
Privacy Preservation in the Publication of Trajectories∗

Manolis Terrovitis and Nikos Mamoulis
Department of Computer Science

University of Hong Kong
Pokfulam Road, Hong Kong

{rrovitis,nikos }@cs.hku.hk

Abstract

We study the problem of protecting privacy in the publica-
tion of location sequences. Consider a database of trajec-
tories, corresponding to movements of people, captured by
their transactions when they use credit or RFID debit cards.
We show that, if such trajectories are published exactly (by
only hiding the identities of persons that followed them),
there is a high risk of privacy breach by adversaries who
hold partial information about them (e.g., shop owners).
In particular, we show that one can use partial trajectory
knowledge as a quasi-identifier for the remaining locations
in the sequence. We device a data suppression technique,
which prevents this type of breach, while keeping the posted
data as accurate as possible.

1. Introduction
Consider a card company, which keeps track of customer

transactions. Assume that the company wants to publish se-
quences of transactions by the same person as trajectories,
for analysis and querying purposes. As a motivating ex-
ample, consider the Octopus1 smart RFID card, commonly
used by Hong Kong residents to pay for their transportation
and for their transactions at point-of-sale services, such as
shops, restaurants, parking spaces, vending machines, etc.
The Octopus company accumulates vast amounts of trajec-
tory data daily, which could be published in order to extract
the movement and behavioral patterns of Hong Kong res-
idents and the causality relationships between geographic
spots on the city’s map.

On the other hand, direct publishing of this information,
even after hiding the IDs of users, may easily result in pri-
vacy breach, once combined with the partial trajectory in-
formation, known to an adversary. For example, when a per-
son uses his Octopus card to pay at a convenience store, the
store can also keep this transaction in its own database and

∗Work supported by grant HKU 7155/06E from Hong Kong RGC.
1http://www.octopuscards.com/

associate it to the person’s identity (e.g., via a loyalty/bonus
card). Furthermore, if the store belongs to a chain (e.g., 7-
Eleven), it can know multiple and different locations of the
same person’s activities (assuming that he visited shops of
the same company multiple times), which constitute a sub-
set of his complete trajectory.

Figure 1a shows an example of a databaseT owned by
the publisher (e.g., Octopus).2 Each sequence element is
a shop address, where the corresponding user did his/her
card transactions. Locations are classified according to the
possible adversaries. For example, all places denoted by
ai (wherei is any integer) are assumed to also be tracked
by companyA (e.g., 7-Eleven). Figure 1b showsTA; the
knowledgeA has for the exact database of Figure 1a.

We now show how companyA (acting as an adversary)
could identify private information by combining its knowl-
edgeTA with the databaseT , if T is published directly. We
assume that companyA can associate eachtAi in its local
databaseTA to a real user identity and we want to prevent
A from identifying the locations inti, which are unknown
to A, with probability higher thanPbr (breach probability).
The first type of link attack is due to the direct mapping of a
tuple inTA to a tuple inT . For example, ifT is published,
A will know that tA5 actually corresponds tot5, sincet5 is
the only trajectory that goes througha1 anda3, but no other
location of companyA. ThereforeA is 100% sure that the
user who followedtA5 in its local database, visitedb1. Even
for sequences that adversaryA cannot map exactly to its
own database, privacy breach can occur. Consider, for in-
stance, sequencetA7 , which A cannot distinguish whether
it is t6, t7, or t8.3 Based onT , adversaryA can infer that
the user corresponding totA7 visited locationb2 with prob-
ability 66%. This is unacceptable, ifPbr = 50%. This
type of breach is due to the lack of location diversity be-
tween trajectories that map to the same set of partial routes

2For the ease of presentation, we model each trajectory by a sequence
of locations, without temporal information (i.e., timestamps) on the ele-
ments. We will discuss about timestamped trajectories later in the paper.

3Note that the sequences are published in random order, so an attempt
to mapTA to T based on the order of trajectories inT would fail.

in the attacker’s database. By constructing the projected
databaseTB of adversaryB, the reader can easily identify
similar breaches ofA-locations (e.g., theB-projection of
t8 is unique inTB and adversaryB can find out that the
corresponding person visiteda3).

