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Abstract associate it to the person’s identity (e.g., via a loyalty/bonus
card). Furthermore, if the store belongs to a chain (e.g., 7-
We study the problem of protecting privacy in the publica- Eleven), it can know multiple and different locations of the
tion of location sequences. Consider a database of trajec-same person’s activities (assuming that he visited shops of
tories, corresponding to movements of people, captured bythe same company multiple times), which constitute a sub-
their transactions when they use credit or RFID debit cards. set of his complete trajectory.
We show that, if such trajectories are published exactly (by  Figure 1a shows an example of a datalifsawned by
only hiding the identities of persons that followed them), the publisher (e.g., Octopu%).Each sequence element is
there is a high risk of privacy breach by adversaries who a shop address, where the corresponding user did his/her
hold partial information about them (e.g., shop owners). card transactions. Locations are classified according to the
In particular, we show that one can use partial trajectory possible adversaries. For example, all places denoted by
knowledge as a quasi-identifier for the remaining locations a; (where: is any integer) are assumed to also be tracked
in the sequence. We device a data suppression techniquedy companyA (e.g., 7-Eleven). Figure 1b shoWs; the
which prevents this type of breach, while keeping the postedknowledgeA has for the exact database of Figure 1a.
data as accurate as possible. We now show how company (acting as an adversary)
could identify private information by combining its knowl-
. edgeT’s with the databas@, if 7" is published directly. We
1. Introduction assume that compang can associate eaatt in its local
Consider a card company, which keeps track of customerdatabaséd’s to a real user identity and we want to prevent
transactions. Assume that the company wants to publish seA from identifying the locations ir;, which are unknown
quences of transactions by the same person as trajectoried9 A, with probability higher tharP;,. (breach probability).
for analysis and querying purposes. As a motivating ex- The first type of link attack is due to the direct mapping of a
ample, consider the Octopusmart RFID card, commonly  tuple in7’4 to a tuple inT". For example, if" is published,
used by Hong Kong residents to pay for their transportation 4 will know that £ actually corresponds ti, sincet; is
and for their transactions at point-of-sale services, such aghe only trajectory that goes through andas, but no other
shops, restaurants, parking spaces, vending machines, ettocation of companyd. ThereforeA is 100% sure that the
The Octopus company accumulates vast amounts of trajecuser who followed' in its local database, visitéd. Even
tory data daily, which could be published in order to extract for sequences that adversafycannot map exactly to its
the movement and behavioral patterns of Hong Kong res-own database, privacy breach can occur. Consider, for in-
idents and the causality relationships between geographicstance, sequenag', which A cannot distinguish whether
spots on the city’s map. it is g, t7, Or tg.> Based orl", adversaryA can infer that
On the other hand, direct publishing of this information, the user corresponding t¢ visited locationb, with prob-
even after hiding the IDs of users, may easily result in pri- ability 66%. This is unacceptable, i, = 50%. This
vacy breach, once combined with the partial trajectory in- type of breach is due to the lack of location diversity be-
formation, known to an adversary. For example, when a per-tween trajectories that map to the same set of partial routes
son uses his Octopus gard to paY at a Clonvemence store, the 2For the ease of presentation, we model each trajectory by a sequence
store can also keep this transaction in its own database ands ocations, without temporal information (i.e., timestamps) on the ele-

ments. We will discuss about timestamped trajectories later in the paper.
*Work supported by grant HKU 7155/06E from Hong Kong RGC. 3Note that the sequences are published in random order, so an attempt
http://www.octopuscards.com/ to mapT'4 to T" based on the order of trajectoriesiirwould fail.




