Image Similarity Retrieval by Spatial Constraints

Dimitris Papadias, Nikos Mamoulis and Dimitris Meretakis

Department of Computer Science
Hong Kong University of Science and Technology
Clearwater Bay, Hong Kong

+852-23586971
{dimitris, mamoulis, meretaks}@cs.ust.hk

1. ABSTRACT

This paper deals with queries involving the
retrieval of images that contain certain object
configurations. Consider, for instance, that a user
wants to “find all images where there exists a
building adjacent to the west side of a park which
is southwest and near a commercial center”. This
query can be formulated as a constraint
satisfaction problem (CSP) where the query
variables are nodes of the corresponding
constraint network and the image objects
constitute the domain of each variable. The arcs of
the network correspond to spatial constraints (e.g.,
adjacent A west (X;,X;), southwest A near (X,,X3)).
Problems of the above nature are, in general,
intractable. In addition, spatial constraints (e.g.,
southwest, near) lack universally accepted
semantics and cannot always be modeled by crisp
relations; a fact that further complicates query
processing. This paper focuses on the development
of effective methods that take advantage of the
special structure of the spatial domain to achieve
good average performance even for large images
and queries.

1.1 Keywords

Spatial Constraints, Image Similarity Retrieval

2. INTRODUCTION

Image similarity based on visual characteristics such as
shape, color and texture has been a topic of active research
for many years [19]. Configuration similarity emerged in
the context of spatial databases and geographic information
systems (GIS) in order to complement existing methods of

] Permission to make digital or hard copies of all or part of this work for
1 personal or classroom use is granted without fee provided that copies
; are not made or distributed for profit or commercial advantage and that
¢ copies bear this notice and the full citation on the first page. To copy
. otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM 98 Bethesda MD USA
Copyright ACM 1998 1-58113-061-9/98/11...$5.00

289

content based retrieval. Configuration queries retrieve all
tuples of objects that satisfy a set of spatial constraints.
Spatial constraints can be classified in three main
categories: topological (e.g., inside, overlap), direction
(e.g., north) and distance.

Most existing methods for configuration similarity retrieval
focus on the special case where all images contain the same
set of objects, possibly in different locations. [12] assumes
that queries specify only direction relations between
individual objects and applies symbolic object projections
encoded in 2D strings and string matching algorithms for

~ retrieval. [14] describes another projection-based technique

that uses conceptual neighborhoods [11] to define relation
similarity. [8] employs the angles between object centroids
to define image similarity based on directions.

This paper addresses the general problem of configuration
similarity where images contain arbitrary objects and
queries refer to object variables rather than instances. This
is, in general, a hard combinatorial problem [6] which can
be thought of as a special case of subgraph isomorphism;
queries correspond to subgraphs which are matched with
stored image graphs. We deal with two instances of the
problem: one where the whole process can take place in
main memory, and one where the size of the images
necessitates the application of secondary indexing methods.
The structure of the paper is as follows: Section 3 describes
spatial relations and similarity measures based on them.
Section 4 proposes query and image pre-processing
techniques, while Section 5 discusses algorithms for main
memory retrieval. Section 6 combines search algorithms
with spatial indexing to deal with disk retrieval, and Section
7 concludes the paper.

3. SPATIAL SIMILARITY

Topological constraints express the concepts of inclusion
and neighborhood. A large body of the related work has
focused on the intersection model [5] which describes
relations using intersections of object’s interiors and
boundaries. The model defines the following set of 8
pairwise disjoint topological relations between planar
regions: T={disjoint, meet, overlap, covers, contains, equal,
covered_by, inside}. Figure 1 illustrates these relations in
the form of a conceptual neighborhood graph. Nodes in the
graph denote relations that are linked through an edge if
they can be directly transformed to each other by

continuous deformations (e.g., enlargement, movement).
For instance, starting from relation meet and extending (or
moving) one of the objects, we derive relation overlap.
Depending on the allowed deformation and the relations of
interest, several graphs may be obtained (e.g., [11] [14]).
We employ the distance between two relations Ry and R, in
the graph to define their similarity o as follows: (i)
o(R,R)=1 if Ri=R,, (i) o(Ry,R)=t (0<1<1) if Ri#R, and
distance(Ry,Ry)=1, (iii) o(Ry,Ry)=0 otherwise.