id trajectory
t1 a1 → b1 → a2

t2 a1 → b1 → a2 → b3

t3 a1 → b2 → a2

t4 a1 → a2 → b2

t5 a1 → a3 → b1

t6 a3 → b1

t7 a3 → b2

t8 a3 → b2 → b3

id trajectory
tA
1 a1 → a2

tA
2 a1 → a2

tA
3 a1 → a2

tA
4 a1 → a2

tA
5 a1 → a3

tA
6 a3

tA
7 a3

tA
8 a3

(a) exact data (T) (b) A’s knowledge (TA)

id trajectory
t′1 a1 → b1 → a2

t′2 a1 → b1 → a2

t′3 a1 → b2 → a2

t′4 a1 → a2 → b2

t′5 a3 → b1

t′6 a3 → b1

t′7 a3 → b2

t′8 a3 → b2

a
1

a
2
b
3

b
1

b
2

a
3

(c) transformed database (T ′) (d) the map of locations

Figure 1. Trajectory database

In this paper, we study the problem of publishing the tra-
jectories in a way that would prevent adversaries from using
their partial knowledge (linked to a person’s identity) to in-
fer locations unknown to them. Our technique suppresses
location information inT wherever privacy leaks occur and
converts it to a secure, published databaseT ′. The two con-
flicting goals of this data transformation are (i) the satisfac-
tion of certain privacy requirements (i.e.,Pbr) by the pub-
lished data and (ii) maximizing the utility of the published
data measured by the similarity of the original trajectories
in T to their corresponding transformations inT ′.

For each adversaryA and for every projected sequence
tAi ∈ TA (corresponding toti ∈ T), we would like the
adversary, not to be able to reconstruct any point inp ∈
ti, p /∈ tAi with certainty higher thanPbr. For example, if
Pbr = 50%, then the exact publication of the databaseT
of Figure 1a is not secure with respect to adversaryA (who
knows the data of Figure 1b), as already explained. Our
method convertsT to T ′ (see Figure 1c) after suppressing
b3 from t2, a1 from t5, andb3 from t8. The privacy with
respect to adversariesA andB is preserved with the publi-
cation ofT ′. For instance, each of the first four projections
a1 → a2 in TA is mapped to four trajectoriest′1 − t′4 in
T ′, in whichb1 andb2 appear with probability50% ≤ Pbr.
The same holds for the last three trajectories inTA. Note

that tA5 cannot be mapped to any trajectory inT ′. In the
worst case, the adversary can infer thattA5 must be one of
t′5 to t′8, since theA-projectiona3 of these four sequences
appears only three times inTA (and a1 could have been
truncated from the original mapping oftA5 in T). As we
will discuss later in the paper, this case does not entail pri-
vacy threats. When selecting locations to truncate from se-
quences, our method considers both the satisfaction of the
privacy constraints and also the introduced error with re-
spect to the original trajectory. For example, the deleted
points in the transformed databaseT ′ of Figure 1c are close
to their neighboring points in the corresponding original se-
quences (as shown in the map of locations in Figure 1d).

The remainder of the paper is organized as follows. Sec-
tion 2 summarizes related work. Section 3 formally defines
the privacy preservation problem that we study in this paper.
In Section 4 we present our algorithm, which is experimen-
tally evaluated in Section 5. Finally, Section 6 concludes
the paper with a discussion about future work.

2. Related work
This section provides background on privacy preserva-

tion in the publication of databases that contain sensitive
information. Trajectories of moving objects are data se-
quences, therefore work on the related issue of anonymizing
locations and sequences thereof is also reviewed.

2.1. k-anonymity and `-diversity

An issue that has risen lately in database research is the
publication of microdata (e.g., hospital records) that con-
tain one or more sensitive attributes (e.g., disease). Orga-
nizations, such as hospitals, want to release such data (e.g.,
for research) without compromising the privacy of the pa-
tients. Simply hiding the explicit identity of persons (i.e.,
name, ID) before publication does not suffice as recent stud-
ies demonstrate [6, 19]. In particular, a set of non-sensitive
attributes of a person (e.g., gender, age, zipcode) may act as
a quasi-identifierto reveal the association of him/her with
a published record. For instance, by joining a (public) vot-
ing registration database with anonymized medical records,
one may easily infer the identity of a patient who has unique
quasi-identifier compared to others in the voting registration
table; if Bob is the only male of age 55 in his neighbor-
hood, then any of his visits to the hospital (and even his
decease) can be easily inferred from a published medical
records database. To address this problem,k-anonymity
[18, 17] transforms the database before publication, such
that the values of attributes in the quasi-identifier are sup-
pressed or generalized in some of the published records.
In a k-anonymized published database, each tuple has the
same quasi-identifier values with at leastk − 1 others (all
these tuples form anequivalence class).

Research onk-anonymization initially focused on gener-
alizing each attribute individually [2, 11]; e.g., all instances

2

of age=55 are generalized to the same range 53–57. Later,
LeFevre et al. [12] noticed that the quality of anonymiza-
tion can be improved if equivalent classes are defined by
arbitrary, non-overlapping multi-dimensional ranges in the
quasi-identifier space. In [1],k-anonymity is treated as a
special clustering problem, and a constant factor approx-
imation of the optimal solution is proposed. In the same
direction, [20] propose more efficient agglomerative and di-
visive recursive clustering algorithms for this problem.