in the attacker's database. By constructing the projectedthat¢Z' cannot be mapped to any trajectory@h. In the
databasép of adversaryB, the reader can easily identify ~worst case, the adversary can infer thitmust be one of
similar breaches ofd-locations (e.g., thé3-projection of tt to t§, since theA-projectionas of these four sequences
tg is unique inTp and adversanB can find out that the  appears only three times ifiy (and a; could have been

corresponding person visited). truncated from the original mapping of in 7). As we

will discuss later in the paper, this case does not entail pri-
id trajectory id [ trajectory vacy threats. When selecting locations to truncate from se-
t a1 — b1 — as ] a1 — a2 guences, our method considers both the satisfaction of the
ta | a1 — by — az — b3 t8 | a1 — a» privacy constraints and also the introduced error with re-
t3 ai — ba — az t3 | a1 — a» spect to the original trajectory. For example, the deleted
ta a1 — az — by t3 | a1 — as points in the transformed datab&aBeof Figure 1c are close
ts a1 — az — by t§ ap — as to their neighboring points in the corresponding original se-
b as — by tg as guences (as shown in the map of locations in Figure 1d).
tr as — b2 tr a3 The remainder of the paper is organized as follows. Sec-
ts az — by — b3 té4 as

tion 2 summarizes related work. Section 3 formally defines

'd(a) exact.dataﬂ‘) (b) A's knowledge ') the privacy preservation problem that we study in this paper.
't, trajczctory K3 o In Section 4 we present our algorithm, which is experimen-
P az b, tally evaluated in Section 5. Finally, Section 6 concludes
ty | a1 — b1 — as ® . . .

7 the paper with a discussion about future work.

t3 a; — b2 — a2 al

th | a1 —az — b 2. Related work

t5 az — by . . . .

t as — by o °p _ Thls section _proyldes background on privacy preserva-
t; as — by a, o 2 tion in the publication of databases that contain sensitive
ts az — by b3 information. Trajectories of moving objects are data se-

(c) transformed databas&’) (d) the map of locations guences, therefore work on the related issue of anonymizing
locations and sequences thereof is also reviewed.
Figure 1. Trajectory database 2.1 k-anonymity and (-diversity

An issue that has risen lately in database research is the

In this paper, we study the problem of publishing the tra- publication of microdata (e.g., hospital records) that con-
jectories in a way that would prevent adversaries from using tain one or more sensitive attributes (e.g., disease). Orga-
their partial knowledge (linked to a person’s identity) to in- nizations, such as hospitals, want to release such data (e.g.,
fer locations unknown to them. Our technique suppressesfor research) without compromising the privacy of the pa-
location information iril” wherever privacy leaks occur and tients. Simply hiding the explicit identity of persons (i.e.,
converts it to a secure, published dataliBSeThe two con-  name, ID) before publication does not suffice as recent stud-
flicting goals of this data transformation are (i) the satisfac- jes demonstrate [6, 19]. In particular, a set of non-sensitive
tion of certain privacy requirements (i.€?;,) by the pub-  attributes of a person (e.g., gender, age, zipcode) may act as
lished data and (ii) maximizing the utility of the published a quasi-identifierto reveal the association of him/her with
data measured by the similarity of the original trajectories a published record. For instance, by joining a (public) vot-
in 7' to their corresponding transformationsiif, ing registration database with anonymized medical records,

For each adversaryt and for every projected sequence one may easily infer the identity of a patient who has unique
t4 € Ty (corresponding ta; € T), we would like the guasi-identifier compared to others in the voting registration
adversary, not to be able to reconstruct any poinp ig table; if Bob is the only male of age 55 in his neighbor-
ti,p ¢ t{* with certainty higher tharP,,.. For example, if ~ hood, then any of his visits to the hospital (and even his
Py, = 50%, then the exact publication of the databd3e decease) can be easily inferred from a published medical
of Figure 1a is not secure with respect to adversafwho records database. To address this probléranonymity
knows the data of Figure 1b), as already explained. Our[18, 17] transforms the database before publication, such
method convertd” to 7" (see Figure 1c) after suppressing that the values of attributes in the quasi-identifier are sup-
bs from ts, a; from ¢5, andbs from tg. The privacy with pressed or generalized in some of the published records.

respect to adversariesand B is preserved with the publi-  In a k-anonymized published database, each tuple has the
cation ofT”. For instance, each of the first four projections same quasi-identifier values with at least 1 others (all

a1 — ag in T4 is mapped to four trajectorieg — ¢/, in these tuples form aequivalence clads