Dumml (Dl \ Mm
X '7:7' { x5 % |
\ S o B
. AL

— - L — - e

'7"' " Overlap (m\ -

N il \
SN - Equal (E)
T R x\

\ B i

T~ “Inside (1)
Figure 1 Topological relations

For direction relations we follow a centroid-based
approach, where the direction between two objects is
determined by the angle between their centroids. We use a
set of 8 cardinal directions: northeast (NE), north (N),
northwest (NW), west (W), southwest (SW), south (S),
southeast (SE) and east (E). The similarity of each direction
with a given angle © between two centroids is illustrated in
Figure 2 as a trapezoidal membership function of the angle.

In case of northeast, for instance, (i) o(NE,8)=1 if 8&[45°-
a,45%al, (ii) o(NE,8)=0 if 360°26290°, (iii) o(NE,0)= 6
/(45-a) if 0 <<45°-a, and (iv) o(NE,0)=(90-6)/(45-a) if

45%+a, <6<90. _
y BN N ONW W sw s SE E
: il o | H ! 4 h]
\VIAVALAVAAVALVALRVALVALVAE
XX XXX X XX
AVAVAVAVATAVAVAN
ii_*,;f\ N/ | /i ‘) 4 :‘,0

0 0 4 9}) 1&5 lk() 255 2J7() 315 360
Figure 2 Directions relations

Object centroids are also considered for distances. A
distance relation Rd 4, can be described by a range [d;,d;]
(meaning that the distance between two centroids is
between d,; and d, distance units). The similarity c(Rd dy ,d)
between Rd d, and a given distance d is given in the form of
a membershlp function similar to the one used for
directions: (i) O'(Rd dy d)=1 if defd,,dy], (ii) O'(Rd dy ,d)=0 if
d>d,+8 or d<d,-8 (111) o(Ry 4, ,d)=(d+8-d)/5 zfd, §<d<
d; and (iv) cs(Rdd d)= (5+d2-d)/8 ifd, <d <d,+8.

The previous relations constitute a comprehensive way to
express spatial queries; in addition to topology and
directions, they capture distances and, according to our
knowledge, this is the first approach that combines the three
types of constraints in image similarity retrieval. The
parameters, 7, o and 8, can be tuned to match different

290

application or user needs providing flexibility to the model.
However, we do not argue that the above relations and
similarity measures exhaust all possibilities. The methods
proposed in the paper can be used with alternative
definitions that match the requirements of specific domains.

A configuration similarity query can be represented as a set
of clauses in conjunctive normal form. Each clause
corresponds to a constraint which can be one of the above
relations, or a set (disjunction) of homogeneous relations
from the respective domain (e.g., NEVN or DvMvO);
disjunctions of heterogeneous relations (e.g., NEvVM) are
not allowed. When a relation is left unspecified, the
corresponding constraint is called universal (U) and it
represents all relations (e.g., Ur = DvMvOvVVVCVEVIVB,
Up=Rw)-

Consider an example query “retrieve all configurations of
three objects where the first object overlaps the second one
to the southwest, and their centroids are 2-3 distance units
apart. The second object is disjoint and northwest of the
third one, and their centroids’ distance is 2-4”. In order to
find a triplet of objects that satisfy the above query within a
database image, we have to instantiate each of the three
query variables to image objects so that all input constraints
are satisfied. Figure 3 illustrates two solutions <a,b,I> and
<f,g,i> within an image containing 11 objects.

i
1
|

1 2 3 4 5 3 7 8 9 10

Figure 3 Example image and solutions
Let M@ be the set of mappings (1-1 functions) from query
(Q) variables to image (/) objects. A complete mapping me
M2 is one where all the query variables have been
instantiated. Object x; = m(X)) is called an instantiation of
variable X; under m. Let C;, be a spatial constraint between
variables X; and X, and x; = m(X)), x= m(X)). If R is the
relation between x; and x; in I, then the degree of
satisfaction of C is: S(C })‘max{G(Rx,R) /Ry € C, } The
degree of satlsfactlon S(m) of a complete mapping m is
computed from the satisfaction degrees of individual
constraints according to various potential metrics {18]. Here
we assume the average combination, i.e., S(m) is equal to
the sum of satisfaction degrees of individual constraints
divided by the total number of constraints.. Similarity

