1: PJ

Input: root, wi, wj , [li,j , ui,j], λ;
Output: Φ, all the e-matches;

1 h← height(root), Φ← ∅;
2 Λ.add(root), Φ.add(root, Λ);
3 for i← 1 to h do
4 Φ′ ← ∅;//a map of matched pairs in next level;
5 for p ∈ Φ.keySet() do
6 Λ← ∅, flag ← false;
7 for p′ ∈ p.invFile(wi) do
8 for q ∈ Φ.getKey(p) do
9 for q′ ∈ q.invFile(wj) do

10 d− ←MinDist(p′.mbr, q′.mbr);
11 d+ ←MaxDist(p′.mbr, q′.mbr);
12 if d+<li,j then
13 if λ is “→” then
14 flag ← true; break;

15 else if d− ≤ ui,j then
16 Λ.add(q′);

17 if flag=true then break;

18 if flag=false then Φ′.add(p′, Λ);

19 Φ← Φ′; //update Φ

20 return Φ;

we can directly find the matched node pairs from their

child node pairs, and ignore all the other node pairs.

By repeating this process level by level, we can safely

prune a large number of unmatched pairs of nodes and

obtain all the e-matches. Algorithm 1 presents PJ.

The input of PJ is the root of an IR-tree, and an edge

(vi, vj) ∈ P , where λ denotes the sign from vi to vj . The

output of PJ is Φ, a map of all the e-matches. It main-

tains a map Φ for keeping track of all the matched pairs

at a specific level. Φ contains key-value pairs, where the

key is a node/object and the value is the set of its can-

didates (line 1). We assume that Φ is associated with

two methods “keySet” and “getKey”, where “keySet”

returns the key set of Φ, and “getKey” returns the value

set for a key in Φ. PJ initializes a matched pair for the
root node (line 2). Next, it finds candidate pairs level

by level (lines 3-19).

At each iteration, PJ enumerates all the candidate

pairs in Φ (lines 5,8). For each pair (p, q), we get its child

pairs which contain wi and wj respectively by checking

their inverted files using function invFile(w) (lines 7,9).

For each child pair (p′, q′), we compute its MBRs’ max-

imum and minimum distances (lines 10-11). Note if p is

a leaf node, d+ and d− equal to |p′, q′|. If vi excludes vj
and d+ is less than li,j , we mark the boolean variable

flag as true and skip p′ (lines 12-14,17). Otherwise, if

it is a matched pair, we put q′ into Λ, a list for collect-

ing p′’s candidates (lines 15-16). After that, p′ and its

candidates are collected into a new map Φ′ (line 18).

Evaluating Pattern Matching Queries for Spatial Databases 7

The map Φ is updated for keeping matched pairs at the

next level (line 19). Finally, PJ returns Φ (line 20).

We now consider edges with other signs. vi←vj is

handled as vj→vi and PJ is directly applied. For vi↔vj ,

we run PJ for edges vi→vj and vj→vi separately, and

then return the e-matches satisfying both of them, i.e.,

the intersection of these two sets of e-matches.

3.2 The Join Order for MPJ

The order of performing joins for the edges has a

significant effect on efficiency [38,45]. We illustrate this

by Example 1.

Example 1 Consider a pattern of vertices {v1, v2, v3},
and edges {v1–v2, v2–v3, v3–v1}. Suppose there are 2,

50, and 1000 e-matches for these edges respectively. □

Order1: We run PJ for edges v1–v2 and v2–v3 first, and

then get at most 100 tuples for v1–v2–v3 by linking their

results. Then for v3–v1, we do not need to run PJ, since

we only have to scan the tuples and check for each of

them whether the distance between the third and first

objects is in [l1,3, u1,3].

Order2: We consider edges v2–v3 and v3–v1 first, which

gives us up to 50,000 tuples as candidates for v2–v3–v1.

Next, for v1–v2, we check whether each of these tuples

satisfies the distance constraint.

Clearly, Order1 has lower computational cost than

Order2. The reason is that for edges with mutual inclu-

sion (e.g., v3–v1 in Order1), we may avoid applying PJ,

because we can scan the linked tuples and check their

distance constraints. However, for edges with other signs,

we cannot avoid PJ. For example, if we replace v3–v1
by v1→v3 in Example 1 and use Order1, for any tuple

<o1,o2,o3> matched with v1–v2 and v2–v3, we cannot

claim it is a match of P , even if l1,3 ≤ |o1, o3| ≤ u1,3.

This is because, there may exist other objects matched

with w3 in the circle O(o1, l1,3), which invalidates this

tuple.

Intuitively, a good join order should avoid perform-

ing PJ for edges having large numbers of e-matches

with mutual inclusion. How can we quickly estimate

the number of e-matches for such edges without run-

ning PJ? Some existing cost models are based on R-

trees [29] and density histograms [21]. However, these

models assume that the entire dataset(s) are possible

instances of each node, whereas in our case the pattern

instances include only objects that satisfy the keyword

constraints at each vertex. In addition, as shown in Fig.

7, the regions to be queried in SPM are irregular, i.e.,

they are neither circles nor rectangles, which renders

approaches based on rectilinear space division inaccu-

rate. To address this issue, we propose an effective and
efficient estimation method.

Estimation. Consider vertices vi and vj with mutual

inclusion, i.e., vi–vj . Let Oi and Oj be the sets of ob-

jects matched with wi and wj respectively. We consider

a random pair (oi, oj) of objects, where oi ∈ Oi and

oj ∈ Oj , as a random variable. Lemma 2 states that,

by sampling a certain number of matched pairs, we can

accurately estimate the number r of e-matches.

Lemma 2 (Estimation) Let p (p>0) be the probabil-

ity that a random pair is a matched pair. Let Xi be

the number of sampled pairs to see the i-th matched

pair after seeing the (i–1)-th matched pair. Let the to-

tal number of sampled pairs to see s matched pairs be

Y=
∑s

i=1 Xi. Then, for any 0<ϵ<1,

Pr (|Y − E[Y]| ≥ ϵE[Y]) ≤ δ, (1)

where δ=exp
(
− sϵ2

8

)
.

Proof. To prove the lemma, we need to prove that (1)

Pr (Y ≤ (1− ϵ)E[Y])≤ δ; and (2)Pr (Y ≥ (1 + ϵ)E[Y])

≤ δ. The proof of (1) is exactly the same with the proof

of Lemma 5.1 of [8]. We can prove (2) in a similar man-

ner. We skip the details due to space limitations.

It is easy to observe that, the random variables Xi’s

follow the geometric distribution with success probabil-

ity p, and so the expectation is 1
p [1]. Since Y=

∑s
i=1 Xi,

we get E[Y]= s
p and also p= s

E[Y] . On the other hand,

since there are |Oi| · |Oj | pairs and r matched pairs, we

have p= r
|Oi|·|Oj | . Thus, we conclude E[Y]= s

r · |Oi| · |Oj |.
By Lemma 2, E[Y] can be well approximated by Y .

Hence, given ϵ and δ, we can sample pairs until seeing

s matched pairs, where s=O(8
ϵ2 ln

1
δ), to estimate E[Y]

well, which further implies r ≈ s
E[Y] · |Oi| · |Oj |.

To make this guarantee more concrete, consider the

following example. Let ϵ and δ be 0.25. Then we have

s=177, which means we can stop the sampling after

seeing 177 e-matches. This is very efficient in practice

if there are over thousands of e-matches. Note that, to

avoid infinite sampling for the case p=0, we introduce

a threshold ζ ∈ [0, 1], and stop sampling if we cannot

see s e-matches after sampling |Oi| · |Oj | · ζ pairs.

In addition, since the goal of the estimation is to

determine a good join order for a query pattern, we

only need to derive the topological orders of the cost of

these edges. This means that, it may not be necessary

to accurately estimate the cost, and thus we do not need

to set very small values for ϵ and δ.

Order. The optimal order can be computed by dy-

namic programming (DP) [38]. However, this method is

8 Yixiang Fang et al.

inefficient because it has to perform PJ for all edges be-

fore finding the best order and the search space can also
be very large [38,45]. To alleviate this issue, we propose

an efficient greedy solution (i.e., heuristic query op-

timization), called MPJOrder. Specifically, we perform

two steps: First, we perform PJ for edges that are not

with mutual inclusion. Second, we randomly select a

starting vertex, and perform graph search incremen-

tally starting from this vertex. During the search pro-

cess, we always greedily visit edges, whose estimated

numbers of e-matches are the smallest, and put the vis-

ited edges into Γ , a list keeping the order. We call an

edge a forward edge, if at least one of its vertices is not

in edges of the current Γ , or a backward edge if all of

its vertices are in edges of the current Γ .

Algorithm 2: MPJOrder

Input: root, P , δ, ϵ, ζ;
Output: Γ , the join order of MPJ;

1 Γ ← ∅, Q← ∅, U ← ∅, Υ ← ∅;
2 for each edge (vi, vj) of P do
3 if vi→vj or vi←vj or vi↔vj then
4 Φ← perform PJ for this edge;
5 Υ .add((vi, vj), Φ);

6 randomly select a vertex v ∈ P , and add it to U ;
7 for u ∈ nb(v) do
8 if v–u then Q.add((v, u), estimate(v–u));
9 else Q.add((v, u), Υ .get((v, u).size);

10 while Q.size > 0 do
11 (vi, vj)← Q.pop();
12 Γ .add((vi, vj));
13 if vi ∈ U and vj ∈ U then continue;
14 v ← a newly considered vertex in (vi, vj) and U ;
15 for u ∈ nb(v) ∧ U Γ .add((v, u));
16 for u ∈ nb(v) \ U do
17 if v–u then Q.add(v, u), estimate(v–u));
18 else Q.add(v, u), Υ .get(v, u).size);

19 U .add(v);

20 return Γ ;

Algorithm 2 presents MPJOrder. Given an IR-tree,

a pattern P , some parameters of estimation (δ, ϵ, and

θ), it outputs the join order Γ . We first initialize some

variables, where Γ is a list, Q is a priority queue in

which edges are ranked by their estimated numbers of e-

matches in ascending order, U keeps the visited vertices,

and Υ maintains the join results for edges that are not

with mutual inclusion. Then, we run PJ for edges that

are not with mutual inclusion (lines 2-5). Next, we ran-

domly select a vertex v and put its edges into Q (lines

6-9). Note that the function estimate(v-u) performs

sampling to estimate the number of matched pairs. In

the loop (lines 10-19), we first add the edge with the

minimum number of e-matches to Γ (lines 11-12). If the

edge is backward (line 13), we continue to dequeue an

edge from Q; otherwise, we enqueue v’s neighbors (lines
14-18). The new vertex v is marked as visited (line 19).

Finally, Γ is returned (line 20).

We illustrate the steps of MPJOrder by Example 2.

Example 2 Continuing Example 1, let v1 be the start-

ing vertex in MPJOrder. Q is initialized by two forward

edges v1–v2 and v1–v3. First, we dequeue v1–v2, add it

to Γ , and add v2–v3 to Q. Then, we dequeue v2–v3 and

add it to Γ . Also, v1–v3 is added to Γ because it is a

backward edge. □

3.3 The MPJ Algorithm

After computing the join order by MPJOrder, we

handle the edges one by one following the order, and

link the results incrementally as illustrated by Fig. 6.

Specifically, for forward edges, we expand the partial
matches, such that they match with a larger subgraph

of P ; while for backward edges, we prune some partial

matches using the distance constraints. The detailed

steps of MPJ are described in [39].

During the join process, assume that the m sub-

patterns are P1, · · · , Pm, where P1 contains a single

edge and Pm is P , and the numbers of partial matches

generated for these sub-patterns are ξ1, · · · , ξm, respec-

tively. Then, let us denote the maximum number of par-

tial matches by ξ=max{ξ1, · · · , ξm}. Clearly, we have

|Ψ | ≤ ξ ≤ |D|n. We show the time complexity of MPJ in

Lemma 3.

Lemma 3 MPJ completes in O(mζ|D|2+ξ) time.

Proof. The PJ algorithm takes O(|D|2) time, as there

are at most |D|2 e-matches. Since we sample at most

ζ · |D|2 pairs for each edge, MPJOrder costs O(mζ|D|2).
Thus, MPJ completes in O(mζ|D|2+ξ) time.

4 The MSJ algorithm

In this section, we propose a new algorithm called

the multi-star-join (or MSJ). MSJ uses the concept of

bounded pattern, which is a refined form of the query

pattern that can be computed by dynamic program-

ming. The bounded pattern can help in pruning partial

matches during the join process. In addition, compared

to MPJ, MSJ determines the join order in a more efficient

way, which does not rely on sampling. Finally, during

the join process MSJ considers the edges in a collec-

tive manner with two pruning criteria. With the help

of these features, MSJ is much more efficient than MPJ,

as we will demonstrate experimentally.

Evaluating Pattern Matching Queries for Spatial Databases 9

4.1 The Bounded Pattern

The design of the bounded pattern is based on the

key observation that, the distance between any two ver-
tices in P can be bounded. We show this by Example 3.

v3

v1 v2

v4

[0, 1]

[2, 3]

[3, 8]
Case 1: [l2,3, u2,3] = [5, 6]

Case 2: [l2,3, u2,3] = [0, 5]

Case 3: [l2,3, u2,3] = [1, 5]

v1

v4

v3

[0, 2] [0, 1]

[0, 3]

v2

[0, 8] [0, 5]
[0, 6]

Two orders:

Γ1={(v1, v2), (v2, v3), (v1, v4), (v4, v3)}

v3 is an anchor vertex and its anchor edge is (v3, v1)

v4 is an anchor vertex and its anchor edge is (v4, v2)

Γ2={(v3, v2), (v3, v4), (v4, v1), (v2, v1)}

No anchor vertex can be found from this order

[0, 1]

[4, 7]

v1-v2-v4: [2, 9]

v1-v3-v4: [3, 6]
v1-v4: [3, 6]

v2-v1-v3: [3, 8]

v2-v4-v3: [2, 7]
v2-v3: [3, 7]

v1 v3

v4v2 [1, 2]

[4, 5]

Fig. 8 Illustrating the bounded pattern.

Example 3 Consider a pattern P in Fig. 8 where the

four edges are in solid lines. Since the distance intervals

on v1–v2 and v2–v4 are [4, 7] and [1, 2] respectively,

the lower and upper bounds of the distance from v1
to v4 are 2 and 9 by triangle inequality. Similarly, we

can derive the bounds using v1–v3 and v3–v4. Thus, the

distance between two objects matched with v1 and v4
in a match of P must be in [3, 6]. □

Given a spatial pattern P , we define its bounded
pattern P̂ as a clique graph satisfying properties:

• There are n vertices {v̂1, v̂2, · · · , v̂n};
• Each vertex is linked with each other vertex;

• ∀(v̂i, v̂j) of P̂ , its distance interval [l̂i,j , ûi,j] is

initialized as [li,j , ui,j] if (vi, vj)∈P , or [0,+∞] if (vi,

vj)/∈P .