A stronger version ofk-anonymity (called`-diversity
[13]) requires the diversity of sensitive values (e.g., de-
cease) that appear in each equivalence class. For example,
if Bob’s values in the quasi-identifier attributes (e.g., gen-
der=male, age=55, zipcode=17728) fall in the same class
(e.g., male, 53–57, 17001–18000) ask = 10 other per-
sons and all these persons have diabetes, then even after
k-anonymization, an adversary can infer that Bob had dia-
betes when he visited the hospital.`-diversity prevents such
attacks by ensuring that at least` sensitive values are well-
represented in each equivalence class.

Our problem has two major differences from the clas-
sic k-anonymity and̀ -diversity problems. First, the sensi-
tive information is not absolute, but relative to the adver-
sary’s knowledge. In other words, the part of a trajectory
known to an adversary is not sensitive which respect to him;
however, the remaining information should be hidden from
him. We make no assumptions about the sensitivity degree
of each location; we consider all equally sensitive. Sec-
ond, the trajectory projections, used as quasi-identifiers are
sequences of variable length. As a result, our model and
privacy preservation techniques are fundamentally different
than existing work on secure publishing of relational data.

2.2. Location and Time-series Anonymization

Location-based applications support user queries (e.g.,
nearest neighbor search) which have as input the location
of the issuer. For example, GPS-enabled mobile phones can
be used to search for nearby services, like restaurants and
gas-stations. One problem when using such services is that
the public server that is queried (e.g., Google Maps) can
combine the location of the user with some external infor-
mation (e.g., a residential addresses database) to infer the
identity of the query issuer. As a result, the privacy of user
activities may be at risk. To tackle this problem a similar
idea tok-anonymity can be used. Location-based queries
are sent from users to the public sender through a trusted
query anonymizerwhich (i) hides the identity of the user
and (ii) applies aspatial-cloakingtechnique that generalizes
the user location (original query input) to a greater query re-
gion that contains at leastk locations of different users the
time of the query. As a result, the query issuer is indis-
tinguishable from at leastk other users and the privacy of
his/her action is well-preserved. The query anonymizer re-

trieves the result of the cloaked query from the public server,
which is a superset of the original query result. Finally, false
hits are filtered by the anonymizer and the result of the ac-
tual query is returned to user. Spatial cloaking was first pro-
posed in [8] and based on this idea, a system that supports
different queries and various anonymization requirements
was developed by Mokbel et al. in [15]. Ghinita et al. [7]
showed how to apply this framework in a distributed envi-
ronment, where users dynamically form and maintain the
k-anonymized spatial regions.

A problem related to sequence anonymization has been
addressed in [9]. Given a set of trajectories, the objective is
to confuse an adversary who can associate trajectory parts
to user identities (e.g., using a residential addresses data-
base). This is achieved by perturbing trajectories at points
where they spatially meet; for instance if the actual routes
of two carsx andy cross at some point, then the segment
of x (resp.y) before the meeting point is concatenated with
the segment ofy (resp. x) after the meeting point to form
the published trajectories. An optimization problem is mod-
eled, where the goal is to achieve the maximum privacy
subject to a maximum allowed distance of trajectories at
meeting points where perturbation takes place. On the other
hand, quality constraints such as the difference between the
original and published trajectories are not considered. In
[3], the concept of historicalk-anonymity is defined. As-
suming that users issue sequences of spatial queries to a ser-
vice provider, the objective is to generalize the locations of
the queries, such that for each sequence of cloaked requests
there are at leastk users whose trajectories are covered by
them. As a result, an adversary cannot link the sequence
of requests to less thank users. In a recent study [16], the
problem of perturbing the values of a time-series in order
to introduce uncertainty has been studied. Noise added to
the original data should have similar properties as the data
and at the same time should be resistant to compressibility-
based attacks. This work has similar objectives to our study,
however, the data domain as well as the attack and utility
models differ, since (i) we attempt to anonymize multiple
sequences of discrete data (as opposed to adding noise in
a continuous data domain), (ii) we assume that the adver-
sary’s knowledge (i.e., sequence parts) is known to the pub-
lisher, and (iii) suppression is used whenever necessary, as
a means for protecting privacy.

3. Problem Definition

We model the original trajectories in the owner data-
base as sequences of locations, which are precise points on
a map. Unlike the common assumption in spatiotemporal
data, we consider a discrete spatial domain, e.g., spatial in-
formation is given in terms of addresses in a city map. Such
a case is closer to the reality for data that stem from com-
mercial transactions. More formally, we define as trajectory

3

as follows:

Definition 1 A trajectory t of lengthn is a sequencet =
[p1, . . . , pn] of addresses taken from a setP

In our motivating example,P includes all addresses of
shops which accept the Octopus cards. For simplicity, we
assume that there is a 1-1 relationship between shops and
addresses. Since commercial companies might have multi-
ple branches,P can be partitioned inm disjoint non-empty
sets of addressesP1,P2, . . . ,Pm, such that each set con-
tains all and only the addresses of the different branches
of a company. Therefore, assuming that we wish to pub-
lish a databaseT of trajectories, where sequence elements
take values fromP, there arem adversaries (i.e., compa-
nies). Each adversaryi ∈ V controls addressesPi, such
that∀i, j ∈ V,Pi ∩ Pj = ∅ and

⋃
i∈V Pi = P. For each

trajectoryt ∈ T , every adversaryi ∈ V holds a projection
ti, as defined below.