. retrieval algorithms will find the best K complete mappings

(K is user defined) according to the average combination
metric. We use three types of image retrieval:

e Hard retrieval in which all complete mappings to be
retrieved should totally satisfy all constraints (i.e.,
S¢m)=1 for all solutions). Hard retrieval will not return
any solutions if some constraint is not fully satisfied,
even though there may exist images that match the
query very closely. The following two methods
overcome this problem.

o Soft retrieval will find all complete mappings that are
good on the average even though they may totally or
partially violate some constraints. Soft is considerably
more expensive than hard retrieval because it has to
generate more instantiations before it rejects a partial
solution.

o Between soft and hard, there is semi-hard retrieval
which excludes solutions that totally violate some
constraint. It is generally a good trade-off because it
reduces execution time compared to soft retrieval while
missing only few solutions.

If N is the number of objects in image I, then the total
number of complete mappings equals the number of n-
permutations of the N objects: N//(N-n)!. For most
applications where N>>n, the number of permutations is
O(N"). In the worst case all these mappings have to be
searched, a fact that renders the problem intractable.
Despite the exponential nature, we have developed methods
which yield good average performance for considerable
image and query sizes.

4. PRE-PROCESSING TECHNIQUES

The example query of the previous section (Overlap A SW
A Rya(X1,X,), Disjoint A NW A Ry4(X3,X3)) contains
several implicit constraints, i.e., relations between query
variables X; and X; not explicitly stated. For instance,
given the constraints between (X;,X;) and (X2, X3) the
allowed topological constraint between X, and X; is
Disjoint v Meet v Covers v Contains v Overlap. In order to
explicate such relations in queries, we need composition
tables that encode rules about the permissible relation
between (X,,X;), given the constraints for (X;,X) and (X,X)).
Two tables are required: one for topological relations and
one for combined distances and directions.

For composition of topological relations we use the
composition table presented in [5]. Because (in the context
of this work) topological relations are defined on extended
objects while distances and directions on centroids, no
conclusion can be drawn about the direction and the
distance between the centroids of two objects given their
topological relation (and vice versa) unless we take
advantage of domain knowledge (e.g., buildings 5 kms
apart are disjoin{). Since we provide a general framework of
retrieval, not tied to any specific application, we assume
independence of topological relations.

On the other hand, directions and distances defined on
centroids are interrelated. For instance, in the previous

291

query from SWAR,(X,X;) and NWAR;.4(X;,X3) can be
inferred that: (NWVWVSW)AR; g.5(X,X3) (NW, W, SW
are the only relations with potentially non-zero
memberships). Constraints are refined when the
composition constraint contains a proper subset of relations
of the original one. If the intersection of the composition
and original constraint is empty there is an inconsistency.
During the first pre-processing step, a path consistency
algorithm [13] extracts the implicit constraints according to
composition tables and computes the transitive closure of
the query. Composition tables and details about the
explication of query constraints for image similarity
retrieval can be found at [15].

The second step of pre-processing involves the re-ordering
of query variables. In general, a good order is one where the
most constrained variables are instantiated first because bad
instantiations are detected and abandoned early in the
search. We use a weight W(R,]) to denote the strictness of a
relation R in a particular image J. In order to calculate
W(R,I) we perform an exhaustive search in each image I
and count the pairs of objects Ny that satisfy relation R in 1.
Then the weight of R is calculated as: W{(R,[)=N(N-1)/N
(where N(N-1) is the number of distinct object pairs).