• The distance intervals on all the edges are com-

puted by dynamic programming using Lemmas 4 and 5.

Lemma 4 (Upper bound) The upper bound distance

between any two vertices v̂i and v̂j in P̂ is

ûi,j = min
1≤k≤n

{ûi,j , ûi,k + ûk,j}. (2)

Proof. Since the upper bound distance from v̂i to v̂j
must not conflict with the upper bound distance of each

path from v̂i to v̂j , ûi,j is the minimum one among

all the paths. Also, it is easy to see that ûi,j can be

computed recursively. Therefore, Eq (2) holds.

Apparently, ûi,j equals to the shortest path distance

from v̂i to v̂j , if we replace the distance interval on

each edge (v̂i, v̂j) by a value ûi,j , so we can use Floyd-

Warshall algorithm [2].

Lemma 5 (Lower bound) The lower bound distance

between any two vertices v̂i and v̂j in P̂ is

l̂i,j = max
1≤k≤n

0 [l̂i,k, ûi,k] ∩ [l̂k,j , ûk,j] ̸= ∅

l̂k,j − ûi,k ûi,k < l̂k,j

l̂i,k − ûk,j l̂i,k > ûk,j

.

(3)

Proof. Let oi, oj , and ok be three objects, where oi
and ok constitute an e-match of v̂i–v̂k, and ok and oj
constitute an e-match of v̂k–v̂j . This implies that we

have |oi, ok| ∈ [l̂i,k, ûi,k] and |ok, oj | ∈ [l̂k,j , ûk,j]. We

prove the lemma by considering the three items in the

rightmost part one by one.

If [l̂i,k, ûi,k] ∩ [l̂k,j , ûk,j]̸=∅, then it is possible that

|oi, ok|=|ok, oj |. By triangle inequality, we have |oi, oj | ≥
|oi, ok|–|ok, oj |=0, which implies that l̂i,j=0. Similarly,

if ûi,k<l̂k,j , by triangle inequality, we have |oi, oj | ≥
|ok, oj |–|oi, ok| ≥ l̂k,j –ûi,k, which implies that l̂i,j ≥
l̂k,j–ûi,k. The case of l̂i,k > ûk,j can be illustrated in

a similar way. By enumerating all the other vertices

k ∈ [1, n], we get a tighter lower bound l̂i,j .

Continuing Example 3, let i=1 and j=4. When k=2,

since l̂1,2=4>û2,4=2, we have l̂1,4=2; when k=3, since

û1,3= 1<l̂3,4=4, we have l̂1,4=3. Thus, we have l̂1,4=3

by Lemma 5.

Refining patterns. We can observe that, when

computing the lower and upper bound distances be-

tween any two vertices using Eqs (2) and (3), we have

considered all the paths between them, and so they are

globally tight. This implies that we can use them to

refine P , which may reduce the query evaluation cost.

Let e=vi–vj be an edge with mutual inclusion. We

have the following refining criteria:

Ê If [li,j , ui,j] ∩ [l̂i,j , ûi,j]=∅, then P is a wrong pat-

tern, since no pair of objects can satisfy the distance

constraint.

Ë If [l̂i,j , ûi,j] ⊂ [li,j , ui,j], we delete (vi, vj), as any set

of objects matched with P\e is also a match of P .

Ì If neither criterion Ê nor criterion Ë can be applied,

then we refine [li,j , ui,j] as [li,j , ui,j] ∩ [l̂i,j , ûi,j], since

any set of objects matched with P is also a match of P̂ .

We illustrate above refining criteria by Example 4.

Example 4 Consider the pattern P in Fig. 9, and three

different cases for edge e= (v2, v3). Note that [l̂2,3,û2,3]

is always a subinterval of [1, 4]. If [l2,3, u2,3]=[5, 6], then

P is a wrong pattern by criterion Ê; if [l2,3, u2,3]=[0, 5],

then we delete e by criterion Ë; and if [l2,3, u2,3] =[2,

5], we update the edge to [2, 4] by criterion Ì. □

v3

v1 v2

v4

[0, 1]

[2, 3]

[3, 8]
Case 1: [l2,3, u2,3] = [5, 6]

Case 2: [l2,3, u2,3] = [0, 5]

Case 3: [l2,3, u2,3] = [2, 5]

v1

v4

v3
[0, 2] [0, 1]

[0, 3]

v2

[0, 8] [0, 5]

[0, 6]

Two orders:

Γ1={(v1, v2), (v2, v3), (v1, v4), (v4, v3)}

v3 is an anchor vertex and its anchor edge is (v3, v1)

v4 is an anchor vertex and its anchor edge is (v4, v2)

Γ2={(v3, v2), (v3, v4), (v4, v1), (v2, v1)}

No anchor vertex can be found

[0, 1]

[4, 7]

v1-v2-v4: [2, 9]

v1-v3-v4: [3, 6]
v1-v4: [3, 6]

v2-v1-v3: [3, 8]

v2-v4-v3: [2, 7]
v2-v3: [3, 7]

v1 v3

v4v2 [1, 2]

[4, 5]

Fig. 9 Illustrating pattern refining.

10 Yixiang Fang et al.

If the relationship between vi and vj is not mutual

inclusion, we simply replace criteria Ë and Ì by crite-
rion Í as below.

Í If ûi,j<ui,j , we simply refine [li,j , ui,j] as [li,j , ûi,j].

Notice that in criterion Í, li,j is not updated. The

reason is that, if vi excludes vj , then for any objects

os and ot matched with wi and wj respectively, al-

though |os, ot| may be in [l̂i,j , ûi,j] where l̂i,j>li,j and

ûi,j<ui,j , there may exist other objects matched with

wj in O(os, li,j), which invalidates this pair, since vi
excludes vj ; so, we cannot increase li,j .

4.2 The Join Order for MSJ

With a careful study, we find that MPJOrder has

two limitations: (1) among all the possible object pairs

for two vertices, if only a very small proportion (e.g.,

0.01%) of them could constitute e-matches, then we

have to sample many pairs according to Lemma 2. (2) it

may not be necessary to accurately estimate the num-

ber of e-matches for each edge, since the goal is to de-

termine a topological order. Let us reconsider Exam-

ple 1. Since the numbers of e-matches for the edges vary

greatly, we may determine the order without estimat-

ing them accurately. To avoid these issues, we propose

another simple yet effective and efficient method to de-

termine the join order, denoted by MSJOrder.

MSJOrder relies on a key observation that, in an

IR-tree (or other tree-based indexes), with a typical

node capacity in the hundreds and a fill-factor of ap-

proximately 0.7, the leaf level makes up well beyond

99% of the index [37]. This implies that, the number of

non-leaf nodes is much smaller than that of leaf nodes.

Meanwhile, the non-leaf nodes, especially those at the

lowest level, generally well summarize the objects’ lo-

cations, which inspires the design of PJ. For example,

given an edge (vi, vj), if the maximum and minimum

distances between two nodes’ MBRs are larger (smaller)

than ui,j (li,j), then all the object pairs from them can-

not be matched. Thus, we propose to use the number

of matched non-leaf node pairs to approximate the join

order.

Specifically, we perform three steps in MSJOrder.

First, for each edge, we apply the PJ algorithm until

the handling of leaf nodes, to find all the matched pairs

of non-leaf nodes at the lowest level. Second, we count

the number of matched pairs of non-leaf nodes for each

edge. Third, we perform the same greedy algorithm

as that of MPJOrder, where the estimated numbers of

e-matches of edges are replaced by the corresponding

numbers of matched non-leaf node pairs, and obtain a

join order Γ . Note that all the sets of matched pairs

of non-leaf nodes are kept after running MSJOrder, as

they will be reused later in the join process.

4.3 Two Pruning Criteria

We now introduce two pruning criteria: star-pruning

and anchor-pruning.

Star-pruning relies on the key observation that, if an

object oi is in a match of P and matches with wi (i.e.,

the keyword of vertex vi), then there are at least |nb(vi)|
objects matching with vi’s neighbors. In other words,

if there do not exist |nb(vi)| neighbors of oi that match

with vi’s neighbors, then we can safely prune oi.

After obtaining the order Γ by MSJOrder, we com-

pute the e-matches of all the edges, except those which

are backward with mutual inclusion, as their distance

intervals will be considered in the join process. Then,

we scan all the e-matches to potentially prune objects,

as follows. Let oi be an object matched with wi; we ini-

tialize a counter ci for oi to 0. For each neighbor vj of

vi, if there is at least one e-match containing oi for (vi,

vj), then we increase ci by 1. Then, we use the following

lemma to potentially prune oi.

Lemma 6 (Star-pruning) If an object oi that matches

with vertex vi ∈ P satisfies ci<|nb(vi)|, then oi can be

pruned.

Proof. The lemma directly follows the observation.

Hence, by scanning all e-matches once, we can com-

plete the star-pruning.

Anchor-pruning is motivated it by Example 5.

Example 5 Consider a pattern P with four edges in

solid lines and two orders in Fig. 10. From P̂ , we know

that the distance interval on (v̂1, v̂3) is [0, 3]. Assume

that we follow order Γ1, and let the sub-pattern formed

only by the first two edges in Γ1 be P ′. By computing

P̂ ′, we know that the distance between any two ob-

jects that match with w1 and w3 in a match of P ′ is

in [0, 13]. After performing the join for the first two

edges in Γ1, if we get a partial match S={o1,o2,o3},
which matches with P ′, oi matches wi, |o1, o2|=7, and

|o2, o3|=1, we can prune S directly and do not need to

consider it when processing the last two edges in Γ1,

since by triangle inequality, |o1, o3|∈ [6, 8] is not in [0,

3]. □

We call this pruning anchor-pruning. More formally,

consider the subgraph formed by the first k edges of

Γ be P ′. Let vi and vj be two vertices in the k′-th

and k-th edges (k′<k). We call vj an anchor vertex,

if [l̂i,j , ûi,j] ⊂ [l̂i,j
′
, ûi,j

′
], where l̂i,j

′
and ûi,j

′
are the

Evaluating Pattern Matching Queries for Spatial Databases 11

v3

v1 v2

v4

[0, 1]

[2, 3]

[3, 8]
Case 1: [l2,3, u2,3] = [5, 6]

Case 2: [l2,3, u2,3] = [0, 5]

Case 3: [l2,3, u2,3] = [1, 5]

v1

v4

v3
[0, 2] [0, 1]

[0, 3]

v2

[0, 8] [0, 5]

[0, 6]

Two orders:

Γ1={(v1, v2), (v2, v3), (v1, v4), (v4, v3)}

v3 is an anchor vertex and its anchor edge is (v3, v1)

v4 is an anchor vertex and its anchor edge is (v4, v2)

Γ2={(v3, v2), (v3, v4), (v4, v1), (v2, v1)}

No anchor vertex can be found

[0, 1]

[4, 7]

v1-v2-v4: [2, 9]

v1-v3-v4: [3, 6]
v1-v4: [3, 6]

v2-v1-v3: [3, 8]

v2-v4-v3: [2, 7]
v2-v3: [3, 7]

v1 v3

v4v2 [1, 2]

[4, 5]

Fig. 10 Illustrating anchor vertices.

lower and upper bound distances between v̂i and v̂j
in the bounded pattern of P ′. Moreover, the edge (vj ,

vi), which may not be in P , is called vj ’s anchor edge.

Lemma 7 states that the anchor vertices are in a small

subgraph of P .

Lemma 7 The anchor vertices are in the largest sub-

pattern of P in which each vertex has at least two neigh-

bors. The graph of the sub-pattern is also known as the

2-core [4] of the graph of P .

1 2

3

4

6

5

1 2

3

4

6

5

1 2

3

4

6

5

A

B C

D

B

C D

A A

C D

E

B

[0, 1]

[2, 3]
[0, 5]

[1, 4]

[4, 7]

A

B

C

D

[0, 1]

[1, 2]

[4, 5]

[3, 6]

[3, 7]

[1, 3]

A->B->D: [2, 9]

A->C->D: [3, 6]
A->D: [3, 6]

B->A->C: [3, 8]

B->D->C: [2, 7]
B->C: [3, 7]

1. Degree为1的节点的虚边可以prune;
2. DP影响的是order
3. 上层pair数量已知，也影响order
4. 不同层的order可以不一样

[4, 7]

A

B

C

D

[0, 1]

[1, 2]

[4, 5]

[3, 6]

[3, 7]

<0.2, 0.3>

<0.1, 0.3>

<0.2, 0.4>

[0.1, 0.4]

[0.2, 0.5]

[0.2, 0.3]

[0.2, 0.5]

[0.2, 0.4]

A

B C

D

[0, 1]

[2, 3]
[3, 5]

[1, 4]

[1, 3]A

B C

D

[0, 1]

[2, 3]
[5, 6]

[1, 4]

[1, 3]

k

[lk,j, uk,j]

i j

[li,k, ui,k]

[0, 1]

A

B

C

D

[0, 1]

[0, 3]

[0, 1]

[0, 2]

B

[0, 10] [0, 12]

A

C

D

[0, 1] [0, 2]

[0, 3]

B

[0, 5] [0, 8]
1 7

A

C

D

[0, 1] [0, 2]

[0, 3]

B

[1, 5] [0, 8]
1 [1, 4]

[0, 6]

v0P” P”
v0

v

1 2

3

4

6

5

1 2

3

4

6

5

1 2

3

4

6

5

A

B C

D

B

C D

A A

C D

E

B

[0, 1]

[2, 3]
[0, 5]

[1, 4]

[4, 7]

A

B

C

D

[0, 1]

[1, 2]

[4, 5]

[3, 6]

[3, 7]

[1, 3]

A->B->D: [2, 9]

A->C->D: [3, 6]
A->D: [3, 6]

B->A->C: [3, 8]

B->D->C: [2, 7]
B->C: [3, 7]

1. Degree为1的节点的虚边可以prune;
2. DP影响的是order
3. 上层pair数量已知，也影响order
4. 不同层的order可以不一样

[4, 7]

A

B

C

D

[0, 1]

[1, 2]

[4, 5]

[3, 6]

[3, 7]

<0.2, 0.3>

<0.1, 0.3>

<0.2, 0.4>

[0.1, 0.4]

[0.2, 0.5]

[0.2, 0.3]

[0.2, 0.5]

[0.2, 0.4]

A

B C

D

[0, 1]

[2, 3]
[3, 5]

[1, 4]

[1, 3]A

B C

D

[0, 1]

[2, 3]
[5, 6]

[1, 4]

[1, 3]

k

[lk,j, uk,j]

i j

[li,k, ui,k]

[0, 1]

A

B

C

D

[0, 1]

[0, 3]

[0, 1]

[0, 2]

B

[0, 10] [0, 12]

A

C

D

[0, 1] [0, 2]

[0, 3]

B

[0, 5] [0, 8]
1 7

A

C

D

[0, 1] [0, 2]

[0, 3]

B

[1, 5] [0, 8]
1 [1, 4]

[0, 6]

v0v v0P” P”

(a) v0’s degree is one (b) v0’s degree is at least two

Fig. 11 The degree of anchor vertex.