T’, in whichb, andb, appear with probabilityy0% < P,,. Research ok-anonymization initially focused on gener-

The same holds for the last three trajectorie§’in Note alizing each attribute individually [2, 11]; e.g., all instances



of age=55 are generalized to the same range 53-57. Lateltrieves the result of the cloaked query from the public server,
LeFevre et al. [12] noticed that the quality of anonymiza- which is a superset of the original query result. Finally, false
tion can be improved if equivalent classes are defined byhits are filtered by the anonymizer and the result of the ac-
arbitrary, non-overlapping multi-dimensional ranges in the tual query is returned to user. Spatial cloaking was first pro-
guasi-identifier space. In [1k-anonymity is treated as a posed in [8] and based on this idea, a system that supports
special clustering problem, and a constant factor approx-different queries and various anonymization requirements
imation of the optimal solution is proposed. In the same was developed by Mokbel et al. in [15]. Ghinita et al. [7]
direction, [20] propose more efficient agglomerative and di- showed how to apply this framework in a distributed envi-
visive recursive clustering algorithms for this problem. ronment, where users dynamically form and maintain the

A stronger version ofc-anonymity (called/-diversity ~ k-anonymized spatial regions.
[13]) requires the diversity of sensitive values (e.g., de- A problem related to sequence anonymization has been
cease) that appear in each equivalence class. For exampladdressed in [9]. Given a set of trajectories, the objective is
if Bob’s values in the quasi-identifier attributes (e.g., gen- to confuse an adversary who can associate trajectory parts
der=male, age=55, zipcode=17728) fall in the same classto user identities (e.g., using a residential addresses data-
(e.g., male, 53-57, 17001-18000) /as= 10 other per- base). This is achieved by perturbing trajectories at points
sons and all these persons have diabetes, then even aftavhere they spatially meet; for instance if the actual routes
k-anonymization, an adversary can infer that Bob had dia- of two carsz andy cross at some point, then the segment
betes when he visited the hospitéddiversity prevents such  of = (resp.y) before the meeting point is concatenated with
attacks by ensuring that at ledstensitive values are well- the segment of (resp. x) after the meeting point to form
represented in each equivalence class. the published trajectories. An optimization problem is mod-

Our problem has two major differences from the clas- €led, where the goal is to achieve the maximum privacy
sic k-anonymity and/-diversity problems. First, the sensi- Subject to a maximum allowed distance of trajectories at
tive information is not absolute, but relative to the adver- meeting points where perturbation takes place. On the other
sary’s knowledge. In other words, the part of a trajectory hand, quality constraints such as the difference between the
known to an adversary is not sensitive which respect to him; original and published trajectories are not considered. In
however, the remaining information should be hidden from [3], the concept of historicat-anonymity is defined. As-
him. We make no assumptions about the sensitivity degreesuming that users issue sequences of spatial queries to a ser-
of each location; we consider all equally sensitive. Sec- Vice provider, the objective is to generalize the locations of
ond, the trajectory projections, used as quasi-identifiers arethe queries, such that for each sequence of cloaked requests
sequences of variable length. As a result, our model andthere are at least users whose trajectories are covered by
privacy preservation techniques are fundamentally differentthem. As a result, an adversary cannot link the sequence

than existing work on secure publishing of relational data. Of requests to less thanusers. In a recent study [16], the
problem of perturbing the values of a time-series in order

2.2 Location and Time-series Anonymization to introduce uncertainty has been studied. Noise added to
the original data should have similar properties as the data