Relations that occur rarely get high weights because they
have high discriminative value (this is similar to inverse
term frequency used by information retrieval techniques).
For instance, if a query specifies that two variables are
equal, then these two variables should be instantiated first
in order to prune the search space as early as possible. On
the other hand, disjoint has a very small weight since for
normal data density it is satisfied by more than 99% of
object pairs; therefore a disjoint constraint is not significant.
Figure 4 illustrates the weights for two images used in the
following experiments. Given the pre-computed weights of
relations, weights for constraints (i.e., disjunctions of
relations of the same type) are calculated by the following
equation which captures the property that the weight of a
constraint is smaller than the weight of any (tighter)
constraint with a proper subset of its relations:
I 1
W(C.,I) vkec W(R,D)

For instance, the weight of a constraint C = NE in the image
of Figure 4a would be 5.857, while the weight of another C”
= N would be 13.949. The weight of a (less restrictive)
constraint NEVN would be: 5.857*13.949/(5.857+13.949)
= 4.124. For distance constraints, we computed the
distribution of distances normalized by maximum distance
for all pairs of objects (Figure 4). Weights of ranges were
calculated from these distributions using the above equation
since a range can be thought of as disjunction of precise
distances (the longer the range the smaller its weight).

Image meta-data (weights, distance distribution) is
calculated only once and stored with each image. When an

D M E i '

1.004002 289.8436 509545 6369313
C v

40763.6 6369313 407636 2205823 .

E NE N NW '

5410793 5857685 13.94977 13.73956 ° |

w SW S SE o X

5410793 5857685 13.94977 13.73956
Weights and distance distributions - roads of Long Beach county

D M E I
1.000942 1392.363 1038960 1038960
B C v
74211.43 1038960 7421143 5171.1

E NE N NW
8.104869 7.916698 7.804625 8.185119

w sSw S SE
8104869 7.916698 7.804625 8.185119

Weights and distance distributions-VLSI Image

Figure 4 Images and their characteristics

image I is searched for a particular configuration expressed
by Q, its associated meta-data is retrieved and each query
variable is assigned a weight which is equal to the sum of
weights of constraints in which it participates. Instantiation
order of variables in Q for retrieval from I is then
determined according to variable weights: the heaviest
variable first and the least constrained last. In the next
sections we show the significant effects of pre-
preprocessing on the efficiency of retrieval.

S. MAIN MEMORY RETRIEVAL

This section describes configuration similarity retrieval
when the image size permits the entire process to take place
in main memory. In this case the whole image to be
searched is retrieved and its attributed relational graph
(ARG) is constructed. Each node in the ARG corresponds to
an image object and each arc between x; and x; indicates: (i)
the topological relation between (x;,x;), (ii) the angle and
(iti) the distance between their centroids. Search is
performed solely using the ARG which is maintained in
memory. The K best complete mappings are retrieved and
shown to the user. We experimented with four algorithms:

o The first algorithm is a non-recursive variation of
backtracking (BT). After the ARG has been constructed,
every query variable is instantiated to an image object
according to the order determined during query pre-
processing. When a variable is instantiated to some object,
this object is “locked”, i.e., it is removed from the domain
of current and future variables and cannot be mapped to

292

another query object. The new similarity is calculated by
adding to the previous one the satisfaction degrees of the
constraints that relate the new object with already
instantiated objects. Depending on the new similarity and
the type of retrieval used, the mapping proceeds forward (to
the next variable) or backward. The algorithm proceeds
forward if the instantiations so far constitute a partial
solution; ie., if all similarity degrees are 1 (for hard
retrieval), or if the current similarity can exceed the target
similarity of the K solution (for soft retrieval). The
condition for semi-hard is the same as for soft, provided
that no constraints have been totally violated. When the
algorithm goes backward, another mapping for the same
variable is chosen and the previous object is unlocked. If
the variable domain is empty, the algorithm proceeds
another step back and re-instantiates the previous variable
after releasing all objects locked by subsequent variables.

A simplified version of the algorithm is illustrated below.
Instantiations is an 1D array of n elements that holds the
current values of variables (instantiations[i] stores the
current value of x;). Sfi] holds the current similarity at the
instantiation level i (variables up to the i" one have been
instantiated). Solutions is a Kxn array that holds the K
instantiations that have the highest similarity. Target is the
similarity of the K" solution; an instantiation will be
included in the solutions only if its similarity is greater than
target. When a variable is to be instantiated, BT chooses a
value from its domain and calculates the similarity