Definition 2 A projection of a trajectoryt = [p1, . . . , pn]
with respect to an adversaryA, who ownsPA ⊂ P is a (po-
tentially empty) trajectorytA = [pA

1 , . . . , pA
k], {pA

j | pA
j ∈

t ∧ pA
j ∈ PA}. The order of elementspA

j ∈ t is preserved
in tA.

Simply speaking, the projectiontA of a t ∈ T is the sub-
trajectory oft that contains only and all the points ofPA

in t. Therefore, each adversary (e.g.,A) holds a local data-
base (e.g.,TA) with the projections of allt ∈ T with respect
to PA. The adversary has no knowledge about trajectories
having empty projection; therefore,TA can be smaller than
the database of the publisher. A trajectory may appear mul-
tiple times inT and more than one trajectories may have
the same projection with respect toPA. The most impor-
tant property of atA is that adversaryA can directly link
it to the identities of all persons that pass through it, in its
local database (e.g., loyalty program). We are now ready to
formalize the definition of our problem.

Definition 3 (Problem Definition) Given a databaseT of
trajectories, where locations take values fromP, construct
a transformed databaseT ′, such that ifT ′ is public, for
all t ∈ T , every adversaryA cannot correctly infer any
location {pj | pj ∈ t ∧ pj /∈ tA} with probability larger
thanPbr.

In simple words, we do not want an adversaryA who
has a projectiontA of a trajectoryt in the original database
to correctly infer any other locations of the trajectory af-
ter accessingT ′. This problem is similar to thè-diversity
problem defined in [13]. In our case,tA acts like a quasi-
identifier that links the remaining points to a person iden-
tity in A’s local database. The main differences from data-
base publication problems studied before are (i) the quasi-
identifiers are variable-length sequences of locations and
(ii) there can be multiple sensitive values (i.e., locations)

per trajectory inT and these values are different from the
perspectives of different adversaries (i.e., shop chains). The
second difference requires the algorithm which transforms
T to T ′ to consider attacks to different sensitive values from
different adversaries.

3.1. Computation of Threats

Before we describe the derivation of privacy threats,
we define the key concept ofsupport that is used by our
methodology. We say that trajectoryt ∈ T supports a
projectiontA, held by adversaryA, if the projection oft
with respect toPA is identical totA. For example, con-
sider a databaseT and two adversariesA and B, that
divide P in two sets of locations (i.e., shop branches)
PA = {a1, a2, . . . } andPB = {b1, b2, . . . }. Trajectory
t = [a1, b1, a2] supports projection[a1, a2], but does not
support[a1], [a1, a2, a3], or [a2, a1]. Reversely, the support
setS(tA, T) of a projectiontA with respect toT is defined
by the set of trajectories inT that support it.

Let us now elaborate on the computation of the proba-
bility P (pj , t

A, T ′) for adversaryA to associate a location
pj /∈ PA to a real person, whose trajectory is projected astA

in TA. Assume thattA is supported by a setS(tA, T ′) of tra-
jectories in the published databaseT ′. Then,P (pj , t

A, T ′)
can be computed as follows.

P (pj , t
A, T ′)=

∣∣{t′ | t′ ∈ S(tA, T ′) ∧ pj ∈ t′}
∣∣

|S(tA, T ′)|
(1)

In simple words,P (pj , t
A, T ′) is the fraction of tra-

jectories in the supportS(tA, T ′) which includepj . If
P (pj , t

A, T ′) > Pbr, then we say that the publication ofT ′

is insecure with respect totA andpj . For example, in Figure
1,P (b2, t

7, T) = 66% and pair(b2, t
7) violatesPbr = 50%

if T is published exactly. However, ifT is published asT ′

thenP (b2, t
7, T ′) = 50% and there is no privacy breach.

Our goal is to derive a transformationT ′ for which there
exists no(pj , t

A) pair for whichP (pj , t
A, T ′) > Pbr.

3.2. Utility

The recipient of the transformed databaseT ′ may be in-
terested in analyzing it in various ways. For example he
could apply some data mining operation (like clustering
[10] or sequence pattern mining [5]) to the resulting trajec-
tories, or perform aggregate queries of the form “How many
people traveled from regionX to regionY and then to re-
gionZ?”. Given that different recipients might be interested
in different properties of the data, we do not make explicit
assumptions on their use, but use a general measure for the
quality of the published datasetT ′. We measure utility by
the average difference between the original trajectories inT
and the published ones inT ′.