Location-based applications support user queries (e.g., . : e
bp bp 9 (e.g and at the same time should be resistant to compressibility-

nearest neighbor search) which have as input the locatio . - .
of the issuer. For example, GPS-enabled mobile phones Cark)ased attacks. This work has similar objectives to our study,
X ' however, the data domain as well as the attack and utility

be used to search for nearby services, like restaurants and . . . . .
odels differ, since (i) we attempt to anonymize multiple

gas-stations. One problem when using such services is thal" . : v
the public server that is queried (e.g., Google Maps) canSeauences of discrete data (as opposed to adding noise in

combine the location of the user with some external infor- aaio’gt::]nuowz;a(;a(ideon;aemzl‘e(r:l():eweazz)s?snlﬁct)t;v? ::fhzdvueg:
mation (e.g., a residential addresses database) to infer th |sh)</ar and (ii) gu .ré’ssign is usepd whenever necessaf as
identity of the query issuer. As a result, the privacy of user ' pp Y

activities may be at risk. To tackle this problem a similar ameans for protecting privacy.
idea tok-anonymity can be used. Location-based queries
are sent from users to the public sender through a truste
qguery anonymizewhich (i) hides the identity of the user We model the original trajectories in the owner data-
and (ii) applies &patial-cloakingechnique that generalizes base as sequences of locations, which are precise points on
the user location (original query input) to a greater query re- a map. Unlike the common assumption in spatiotemporal
gion that contains at leastlocations of different users the data, we consider a discrete spatial domain, e.g., spatial in-
time of the query. As a result, the query issuer is indis- formation is given in terms of addresses in a city map. Such
tinguishable from at least other users and the privacy of a case is closer to the reality for data that stem from com-
his/her action is well-preserved. The query anonymizer re- mercial transactions. More formally, we define as trajectory

. Problem Definition



as follows: per trajectory inl" and these values are different from the
perspectives of different adversaries (i.e., shop chains). The
second difference requires the algorithm which transforms

o . T to T to consider attacks to different sensitive values from
In our motivating exampleP includes all addresses of (ifferent adversaries.

shops which accept the Octopus cards. For simplicity, we
assume that there is a 1-1 relationship between shops an
addresses. Since commercial companies might have multi- Before we describe the derivation of privacy threats,
ple branchesP can be partitioned im disjoint non-empty ~ we define the key concept supportthat is used by our
sets of addresseB;, Ps, . .., P.,, such that each set con- methodology. We say that trajectoty € T supports a
tains all and only the addresses of the different branchesprojectiont“, held by adversary, if the projection oft

of a company. Therefore, assuming that we wish to pub- with respect toP, is identical tot*. For example, con-
lish a databas@ of trajectories, where sequence elements sider a databasé&' and two adversariesl and B, that
take values fronP, there arenm adversaries (i.e., compa- divide P in two sets of locations (i.e., shop branches)
nies). Each adversary € V controls addresseB;, such ~ Pa = {ai,as,...} andPg = {b1,bo,...}. Trajectory
thatvi,j € V,P;NP; = @ andJ,.,, P; = P. Foreach ¢ = [a1,b1,as] supports projectiofia;, as], but does not
trajectoryt € T, every adversary € V holds a projection  support[a:], [a1, a2, as], Or [a2, a1]. Reversely, the support
t, as defined below. setS(t4, T) of a projectiont4 with respect tdl’ is defined

by the set of trajectories iy that support it.

Let us now elaborate on the computation of the proba-
bility P(p;,t*,T") for adversaryA to associate a location
p; ¢ Patoareal person, whose trajectory is projectet’as
o in T4. Assume that* is supported by a sé&t(t*, T") of tra-
N, jectories in the published databage Then,P(p;,t4,T")

Simply speaking, the projectiart of at € T'is the sub-  can be computed as follows.
trajectory oft that contains only and all the points %4
in t. Therefore, each adversary (e.g),holds a local data- !
base (e.gT4) with the projections of alt € T" with respect P(p,, t4, T =

Definition 1 A trajectoryt of lengthn is a sequence =
[p1,.-.,pn] Of addresses taken from a et

g.l Computation of Threats

Definition 2 A projection of a trajectoryt = [p1,...,pn]
with respect to an adversary, who ownsP, C P is a (po-
tentially empty) trajectory® = [pi',...,pil], {p3' | pf' €
t Apt € Pa}. The order of elements! € ¢ is preserved

{t'|t' e SAA,T") Ap; € t'}]