Proof. Let G be the graph of P by removing its key-

words, distance intervals, and arrows on the edges. Sup-

pose v0 is an anchor vertex. To find the anchor vertices,

recall that we form a pattern P ′ incrementally by in-

serting edges of Γ and anchor edges. Given an order

Γ , we denote the pattern formed by edges appearing

before edges containing v0 by P ′′. Meanwhile, we have

computed its bounded pattern P̂ ′′. Notice that in P̂ ′′,

the upper and lower bounds of the distance between

each pair of vertices are globally tight.

Let us now consider a new edge e=(v0, v) of Γ ,

where v is a neighbor of v0 and is in P ′′. After inserting

e, the distance from v0 to any vertex vk in P ′′ can be

bounded by triangle inequality using Lemmas 4 and 5.

If v0 only has one edge linked with P ′′ as shown in

Fig. 11(a), we have [l̂k,0, ûk,0]=[l̂k,0
′
, ûk,0

′
], and then v0

cannot be an anchor vertex. Therefore, v0 must have a

degree of two or more. Since [l̂k,0, ûk,0] ⊂ [l̂k,0
′
, ûk,0

′
],

there should be at least two paths of edges from vk to

v0 in a pattern formed by P ′′ and edges linked with v0.

In other words, v0 is in a circle, in which each vertex

has a degree of two or more. Hence, the anchor vertex

v0 is in the 2-core of the graph G.

Note that pruning highly relies on the join order. For

example, order Γ2 in Fig. 10 does not result in pruning.

Given an order Γ , to find the anchor vertices, we first

find the vertex set T in the 2-core of the graph of P .
Then, we form a new pattern P ′, which is initialized

as an empty pattern, incrementally by inserting edges

of Γ and anchor edges. Once an edge is inserted, we

compute the bounded pattern of P ′ and check whether

the newly added vertex is an anchor vertex by verifying

whether it is in T and comparing the distance intervals.

In addition, if we find that the newly added vertex is

an anchor vertex, we insert its anchor edges and their

distance intervals into P ′. After inserting all the edges

of Γ into P ′, we can find all the anchor vertices as well

as their anchor edges.

4.4 The MSJ Algorithm

Algorithm 3: MSJ

Input: root, P ;
Output: Ψ , all the matches;

1 compute the bounded pattern P̂ and refine P using P̂ ;
2 run MSJOrder and get Γ ;
3 find a set Π of anchors vertices from the 2-core of P ;
4 Ψ ← ∅, Φ1 ← ∅, Φ2 ← ∅, · · · , Φm ← ∅;
5 for i← 1 to m do
6 if ei is forward or backward without mutual

inclusion then
7 Φi ← run PJ for the edge ei;

8 perform star-pruning for Φ1, Φ2, · · · , Φm;
9 for k ← 1 to m do

10 let ek=(vi, vj) be the k-th edge in Γ ;
11 if ek is a forward edge then
12 Ψ ← Ψ .link(Φk);
13 let v be latest considered vertex in ek;
14 if v ∈ Π then perform anchor-pruning;

15 else
16 if vi–vj then prune partial matches in Ψ ;
17 else prune some partial matches in Ψ by Φk;

18 return Ψ ;

Based on the bounded pattern computation and the

two pruning criteria, we develop the MSJ algorithm. We

first compute the bounded pattern P̂ of P using dy-

namic programming and refine P . Then in the query

process, we find the matched non-leaf node pairs for all

the edges of P in a collective manner, through which the

join order is computed. Finally, we follow the order and

compute all the matches by linking these e-matches.

Algorithm 3 presents MSJ. The input of MSJ is an IR-

tree and a pattern P , and the output is all the matches

of P . We first compute the bounded pattern P̂ and re-

fine P (line 1). Then, we perform MSJOrder to obtain

the order Γ (line 2). Next, we find the anchors using the

12 Yixiang Fang et al.

bounded pattern P̂ and the order Γ (line 3). For each

edge of Γ , we find all the e-matches (lines 5-7), where
Φ1, Φ2, · · · , Φm denote the sets of e-matches for all the

edges in Γ respectively. Note that Φi (1≤i≤m) is an

empty set if the i-th edge is backward with mutual in-

clusion, since its distance constraint will be considered

during the join process. After that, we perform star-

pruning (line 8). The join process (lines 9-17) is simi-

lar to that of MPJ, except that when the newly consid-

ered vertex is an anchor vertex, we perform the anchor-

pruning (line 14). Finally, we return all the matches

(line 18).

Since the patterns are typically small, i.e., n, m ≪
|D|, the time complexities of MPJ and MSJ are compara-

ble. However, as shown later, although MPJ is intuitive

and easy to implement, MSJ runs faster than MPJ ex-

perimentally, as it refines the pattern by the bounded

pattern and uses two pruning criteria.

Lemma 8 MSJ completes in O(n4+m|D|2+ξ) time.

Proof. Let us analyze the cost of each step in MSJ. First,

computing the bounded pattern using Lemmas 4 and 5

(line 1) takes O(n3) time, since all the triples of ver-

tices are enumerated. Second, MSJOrder finds all the

non-leaf matched pairs for each edge in P (line 2), so

its time cost is O
(
m(|D|/B)

2
+m

)
, where B≥2 is the

fanout of the IR-tree. Third, invoking PJ for each edge

(lines 5-7) takes O(m|D|2) time, and the star-pruning

(line 8) also takes O(m|D|2) since we just scan all the

e-matches. Fourth, computing the anchors incremen-

tally costs O(n4), and the maximum number of partial

matches generated during the join process (lines 9-17) is

O(ξ), where ξ ≥ |Ψ |. Thus, MSJ takes O(n4+m|D|2+ξ)

time. Although the complexity is high, MSJ runs very

fast practically, since P is typically small (m,n≪ |D|),
and the pruning criteria are very effective.

5 The Top-k SPM Problem and Algorithms

In this section, we introduce the top-k SPM problem

and propose an efficient algorithm that solves it. Re-

call that the objective is to handle over-matched SPM

queries, which return a very large number (e.g., thou-

sands) of results, by ranking their matches using a scor-

ing function and presenting to the user only the top-k

matches.

5.1 Problem Definition

Top-k SPM requires a scoring function to rank the

matches of the query pattern. To define the scoring

function, various factors, such as POI rating and qual-

ity, as well as the query user’s location, could be con-
sidered. In this paper, we use the user location and its

distances to the matches to rank these matches. We will

study other functions in the future.

Now we formally introduce the scoring function.

Definition 4 (scoring function) Given a set S of

spatial objects and a location loc, the score of S w.r.t.

loc is defined as

f(S, loc) = max
o∈S
|o, loc|. (4)

Intuitively, if a user is at location loc, she would find

S attractive if f(S, loc) is small, which means that the

user is geographically close to all objects in S. Based

on the definition of f(S, loc), we now define top-k SPM

queries as follows.

Problem 2 (top-k SPM) Given a database D and a

spatial pattern P , a query location loc, and a positive

integer k, the top-k SPM returns a list of k matches,

whose scores w.r.t. loc are the smallest.

Remark. The function max in f(S, loc) can be re-

placed by other aggregate functions (e.g.,min, sum and

avg) and our proposed algorithm can be easily adapted

to handle these cases.

5.2 An Efficient Algorithm

A basic method to answer the top-k SPM query is

to find all the matches using one of previous SPM al-

gorithms (e.g., MSJ), then rank these matches based on

their values of the scoring function, and finally return

the top-k matches. The major drawback of this method

is that, when the number of matches is much larger than

k, many matches which are not in the top-k list are

also computed, and this may incur many unnecessary

computations. To improve the efficiency, we propose an

incremental matching algorithm (IncMatch).

The fact that a top-k SPM query aims at finding

matches that are close to the query location loc inspires

us to approach the problem by applying searches incre-

mentally in increasing distance from loc. In specific, we

first choose a vertex vs from P as the starting vertex.

Then, we consider objects, which match with vs’s key-

word ws in increasing distance from loc, during which

we check whether they are part of P ’s matches. Note

that the score of the k-th best match found so far gives

us a bound which can be used for termination. This

process is executed iteratively, until we have checked

all the objects matched with ws or the next object is

Evaluating Pattern Matching Queries for Spatial Databases 13

guaranteed not to produce a better match than the cur-

rent k-th best. Note that an alternative of examining
objects matched with vs is to use incremental nearest

neighbor (INN) search; however, an efficient INN al-

gorithm would need a spatial index for the objects of

vs, which is typically not available (for any arbitrary

keyword ws).

Algorithm 4: IncMatch

Input: k, P , loc
Output: top-k matches;

1 compute the bounded pattern P̂ ;
2 Let the starting vertex vs be the vertex of P , whose

keyword frequency in D is the smallest;
3 µ← 0, θ ← 10km;
4 M ← ∅, Q← ∅, inside← 0, outside← γ,

flag ← true;
5 while flag do
6 while Q=∅ do
7 if (inside>µ and M.size() ≥ k) or the

annular area does not overlap the area that
D covers then

8 flag ← false, break;
9 Q← {o ∈ D|ws ∈ doc(o) ∧ |o, loc| ∈

[inside, outside]};
10 inside← outside, outside← outside + γ;

11 if flag=false then break;
12 while Q ̸= ∅ do
13 o← Q.pop();
14 if f(o, loc)>µ and M.size() ≥ k then
15 flag ← false, break;

16 R← FindMatches(loc, P , P̂ , o);
17 M .add(R) and update µ;

18 return the top-k matches in M ;

Algorithm 4 presents the steps of IncMatch. First,

we compute the bounded pattern P̂ (line 1). Then, we

set as the starting vertex vs the one whose word fre-

quency is the smallest in P (line 2). Next, we initialize

variables µ, M , Q, inside, outside, flag, and θ, where

µ is the upper bound of the score of the top-k matches,

M is a priority queue of matches ranked by their score

values in ascending order, Q is another priority queue of

objects ranked by their distances to loc in an ascending

order, inside and outside are the radiuses that bound

the annular area centered at loc, flag indicates whether

the program continues, and θ is a constant value.

In the outer while loop (lines 5-17), we first find ob-

jects labeled with ws in the annular area and keep them

into Q (lines 6-10). Note that each time we increase the

radius of annular area by θ. Then, we pop the next ob-

ject of Q and run FindMatches (Algorithm 5) to find

matches of P around the object, adding its matches to

M , and updating µ (lines 12-17). The while loop stops

(lines 7-8, 12-15) once inside or the distances of all ob-

jects in Q are larger than µ.

Algorithm 5: FindMatches

Input: loc, P , P̂ , o
Output: matches around object o;

1 map← ∅;
2 for vertex vj ∈ P other than vs do
3 if vs → vj then

4 L←
{
o ∈ D|wj ∈ doc(o) ∧ |o, loc| ∈

[
0, l̂s,j

]}
;

5 if L ̸= ∅ then return ∅;

6 L←
{
o ∈ D|wj ∈ doc(o) ∧ |o, loc| ∈

[
l̂s,j , ûs,j

]}
;

7 if vs ← vj then
8 L← find objects using line 4;
9 prune objects in L that do not satisfy the

exclusion-relationship;

10 if L = ∅ then return ∅;
11 else map.put(j, L);

12 for edge (vi, vj) in P that not linked to vs do
13 get e-matches of (vi, vj) using map.get(i),

map.get(j);

14 link e-matches and objects of map to form matches;
15 return matches of P ;

To find matches of P around a particular object o

matched with vs, a simple method is to run MSJ for the

sub-pattern P\vs (subgraph of P without vs and edges

linked to it), and then link the returned matches with o.

However, since there may exist many objects matched

with vs, many matches of P\vs will be computed re-

peatedly by MSJ. To tackle this issue, we develop the

method FindMatches, as shown in Algorithm 5.

FindMatches first initializes a map for keeping ver-

tices and their matched objects (line 1). Then, it finds

objects that are matched with vertices (except vs) in

P , whose distances to o satisfy the distance constraints

according to P̂ (lines 2-11). For each vertex vj in P , if

the edge is vs → vj , when there are objects with key-

word wj that have distances less than ls,j from o.loc,

FindMatches stops and ∅ is returned (lines 3-5). If the

edge is vs ← vj , objects that do not satisfy the exclusion-

ship restrictions are pruned (lines 7-9). As soon as there

are no matched objects, FindMatches stops and ∅ is re-
turned (line 10). Finally, for edges that are not linked

to vs, we check all possible combinations of the corre-

sponding objects to get e-matches, and then link these

e-matches and objects in map to obtain matches. Ex-

ample 6 illustrates the functionality of IncMatch.

Example 6 Consider the pattern P and the set D of

spatial objects shown in Fig. 12. Let k=2 and loc be

the query location. First, v1 is selected as the starting

vertex and θ=0.5km. Then, IncMatch finds the inside

14 Yixiang Fang et al.

circle region to find objects labeled with a. Next, it con-

siders o1 and invokes FindMatches, which finds o1, o2,
and o3; these three objects satisfy all the constraints

of P and thus they constitute a match. Afterwards,

IncMatch considers o4 as the next match of v1. Since

no objects matching v2 and v3 can be found, IncMatch

increases the radius of the annular area to find more

matches. Then, it considers o12 and finds that o12, o13,

and o14 form another match of P . µ is updated as the

distance between loc and o13. o8 is ignored since o10 is

too close to o9. Finally, IncMatch stops as the newly

expanded inside is larger than µ.

loc
o1:{a}

o2:{b}

o3:{c}

o4:{a}

o5:{b}

o6:{b}

o7:{c}

o8:{a}o9:{b}
o10:{c}

o12:{a}

o13:{b}

o14:{c}

v1:a

v2:b

	�������
 	�������

v3:c	�������

P�

D�

���

���

o17:{a}

o15:{b}o16:{c}

o18:{c}

Fig. 12 Illustrating how IncMatch works.

6 The PSPM Problem and Algorithms

In this section, we introduce the partial SPM (PSPM)

problem and suggest methods for solving it. As dis-

cussed before, PSPM can be used to handle under-

matched SPM queries, which return no results for the

query patterns. In practice, for an SPM query with pat-

tern P , if the number of matches is zero, then the sys-

tem may automatically run a PSPM query for P .

6.1 Problem Definition

Inspired by existing work on approximate algorithms

of GPM [42,44], which find subgraphs that match with

sub-patterns of the graph pattern, in this paper we pro-

pose to find sets of objects that match with as many

edges in the spatial pattern P as possible. That is, we

aim at finding all the object sets that match with the

maximal sub-patterns of P , which have at least one ex-

act match in the database. Note that it does not need

the query user to specify additional constraints. Also, it

can provide users helpful hints for changing the pattern.