produced by the new instantiation and the already
instantiated variables. If the new instantiation results in a
partial solution, the algorithm proceeds forward, or outputs
a solution if there are no other un-instantiated variables.
Otherwise, it chooses a new value for the current variable,
after restoring new_value to the domains of next variables.
BT (Query q, Image 1, int K')
Preprocess(Q) /* compute guery closure, retrieve I and metadata, and
determine variable ordering (most constrained first) */
FOR j := | TO n DO domain[j] = all objects in image |
S = target := 0;
i:=1; /* index to the current variable */
WHILE (TRUE) {
similarity := 0;
new_value := chooseNextValue(domain[i]);
IF new_value = NULL THEN /* end of domain */
IF i=1 THEN RETURN; /* end of domain for first variable*/
ELSE i:=i-1; CONTINUE; /*Backtrack*/
ELSE
instantiations[i] := new_value; /*store instantiation*/
FOR j:=i to n DO domain[j}:=domain[j]- {new_value} /*locking™/
FOR j=1 toi -1 DO ‘
similarity:=similarity +o(Cy,R(instantiations{i],instantiations[j]));
S[i] := S[i-1] + similarity;
IF S[i] can exceed target THEN /* instantiated variables 1,...i
constitute a partial solution (depending on the type of retrieval)*/
IF i <n THEN /* intermediate variable instantiated */
i =i+1; /* successful instantiation: go forward */
ELSE /*last variable instantiated*/
store(instantiations, solutions);
target = solutions[K];
ELSE /*new instantiation does not result in a partial solution */
FOR j:=i+1 to n DO domain[j}:=domain[j]Ju {new_value}/*unlock*/
}
o The second retrieval algorithm is based on backjumping
(BJ) [4]. BJ instead of going back to the previous variable
when a deadlock occurs, jumps back to the last variable that
precluded a candidate value from the current domain.
Assume, for example, the instantiation order X, X3, X3, X4,
Xs, and that there does not exist a value in the domain of X;
which is consistent with the instantiations of the previous
variables. Furthermore, this inconsistency is solely due to
the constraint between and Xs and X, (e.g., a restrictive
constraint such as covers). Backtracking to X, or X3 will
not solve the problem (the constraints between X and X, or
X5 may be non-restrictive or even universal); backjumping,
on the other hand, will re-instantiate the variable (X;) that
caused the problem, thus reducing the number of
consistency checks. In order to do this, a pointer has to be
kept for each variable to the last variable that caused an
inconsistency. The forward move is the same as in
backtracking, checking the constraints of the current
variable with respect to previously instantiated ones.

o In the above example, BJ after re-instantiating X, would
move forward, re-instantiate X; and so on. Assume that X
and X, are related by a restrictive constraint satisfied only
by a few object pairs. Therefore, finding a good

293

instantiation pair for X; and X, may require a significant
amount of search which is redundant since such a pair was
already found before the deadlock at Xs occurred. Unlike
BJ, dynamic backtracking (DBT) [7], after re-instantiating
X,, would keep the existing instantiations of X5 and X,, and
directly attempt to find a new value for X;s. This means that
the instantiation order is changed dynamically, i.e., from
X], Xz, X3, X4, XS, it becomes Xl, X3, X4, Xz, X5, so DBT
can be thought of BJ with dynamic variable ordering [2].

e The fourth algorithm is based on forward checking (FC)
[3]: whenever a query variable is instantiated to an image
object, the domain of remaining variables is searched and
all image objects that cannot lead to a solution with
similarity above the current threshold are removed. In order
to achieve this, FC uses a three dimensional domain table
which keeps track of the consistent values for each variable
at every instantiation level. Whenever an instantiation
causes the domain of a future variable to become empty the
algorithm immediately backtracks, in contrast to the
previous algorithms which would continue the search. This
ensures that a query variable is never instantiated to an
object if the resulting partial solution cannot lead to a
complete mapping with a similarity above the current
target. Furthermore, since the domain of the last variables is
pruned by previous instantiations, fewer instantiations have
to be done to find a solution (but more checks for each
instantiation). A description of FC for similarity retrieval
can be found in [16].