The differencediff(t, t′) between at ∈ T and its
corresponding transformationt′ ∈ T ′ is measured as fol-

4

lows. Let t′s and t′e be the starting and ending points of
t′, respectively, corresponding tots and te in t, respec-
tively. Each pointp ∈ t, contributes one component to
the distance. Ifp is before ts (after te), then the cor-
responding component isdist(p, ts) (dist(p, te), respec-
tively). If p is in-betweents and te then the error forp
is dist(p, (p, t′)), wherep, t′ is the projection ofp on tra-
jectory t′. By summing the squares of these components
and taking the root of the sum we derive the difference be-
tween the trajectories. Figure 2 shows an exemplary tra-
jectory t = a2 → a1 → a3 → b1, which is approxi-
mated byt′ = a1 → b1 (after the suppression ofa2 and
a3). The difference betweent andt′ is computed by sum-
ming the squares of componentsdist(a2, a1), dist(a1, a1),
dist(a3, (a3, t′)), anddist(b1, b1), and then taking squared

root, i.e.,diff(t, t′)=
√

dist(a2, a1)2 + dist(a3, (a3, t′))2.
In the special case, wheret′ = ∅ (i.e., the originalt has
been completely suppressed inT ′), each component of
diff(t, t′) is set as the maximum distance between two
points on the map.

a1

a2
b3

b1

b2

a3

t
a3,t

Figure 2. Distance between trajectories

4. The Algorithm
The anonymization algorithm carries the basic concept

of value generalization to the spatiotemporal field. In our
context, the quasi-identifiers are projections of trajectories
held by the attackers. The main idea behind our anonymiz-
ing algorithm is to transform long and detailed projections
to smaller and simpler ones. In doing so, we are able to (i)
increase the supports of projections and (ii) diversify the lo-
cations that are not monitored by adversaries, making thus
impossible for them to infer with high certainty whether a
trajectory includes such a point. The mechanism we use for
generalizing the trajectories is to suppress the existence of
certain points in them, taking under consideration the ben-
efit in terms of privacy and the deviation from the main di-
rection of the trajectory.

Finding the optimal set of points to delete fromT in or-
der to derive a secureT ′ and achieve the minimum possi-
ble information loss is harder than the simplerk-anonymity
problem in relational databases, discussed in Section 2,
which is already shown to be NP-hard [14]. Therefore, we

propose a greedy algorithm that iteratively suppresses lo-
cations, until the privacy constraint is met. The algorithm
simulates the attack from any possible adversary, and then
solves the identified privacy breaches. Algorithm 1 is a
pseudocode of this method.

In the first stage, the projected databaseTi of each at-
tacker i ∈ V is extracted. Then, the algorithm identi-
fies the projections that lead to a privacy breach, by scan-
ning T once, according to Algorithm 2. For each tuple
t ∈ T , and for each adversaryi, such that projectionti

is not empty, a countersup(pj , t
i, T) is increased for each

pj ∈ t, pj /∈ ti. After scanningT , pairs(pj , t
i) for which

P (pj , t
i, T) = sup(pj ,ti,T)

S(ti,T) > Pbr are identified andti is
marked as a problematic projection for adversaryi. Then
Algorithm 1 runs a loop; while privacy breach problems
have been identified, we attempt to unify a pair of projec-
tions(tix, tiy), of the same adversaryi, at least one of which
is problematic.

Two projections can be unified only if one is a sub-
trajectory of the other, i.e., the larger projection contains
all the points of the smaller one, and in the right order. For
example,a1 → a3 can be unified witha3 (seetA5 andtA6 in
Figure 1). Technically, the unification results in the suppres-
sion of the points (e.g.,a1) in the longest projection (e.g.,
a1 → a3) that are not contained in the shorter one (e.g.,a3)
in all trajectories that support the former (e.g.,t5). The uni-
fication is done in a way such that the resulting projection
(e.g.,a3) does not violate the privacy of the data. In other
words, if tix is a problematic projection then eithertix is not
supported in the transformed databaseT ′ resulting from this
unification, orP (pj , t

i
x, T ′) ≤ Pbr for all pj /∈ Pi. In the

example of Figure 1, after the unification ofa1 → a3 with
a3, trajectoryt5 becomest′5 = a3 → b1 and the problems of
botha1 → a3 anda3 are fixed;a1 → a3 is no longer sup-
ported inT ′ anda3 does not map to anyB-location with
probability higher than50%.

The unification happens only between the projections of
the same attacker. Still, the consequences of the unification
are not limited to that attacker, as problems that other ad-
versaries have may be solved. The effect here is different;
instead of increasing the supports of projections in order to
decrease the transition probabilities to sensitive locations,
the instances of some points that do not belong to the pro-
jection are reduced, and so is the adversary’s certainty that
a trajectory includes any of these points. For example, by
removinga1 from t5 in Figure 1, the problems ofa1 → a3

anda3 are resolved and, at the same time,a1 appears fewer
times in the trajectories where projectionb1 of adversaryB
is mapped to. To this end, we re-assess the existing prob-
lems after performing the unification and, while there are
more breaches, we repeat the unification process.