0.2 0.4 0.6 0.8�km�0.0
0.0

0.2

0.4

0.6 hospital

house

park

station

{gym�	�����}

house

park

{cinema�	���}
house

park

��������	
S1� S2�

house

park school

��������	��������	

P:

house

park school
��������	��������	

��������	
station

(a) Spatial object set D (b) Spatial patterns

Fig. 13 Illustrating the PSPM query.

Before introducing PSPM in detail, we first give

some notations. We call any connected subgraph, S,

of P a sub-pattern of P , and denote their relationship

by S ⊆ P . We call a pattern feasible if it has at least

one match in the spatial database; otherwise, infeasible.

Definition 5 (maximal feasible sub-pattern) A sub-

pattern S is a maximal feasible sub-pattern of P , if S is

feasible and there does not exist another feasible sub-

pattern S′ of P such that S ⊂ S′.

For example, let P in Fig. 13(b) be the query pat-

tern. P is infeasible w.r.t. database D of Fig. 13(a). In

Fig. 13(b), we also show two sub-patterns S1 and S2

of P . Both of them are feasible sub-patterns since they

match with the two sets of objects linked by solid lines

in Fig. 13(a) respectively. In addition, S2 is a maximal

feasible sub-pattern. Based on Definition 5, we formally

define the PSPM problem as follows.

Problem 3 (Partial Spatial Pattern Matching)

Given a spatial pattern P , if P is infeasible, PSPM

returns all the maximal feasible sub-patterns of P and

their matches from the database D.

In Fig. 13(a), the objects with keywords house, {gym,

school} and park linked in solid lines form a match of S2

in Fig. 13(b), and they form an answer of this PSPM

query. Note that if the maximal feasible sub-patterns

are too many and/or they have too many matches, the

top-k solution presented in Section 5 can be adapted

for ranking these sub-patterns and matches in order to

present to the user a concise answer set.

6.2 The Basic Method

A straightforward method to answer the PSPM query

is to enumerate all sub-patterns of P , then compute all

the matches of each sub-pattern, and finally return all

the maximal feasible sub-patterns and their matches.

The major limitation of this method is that the num-

ber of sub-patterns is exponentially large, and the huge

Evaluating Pattern Matching Queries for Spatial Databases 15

computational overhead may render the method im-

practical. To alleviate this issue, we take advantage of
an anti-monotonicity property.

Lemma 9 (Anti-monotonicity) Given a database D

and a pattern P , if P is feasible, then any sub-pattern

of P is also feasible.

Proof. The lemma directly follows the observation.

Lemma 9 allows us to stop checking all the super

patterns of a sub-pattern P ′, once we have verified

that P ′ is infeasible, which efficiently reduce the search

space. Based on the anti-monotonicity property, we de-

velop a baseline method, called Basic. It begins by ex-

amining the sub-patterns consisting of a single edge.

Then, it repeatedly executes the following two steps to

retrieve feasible sub-patterns with more edges until no

feasible sub-patterns are found.

– Candidate Generation. For any two feasible sub-

patterns which only differ in one edge, unify them

to a candidate sub-pattern, if the resulting graph is

connected.

– Verification. For each candidate sub-pattern P ′,

mark P ′ as a feasible pattern if P ′ has matches.

Algorithm 6: Basic

Input: root, P ;
Output: all the maximal feasible sub-patterns

1 initialize l = 0, T using P ;
2 initialize Φi (i = 1 to m);
3 for i← 1 to m do Φi ← run PJ for the edge ei;
4 while T ̸= ∅ do
5 l← l + 1, Λl ← ∅;
6 for each P ′ ∈ T do
7 get e-matches of edges in P ′;
8 perform star-pruning for the e-matches;
9 join the edges-matches, and get Ψ ;

10 if Ψ ̸= ∅ then Λl.put(P ′, Ψ);

11 if Λl ̸= ∅ then
12 generate candidate patterns using Λl and

update T ;

13 else
14 break;

15 return the sub-patterns and their matches in Λl−1;

We present Basic in Algorithm 6. The input is an

IR-tree and a query pattern P . We first initialize some

variables (lines 1-2), where Φi denotes the set of e-

matches for the i-th edge of P , l=0 indicating the num-

ber of edges, and a set T of sub-patterns with each

being an edge of P . Then, for each edge of P , we find

all the e-matches (line 3). In the while loop (lines 4-15),

for each sub-pattern P ′, we first get the e-matches of

edges in P ′ from Φ1, Φ2, · · · , Φm (line 7). After that,

we perform star-pruning and verify whether P ′ is fea-

sible (lines 8-9). To do this, we adapt MSJ such that
it stops when the first match of P ′ is found. If Ψ con-

tains a match, i.e., P ′ is feasible, we put it into a map Λl

(line 10). Next, if Λl is nonempty, we generate the next-

level candidate patterns and update T (lines 11-12), as

discussed in the above Candidate Generation step.

Otherwise, we stop (lines 13-14). Finally, we output the

results of this PSPM query (line 15).

6.3 The Advanced Method

Although Basic can answer a PSPM query, it needs

to examine all the feasible sub-patterns. In this section,

we show that it is possible to find the solution by exam-

ining only a small number of feasible sub-patterns. We

denote this method by Advanced; it differs from Basic

not only in the generation of candidate sub-patterns,
but also in their verification. In the following, we first

review MARGIN [34], an algorithm proposed for mining

maximal frequent patterns from graph databases, which

is different from our problem. Then, we discuss the can-

didate sub-pattern generation by adapting MARGIN

and verification in our context. Finally, we present the

overall Advanced method.

6.3.1 Preliminaries: MARGIN

graph lattice

find representative

MARGIN
search space

Apriori based
search space

∅

a bc

c a b c

Cut

G: a c b

a c bL:

(a) Search space [34]. (b) Illustrating lattice and cut.

Fig. 14 Key concepts in MARGIN.

In [34], Thomas et al. proposed MARGIN, the first

non-Apriori algorithm for maximal frequent subgraph

mining. Apriori explores all frequent subgraphs by per-

forming a bottom-up traversal of the search space; how-

ever, the maximal frequent subgraphs often lie in the

middle of the search space, which implies that most of

the exploration could have been avoided. MARGIN [34]

restricts the search space by visiting only subgraphs

that lie on the border of frequent and infrequent sub-

graphs, as shown in Fig. 14(a).

To shrink the search space, MARGIN relies on a key

concept, called lattice, which is defined as follows.

16 Yixiang Fang et al.

Definition 6 (lattice [34]) A lattice L of graph G

is a hierarchical structure, in which each node repre-
sents a subgraph of G. At each level of L, all the nodes

correspond to sub-graphs of the same size, i.e., those

having the same numbers of edges. The bottom node,

corresponding to the empty subgraph, forms level 0,

nodes of singleton vertices form level 1, and nodes cor-

responding to size-i subgraphs form level i + 1 for i>0.

A node CR is a child of node R, if the graph in R is the

subgraph of the graph in CR, and the graphs differ by

exactly one edge; conversely, the node R is a parent of

CR. Each node is linked to its child nodes in the lattice.

Example 7 Fig. 14(b) gives an example of a lattice L

for graph G. It consists of seven nodes; the bottom-

most node is the empty subgraph and the top-most

node represents G. Each parent-child pair is connected

by a dashed line. □

Definition 7 (cut [34]) A cut in a lattice is a pair of

nodes (CR, R), where CR is the child of R and R is

frequent while CR is not.

In Fig. 14(b), suppose that the graph circled in

dashed line is frequent and the graph G is infrequent,

then this pair of nodes forms a cut, which is marked by

a bold solid line.

To find all the maximal frequent subgraphs, MAR-

GIN works as follows. First, it finds an initial cut by

deleting edges ofG one by one until a frequent subgraph

R is found. Then, it invokes a method ExpandCut [34]

on the cut (CR, R), which finds nearby cuts and recur-

sively calls itself on each newly found cut until no more

cuts can be found.

We illustrate this by an example. Assume that the

cut in Fig. 15(a) is the initial cut (CR, R). ExpandCut

finds nearby cuts as follows: (1) Report all pairs of

nodes consisting of CR and CR’s frequent parents as

new cuts. Thus (C, P1) in Fig. 15(b) is reported as a

new cut. (2) For each frequent parent Rf of CR that

has an infrequent child CRi, report (CRi, Rf) as a new

cut, e.g., (C2,P) in Fig. 15(c). (3) For each frequent par-

ent Rf of CRi, consider each of its frequent child Ri.

Report (M , CRi) as a new cut, whereM is the common

child of CRi and CR, such as (M , C1) in Fig. 15(c).

(4) For each infrequent parent Ri of CR, consider any

frequent parent Sf of Ri. Report (Ri, Sf) as a new cut,

e.g., (P2, S1) and (P2, S3) in Fig. 15(d). The detailed

algorithm ExpandCut can be founded in [34].

As proved in [34], by using ExpandCut, MARGIN

can find all the maximal frequent subgraphs by consid-

ering only a small number of frequent subgraphs.

6.3.2 Algorithm Details

Fig. 15 Illustrating how ExpandCut works [34].

In Advanced, to avoid verifying all the feasible sub-

patterns, we adapt MARGIN so that we only need to

verify a small number of sub-patterns. Moreover, we

develop a fast technique to check whether a sub-pattern

is feasible. Algorithm 7 presents Advanced. In specific,

we first run PJ for each edge of P , then find an initial

s-cut (c, p) and invoke method ExpandCutSPM on it,

and finally return all the matches of patterns. Next, we

introduce ExpandCutSPM.

Algorithm 7: Advanced

Input: P , root;
Output: all the maximal feasible sub-patterns and

their matches;
1 LF ← ∅ for each edge ei of P do Φi ← run PJ for ei;
2 Find an initial s-cut (c, p);
3 Run ExpandCutSPM(LF , c, p);
4 return sub-patterns in LF with their matches;

1. Method ExpandCutSPM is adapted from method

ExpandCut [34] with three modifications:

• We use all the sub-patterns of P to build the lattice;

•We define a spatial-cut, or s-cut, as a pair nodes (CR,

R), where R is the parent of CR, and CR is not feasible

while R is feasible;

•We develop a method VerifyPattern to verify whether

a sub-pattern is feasible or not in ExpandCutSPM.

To prove the correctness of ExpandCutSPM, we first

present an interesting property, called upper -⋄-property.

Lemma 10 (The upper-⋄-property) Given the pat-

tern lattice L of query pattern P , any two child nodes

of a node p ∈ L have a common child node.

Proof. We can transform the pattern lattice to a graph

lattice by removing the distance intervals and edge signs

from the sub-patterns. Since the upper -⋄-property holds

for the graph lattice, which has been proved to be cor-

rect by [34], and the removal operations do not af-

fect the child-parent relationship, the upper -⋄-property
holds for the pattern lattice.

Lemma 11 ExpandCutSPM finds all maximal feasible

sub-patterns of P .

Evaluating Pattern Matching Queries for Spatial Databases 17

Proof. ExpandCut is proved to be correct when the pur-

pose is to find all maximal frequent subgraphs from a
graph [34]. Its correctness holds if the problem satisfies

the following constraints [34]:

(1) The search space is a subset of elements in a lattice.

(2) The upper -⋄-property holds.

(3) The elements of the lattice satisfy either the mono-

tonicity or the anti-monotonicity property.

(4) There exists a candidate set C, also called “bound-

ary” set: if the anti-monotonicity property holds for the

lattice, C is a set such that each element of C satisfies

the given user-constraints while one of its immediate

child nodes does not; if monotonicity holds for the lat-

tice, each element of C satisfies the constraints while

one of their parents does not satisfy the constraints.

(5) The solution set can be generated from C.
For our PSPM problem, we have already proved the

upper -⋄-property and anti-monotonicity, so constraints

(2) and (3) hold. Also, it is easy to observe that other
constraints hold as well. Hence, ExpandCutSPM finds all

maximal feasible sub-patterns of P .

Similar to ExpandCut, ExpandCutSPM allows us to

find all the feasible sub-patterns through verifying a

small fraction of feasible sub-patterns, which results in

high efficiency.

2. Method VerifyPattern. A naive method to

verify whether a sub-pattern is feasible is to invoke one

of the SPM algorithms (e.g., MSJ) and count the number

of matches returned. This, however, may be very inef-

ficient because there may be an exponential number of

matches. To enable more efficient verification, we now

propose a VerifyPattern method, which dramatically

reduces the computational cost, as it verifies the candi-

date sub-patterns without computing any matches. We

motivate its design by Example 8.

a

b
��������� ���������

c
���������

���������
e

(a) (b) (c)

���������
d

a

b
��������� ���������

c
������������������
d

a c
������������������
d

(d)

a
���������

d

Fig. 16 Illustrating how VerifyPattern works.

Example 8 To verify whether the pattern in Fig. 16(a)

is feasible or not, we can first run PJ for edge (e,b).

Then, for vertex b, we keep a list of objects which match

with it and are from the returned e-matches, and sim-

plify the pattern to the one in Fig. 16(b). Next, we run

PJ for (a,b) and (a,c), link their e-matches, filter these

partial matches by the objects kept on vertex b, and
get pairs of objects, each of which match with a and c

respectively. Similarly, we can perform the same oper-

ations for remaining edges. Clearly, the method above

keeps at most |D|3 partial matches. In contrast, using

MSJ may result in |D|5 matches in the worst case. □
Why is the method discussed above faster for veri-

fication? The reason is that, for each sub-pattern of P ,

after linking the e-matches, the results are simplified.

For example, after linking the e-matches of (b,a) and

(b,c), we get a list of triples and then simplify them as

a list of tuples, each of which match with a and c re-

spectively. Thus, we do not need to list all the matches

of P , which significantly improves the efficiency.

We now formally introduce VerifyPattern, which

works in an iterative manner. Each time, we first pick

the vertex with the minimum degree from P . Then, we

get the e-matches of its neighboring edges, link them

together as in MPJ, and simplify the join results. Let us

denote the picked vertex by v. We have the following

simplification criteria.

Ê v’s degree is 1: we let its neighbor be u, and simplify

all the e-matches of (v,u) as a set S of objects, which

match with the keyword of u. We put (u,S) as a key-

value pair in a map X.

Ë v’s degree is 2: suppose its two neighbors are u and

w. We first link the e-matches of (v,u) and (v,w) and

get a list of triples. If v is a key in X, we delete triples

which do not contain an object in the set X.get(v).

Then, for each triple, we remove the object matched

with v and get a tuple. Note that tuples with the same

pair of objects are simplified as one tuple. Finally, we

get a set T of tuples matched with (u,w) and put((u,w),

T) as a key-value pair in a map Y .