; . |S(tA, T @
to P4. The adversary has no knowledge about trajectories ’
having empty projection; therefor&, can be smaller than In simple words, P(p;,t4,T") is the fraction of tra-

the database of the publisher. A trajectory may appear mul-jectories in the suppors(t4,7”) which includep;. If
tiple times in7" and more than one trajectories may have P(p;,t4,T') > P,., then we say that the publication Bf
the same projection with respect®. The most impor-  isinsecure with respect t¢* andp,. For example, in Figure
tant property of & is that adversaryl can directly link 1, P(by,t7,T) = 66% and pair(by, t") violatesP,, = 50%
it to the identities of all persons that pass through it, in its if T is published exactly. However, i is published ag”
local database (e.g., loyalty program). We are now ready tothen P(by, ", T') = 50% and there is no privacy breach.
formalize the definition of our problem. Our goal is to derive a transformatiaff for which there

. A . . A
Definition 3 (Problem Definition) Given a databas@ of ~ €XiSts no(p;, %) pair for which P(p;, t%,T") > Pp,.
trajectories, where locations take values fr@m construct 3.2 Utility
a transformed databas&”’, such that if7” is public, for

. The recipient of the transformed databd8emay be in-
all t € T, every adversaryd cannot correctly infer any

. A . . terested in analyzing it in various ways. For example he

location {p; | p; € t Ap; ¢ t"} with probability larger ;14 apply some data mining operation (like clustering

than B, [10] or sequence pattern mining [5]) to the resulting trajec-
In simple words, we do not want an adversatywho tories, or perform aggregate queries of the form “How many

has a projection” of a trajectoryt in the original database  people traveled from regioX to regionY” and then to re-

to correctly infer any other locations of the trajectory af- gionZ?". Given that different recipients might be interested

ter accessing”. This problem is similar to thé-diversity in different properties of the data, we do not make explicit

problem defined in [13]. In our case} acts like a quasi- assumptions on their use, but use a general measure for the

identifier that links the remaining points to a person iden- quality of the published datas&t. We measure utility by

tity in A’s local database. The main differences from data- the average difference between the original trajectoriés in

base publication problems studied before are (i) the quasi-and the published ones if.

identifiers are variable-length sequences of locations and The differencedif f(¢,¢') between at € T and its

(i) there can be multiple sensitive values (i.e., locations) corresponding transformatiah € 7" is measured as fol-



lows. Lett, andt, be the starting and ending points of propose a greedy algorithm that iteratively suppresses lo-
t’, respectively, corresponding tQ andt. in ¢, respec-  cations, until the privacy constraint is met. The algorithm
tively. Each pointp € ¢, contributes one component to simulates the attack from any possible adversary, and then
the distance. Ifp is beforet, (after t.), then the cor-  solves the identified privacy breaches. Algorithm 1 is a
responding component igist(p,ts) (dist(p,t.), respec- pseudocode of this method.

tively). If p is in-betweent; andt. then the error fop In the first stage, the projected databdseof each at-

is dist(p, (p,t')), wherep, t’ is the projection of on tra- tackeri € V is extracted. Then, the algorithm identi-
jectory t’. By summing the squares of these components fies the projections that lead to a privacy breach, by scan-
and taking the root of the sum we derive the difference be-ning T' once, according to Algorithm 2. For each tuple
tween the trajectories. Figure 2 shows an exemplary tra-¢t < T, and for each adversary such that projection?
jectoryt = a3 — a; — az — by, which is approxi- is not empty, a counterup(p;,t*, T) is increased for each
mated byt = a; — b; (after the suppression af, and p;j € t,p; ¢ t'. After scanningl’, pairs(p;,t*) for which

as). The difference betweehandt’' is computed by sum- P(p;, #1,T) = sup(p;.t',T)

ming the squares of componenmlist(as, a1), dist(a1,a1) sy~ > Do are identified and’ is
S e @2, 1), rs5tiar, a1), ked blematic projection for adversaryTh
dist(as, (a3, t')), anddist(by, by ), and then taking squared marked as a problematic projection for adversarihen