Since it is likely that more than one projections are prob-
lematic, at each loop we choose the one, which is speculated

5

to be the most beneficiary. Therefore, each possible unifi-
cation is given acostwith respect to the information loss
it entails. This cost is quantized by summing the distances
of the transformed trajectories to the corresponding original
ones, had the unification been committed, minus the cor-
responding cost before the unification. Distances between
original and transformed trajectories are measured using the
method described in Section 3.2.

To facilitate the efficient execution of our algorithm we
keep explicit links from each trajectory to the supported
projections and vice-versa. The following theorem ensures
that the algorithm terminates to a secure publication ofT .

Theorem 1 Algorithm 1 derives a secure databaseT ′.

Proof. First, Algorithm 2 correctly identifies the privacy
breaches, by directly applying Equation 1 in the support-
ing trajectories to the projections of each adversary. Each
time unification is performed between two trajectoriestix
andtiy, wheretiy ⊂ tix, the breach for at least one of them
is resolved. On the other hand, there is no way that after a
unification, someP (pj , t

i, T ′) will become higher thanPbr

since points are only removed from trajectories and a uni-
fication that would result in a breach is never committed.
The removal of points of an attackerA, can cause only the
reduction of the numerator in Eq. 1 for any other attacker
B, thus thePbr of any attackerB can only be reduced when
removing points from an attackerA. In addition, a unifica-
tion of a projection with the empty projection is possible (if
it is unavoidable), so the algorithm will always terminate to
a secure publication. �

A subtle thing to note is that after the unification oftix
with tiy, sincetix is no longer supported inT ′, the adversary
i can infer thattix is unified withtiy, and implicitly unify the
supports of the two. However, this is not an issue fortix, be-
cause the unification resolves the privacy problem oftiy; in
other words, since no pointpj /∈ Pi violatesPbr for projec-
tion tiy it will also not violatePbr for tix, which is supported
by the same trajectory setS(tiy, T ′). For example, unify-
ing a1 → a3 with a3 in the example of Figure 1, fixes the
problem ofa3, and therefore the problem ofa1 → a3, if the
adversary assumes that the latter is mapped to the same set
of tuples (i.e.,t′5 to t′8).

4.1. Multiple Unifications per Loop

In order to improve the efficiency of our algorithm, we
perform multiple unifications at each loop of Algorithm 1.
Since not all projections and their problems are affected by a
single unification, it makes sense to perform many indepen-
dent ones in parallel. That is, each projection participates
in at most one unification pair. At each loop, we select the
top-s, in terms of cost, independent unifications that resolve
problems and apply them simultaneously. Intuitively, this
will decrease the cost of the algorithm proportionally. On

Algorithm 1 Anonymization algorithm
Anonymization(T , Pbr)

1: Construct projection DBTi for each attackeri ∈ V
2: Breachidentification(T , Pbr) . call Alg. 2
3: T ′:=T . Initialize output database
4: while there are still privacy breachesdo
5: U(ti

x, ti
y):=lowest cost unification (ti

y ⊂ ti
x, ti

x and/orti
y

are/is problematic)
6: for all t′ ∈ S(ti

x, T ′) do . traj. in T ′ supportingti
x

7: Suppress allp ∈ t′, p ∈ ti
x, p /∈ ti

y

8: removeti
x from Ti . ti

x not supported anymore inT ′

9: Breachidentification(T ′, Pbr)

Algorithm 2 Identification of privacy breaches
Breach identification(T , Pbr)

1: for all i in V do . Initialization
2: for all pj /∈ Pi do
3: for all ti ∈ Ti do
4: sup(pj , t

i, T):=0;

5: for all t in T do . DB scan to update counters
6: for all i in V do
7: ti:=projection oft in Ti

8: if ti 6= ∅ then
9: for all pj , pj ∈ t, pj /∈ Pi do

10: sup(pj , t
i, T)++;

11: for all i in V do . Initialization
12: for all pj /∈ Pi do
13: for all ti ∈ Ti do
14: if sup(pj ,ti,T)

S(ti,T)
> Pbr then

15: Mark (pj , t
i) as problematic

the other hand, some of these unifications could be avoided
if they were performed one at a time, since a unification
U(tix, tiy), related to attackeri, affects problematic projec-
tions of adversariesj, wherej 6= i.