Ì v’s degree is at least k (k ≥ 3): let v’s k neighbors

be v1, v2, · · · , vk. Similar to criterion Ë, we first link

the e-matches of all its edges and get a list of k triples.

Next, for each vertex or edge, if it is a key in X or Y ,

then we filter these k-tuples using its values in X and

Y . Finally, for each pair of v’s neighbors, we simplify

these k-triples as a list of tuples, and put them into Y .

After the simplification for one vertex, we remove it

and its incident edges from P . The process above will

be performed iteratively until P does not contain any

edge. Notice that, during this process, if we cannot find

any match for a particular vertex, then P should be

infeasible and we can stop immediately.

Algorithm 8 presents VerifyPattern. The input is

P and the e-match sets of its edges, which must be

nonempty; otherwise P must be infeasible (line 1). We

first initialize two maps X and Y , which maintain the

simplified join results (line 2). Then, in the while loop

18 Yixiang Fang et al.TABLE II
DATASETS USED IN OUR EXPERIMENTS.

Name Objects Unique words Total words
UK 182,317 45,371 550,663
NY 485,059 116,546 1,143,013
LA 724,952 161,489 1,833,486
TW 2,000,000 715,565 9,926,629

(b) (c) (d) (e) (f)

(h) (i) (j) (k) (l)

(a)

(g)

Fig. 12. The structures of spatial patterns.

and cinemas) in UK (www.pocketgpsworld.com). Datasets NY
and LA are collected using Google Place API in New York
and Los Angeles, respectively. In these datasets, each object
has a set of keywords (e.g., “food”), and a pair of latitude
and longitude values representing its location. Dataset TW is
crawled from Twitter in US. Each geo-tweet is treated as a
spatial object, its keywords are extracted from the tweet, and
its location is a pair of latitude and longitude values.

Patterns. To create spatial patterns for the experiments,
we first make 12 different undirected graphs (see Figure 12).
These graphs varies in terms of number of nodes and edges.
Some of the patterns discussed before (e.g., the triangular pat-
tern in Figure 2(b) and the star-shaped pattern in Figure 3(b))
are also included here. More example patterns can be found in
the full version [18]. For each graph G in Figure 12, a spatial
pattern for each dataset is generated by three steps:
Step-1: For each vertex v ∈G, we add a keyword randomly
selected following the distribution of keywords’ frequencies
(i.e., a keyword contained by more objects has a higher
probability to be selected).
Step-2: For each vertex vi with one of its neighbor vj , we
introduce a parameter η=90% such that the probabilities for
the four different signs, i.e., vi→vj , vj←vi, vi↔vj , and vi–vj ,
are η×(1–η), η×(1–η), (1–η)×(1–η), and η×η respectively.
Step-3: For each edge (vi, vj), we attach a distance interval
[li,j , ui,j] to it. If the edge is of sign vi–vj , li,j is a random
value in [0, 1km] and the interval length, i.e., ui,j−li,j , follows
a Gaussian distribution with mean 1km and standard deviation
1km; otherwise, li,j is a random value in [0, 10km] and the
interval length follows a Gaussian distribution with mean 5km
and standard deviation 5km.

By following steps above, for each structure, we generate
20 patterns with each having at least one match in the dataset.
Thus, there are 240 patterns for each dataset.

Queries. We use the IR-tree index [21], where the fanout
B = 100, i.e., the maximum number of children of each node,
the non-leaf nodes are kept in memory, and the leaf nodes
are stored in disk. The inverted object list of each keyword,
used by MPJOrder, is stored in a single file on disk. We
consider five parameters: ε (MPJOrder), δ (MPJOrder), γ

TABLE III
PARAMETER SETTINGS.

Parameter Range Default
ε (MPJ) 0.15, 0.2, 0.25, 0.3, 0.35 0.25
δ (MPJ) 0.15, 0.2, 0.25, 0.3, 0.35 0.25
γ 0.2, 0.6, 1.0, 1.5, 2.0 1.0
η 60%, 70%, 80%, 90%, 100% 90%
χ 20%, 40%, 60%, 80%, 100% 100%

(length of distance intervals), η (percentages of signs), and χ
(percentage of objects). The ranges of these parameters and
their default values are shown in Table III. When varying a
certain parameter, the values for all the other parameters are
set to their default values. We implement our algorithms in
Java, and run experiments on a machine having a quad-core
Intel i7-3770 3.40GHz processor, 16GB of memory, and a 1TB
of disk, with Ubuntu-12.04.1 installed.

B. Experimental Results

1) A Case Study: We consider the UK dataset, and two
patterns. The first pattern is shown in the top-left panel of
Figure 4 and it can be used to find houses that are close
to stations, schools, and parks, but not too close to schools
and stations (i.e., avoiding noise and crowd). The second
pattern is depicted in Figure 14(a). It can be applied to finding
houses which are close to churches, galleries, shops, hospitals,
and stations, but not too close to hospitals and stations (i.e.,
avoiding infection and crowd). We run algorithm MSJ for SPM
queries. Due to the space limitation, we only show one match
for each pattern. For comparison, we use the mCK query [6],
[4], whose input is the set of keywords in a pattern.

The results of SPM query and mCK query of the first
pattern are depicted in Figure 4 and Figures 13 respectively.
From Figure 4, we can observe that the four places in red
balloons well match with the pattern, while the result of the
mCK query is different, i.e., the distance from the house
to the school is less than 0.4km, which is not expected by
the user. The reasons are that: (1) the mCK query does not
consider the explicit distance requirements among the objects;
and (2) it also does not take the exclusion-ship of edges (e.g.,
house→school) into consideration. Similarly, in Figure 14, the
SPM query can find a set of objects exactly matched with the
pattern in Figure 14(a). In contrast, the mCK query may find a
house which is too close to the hospital and station (i.e., their
distances are less than 1km). Therefore, we conclude that the
SPM query is more effective for finding spatial objects with
various distance conditions.

2) Effectiveness of Estimation Method in MPJ: Recall that
in MPJ, we estimate the number of e-matches for each edge
with mutual inclusion using a sampling method. By Lemma 2,
the estimation method theoretically guarantees that, the failure
probability is at most δ if the multiplicative error is set as ε.
In this experiment, we evaluate the effect of ε and δ on the
actual error. Consider an edge in a pattern. Let r and r̂ be its
actual and estimated numbers of e-matches, respectively. The
estimation error can be defined as:

error =
|r − r̂|
r

. (4)

Fig. 17 Datasets used in our experiments.

(b) (c) (d) (e) (f)

(h) (i) (j) (k) (l)

(a)

(g)

(b) (c) (d)

(e) (f) (h)

(i) (j) (k) (l)

(a)

(g)

Fig. 18 Structures of patterns.

TABLE II
DATASETS USED IN OUR EXPERIMENTS.

Dataset Objects Unique words Total words
UK 182,317 45,371 550,663
NY 485,059 116,546 1,143,013
LA 724,952 161,489 1,833,486
TW 2,000,000 715,565 9,926,629

(b) (c) (d) (e) (f)

(h) (i) (j) (k) (l)

(a)

(g)

Fig. 11. The structures of spatial patterns.

and cinemas) in UK (www.pocketgpsworld.com). Datasets NY
and LA are collected using Google Place API in New York
and Los Angeles, respectively. In these datasets, each object
has a set of keywords (e.g., “food”), and a pair of latitude
and longitude values representing its location. Dataset TW is
crawled from Twitter in US. Each geo-tweet is treated as a
spatial object, its keywords are extracted from the tweet, and
its location is a pair of latitude and longitude values.

Patterns. To create spatial patterns for the experiments,
we first make 12 different undirected graphs (see Figure 11).
These graphs varies in terms of number of nodes and edges.
Some of the patterns discussed before (e.g., the triangular pat-
tern in Figure 2(b) and the star-shaped pattern in Figure 3(b))
are also included here. More example patterns can be found in
the full version [18]. For each graph G in Figure 11, a spatial
pattern for each dataset is generated by three steps:
Step-1: For each vertex v ∈G, we add a keyword randomly
selected following the distribution of keywords’ frequencies
(i.e., a keyword contained by more objects has a higher
probability to be selected).
Step-2: For each vertex vi with one of its neighbor vj , we
introduce a parameter η=90% such that the probabilities for
the four different signs, i.e., vi→vj , vj←vi, vi↔vj , and vi–vj ,
are η×(1–η), η×(1–η), (1–η)×(1–η), and η×η respectively.
Step-3: For each edge (vi, vj), we attach a distance interval
[li,j , ui,j] to it. If the edge is of sign vi–vj , li,j is a random
value in [0, 1km] and the interval length, i.e., ui,j−li,j , follows
a Gaussian distribution with mean 1km and standard deviation
1km; otherwise, li,j is a random value in [0, 10km] and the
interval length follows a Gaussian distribution with mean 5km
and standard deviation 5km.

By following steps above, for each structure, we generate
20 patterns with each having at least one match in the dataset.
Thus, there are 240 patterns for each dataset.

Queries. We use the IR-tree index [21], where the fanout
B = 100, i.e., the maximum number of children of each node,
the non-leaf nodes are kept in memory, and the leaf nodes
are stored in disk. The inverted object list of each keyword,
used by MPJOrder, is stored in a single file on disk. We
consider five parameters: ε (MPJOrder), δ (MPJOrder), γ

TABLE III
PARAMETER SETTINGS.

Parameter Range Default
ε (MPJ) 0.15, 0.2, 0.25, 0.3, 0.35 0.25
δ (MPJ) 0.15, 0.2, 0.25, 0.3, 0.35 0.25
γ 0.2, 0.6, 1.0, 1.5, 2.0 1.0
η 60%, 70%, 80%, 90%, 100% 90%
χ 20%, 40%, 60%, 80%, 100% 100%

(length of distance intervals), η (percentages of signs), and χ
(percentage of objects). The ranges of these parameters and
their default values are shown in Table III. When varying a
certain parameter, the values for all the other parameters are
set to their default values. We implement our algorithms in
Java, and run experiments on a machine having a quad-core
Intel i7-3770 3.40GHz processor, 16GB of memory, and a 1TB
of disk, with Ubuntu-12.04.1 installed.

B. Experimental Results

1) A Case Study: We consider the UK dataset, and two
patterns. The first pattern is shown in the top-left panel of
Figure 4 and it can be used to find houses that are close
to stations, schools, and parks, but not too close to schools
and stations (i.e., avoiding noise and crowd). The second
pattern is depicted in Figure 13(a). It can be applied to finding
houses which are close to churches, galleries, shops, hospitals,
and stations, but not too close to hospitals and stations (i.e.,
avoiding infection and crowd). We run algorithm MSJ for SPM
queries. Due to the space limitation, we only show one match
for each pattern. For comparison, we use the mCK query [6],
[4], whose input is the set of keywords in a pattern.

The results of SPM query and mCK query of the first
pattern are depicted in Figure 4 and Figures 12 respectively.
From Figure 4, we can observe that the four places in red
balloons well match with the pattern, while the result of the
mCK query is different, i.e., the distance from the house
to the school is less than 0.4km, which is not expected by
the user. The reasons are that: (1) the mCK query does not
consider the explicit distance requirements among the objects;
and (2) it also does not take the exclusion-ship of edges (e.g.,
house→school) into consideration. Similarly, in Figure 13, the
SPM query can find a set of objects exactly matched with the
pattern in Figure 13(a). In contrast, the mCK query may find a
house which is too close to the hospital and station (i.e., their
distances are less than 1km). Therefore, we conclude that the
SPM query is more effective for finding spatial objects with
various distance conditions.

2) Effectiveness of Estimation Method in MPJ: Recall that
in MPJ, we estimate the number of e-matches for each edge
with mutual inclusion using a sampling method. By Lemma 2,
the estimation method theoretically guarantees that, the failure
probability is at most δ if the multiplicative error is set as ε.
In this experiment, we evaluate the effect of ε and δ on the
actual error. Consider an edge in a pattern. Let r and r̂ be its
actual and estimated numbers of e-matches, respectively. The
estimation error can be defined as:

error =
|r − r̂|
r

. (4)

Fig. 19 Parameter settings.

Algorithm 8: VerifyPattern

Input: P , Φ1, Φ2, · · · , Φm;
Output: whether P is feasible or not;

1 for i← 1 to m do if Φi=∅ then return false;
2 X ← ∅, Y ← ∅; //maintain the simplified results;
3 while P has at least one edge do
4 v ← the vertex with the minimum degree in P ;
5 if v’s degree is 1 then
6 let v’s neighbor be u, and ei=(v, u);
7 S ← objects that match with u and are in Φi;
8 S ← filter objects in S using X and Y ;
9 if S ̸= ∅ then X.put(u, S);

10 else return false;

11 else if v’s degree is 2 then
12 let v’s neighbors be u, w, and ej=(v, u),

ek=(v, w);
13 T ← link the e-matches in Φj and Φk;
14 T ← simply the triples in T to tuples using X

and Y ;
15 if T ̸= ∅ then Y .put((u, w), T);
16 else return false;

17 else
18 Similar to lines 10-13;
19 remove v and its incident edges from P ;

20 return true;

(lines 3-19), each time we pick the vertex v with the

minimum degree and process it using the simplification

criteria. After that, we remove v and its incident edges

from P . If P is feasible, the loop will stop when P does

not have any edge (line 20); otherwise it stops earlier.

Discussion. Each time we process the vertex with

minimum degree in the residual sub-pattern of P . Let

kmax be the maximum value of degrees of all the vertices

processed. Note that kmax is also called the maximum

core number of the k-cores in a graph and we usually

have kmax ≪ n [32]. Since for each vertex there are at

most kmax neighboring edges, at most |D|kmax+1 partial

matches will be considered. Besides, we need to keep

at most kmax(kmax−1)
2 |D|2 e-matches for each vertex or

edge in the maps X and Y . Note that the while loop is

executed at most n–1 times. Hence, the overall worst-

case time cost is O(n|D|kmax+1
), which is much lower

than that of answering an SPM query.

7 Experiments

7.1 Setup

Datasets.We use four real datasets. Fig. 17 reports

statistics about them (number of objects, number of

unique/total keywords). Dataset UK contains points of

interest (e.g., banks) in UK (www.pocketgpsworld.com).

Datasets NY and LA are collected using Google Place

API in New York and Los Angeles, respectively. In

these datasets, each object has a set of keywords (e.g.,

“food”), and a pair of latitude and longitude values
representing its location. Dataset TW is crawled from

Twitter in US. Each geo-tweet is treated as a spatial

object, its keywords are extracted from the tweet, and

its location is a pair of latitude and longitude values.

Patterns. To create spatial patterns for the exper-

iments, we first make 12 different undirected graphs

(see Fig. 18). These graphs vary in terms of number of

nodes and edges. Four of them have been used in ex-

ample patterns before, and the remaining eight graphs

are illustrated by examples in our technical report [39].