Algorithm 1 runs a loop; while privacy breach problems
root, i.e.,diff(t,t’):\/dist(ag,a1)2 + dist(az, (az,t'))2. have been identified, we attempt to unify a pair of projec-
In the special case, wheré = () (i.e., the originalt has  tions(t%,t}), of the same adversafyat least one of which
been completely suppressed 1), each component of is problematic.
dif f(t,t') is set as the maximum distance between two  Two projections can be unified only if one is a sub-
points on the map. trajectory of the other, i.e., the larger projection contains
all the points of the smaller one, and in the right order. For
examplea; — a3 can be unified withu; (seet£ andtg' in
Figure 1). Technically, the unification results in the suppres-
sion of the points (e.gg4) in the longest projection (e.g.,
a1 — ag) that are not contained in the shorter one (eug),
in all trajectories that support the former (e1g). The uni-
fication is done in a way such that the resulting projection
(e.g.,a3) does not violate the privacy of the data. In other
words, ifti is a problematic projection then eithgris not
supported in the transformed datab@$eesulting from this
unification, orP(p;,t:, T') < P, for all p; ¢ P;. In the
example of Figure 1, after the unification @f — a3 with
. a3, trajectoryt; becomes: = a3 — by and the problems of
4.The Algorlthm botha; — a3 andas are5fixed;a1 — ag is no longer sup-
The anonymization algorithm carries the basic concept ported in7” andas does not map to any-location with
of value generalization to the spatiotemporal field. In our probability higher thas0%.
context, the quasi-identifiers are projections of trajectories  The unification happens only between the projections of
held by the attackers. The main idea behind our anonymiz-the same attacker. Still, the consequences of the unification
ing algorithm is to transform long and detailed projections are not limited to that attacker, as problems that other ad-
to smaller and simpler ones. In doing so, we are able to (i) versaries have may be solved. The effect here is different;
increase the supports of projections and (ii) diversify the lo- instead of increasing the supports of projections in order to
cations that are not monitored by adversaries, making thusdecrease the transition probabilities to sensitive locations,
impossible for them to infer with high certainty whether a the instances of some points that do not belong to the pro-
trajectory includes such a point. The mechanism we use forjection are reduced, and so is the adversary’s certainty that
generalizing the trajectories is to suppress the existence of trajectory includes any of these points. For example, by
certain points in them, taking under consideration the ben-removinga; from ¢; in Figure 1, the problems ef, — a3
efit in terms of privacy and the deviation from the main di- andag are resolved and, at the same timeappears fewer
rection of the trajectory. times in the trajectories where projectibnof adversaryB
Finding the optimal set of points to delete fréfnin or- is mapped to. To this end, we re-assess the existing prob-
der to derive a securg’ and achieve the minimum possi- lems after performing the unification and, while there are
ble information loss is harder than the simpleanonymity more breaches, we repeat the unification process.
problem in relational databases, discussed in Section 2, Since itis likely that more than one projections are prob-
which is already shown to be NP-hard [14]. Therefore, we lematic, at each loop we choose the one, which is speculated

Figure 2. Distance between trajectories



to be the most beneficiary. Therefore, each possible unifi-Algorithm 1 Anonymization algorithm

cation is given acostwith respect to the information loss
it entails. This cost is quantized by summing the distances 1:
of the transformed trajectories to the corresponding original 2:
ones, had the unification been committed, minus the cor- 3
responding cost before the unification. Distances between 4
original and transformed trajectories are measured using the 5
method described in Section 3.2.

To facilitate the efficient execution of our algorithm we
keep explicit links from each trajectory to the supported

6
7
. . . . 8:
projections and vice-versa. The following theorem ensures 9

Anonymization(T', P,)
Construct projection DHE; for each attacker € V
Breachidentification(T", P,,.) > call Alg. 2
T':=T > Initialize output database
while there are still privacy breachés