In order to test the performance of the algorithms we used
real geographic and VLSI data sets of various sizes. In
particular, we constructed images of 100, 200, ... and 500
objects using portions of the map in Figure 4a, and the
VLSI image of 4b (a total of ten images). The parameters
for relations were set to: t=0.33, a=5 and 3=0, while
K=100. Because actual queries may vary significantly
depending on the domain, we constructed an artificial set of
70 queries each consisting of 3 to 9 variables (10 queries of
3 variables, 10 of 4, ..., 10 of 9 variables). Query tightness
varies from complete queries created using a query-by-
sketch language to very loose queries involving only a few
non-restrictive constraints. The implementation was done
using Java Symantec JIT compiler and the experiments
were run on several Pentium PCs 133MHz with 64M Ram.

We executed all queries (70), for the ten images using the
four algorithms (BT, BJ, DBT and FC) with and without
pre-processing, for the three retrieval types (hard, soft,
semi-hard) (i.e. a total of 16800 runs). Each execution was
allowed 10 minutes to complete; after this period it was
terminated. Figure 5 illustrates the average times (in sec)
for each algorithm and retrieval type combination for
queries with four variables and images of 300 objects. FC
has the best performance for all types of retrieval (the other
combinations of query/image sizes yield very similar
relative performance).

1000 Mhard
Wsemi-hard
Cisoft

100

BT BJ DBT FC

Figure 5 Main memory retrieval

An interesting observation from the above graph refers to
the satisfiability types. Soft retrieval is 1-2 orders of
magnitude slower than semi-hard and prohibitively
expensive for real-time applications. On the other hand,
semi-hard retrieval is only about 10% slower than hard,
while in 90% of the cases it retrieved the same solutions as
soft (solutions that are good on the average while totally
violating some constraint are rare, especially for large
images). In general, semi-hard seems to be a very good
trade-off for applications involving large images and
require approximate retrieval.

Figure 6 illustrates the effect of pre-processing on the
performance of FC. Each chart shows the response time (in
milliseconds) as a function of the number of query variables
(3,...9) and the image size (100,...,500). Soft retrieval did
not terminate successfully for most queries involving more
than four variables. The experiments illustrate that pre-
processing speeds up query processing more than an order
of magnitude for all types of satisfiability. The same is true
for the rest of the algorithms. For most queries, semi-hard
FC with pre-processing will find solutions in less than 10
seconds even if image sizes reach 500 objects.

hard retrieval without preprocessing

03

hard retrieval with preprocessing

semi-hard retrieval with preprocessing

In actual applications, much larger images could be
effectively processed since often queries involve some other
features that prune the search space. GIS queries, for
instance, usually include properties of objects (e.g., "find all
maps where there is a river crossing a large city" etc.) that
restrict variable domains to a small percentage of the image
size. For spatial applications involving very large images, it
is infeasible to construct and maintain in main memory the
ARGs of the images, in order to solve the configuration
similarity problem. A secondary memory data structure
should be incorporated in the search algorithms, to
overcome the main memory restrictions. The next section
shows how R-trees can be combined with search techniques
to speed up retrieval from the disk.

6. SECONDARY MEMORY RETRIEVAL
The R-tree [10] is a multidimensional extension of the
height-balanced B-tree, used to store large numbers of
objects in space. The minimum bounding rectangles
(MBRs) of the actual data objects are stored in the leaf
nodes of the tree. Intermediate nodes are built by grouping
rectangles at the lower level. Each node of the tree
corresponds to a disk page and is associated with some
rectangle which encloses all rectangles that correspond to
lower level nodes. Figure 7 illustrates the construction of an
R-tree using the image of Figure 3 and assuming a capacity
of 3 rectangles per page (normally the number of MBRs per
page is in the range 30-100). Object MBRs (denoted with
small letters) are grouped together in four intermediate
nodes (A,B,C,D) which are in turn grouped in two larger
ones (1 and 2). For our experiments we re-implemented in
Java one of the most successful variations of R-trees,
namely the R*-trees {3].

soft retrieval without preprocessing

03 50 3

soft retrieval with preprocessing

Figure 6 FC performance

294

The processing of a traditional overlap query (light gray
window) in R-trees involves the following procedures:
Starting from the top node, exclude the nodes that are
disjoint with the query window, and recursively search the
remaining ones (gray nodes in the tree of Figure 7). Among
the entries of the leaf nodes retrieved, select the ones that
overlap the query window. Two types of query windows
may arise in similarity queries: rectangular ones for
topological constraints between MBRs [17], and
angular/ring windows for directions/distances between
centroids.