For each graph G in Fig. 18, a spatial pattern for each

dataset is generated by three steps:

Step-1: For each vertex v ∈G, we add a keyword ran-

domly selected following the distribution of keywords’

frequencies (i.e., a keyword contained by more objects

has a higher probability to be selected).

Step-2: For each vertex vi with one of its neighbor vj ,

we introduce a parameter η=90% such that the proba-

bilities for the four different signs, i.e., vi→vj , vj←vi,

vi↔vj , and vi–vj , are η×(1–η), η×(1–η), (1–η)×(1–η),
and η×η respectively.

Step-3: For each edge (vi, vj), we attach a distance

interval [li,j , ui,j] to it. If the edge is of sign vi–vj , li,j is

a random value in [0, 1km] and the interval length, i.e.,

ui,j − li,j , follows a Gaussian distribution with mean

1km and standard deviation 1km; otherwise, li,j is a

random value in [0, 10km] and the interval length fol-

lows a Gaussian distribution with mean 5km and stan-

dard deviation 5km.

By following the steps above, for each structure,

we generate 20 patterns with each having at least one

match. Thus, there are 240 patterns for each dataset.

Queries. We use an IR-tree index [37], having a

fanout B=100, i.e., the maximum number of children

Evaluating Pattern Matching Queries for Spatial Databases 19

StationPark

House

You are using a browser that is not supported by the
Google Maps JavaScript API. Consider changing

your browser. Learn more Dismiss

Fig. 20 mCK result for pattern
in Figure 4 (measure: km).

factory

Hotel

BarMetro

[10, 20]

[0, 1][0.5, 1]

[0, 1]

House

stationhospital

gallery

shop church
[0, 0.6][0, 0.8]

[0, 2.0][0, 0.8]

[1.0, 2.0][1.0, 2.0]

Church

House

Shop

Gallery
Station

Hospital

You are using a browser that is not supported by the Google Maps JavaScript API. Consider changing your browser. Learn more Dismiss

Gallery

House
Station

Shop
Hospital

Church

You are using a browser that is not supported by the Google Maps JavaScript API.
Consider changing your browser. Learn more Dismiss

(a) Pattern (b) A match of pattern in (a) (c) mCK query result

Fig. 21 Case study results for the pattern in (a) (measure: km).

of each node; the whole IR-tree is kept in memory. The

inverted object list for each keyword, used by MPJOrder,

is stored in a single file on disk. We consider five pa-

rameters: ϵ (used in MPJOrder), δ (used in MPJOrder), γ

(length of distance intervals), η (percentages of signs),

and χ (percentage of objects). The ranges of these pa-

rameters and their default values are shown in Fig-
ure 19. When varying a certain parameter, the values

for all the other parameters are set to their default val-

ues. We implement our algorithms in Java, and run ex-

periments on a machine having a quad-core Intel i7-

3770 3.40GHz processor, 16GB of memory, and a 1TB

of disk, with Ubuntu-12.04.1 installed.

7.2 Effectiveness and Efficiency of SPM Queries

7.2.1 A Case Study

We consider the UK dataset, and two patterns. The

first pattern is shown in the top-left panel of Fig. 4

and it can be used to find houses that are close to sta-
tions, schools, and parks, but not too close to schools

and stations (i.e., avoiding noise and crowd). The sec-

ond pattern is depicted in Fig. 21(a). It can be applied

to find houses which are close to churches, galleries,

shops, hospitals, and stations, but not too close to hos-

pitals and stations (i.e., avoiding infection and crowd).
We run algorithm MSJ for SPM queries. Due to space

limitations, we only show one match for each pattern.

For comparison, we use the mCK query [43,19], whose

input is the set of keywords in a pattern.

The results of the SPM and mCK queries for the

first pattern are depicted in Fig. 4 and 20, respectively.

From Fig. 4, we can observe that the four places in red

balloons well match with the pattern, while the result of

the mCK query is different, i.e., the distance from the

house to the school is less than 0.4km, which is not ex-

pected by the user. The reasons are that: (1) the mCK

query does not consider the explicit distance require-

ments among the objects; and (2) it also does not take

the exclusion-relationship of edges (e.g., house→school)

into consideration. Similarly, in Fig. 21, the SPM query

can find a set of objects exactly matching the pattern

in Fig. 21(a). In contrast, the mCK query may find a

house which is too close to the hospital and station (i.e.,

their distances are less than 1km). Therefore, we con-

clude that the SPM query is more effective in finding

spatial objects with various distance conditions.

7.2.2 Effectiveness of Estimation Method in MPJ

In MPJ, we estimate the number of e-matches for

each edge with mutual inclusion using a sampling method.

By Lemma 2, the estimation method theoretically guar-

antees that the failure probability is at most δ if the

multiplicative error is set as ϵ. In this experiment, we

evaluate the effect of ϵ and δ on the actual error. Con-

sider an edge in a pattern. Let r and r̂ be its actual

and estimated numbers of e-matches, respectively. The

error rate is then defined as: error= |r−r̂|
r .

For each dataset, we first collect all the edges, which

are with mutual inclusion (i.e., the signs of the edges are

“–”), from all the patterns. Then, we vary the values
of ϵ and δ from 0.15 to 0.35, and run the estimation

method (ζ=0.5). Finally, we show the average error.

Note that the true number of e-matches is computed

by PJ.

As expected, the error increases when the values of

ϵ and δ grow. However, the actual error is much lower
than its corresponding theoretical error. For example,

when the values of ϵ and δ are 0.25, the actual error is

around 0.12. In our experiments, we set the values of ϵ

and δ to 0.25.

7.2.3 Efficiency Results

Effect of pattern size. For each dataset, we divide

its patterns into five groups according to their vertex

numbers. Fig. 22(a)-22(d) report the average runtime

of a query for each group. Generally, as the number

of vertices in the patterns increases, the performance

gaps among the algorithms become larger. The time

cost of S-VF3 and S-MDJ does not always increase with

20 Yixiang Fang et al.

the number of vertices
2 3 4 5 6

tim
e

(s
ec

on
d)

10-1
100
101
102 S-VF3

S-MDJ
MPJ
MSJ

the number of vertices
2 3 4 5 6

tim
e

(s
ec

on
d)

10-1
100
101
102 S-VF3

S-MDJ
MPJ
MSJ

the number of vertices
2 3 4 5 6

tim
e

(s
ec

on
d)

10-1
100
101
102

S-VF3
S-MDJ
MPJ
MSJ

the number of vertices
2 3 4 5 6

tim
e

(s
ec

on
d)

10-1
100
101
102
103

S-VF3
S-MDJ
MPJ
MSJ

(a) UK (vertex number) (b) NY (vertex number) (c) LA (vertex number) (d) TW (vertex number)

.
0.2 0.6 1.0 1.5 2.0

tim
e

(s
ec

on
d)

10-2
10-1
100
101
102

S-VF3
S-MDJ
MPJ

MSJ
IncMatch

.
0.2 0.6 1.0 1.5 2.0

tim
e

(s
ec

on
d)

10-2
10-1
100
101
102 S-VF3

S-MDJ
MPJ

MSJ
IncMatch

.
0.2 0.6 1.0 1.5 2.0

tim
e

(s
ec

on
d)

10-2
10-1
100
101
102

S-VF3
S-MDJ
MPJ

MSJ
IncMatch

.
0.2 0.6 1.0 1.5 2.0

tim
e

(s
ec

on
d)

10-2
10-1
100
101
102
103

S-VF3
S-MDJ
MPJ

MSJ
IncMatch

(e) UK (distance interval) (f) NY (distance interval) (g) LA (distance interval) (h) TW (distance interval)

2
0.6 0.7 0.8 0.9 1.0

tim
e

(s
ec

on
d)

10-2
10-1
100
101
102 S-VF3

S-MDJ
MPJ

MSJ
IncMatch

2
0.6 0.7 0.8 0.9 1.0

tim
e

(s
ec

on
d)

10-2
10-1
100
101
102 S-VF3

S-MDJ
MPJ

MSJ
IncMatch

2
0.6 0.7 0.8 0.9 1.0

tim
e

(s
ec

on
d)

10-2
10-1
100
101
102

S-VF3
S-MDJ
MPJ

MSJ
IncMatch

2
0.6 0.7 0.8 0.9 1.0

tim
e

(s
ec

on
d)

10-2
10-1
100
101
102
103

S-VF3
S-MDJ
MPJ

MSJ
IncMatch

(i) UK (sign) (j) NY (sign) (k) LA (sign) (l) TW (sign)

percentage of objects
20% 40% 60% 80% 100%

tim
e

(s
ec

on
d)

10-3
10-2
10-1
100
101

S-VF3
S-MDJ
MPJ

MSJ
IncMatch

percentage of objects
20% 40% 60% 80% 100%

tim
e

(s
ec

on
d)

10-3
10-2
10-1
100
101

S-VF3
S-MDJ
MPJ

MSJ
IncMatch

percentage of objects
20% 40% 60% 80% 100%

tim
e

(s
ec

on
d)

10-3
10-2
10-1
100
101

S-VF3
S-MDJ
MPJ

MSJ
IncMatch

percentage of objects
20% 40% 60% 80% 100%

tim
e

(s
ec

on
d)

10-2
10-1
100
101
102
103 S-VF3

S-MDJ
MPJ

MSJ
IncMatch

(m) UK (scalability) (n) NY (scalability) (o) LA (scalability) (p) TW (scalability)

Fig. 22 Efficiency results of SPM queries.

the number of vertices on the last two datasets. This

is because, when building the graph before running the

GPM solvers, they need to enumerate more pairs and

their numbers fluctuate greatly on different datasets.

MPJ and MSJ are consistently faster than the baseline

algorithms and MSJ is over an order of magnitude faster

than them. This is because, when computing e-matches

of edges of the pattern, MPJ and MSJ work in a joint

manner, while S-VF3 and S-MDJ perform keyword search

and range queries separately. Meanwhile, MSJ is 2 to 5

times faster than MPJ. The reasons are three-fold. First,

MSJ refines the patterns using their bounded patterns.

Second, the pruning criteria of MSJ are very effective

for pruning partial matches. Third, MSJOrder is more

efficient than MPJOrder.

In addition, we ran MPJ and MSJ on a small sub-

dataset (|D|=5,000) of the UK dataset and found that

they have similar efficiency. Thus, for small datasets,

MPJ is an alternative to MSJ, as it is easier to implement.

Effect of distance interval length. For each edge (vi,

vj) in the patterns, we vary the length (i.e., |ui,j–li,j |)
of the distance interval using a parameter γ, such that

the length of the distance interval increases γ times,

where γ ∈{0.2, 0.6, 1.0, 1.5, 2.0}. Specifically, we reset

the upper bound distance ui,j as li,j+(ui,j–li,j)×γ, and
get five patterns, each of which corresponds to a value

of γ. We report the average running time for each query

in Fig. 22(e)-22(h).

Clearly, with the increase of γ, all algorithms except

MPJ takes more time. This is because a larger value of

γ means a larger distance interval, which implies that

more object sets are matched with the patterns and

thus additional time is needed. However, this is not the

case for MPJ on dataset TW. Recall that MPJ consists

of three parts, namely running MPJOrder, running PJ,

and joining e-matches. Although the time of running

PJ and joining edge matches increases when γ grows,

the time of running MPJOrder decreases since the sam-

pling time decreases because there are more e-matches

for each edge. For datasets UK, LA and NY, running

MPJOrder takes more time than running PJ and the

join process, so the overall running time decreases as

γ grows. On the other hand, for dataset TW, after

increasing γ, the number of objects involved is much

larger, so MPJOrder takes less time and the overall run-

ning time increases as γ grows.

Evaluating Pattern Matching Queries for Spatial Databases 21

Note that, in the worst case, the number of matches

could be exponentially large. For example, if we set
γ=100, then all our algorithms fail to process almost

all of the patterns with 4 or more vertices within one

minute, because either the number of matches is too

large or they run out of memory.

Effect of signs. Recall that in pattern generation, for

each edge (vi, vj) we use a parameter η to control the
percentages of edges with different signs. Now, for the

patterns of each dataset, we reset the signs of edges by

varying η in {0.6, 0.7, 0.8, 0.9, 1.0}, and obtain five

groups of patterns correspondingly. Note that the key-

words and distance intervals remain unchanged. We re-

port the average runtime of a query for each group in

Fig. 22(i)-22(l). We observe that, as the value of η in-

creases, the running time of all the algorithms decreases

slightly. This is because, when η becomes larger, more

edges are with mutual inclusion. According to MPJOrder

and MSJOrder, we can skip the join for more edges with

mutual inclusion, and thus query evaluation becomes

faster. However, edges with exclusion can be processed

faster than edges with mutual inclusion, because fewer

e-matches can be found. As a result, the overall running

time does not change much.

Scalability. For each dataset, we vary the value of χ

as shown in Fig. 19, select a percentage of χ from its

objects randomly, and obtain four sub-datasets. Fig.

22(m)-22(p) report the scalability over these sub-datasets.

As can be seen, both MPJ and MSJ scale near linearly

with the size of dataset. Moreover, MPJ scales better

than S-VF3 and S-MDJ, and MSJ scales the best.

Optimization techniques in MSJ. Recall that there

are three key optimization techniques in MSJ, namely

bounded patterns, star-pruning, and anchor-pruning.

We modify MSJ such that it has 4 different variants,

denoted by V1, V2, V3, and V4. V1 is a version of MSJ

that applies none of the above techniques is used, while

V1, V2, and V3 denote simplified versions of MSJ which

do not implement one of these optimization techniques,

respectively. We report the average running time of each

pattern on two datasets in Table 2.

Observe that all the variants are slower than MSJ,

which implies that all of them indeed help improving

the efficiency. Among these variants, V1 is the slowest

one, since it does not use any optimization technique.

Besides, we can see that star-pruning is more effective

for pruning than anchor-pruning. We remark that the

reported results are average running times over all the

240 patterns. Recall that these optimization techniques

are mainly designed for large and complicated patterns.

Specifically, bounded patterns and star-pruning are de-

signed for patterns with at least three vertices, while

Table 2 Benefit of optimization techniques in MSJ (ms).

Datasets V1 V2 V3 V4 MSJ

NY 14.06 13.53 13.12 12.92 12.79

LA 20.67 18.18 18.06 17.68 17.57

anchor-pruning can improve efficiency only when the

pattern has at least four vertices.

Join ordering methods. In this experiment, we com-

pare the efficiency of the three methods that can be

used to determine the join order, namely dynamic pro-

gramming (DP), MPJOrder, and MSJOrder. The average

runtimes of these methods on NY and LA are reported

in Fig. 23. For small patterns, the difference between

these methods is insignificant, so we use patterns with

5 and 6 vertices in this experiment. As can be seen, DP

takes the longest time to obtain the join order. The

reasons are two-fold. First, DP needs to compute all

the e-matches for each edge before computing the op-

timal join order while the other two methods may skip

some edges. Second, DP needs to search a large search

space, while the other methods work in a greedy man-

ner. Besides, MSJOrder is faster than MPJOrder, because

the number of matched non-leaf nodes enumerated in

MSJOrder is much smaller than that of the e-matches.