U (t%, t,):=lowest cost unificationt{, C t., ¢ and/ort},
are/is problematic)

forall ¢’ € S(t.,T") do > traj. in T’ supportingt’,

Suppressalp € t',p € ti,p ¢ t,
removet’, from T; > t¢, not supported anymore i’
Breachidentificatio(T”, Py,)

that the algorithm terminates to a secure publicatiof'.of

Theorem 1 Algorithm 1 derives a secure databdge

Algorithm 2 Identification of privacy breaches

Proof. First, Algorithm 2 correctly identifies the privacy
breaches, by directly applying Equation 1 in the support- 1:
ing trajectories to the projections of each adversary. Each 2
time unification is performed between two trajectoriés 8
andt!, wheret, C t., the breach for at least one of them
is resolved. On the other hand, there is no way that after a
unification, someP(p;, t*, T") will become higher that#,.
since points are only removed from trajectories and a uni-
fication that would result in a breach is never committed.
The removal of points of an attackdr, can cause only the
reduction of the numerator in Eg. 1 for any other attacker

eoNoa &

[N
o

it is unavoidable), so the algorithm will always terminate to
a secure publication. O

11:
B, thus theP,,. of any attacke3 can only be reduced when .

removing points from an attacket. In addition, a unifica- 13
tion of a projection with the empty projection is possible (if 1,

15:

Breach.identification(T", Py,.)
forall 4inV do
forall p; ¢ P; do
forall t' € T; do
sup(pj, t*, T):=0;
forall ¢inT do
forall inV do
t*:=projection oft in T}
if t* # 0 then
forall p;,p; € t,p; ¢ P; do
Sup(pja tiv T)++;
forall ¢inV do
forall p; ¢ P; do
forall ¢' € T; do
if =200 > P, then
Mark (p;,t") as problematic

> Initialization

> DB scan to update counters

> Initialization

A subtle thing to note is that after the unification tf
with ¢!, sincet’, is no longer supported ifi’, the adversary
i can infer that!, is unified witht/ , and implicitly unify the
supports of the two. However, this is not an issuetfoibe-
cause the unification resolves the privacy problent ofn
other words, since no poipt ¢ P; violatesF,,. for projec-
tion t; it will also not violateP;,. for t.,, which is supported
by the same trajectory sét(t,,T"). For example, unify-

U(
tions of adversarieg, wherej = i.

4.2 Extensibility

The trajectories have been regarded so far as simple

the other hand, some of these unifications could be avoided
if they were performed one at a time, since a unification
tL,t!), related to attacket, affects problematic projec-

xr "y

ing a1 — a3 with a3 in the example of Figure 1, fixes the Sequences of locations that do not include timestamps in

problem ofag, and therefore the problem ef — ag, if the

their elements. In practice, the publisher may also want

adversary assumes that the latter is mapped to the same sé® include timestamps in the published information. Our

of tuples (i.e.ff to tg).
4.1. Multiple Unifications per Loop

In order to improve the efficiency of our algorithm, we
perform multiple unifications at each loop of Algorithm 1.
Since not all projections and their problems are affected by a(b1,1 — 2p.m.) — (a2,3 — 4p.m.).

model can easily incorporate this extension, as follows. The
temporal domain is discretized into intervals (e.g., hour of
the day) and the locations in the sequences are replaced
by (location, timestamp) pairs. For example, sequence
ay — by — a is replaced by(aq,10 — 1la.m.) —

The projections are

single unification, it makes sense to perform many indepen-also sequences of composite elements. Our algorithm can
dent ones in parallel. That is, each projection participatesbe seamlessly applied for such data, since the set of tra-
in at most one unification pair. At each loop, we select the jectories that support a specific timestamped projection and
top-s, in terms of cost, independent unifications that resolve the corresponding threats can be identified as described in
problems and apply them simultaneously. Intuitively, this Section 3, the only difference being the replacement of lo-

will decrease the cost of the algorithm proportionally. On cations by the composite elements. For example, projec-



tions (a1, 10 — 11la.m.) — (ag,3 — 4p.m.) and(a;, 10 — 5 ¢ L | time U
1la.m.) — (a2,5 — 6p.m.) are considered different in the 1 | 200 | 18564 | 530.74 | 1563
extended model, while they are identical (i.e;, — as) 5 | 218 18916 107.58 | 1563
in the basic one. The discretization level of the temporal Eg ;g;‘ ;g;gi iggg 1222
domain is determined based on the number of events that 100 | 274 | 21415 6'36 1491
happen at an interval (very fine granularity makes privacy :

breaches easier and affects the utility of the published data).