4.2. Extensibility

The trajectories have been regarded so far as simple
sequences of locations that do not include timestamps in
their elements. In practice, the publisher may also want
to include timestamps in the published information. Our
model can easily incorporate this extension, as follows. The
temporal domain is discretized into intervals (e.g., hour of
the day) and the locations in the sequences are replaced
by (location, timestamp) pairs. For example, sequence
a1 → b1 → a2 is replaced by(a1, 10 − 11a.m.) →
(b1, 1 − 2p.m.) → (a2, 3 − 4p.m.). The projections are
also sequences of composite elements. Our algorithm can
be seamlessly applied for such data, since the set of tra-
jectories that support a specific timestamped projection and
the corresponding threats can be identified as described in
Section 3, the only difference being the replacement of lo-
cations by the composite elements. For example, projec-

6

tions (a1, 10 − 11a.m.) → (a2, 3 − 4p.m.) and(a1, 10 −
11a.m.) → (a2, 5 − 6p.m.) are considered different in the
extended model, while they are identical (i.e.,a1 → a2)
in the basic one. The discretization level of the temporal
domain is determined based on the number of events that
happen at an interval (very fine granularity makes privacy
breaches easier and affects the utility of the published data).

5. Experimental Evaluation

We conducted a set of experiments to validate the effec-
tiveness of our anonymization technique. For this purpose,
we generated synthetic trajectories of moving objects us-
ing Brinkhoff’s generator [4]. After generating routes on
the Oldenburg map and normalizing them so that all coor-
dinates take values in a[1, 1000]2 map, we simulated se-
quences of customer transactions corresponding to these
routes as follows. The map was divided into 100 regions us-
ing a uniform grid, and each region was given an adversary-
id in random. An object that visits a sequence of regions
is assumed to have performed one transaction per region in
the visiting order. The centroids of these regions model the
locations in the trajectories ofT . The average length of the
generated trajectories is4.5. The default number of regions
(i.e., addresses) inP, trajectories inT , and adversaries inV
are 100, 10000, and 5, respectively. The default number of
unifications performed in parallel at each loop of Algorithm
1 is s = 50. The breach probabilityPbr is set to50%, by
default.

In the first experiment (Table 1), we vary the numbers
of concurrent unifications per loop and observe the utility
(i.e., cost)C of the resulting databaseT ′, the numberL of
locations suppressed from the trajectories inT , the running
time of anonymization (in seconds), and the total number
U of committed unifications. Table 1 shows the result. As
s increases, the time to anonymize the database drops fast.
On the other hand, the information loss (modeled byC) in-
creases withs, but not as significantly compared to the de-
crease in the execution time. The independent unifications,
performed in parallel, do not have great effect on the qual-
ity (but result in great improvement in terms of speed). The
fluctuations in the quality are due to the approximate nature
of our greedy search; some unification decisions that are
not deemed the most appropriate when fewer unifications
are done at each loop, may eventually prove beneficial. In
terms of deleted points (L) and total number of unifications
(U), we do not see great difference ass increases. In gen-
eral, the increase ofs causes more points to be deleted from
the database, but fewer unifications. This is because, with
larges, the unifications performed should be independent
and due to the lack of choices the algorithm selects many
projections to completely suppress (i.e., unify them with the
empty projection). The result of this is that fewer problems
remain in latter iterations (smaller number of total unifica-

s C L time U

1 200 18564 530.74 1563
5 218 18916 107.58 1563
20 244 19726 26.55 1565
50 287 20664 12.59 1563
100 274 21415 6.36 1491

Table 1. Experiments with variable s

|T | C L time U

2000 303 4950 1.34 691
5000 296 11805 4.141 1075
10000 286 20664 12.59 1563
15000 250 29998 20.81 1891

Table 2. Experiments with variable |T |

tions and removal in projection points), but the total number
of deleted points from the database may increase due to the
high supports of these suppressed projections. In summary,
large values ofs pay off as they reduce the anonymization
time significantly, without high effect on the quality.

In the second experiment (Table 2) we evaluate the scala-
bility and robustness of our technique for different database
sizes. Note that the time increases proportionally with the
database size. On the other hand, the percentage of points
that are deleted from the database decreases. The reason is
that asT increases the initial supports of the projections in-
crease in size (i.e., the probability that two trajectories have
the same projection increases). This reduces the probability
that a projection is problematic and makes the anonymiza-
tion problem easier. The quality, increases withT , as fewer
points are deleted from the trajectories.

Next, we test the performance of our algorithm varying
the number|V| of adversaries (Table 3) . If the locations
are distributed to a small number of adversaries, then the
anonymization time increases, as the projections at each
adversary are many and long and there are many privacy
breaches. This affects the number of unifications and the
running time, accordingly. On the other hand, the number
of points deleted from the database is not very sensitive to
|V|. As |V| increases, the supports of the projections inT
decrease, because there is a larger number of location per-
mutations (distinct projections) that correspond to each at-
tacker, which appear rarely inT and cause more breaches.
Therefore, each unification causes few changes toT (i.e.,
few point deletions). Reversely, if there are many adver-
saries, the number of projections per adversary is small,
but the support for each projection is large. Therefore, a
unification results in the deletion of many points fromT .
The information loss is low for very few attackers because
there are more projections per attacker and more flexibil-
ity in choosing a potential pair to unify. As a result, the
choices made are good in terms of quality. As|V| increases,