Fig. 23 Join orders. Fig. 24 SPM queries.

To assess the effect of these methods, we create a

variant of MPJ, denoted by MPJ(DP), which uses DP to

compute the join order. Then, we use the patterns of

the experiment above and run MPJ(DP), MPJ, and MSJ

on NY and LA datasets, and report the overall runtime

in Fig. 24. Clearly, MSJ is the fastest approach. Besides,

we observe that although DP can compute the optimal

join order which may reduce the join time cost, it is still

slower than MPJ since the time dedicated for join order

optimization is more.

7.3 Efficiency of Top-k SPM

To evaluate top-k SPM, we consider all datasets and

the 240 spatial patterns introduced in Section 7.1. For

each pattern, we generate two query locations following

different distributions. That is, one follows a random

distribution, and the other one follows the object dis-

tribution, i.e., locations with more objects have higher

22 Yixiang Fang et al.

k
1 5 10 20 50

tim
e

(m
s)

0

5

10

15
UK
NY
LA
TW

k
1 5 10 20 50

tim
e

(m
s)

100

101

102

103

UK
NY

LA
TW

k
1 5 10 20 50

tim
e

(m
s)

0

5

10

15
UK
NY
LA
TW

k
1 5 10 20 50

tim
e

(m
s)

100

101

102

103

UK
NY

LA
TW

(a) IncMatch (random) (b) MSJ (random) (c) IncMatch (grid) (d) MSJ (grid)

Fig. 25 Efficiency results of top-k SPM queries.

number of vertices
3 4 5 6

su
b-

pa
tte

rn
 n

um
be

rs

0

10

20

30

40

50
Basic
Advanced

number of vertices
3 4 5 6

su
b-

pa
tte

rn
 n

um
be

rs

0

10

20

30

40

50
Basic
Advanced

number of vertices
3 4 5 6

su
b-

pa
tte

rn
 n

um
be

rs

0

10

20

30

40
Basic
Advanced

number of vertices
3 4 5 6

su
b-

pa
tte

rn
 n

um
be

rs

0

10

20

30

40

50

Basic
Advanced

(a) UK (search space) (b) NY (search space) (c) LA (search space) (d) TW (search space)

Fig. 26 Comparing the numbers of verified sub-patterns in PSPM queries.

number of vertices
3 4 5 6

tim
e

(m
s)

0

2

4

6

8
UK
NY
LA
TW

number of vertices
3 4 5 6

tim
e

(m
s)

10-1

100

101

102

103

UK
NY

LA
TW

number of vertices
3 4 5 6

tim
e

(s
ec

on
d)

0
0.2
0.4
0.6
0.8

1 UK
NY
LA
TW

number of vertices
3 4 5 6

tim
e

(s
ec

on
d)

0
2
4
6
8

10
12

UK
NY

LA
TW

(a) VerifyPattern (verification) (b) MSJ (verification) (c) Advanced (vertex number) (d) Basic (vertex number)

Fig. 27 Efficiency results of PSPM queries.

probabilities to be selected as query locations. As a re-

sult, for each dataset, we get two groups of top-k SPM

queries, each containing 240 queries whose query loca-

tions follow a specific distribution.

In the experiments, we set the default value of k to

10. We vary the value of k in {1, 5, 10, 20, 50}, and run

MSJ and IncMatch for these two groups of queries on

each dataset. Since the lengths of the distance intervals

of these patterns are a few kilometers, for simplicity we

set θ=20km in IncMatch. Fig. 25 presents the average

runtime for each query.

Effect of k. We observe that IncMatch consistently

performs faster than MSJ, and the runtime cost of MSJ

is almost stable when k varies from 1 to 50. This is be-

cause, to find the top-k matches, MSJ first computes all

the matches, and this dominates the overall cost. On

the other hand, IncMatch finds the top-k in an incre-

mental manner and does not need to compute all the

matches, so it performs faster. In addition, by varying

k from 1 to 50, the running time of IncMatch increases.

Nevertheless, the running time of IncMatch is not

proportional to the sizes of datasets. For example, for

the LA dataset which is not the largest one, it takes

the longest time. The main reason is that IncMatch

adopts a local search strategy. That is, it finds the top-

k matches from a spatial circle centered at the query

location loc and incrementally increases the radius of

the circle by θ. In other words, the search space is in

a small region surrounding the query location loc, irre-

spectively to the size of the dataset.

Fig. 28 Match-density.

3 (km)
5 10 15 20 25 30

tim
e

(m
s)

2

4

6

8

LA
NY

Fig. 29 Effect of θ.

To further investigate the performance fluctuation

on different datasets, we introduce a concept, called

match-density. Let the circle containing the top-k matches

be O(loc, r), where r is the radius. Then, the match-

density is defined as k
π×r2 . Intuitively, if the match-

density is small, IncMatch takes more time to find the

top-k matches, since each time it increases r by θ and fi-

nally stops when k matches are found. For each dataset,

we consider the 240 queries and compute their average

match-density (k=10). The results are depicted in Fig.

Evaluating Pattern Matching Queries for Spatial Databases 23

28. As can be seen, LA has the lowest match-density

while UK has the highest match-density, so IncMatch

takes more time on the LA compared to UK. Thus,

the performance mainly depends on the local match-

density.

Effect of the location generation methods. From

the results, we observe that, again IncMatch performs

faster than MSJ, and the two groups of queries with dif-

ferent distributions of query locations achieve almost

the same efficiency on each dataset. Therefore, the pro-

posed algorithm IncMatch is very efficient and robust.

Effect of the distance interval length.We vary the

value of γ which controls the length |ui,j − li,j | and re-

port the average running time of IncMatch for a query

in Fig. 22(e)-22(h). Clearly, as the size of the interval

grows, the running time of IncMatch increases.

Effect of signs. We vary the value of η and report

the average running time of IncMatch for a query in

Fig. 22(i)-22(l). We observe that, as the value of η in-
creases, the running time of IncMatch changes slightly,

not obeying any rule. This is because, FindMatches

does not have to compute e-matches of edges with exclusion-

relationship at first as MSJ does. Instead, IncMatch pro-

cesses edges with exclusion-relationship or inclusion-

relationship in a similar way.

Scalability. We report the scalability test results of

IncMatch in Fig. 22(m)-22(p). As can be seen, IncMatch

scales near linearly with the size of dataset.

Effect of θ. As shown in Fig. 29, when θ varies from

5km to 30km, the cost of IncMatch does not change

much. Thus, the efficiency of IncMatch is not very sen-

sitive to the parameter θ, so we set it to 20km in our

experiments. In practice, users can simply set it as the

mean of distance values in the pattern.

7.4 Effectiveness and Efficiency of PSPM

Recall that PSPM is applied when the pattern P has

no exact matches in the database. To evaluate PSPM,

we need to create patterns that do not have matches.

Specifically, we focus on the 11 structures of Fig. 18(b)

to 18(l). For each of them, we follow the steps of pat-

tern generation in Section 7.1 and generate 20 patterns,

such that each one of them has no exact match in the

database and its maximal feasible sub-patterns have

more than half of the edges of the pattern. Thus, we

get 220 patterns for each dataset.

As discussed in Sections 6.2 and 6.3, to generate

candidate sub-patterns, Basic works in an Apriori fash-

ion, whereas Advanced adapts MARGIN [34]. We first

compare the search space (i.e., the numbers of verified

sub-patterns) of these candidate sub-pattern generation

methods. The results are reported in Fig. 26. The search

space of Advanced is consistently smaller than that of
Basic. Besides, with the number of vertices in the pat-

terns increased, the gaps become larger.

Next, in Fig. 27, we report the average runtime for

each PSPM query on each dataset.

Pattern verification. In this experiment, we compare

the efficiency of VerifyPattern with a naive method,

i.e., MSJ, for verifying whether a sub-pattern is feasi-

ble or not. The average cost of verifying a sub-pattern

is shown in Fig. 27(a)-27(b). We observe that, when

pattern sizes get larger, VerifyPattern is almost two

orders of magnitude faster than MSJ. The reason is that

MSJ is designed for computing all matches of the query

pattern, while VerifyPattern only checks whether the

pattern has matches or not. Meanwhile, for large datasets,

the cost tends to be larger, because larger datasets have

more partial matches.

Effect of pattern size. For each dataset, we divide its
query patterns into four groups according to their ver-

tex numbers. Fig. 27(c)-27(d) report the average query

cost for each group. We observe that Advanced is con-

sistently faster than Basic, and as the pattern size

increases, the performance gap becomes larger. More-

over, Advanced is around an order of magnitude faster

than Basic on the three large datasets. First, Advanced

uses ExpandCutSPM to restrict the search space. Sec-

ond, Advanced uses VerifyPattern, which is faster for

verifying whether a sub-pattern is feasible. Besides, the

overall running time increases with the growth of dataset

sizes. The main reason is that the verification time in-

creases as the sizes of datasets grow.

8 Related work

Spatial keyword queries (SKQs). Recently, spa-

tial queries [9,14,15,17] have been extensively studied

and SKQ is one of the most well-studied queries. In the

literature, there are two specific types of SKQs. The

first type (e.g., [11,37,40,9]) takes as input the loca-

tion where the query is issued, and a set of keywords.

A list of k objects is returned, each of which is near

to the query location, and is relevant to the keywords.

Efficient indexes (e.g., IR-tree [11]) were proposed to

enable fast query evaluation. In [37,40], the top-k SKQ

is studied. The authors in [20] proposed an SKQ, which

continuously returns k objects when the query loca-

tion moves. In [41], this solution was extended to apply

to road networks. In [23], Mahmood et al. proposed a

query language, called Atlas, an SQL extension to ex-

press spatial keyword group queries.

The second type of queries take as arguments a set

of keywords and return a group of objects [43,19,6,12,

24 Yixiang Fang et al.

10] that are close to each other, and collectively match

the set of query keywords. Compared to the first type,
this type of queries is more related to our SPM query. A

representative query is the m-closest keyword (mCK)

query [43,19], which finds a group of objects that col-

lectively contain all the m query keywords, and the

maximum distance between any two objects returned

is minimized. However, as discussed in Section 7, our

SPM query captures users’ requirements better than

the mCK query. Its variants include [10], which mini-

mizes a different distance cost function, and [12], which

considers ratings of objects. The authors of [6] consider

the distance between the query location and the re-

turned group for the SKQs. A recent work [22] queries

the POIs similar to a given keyword-based clue.

The SPM query is also related to the multi-way

spatial join. Papadias et al. [30] express query con-

straints as graphs and retrieve objects satisfying the

query graphs, by using the R-tree index [5]. However,
the objects that instantiate the vertices are not deter-

mined by keyword filters, but they are taken from the

entire dataset(s). The join between two inputs, one of

which is indexed by an R-tree, as well as multi-way

joins that use this as a module, are studied in [24]. The

optimization of these join queries was studied in [25].

However, these studies cannot be applied to solving our

SPM query. The reasons are two-fold: First, existing

multi-way spatial join studies mainly focus on spatial

databases that are not associated with keywords. Sec-

ond, existing multi-way spatial join studies do not con-

sider the exclusion-ship among objects, which is a novel

feature in our SPM pattern. In addition, we adapted a

recent graph pattern matching algorithm (called MDJ),

which works in a similar manner to multi-way spatial

join, and performed an experimental study. The results

show that the adapted MDJ solution, called S-MDJ, is

very inefficient, calling for faster solutions.

Graph pattern matching (GPM).Given a graph

G and a pattern graph P , the GPM query [18,45,36,

7] extracts a set R of subgraphs of G, where for each

r ∈ R, r matches with P . Zou et al. [45] study the

GPM problem on undirected graphs. Tong et al. [36]

propose a solution for common shapes of P , such as a

line, a loop, and a star. A recent work [7] proposes a

fast GPM algorithm VF3 based on subgraph isomor-

phism. Another recent work [33] finds groups of ob-

jects matching with a clique pattern, but it does not

consider any keywords. However, these solutions are

mainly designed for graph databases, rather than spa-

tial databases where objects are indexed by R-tree-like

structures. Moreover, the graph patterns typically do

not have any distance requirement [7] or just have an

upper bound distance [45] on each edge, while in our

patterns, each edge not only has the minimum/maximum

distance requirements, but also the inclusion/exclusion-
relationship. Thus, all these methods cannot be used to

process SPM queries directly. We adapted two GPM

solutions [45,7] as baselines, but they were found inef-

ficient.

There are also previous studies that perform ap-

proximate GPM; some of them, find subgraphs that

match with a sub-pattern. Zhang et al. [42] propose to
find subgraphs, whose edit distances with the pattern

are less than a predefined threshold. Zhu et al. [44] re-

trieve matches of the query graph with the number of

possible missing edges bounded by a given threshold.

Similar to [44], Mongiovi et al. [27] focus on inexact

matches of the query graph with at most number r of

deletions. Tian et al. [35] find approximate matches not

only allowing missing edges and nodes but also support-

ing node mismatches (nodes with different labels are

matched). To find approximate matches for our SPM

queries, we borrow ideas from these studies and find

partial matches of the maximal feasible sub-patterns of

the query pattern.

9 Conclusions and Future Work

In this paper, we study the spatial pattern match-

ing (or SPM) problem. We first show that this prob-

lem is computationally intractable. Then we propose

two efficient algorithms for SPM queries, namely MPJ

and MSJ. Moreover, we study two useful variants of the

SPM problem, which are called the top-k SPM and par-

tial SPM (PSPM) problems. The top-k SPM finds the

k nearest matches to a query location, and the PSPM

query finds partial matches that maximally match with

the query pattern, when there are no exact matches for

it. Based on the SPM query, we developed a demo sys-

tem, called SpaceKey, which allows users to explore pat-

terns in spatial database. Furthermore, we performed

experiments on real datasets, and the results show that

our SPM queries are more effective than the state-of-

the-art SKQs. In addition, the MSJ algorithm is up to an

order of magnitude faster than the baseline solutions.

Finally, the algorithms of top-k and PSPM queries are

very efficient compared to baseline alternatives.

In the future, we plan to increase the expressiveness

power of SPM queries. For example, we will include

logical operations (e.g., AND and OR) into SPM, sup-

porting for instance the case where we want to find a

house that has nearby a hospital or a doctor. In addi-

tion, it would be interesting to investigate other possi-

ble solutions for handling the under-matched case. For

example, a possible solution is to automatically relax

Evaluating Pattern Matching Queries for Spatial Databases 25

the distance constraints of the pattern slightly so that

it has matches in the database.