Table 1. Experiments with variable s

5. Experimental Evaluation

|T| C L | time U
We conducted a set of experiments to validate the effec- 2000 | 303 | 4950 | 1.34| 691
tiveness of our anonymization technique. For this purpose, igggo 522 ;éggi ‘11'2145% 12;2
we generated synthetic trajectories of moving objects us- '
. . . 15000 | 250 | 29998 | 20.81 | 1891
ing Brinkhoff's generator [4]. After generating routes on
the Oldenburg map and normalizing them so that all coor-
dinates take values in [, 1000]?> map, we simulated se-
guences of customer transactions corresponding to these
routes as follows. The map was divided into 100 regions us-tions and removal in projection points), but the total number
ing a uniform grid, and each region was given an adversary-of deleted points from the database may increase due to the
id in random. An object that visits a sequence of regions high supports of these suppressed projections. In summary,
is assumed to have performed one transaction per region inarge values of pay off as they reduce the anonymization
the visiting order. The centroids of these regions model thetime significantly, without high effect on the quality.
locations in the trajectories @f. The average length of the In the second experiment (Table 2) we evaluate the scala-
generated trajectoriesds5. The default number of regions  bijlity and robustness of our technique for different database
(i.e., addresses) iR, trajectories ifl", and adversaries i sizes. Note that the time increases proportionally with the
are 100, 10000, and 5, respectively. The default number ofdatabase size. On the other hand, the percentage of points
unifications performed in parallel at each loop of Algorithm that are deleted from the database decreases. The reason is
liss = 50. The breach probability,, is set to50%, by that asI” increases the initial supports of the projections in-
default. crease in size (i.e., the probability that two trajectories have
In the first experiment (Table 1), we vary the number the same projection increases). This reduces the probability
of concurrent unifications per loop and observe the utility that a projection is problematic and makes the anonymiza-
(i.e., cost)C of the resulting databas¥, the number of tion problem easier. The quality, increases \Vilithas fewer
locations suppressed from the trajectorie¥’jrthe running points are deleted from the trajectories.
time of anonymization (in seconds), and the total number  Next, we test the performance of our algorithm varying
U of committed unifications. Table 1 shows the result. As the numberV| of adversaries (Table 3) . If the locations
s increases, the time to anonymize the database drops fastre distributed to a small number of adversaries, then the
On the other hand, the information loss (modeledh)yn- anonymization time increases, as the projections at each
creases witls, but not as significantly compared to the de- adversary are many and long and there are many privacy
crease in the execution time. The independent unifications,breaches. This affects the number of unifications and the
performed in parallel, do not have great effect on the qual- running time, accordingly. On the other hand, the number
ity (but result in great improvement in terms of speed). The of points deleted from the database is not very sensitive to
fluctuations in the quality are due to the approximate nature|V|. As |V| increases, the supports of the projectiong’in
of our greedy search; some unification decisions that aredecrease, because there is a larger number of location per
not deemed the most appropriate when fewer unificationsmutations (distinct projections) that correspond to each at-
are done at each loop, may eventually prove beneficial. Intacker, which appear rarely ifi and cause more breaches.
terms of deleted pointd) and total number of unifications  Therefore, each unification causes few chang€eg f{ae.,
(U), we do not see great difference agicreases. In gen- few point deletions). Reversely, if there are many adver-
eral, the increase afcauses more points to be deleted from saries, the number of projections per adversary is small,
the database, but fewer unifications. This is because, withbut the support for each projection is large. Therefore, a
large s, the unifications performed should be independent unification results in the deletion of many points fram
and due to the lack of choices the algorithm selects manyThe information loss is low for very few attackers because
projections to completely suppress (i.e., unify them with the there are more projections per attacker and more flexibil-
empty projection). The result of this is that fewer problems ity in choosing a potential pair to unify. As a result, the
remain in latter iterations (smaller number of total unifica- choices made are good in terms of quality. |Rsincreases,

Table 2. Experiments with variable  |T|
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