In case of hard retrieval only the objects that fall inside the
range for total similarity are retrieved. In addition, semi-
hard retrieval finds the ones that fall in the area of partial
satisfaction. The ring window of Figure 7, for instance,
corresponds to semi-hard search for NE A Ry (X,0); the
window for hard retrieval would include only the slice of
angle 2a where NE is totally satisfied. Soft retrieval is not
implemented; it would not take advantage of R-trees since it
requires retrieval of objects even if they do not overlap the
query window. However, because of the size of the images,
semi-hard retrieval will not miss any solutions in the vast
majority of the cases.

Figure 7 R-trees and query windows
The algorithm for configuration similarity retrieval using R-
trees works as follows. In order to instantiate the first query
variable X; (the one with the largest weight according to
query constraints and image meta-data) a potential query
window is calculated from the given constraints. For
instance, if there is a constraint N A Rs.(X,X;), then X;
should lie at least 5 distance units south of the north border
of the total space (otherwise there cannot not exist any
object for the instantiation of Xy). The second variable X; to
be instantiated is the one that has the largest weight taking
into account only the constraints C;; with respect to the first
one. This is because restrictive constraints imply that
relatively few objects can be in the domain of the second
variable (notice that the ordering strategy is slightly
different from the one applied for main memory retrieval).
Let x; be the instantiation of X;. A window query is
performed using x; as the reference object and C; as the
spatial condition. The image objects that fall inside this

295

query window are retrieved and constitute the domain of X;.
As the algorithm proceeds forward the query windows
become gradually smaller because the new constraints add
more restrictions.

Consider again the query Overlap A SW A Ry3(X,X3),
Disjoint A NW A Ry4(X2,X3) and that X, is the first
variable to be instantiated to object b of the image in Figure
7. If the second object to be instantiated is X, the R tree is
used to search the potential instantiations using the
constraints between X, and X; (Overlap, NE, R,;). Two
searches will be performed: Overlap(X,,b) which
corresponds to the light gray window in Figure 7, and NE A
R,.3 (Xa,b) that corresponds to the dark gray one. The actual
domain for X, consists of the intersection of objects found
in the two searches (i.e., only object f). Therefore, the
instantiations for the first two variables are: b=m(X,) and
FEm(Xy).

When the third variable (Xs) is instantiated, its potential
domain is restricted by its constraints with respect to both
previously instantiated variables. These constraints produce
two sets of query windows: one corresponding to Disjoint A
SE A Ryu(X1,/) (due to the explicit constraint between X,
and X,) and (Disjoint v Meet v Covered_by v Inside v
Overlap) A (NEVEVSE)AR; 5.5(X3,b) (due to the constraint
between X; and X; generated by path consistency). Since
there do not exist any object centroids in the intersection of
the query windows (see Figure 8), X; cannot be
instantiated. Consequently, the algorithm backtracks and
attempts to find another instantiation for X,. Because f was
the only object in the domain of X, the algorithm will
backtrack again and attempt to re-instantiate X,.

Figure 8 Instantiation of X3

We tested the performance of the secondary memory
retrieval algorithm, with the queries of the previous section
and R-trees of 1K, 2K, ... 5K objects (created from the
images of Figure 4). Figure 9 illustrates the mean response
time (for hard and semi-hard retrieval), as a function of the
query and image size (preprocessed queries). The diagrams
show that, as opposed to main memory retrieval, the image
size is the most decisive factor for the response time,
especially for hard retrieval. This is because query windows
prune the search space significantly; once the first few
variables have been instantiated, the domains of future
variables are significantly restricted to small areas of space
or totally eliminated, thus avoiding useless forward checks.

so0 3

semi-hard retrieval

Figure 9 Secondary memory retrieval
In general, the above algorithm can be thought of as a form
of forward checking with depth 1, since once a variable X;
is instantiated the domain of the subsequent variable Xi,, is
restricted to the image objects that fall inside the query
window that is specified by X; and the constraints between
Xy and X;. [16] provides a detailed description and
experimental evaluation of several algorithms for secondary
memory retrieval using an alternative model of spatial
relations.