References

1. https://en.wikipedia.org/wiki/Geometric_

distribution.
2. https://en.wikipedia.org/wiki/Floyd-Warshall_

algorithm.
3. Settlement patterns. http://geography.parkfieldprimary.c

om/the-united-kingdom/settlement-patterns, 2017.
4. V. Batagelj and M. Zaversnik. An o(m) algorithm

for cores decomposition of networks. arXiv preprint
cs/0310049, 2003.

5. T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient pro-
cessing of spatial joins using r-trees. SIGMOD, pages
237–246, 1993.

6. X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective
spatial keyword querying. In SIGMOD, pages 373–384.
ACM, 2011.

7. V. Carletti et al. Challenging the time complexity of
exact subgraph isomorphism for huge and dense graphs
with vf3. TPAMI, 2017.

8. F. Chen and X. Wu. Perfect pipelining for streaming
large file in peer-to-peer networks. In Theoretical Com-
puter Science, pages 27–38, 2014.

9. L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial
keyword query processing: an experimental evaluation.
PVLDB, pages 217–228, 2013.

10. D. Choi, J. Pei, and X. Lin. Finding the minimum spatial
keyword cover. In ICDE, pages 685–696. IEEE, 2016.

11. G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval
of the top-k most relevant spatial web objects. VLDB,
2(1):337–348, 2009.

12. K. Deng, X. Li, J. Lu, and X. Zhou. Best keyword cover
search. TKDE, 27(1):61–73, 2015.

13. Y. Fang, R. Cheng, G. Cong, N. Mamoulis, and Y. Li.
On spatial pattern matching. In ICDE, pages 293–304.
IEEE, 2018.

14. Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu. Effective
community search over large spatial graphs. PVLDB,
10(6):709–720, 2017.

15. Y. Fang, R. Cheng, W. Tang, S. Maniu, and X. Yang.
Scalable algorithms for nearest-neighbor joins on big tra-
jectory data. TKDE, 28(3):785–800, 2016.

16. Y. Fang, R. Cheng, J. Wang, Budiman, G. Cong, and
N. Mamoulis. SpaceKey: exploring patterns in spatial
databases. In ICDE, pages 1577–1580. IEEE, 2018.

17. Y. Fang, Z. Wang, R. Cheng, X. Li, S. Luo, J. Hu, and
X. Chen. On spatial-aware community search. TKDE,
pages 1–1, 2019.

18. B. Gallagher. Matching structure and semantics: A sur-
vey on graph-based pattern matching. AAAI FS, 6:45–
53, 2006.

19. T. Guo, X. Cao, and G. Cong. Efficient algorithms for
answering the m-closest keywords query. In SIGMOD,
pages 405–418. ACM, 2015.

20. W. Huang, G. Li, K.-L. Tan, and J. Feng. Efficient
safe-region construction for moving top-k spatial keyword
queries. In CIKM, pages 932–941. ACM, 2012.

21. J. Jin, N. An, and A. Sivasubramaniam. Analyzing range
queries on spatial data. In ICDE, pages 525–534, 2000.

22. J. Liu, K. Deng, H. Sun, Y. Ge, X. Zhou, and C. S.
Jensen. Clue-based spatio-textual query. PVLDB,
10(5):529–540, 2017.

23. A. R. Mahmood, W. G. Aref, A. M. Aly, and M. Tang.
Atlas: on the expression of spatial-keyword group queries
using extended relational constructs. In SIGSPATIAL,
page 45. ACM, 2016.

24. N. Mamoulis and D. Papadias. Integration of spatial
join algorithms for processing multiple inputs. SIGMOD,
28(2):1–12, 1999.

25. N. Mamoulis and D. Papadias. Multiway spatial joins.
TODS, 26(4):424–475, 2001.

26. Ministry of Education of Singapore.
https://www.moe.gov.sg/admissions/primary-one-
registration/allocation, 2017.

27. M. Mongiovi et al. Sigma: a set-cover-based inexact graph
matching algorithm. Journal of bioinformatics and com-
putational biology, 8(02):199–218, 2010.

28. J. Niemelä. Ecology and urban planning. Biodiversity
and conservation, 8(1):119–131, 1999.

29. D. Papadias, N. Mamoulis, and Y. Theodoridis. Pro-
cessing and optimization of multiway spatial joins using
r-trees. In PODS, 1999.

30. D. Papadias et al. Algorithms for querying by spatial
structure. In VLDB, pages 546–557, 1998.

31. J. Schnaiberg, J. Riera, M. G. Turner, and P. R. Voss.
Explaining human settlement patterns in a recreational
lake district: Vilas county, wisconsin, usa. Environmental
Management, 30(1):24–34, 2002.

32. S. B. Seidman. Network structure and minimum degree.
Social networks, 5(3):269–287, 1983.

33. M. Tang et al. Similarity group-by operators for multi-
dimensional relational data. TKDE, 28(2):510–523, 2016.

34. L. T. Thomas, S. R. Valluri, and K. Karlapalem. Mar-
gin: Maximal frequent subgraph mining. TKDD, 4(3):10,
2010.

35. Y. Tian et al. Tale: A tool for approximate large graph
matching. In ICDE, pages 963–972. IEEE, 2008.

36. H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-
Rad. Fast best-effort pattern matching in large attributed
graphs. In KDD, pages 737–746, 2007.

37. D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen. Joint top-k
spatial keyword query processing. TKDE, 2012.

38. Y. Wu, J. M. Patel, and H. Jagadish. Structural join
order selection for xml query optimization. In ICDE,
pages 443–454. IEEE, 2003.

39. Y. Fang, Y. Li, R. Cheng, N. Mamoulis, G. Cong. On spa-
tial pattern matching. http://www.cse.unsw.edu.au/

~z3525370/spm2019.pdf.

40. C. Zhang, Y. Zhang, W. Zhang, and X. Lin. Inverted
linear quadtree: Efficient top-k spatial keyword search.
TKDE, 28(7):1706–1721, 2016.

41. C. Zhang, Y. Zhang, W. Zhang, X. Lin, M. A. Cheema,
and X. Wang. Diversified spatial keyword search on road
networks. In EDBT, pages 367–378, 2014.

42. S. Zhang, J. Yang, and W. Jin. Sapper: subgraph index-
ing and approximate matching in large graphs. PVLDB,
3(1-2):1185–1194, 2010.

43. D. Zhang et al. Keyword search in spatial databases:
towards searching by document. In ICDE, pages 688–
699. IEEE, 2009.

44. G. Zhu et al. Treespan: efficiently computing similarity
all-matching. In SIGMOD, pages 529–540. ACM, 2012.

45. L. Zou, L. Chen, and M. T. Özsu. Distance-join: pat-
tern match query in a large graph database. PVLDB,
2(1):886–897, 2009.

https://en.wikipedia.org/wiki/Geometric_distribution
https://en.wikipedia.org/wiki/Geometric_distribution
https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm
https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm
http://www.cse.unsw.edu.au/~z3525370/spm2019.pdf
http://www.cse.unsw.edu.au/~z3525370/spm2019.pdf

26 Yixiang Fang et al.

A Proof of Lemma 1

We prove the lemma by a reduction from the 3-SAT prob-
lem. An instance of the 3-SAT problem consists of ϕ=C1 ∧
C2 ∧ · · · ∧ Cm, where each clause Cj=xj ∨ yj ∨ zj(j=1,2,
· · · ,m) and {xj , yj , zj} ⊂ {u1, ū1, · · · , un, ūn}. The deci-
sion problem is to determine whether we can assign a value
(true or false) to each variable ui, i = (1, 2, · · · , n), such that
ϕ is true. To transform an instance of the 3-SAT problem
to an instance of the SPM problem, we first describe how to
map the variables into spatial objects, and then discuss how
to associate the keywords.

o1

o2 c

≤d

o3

e

on

on

o1

o2

o3

o1

o2
c

≤d

o3

e

on

on

o1

o2

o3

o1

o2
c

≤d

o3

e

on

on

o1

o2

o3

or

ot

os

os

or

ot

(a) Variables transformation. (b) Objects of a clause.

Fig. 30 Illustrating the NP-hard proof.

We assume all the spatial objects are in a unit square
[0, 1]2 data space. Let d be a value in (0, 1). We consider a
circle, whose center is at the center of the data space and has
a diameter c=d + σ, where σ is a small positive value. We
will discuss how to set the value of σ later. For variable u1,
we randomly place a corresponding spatial object o1 on the
circle. For its negation ū1, we place an object ō1 diametri-
cally opposite on the circle, which implies |o1, ō1|=c. For the
rest variables u2, u3, · · · , un and their negations, we place ob-
jects on the circle in the same way, such that |o1, o2|=|o2, o3|
=· · ·= |on−1, on|= |on, ō1| =· · ·=|ōn, o1|=e, where e can be
computed using the cosine theorem:

e =

√
c2

4
+

c2

4
− 2·

c2

4
· cos

180◦

n
=

√
c2

2
(1− cos

180◦

n
). (5)

We denote the set of all the placed 2n objects by Λ. Fig-
ure 30(a) illustrates the placement of objects in Λ. We now
prove that it is possible to set a positive value of σ, such that
for any object oi(ōi), the distance from it to any object in
Λ, except ōi(oi), is at most d. Let us consider o1. Since the
object furthest away from it in Λ − {ō1} is ō2 (or on), we
need to have |o1, ō2| ≤ d. Notice that o1, ō1 and ō2 form a
right triangle. By pythagorean theorem, we have

|o1, ō2| =
√
|o1, ō1|2 − |ō1, ō2|2 =

√
c2 − e2 ≤ d. (6)

Considering Eq (5), we have
√

1
2
(d+ σ)2(1 + cos180◦

n
) ≤

d. Hence, to ensure the distance from o1 to any object in
Λ− {ō1} being at most d, we set σ as

0 < σ ≤
d√

1
2
(1 + cos180◦

n
)
− d. (7)

Then, we discuss how to associate keywords. For each
pair of objects oi and ōi, we create one keyword wi for them
(i=1,2,· · · , n). In other words, oi and ōi share keyword wi,
and the only holders of wi are oi and ōi. In addition, for each

clause Cj in the instance ϕ of 3-SAT problem, we create one
keyword vj (j=1,2,· · · ,m) and associate it to the three ob-
jects corresponding to the three variables in Cj . Thus, given
a 3-SAT instance ϕ, we have a spatial pattern P , in which
(1) there are (n + m) vertices (each corresponding to a dis-
tinct keyword); (2) each pair of vertices has an edge with a
distance interval [0, d]; and (3) each pair of vertices is with
the mutual inclusion.

Next, to complete the proof, we need to prove that: (1)
a satisfying assignment of the 3-SAT instance ϕ determines
a set of spatial objects matched with the spatial pattern P ;
(2) if there exists a feasible solution to the SPM problem,
i.e., a set of objects match with the pattern P , then there
also exists a satisfying assignment of ϕ. We first show that
(1) holds. A satisfying assignment of ϕ means that, for any
pair of variables ui and ūi one of them must be true, and
any clause is also true. All the objects that correspond to
variables with true values form a match of P . This is because
for each edge of P , we can find a pair of objects that match
with the edge. In the following, we focus on proving (2).

Assume that we have a set Ψ of spatial objects matched
with P , where objects in Ψ contains all the keywords w1, · · · ,
wn and v1, · · · , vm, and the distance of each pair of objects
is at most d. Consider any specific clause Ck=ur ∨us ∨ut in
ϕ, where 1≤ r, s, t ≤ n and 1≤ k ≤ m. Since Ψ contains an
object with keyword wr, one of ur and ūr must be assigned
to be true. Similarly, we have this for us and ūs, ut and ūt,
respectively. It is easy to observe that, if any one of ur, us,
and ut is true, then the value of Ck is true. The only assign-
ment which makes the value of Ck false is when all the values
of ur, us, and ut are assigned to be false. Next, we prove
this case, however, cannot happen by contradiction. We show
six objects corresponding to variables of Ck in Figure 30(b),
where objects oh and ōh (h ∈ {r, s, t}) correspond to variables
uh and ūh respectively. Suppose above case happens, which
implies Ψ contains objects ōr, ōs, and ōt. Since Ψ contains
an object with keyword vk, whose only holders are objects
or, os, and ot, Ψ must contain at least one of them. As a
result, Ψ contains at least one pair of the three pairs of ob-
jects: or and ōr, os and ōs, and ot and ōt. However, we have
|or, ōr|=|os, ōs| =|ot, ōt|=c ≥ d, which implies that Ψ is not
a valid match since the distance requirement is not satisfied.
Thus, the case that all of ur, us, and ut are assigned to be
false cannot happen.

Therefore, we conclude that if there exists a feasible solu-
tion to the SPM problem, then there also exists an assignment
of ϕ, which makes it true, and (2) holds. Hence, the proof is
complete. □

B The Detailed Steps of MPJ

Algorithm 9 presents the pseudocodes of MPJ. The input
is the root of the IR-tree and a spatial pattern P , and the
output is the set, Ψ , of all the matches of P . We first ini-
tialize two variables Ψ and Φ (line 1), where Ψ maintains the
partial matches and Φ is a temporary variable. Then, we run
MPJOrder to get Γ and Υ (line 2). Next, we consider edges in
Γ sequentially (lines 3-12). In case that the edge is a forward
edge (lines 4-7), if it is with mutual inclusion, we run PJ to
obtain all the e-matches of this edge; otherwise, we get the
join results from Υ directly, and expand Ψ using Φ such that
each partial match matches with a larger subgraph of P . In
case that the edge is backward (lines 9-13), we prune the par-
tial matches: if the edge is with mutual inclusion, we prune
partial matches if the distances of the corresponding objects

Evaluating Pattern Matching Queries for Spatial Databases 27

Algorithm 9: MPJ

Input: root, P ;
Output: Ψ , all the matches;

1 initialize Ψ ← ∅, Φ← ∅;
2 run MPJOrder, and get Γ and Υ ;
3 for each edge (vi, vj) of Γ do
4 if it is a forward edge then
5 if vi–vj then Φ←PJ(wi, wj , li,j , ui,j , –);
6 else Φ← Υ .get((vi, vj));
7 Ψ ← Ψ .link(Φ);

8 else
9 if vi–vj then

10 prune some partial matches in Ψ ;

11 else
12 Φ← Υ .get((vi, vj));
13 prune some partial matches in Ψ by Φ;

14 return Ψ ;

are not in [li,j , ui,j]; otherwise, we get the join result Φ from
Υ and prune partial matches if the corresponding objects are
not in Φ. Finally, we return the set Ψ (line 14).

	Introduction
	The SPM Problem
	The MPJ Algorithm
	The MSJ algorithm
	The Top-k SPM Problem and Algorithms
	The PSPM Problem and Algorithms
	Experiments
	Related work
	Conclusions and Future Work
	Proof of Lemma 1
	The Detailed Steps of MPJ