7

|V| C L time U

2 163 18333 511.36 4219
3 170 20540 65.81 2966
4 219 23369 18.14 2072
5 287 20664 12.59 1563
6 240 23620 6.55 1240
7 241 23617 4.30 986

Table 3. Experiments with variable |V|

Pbr C L time U

30% 1003 38150 9.82 1844
40% 466 28250 9.79 1729
50% 287 20664 12.59 1563
60% 170 15578 12.13 1530
70% 89 10691 9.95 1456

Table 4. Experiments with variable Pbr

the quality gradually drops and then increases again, since if
there are many attackers, the chances of finding problematic
projections decrease.

Finally, we ran the algorithm for various values ofPbr

(Table 4). As expected, with the increase ofPbr fewer
points are deleted and the quality of the published database
improves. The CPU time is not affected by this parameter.

Summing up, our technique performs best if the number
of unificationss per iteration is large, the database size|T |
is large and the points are distributed to many adversaries.
The first condition is a tunable parameter of our algorithm,
while the other two happen in practice; typically, databases
are large and the vendors who offer electronic payment in
transactions are many. Therefore, our technique is expected
to be practical in real problems.

6. Conclusion

This is, to our knowledge, the first study of an interest-
ing problem; how to transform a database of trajectories to
a format that would prevent adversaries, which hold a pro-
jection of the data, from inferring locations missing in their
projections with high certainty. In practice, these missing
locations could be associated to a real person and threaten
his/her privacy. We propose a technique that iteratively sup-
presses selected locations from the original trajectories un-
til a privacy constraint is satisfied. The effectiveness of our
method is validated by experimentation.

In the future, we plan to study alternative sequence trans-
formation techniques to solve the same problem. For exam-
ple, instead of suppressing locations from the trajectories,
we could replace them with larger (generalized) spatial re-
gions that contain more addresses in them. Other techniques
to be studied include sequence perturbation and inserting
fake trajectories in the database.

References
[1] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R. Pan-

igrahy, D. Thomas, and A. Zhu. Achieving anonymity via
clustering. InPODS, pages 153–162, 2006.

[2] R. J. Bayardo Jr. and R. Agrawal. Data privacy through op-
timal k-anonymization. InICDE, pages 217–228, 2005.

[3] C. Bettini, X. S. Wang, and S. Jajodia. Protecting privacy
against location-based personal identification. InSecure
Data Management, pages 185–199, 2005.

[4] T. Brinkhoff. A framework for generating network-based
moving objects.GeoInformatica, 6(2):153–180, 2002.

[5] H. Cao, N. Mamoulis, and D. W. Cheung. Mining frequent
spatio-temporal sequential patterns. InICDM, pages 82–89,
2005.

[6] A. Froomkin. The death of privacy.Stanford Law Review,
52(5):1461–1543, 2000.

[7] G. Ghinita, P. Kalnis, and S. Skiadopoulos. Prive: anony-
mous location-based queries in distributed mobile systems.
In WWW, pages 371–380, 2007.

[8] M. Gruteser and D. Grunwald. Anonymous usage of
location-based services through spatial and temporal cloak-
ing. In MobiSys, 2003.

[9] B. Hoh and M. Gruteser. Protecting location privacy through
path confusion. InSecureComm, 2005.

[10] J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering:
a partition-and-group framework. InSIGMOD Conference,
pages 593–604, 2007.

[11] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito:
Efficient full-domain k-anonymity. InSIGMOD Conference,
pages 49–60, 2005.

[12] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Mondrian
multidimensional k-anonymity. InICDE, page 25, 2006.

[13] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkita-
subramaniam. l-diversity: Privacy beyond k-anonymity. In
ICDE, page 24, 2006.

[14] A. Meyerson and R. Williams. On the complexity of optimal
k-anonymity. InPODS conference, 2004.

[15] M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new casper:
Query processing for location services without compromis-
ing privacy. InVLDB, pages 763–774, 2006.

[16] S. Papadimitriou, F. Li, G. Kollios, and P. S. Yu. Time se-
ries compressibility and privacy. InVLDB, pages 459–470,
2007.

[17] P. Samarati. Protecting respondents’ identities in microdata
release.IEEE Trans. Knowl. Data Eng., 13(6):1010–1027,
2001.

[18] P. Samarati and L. Sweeney. Generalizing data to pro-
vide anonymity when disclosing information (abstract). In
PODS, page 188, 1998.

[19] L. Sweeney. k-anonymity: A model for protecting pri-
vacy. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 10(5):557–570, 2002.

[20] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. W.-C. Fu.
Utility-based anonymization using local recoding. InKDD,
pages 785–790, 2006.

8