7. CONCLUSION

This paper focuses on image similarity retrieval based on
topological, direction and distance constraints. Despite the
exponential nature of the problem we propose techniques
that take advantage of the special structure of space and
address the problem even for large images. In particular we
use two methods: one for images that can be handled
entirely in main memory and one for large images that need
spatial access methods for efficient disk retrieval. Pre-
processing, which involves computing the transitive closure
of the query and reordering of variables based on strictness
. of constraints, facilitates efficiency.

We are currently experimenting with advanced spatial
database techniques such as spatial joins [9]. Future work
will attempt to combine alterative search algorithms and
spatial indexing methods to enhance performance. Finally,
reasoning mechanisms can be incorporated in the system.
Assume that the three objects that match the description of
the example query are not in the same image, but two
objects x,, X, that match the constraints between X, and X,

296

exist in image I;, while x, (common object) and x; match
the constraints between X, and X; but exist in I,. In order to
retrieve a complete solution we need reasoning to combine
information found in the two images (similar to a map
overlay operation).

8. REFERENCES

[1] Bacchus, F., Grove, A. On the Forward Checking Algorithm.
International Conference on Principles and Practice of
Constraint Programming, 1995.

2] Bacchus, F., Van Run, P. Dynamic Variable Ordering for
CSPs. International Conference on Principles and Practice of
Constraint Programming, 1995.

[3] Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B. The
R*-tree; An Efficient and Robust Access Method for Points
and Rectangles. SIGMOD, 1990.

[4] Dechter, R. Enhancement schemes for constraint processing:
Backjumping, learning, and cutset decomposition. Artificial
Intelligence 41, 273-312, 1990.

[5] Egenhofer, M., Sharma, J. Assessing the Consistency of
Complete and Incomplete Topological Information.
Geographical Systems, Vol. 1, No 1, pp. 47-68, 1993.

[6] Grigni, M., Papadias, D., Papadimitriou, C. Topological
Inference. IJCAI, 1995.

[7] Ginsberg, M. Dynamic Backtracking. Journal of Artificial
Intelligence Research, 1, 25-46, 1993.

[8] Gudivada, V., Raghavan, V. Design and Evaluation of
Algorithms for Image Retrieval by Spatial Similarity. ACM
TOIS, 13(1):115-144, 1995,

[9] Guenther, O. Efficient Computation of Spatial Joins. JEEE
9" ICDE, 1993.

{10] Guttman, A. R-trees: a Dynamic Index Structure for Spatial
Searching. SIGMOD, 1984.

[11] Hernandez, D. Qualitative Representation of Spatial
Knowledge. Springer Verlag LNAI, 1994.

{12] Lee S-Y., Hsu F-J Spatial Reasoning and Similarity Retrieval
of Images Using 2D C-string Knowledge Representation.
Pattern Recognition, 25(3):305-318, 1992.

[13] Mackworth, A, Freuder, E. The Complexity of Some
Polynomial Network Consistency Algorithms for Constraint
Satisfaction Problems. Artificial Intelligence,25,65-74, 1985.

[14] Nabil, M., Ngu, A., Shepherd, J. Picture Similarity Retrieval
Using 2d Projection Representation. IEEE TKDE, 8(4),1996.

[15] Papadias, D., Arkoumanis, N., Karacapilidis, N. On The
Retrieval of Similar Configurations. 8" Symposium on
Spatial Data Handling (SDH), 1998.

[16] Papadias, D., Mamoulis, N., Delis, B. Algorithms for
Querying by Spatial Structure. VLDB, 1998.

[17] Papadias, D., Theodoridis, Y. Spatial Relations, Minimum
Bounding Rectangles, and Spatial Data Structures.
International Journal of GIS, 11(3), pp- 111-138, 1997.

[18] Ruttkay Z. Fuzzy Constraint Satisfaction. IEEE International
Conference on Fuzzy Systems, 1994.

[19] Santini S., Jain, R. Similarity Searching. TR VCL-95-110,
Visual Computing Laboratory, UCSD, 1995.

