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Abstract. Traditional spatial queries return, for a given query object q, all database
objects that satisfy a given predicate, such as epsilon range and k-nearest neigh-
bors. This paper defines and studies inverse spatial queries, which, given a subset
of database objects Q and a query predicate, return all objects which, if used
as query objects with the predicate, contain Q in their result. We first show a
straightforward solution for answering inverse spatial queries for any query pred-
icate. Then, we propose a filter-and-refinement framework that can be used to
improve efficiency. We show how to apply this framework on a variety of inverse
queries, using appropriate space pruning strategies. In particular, we propose so-
lutions for inverse epsilon range queries, inverse k-nearest neighbor queries, and
inverse skyline queries. Our experiments show that our framework is significantly
more efficient than naive approaches.

1 Introduction

Recently, a lot of interest has grown for reverse queries, which take as input an object
o and find the queries which have o in their result set. A characteristic example is the
reverse k-NN query [6, 12], whose objective is to find the query objects (from a given
data set) that have a given input object in their k-NN set. In such an operation the roles
of the query and data objects are reversed; while the k-NN query finds the data objects
which are the nearest neighbors of a given query object, the reverse query finds the ob-
jects which, if used as queries, return a given data object in their result. Besides k-NN
search, reverse queries have also been studied for other spatial and multidimensional
search problems, such as top-k search [13] and dynamic skyline [7]. Reverse queries
mainly find application in data analysis tasks; e.g., given a product find the customer
searches that have this product in their result. [6] outlines a wide range of such ap-
plications (including business impact analysis, referral and recommendation systems,
maintenance of document repositories).

In this paper, we generalize the concept of reverse queries. We note that the cur-
rent definitions take as input a single object. However, similarity queries such as k-NN
queries and ε-range queries may in general return more than one result. Data analysts
are often interested in the queries that include two or more given objects in their result.



Such information can be meaningful in applications where only the result of a query can
be (partially) observed, but the actual query object is not known. For example consider
an online shop selling a variety of different products stored in a database D. The online
shop may be interested in offering a package of products Q ⊆ D for a special price.
The problem at hand is to identify customers which are interested in all items of the
package, in order to direct an advertisement to them. We assume that the preferences of
registered customers are known. First, we need to define a predicate indicating whether
a user is interested in a product. A customer may be interested in a product if

– the distance between the product’s features and the customer’s preference is less
than a threshold ε;

– the product is contained in the set of his k favorite items, i.e., the k-set of product
features closest to the user’s preferences;

– the product is contained in the customer’s dynamic skyline, i.e., there is no other
product that better fits the customer’s preferences in every possible way.

Therefore, we want to identify customers r, such that the query on D with query object
r, using one of the query predicates above, contains Q in the result set. More specifi-
cally, consider a set D ∈ Rd as a database of n objects and let d(·) denote the Euclidean
distance in Rd. Let P(q) be a query on D with predicate P and query object q.

Definition 1. An inverse P query (IPQ) computes for a given set of query objects Q ⊆

D the set of points r ∈ Rd
for which Q is in the P query result; formally:

IPQ = {r ∈ Rd : Q ⊆ P(r))}

Simply speaking, the result of the general inverse query is the subset of the space de-
fined by all objects r for which all Q-objects are in P(r). Special cases of the query
are:

– The mono-chromatic inverse P query, for which the result set is a subset of D.
– The bi-chromatic inverse P query, for which the result set is a subset of a given

database D� ⊆ Rd.

In this paper, we study the inverse versions of three common query types in spatial
and multimedia databases as follows.

Inverse ε-Range Query (Iε-RQ). The inverse ε-range query returns all objects
which have a sufficiently low distance to all query objects. For a bi-chromatic sample
application of this type of query, consider a movie database containing a large num-
ber of movie records. Each movie record contains features such as humor, suspense,
romance, etc. Users of the database are represented by the same attributes, describ-
ing their preferences. We want to create a recommendation system that recommends to
users movies that are sufficiently similar to their preferences (i.e., distance less than ε).
Now, assume that a group of users, such as a family, want to watch a movie together; a
bi-chromatic Iε-RQ will recommend movies which are similar to all members of the
family. For a mono-chromatic case example, consider the set Q = {q1, q2} of query
objects of Figure 1(a) and the set of database points D = {p1, p2, · · · , p6}. If the range
ε is as illustrated in the figure, the result of the Iε-RQ(Q) is {p2, p4, p5} (e.g., p1 is
dropped because d(p1, q2) > ε).
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Fig. 1. Examples of inverse queries.

Inverse k-NN Query (Ik-NNQ). The inverse k-NN query returns the objects
which have all query points in their k-NN set. For example, mono-chromatic inverse
k-NN queries can be used to aid crime detection. Assume that a set of households have
been robbed in short succession and the robber must be found. Assume that the rob-
ber will only rob houses which are in his close vicinity, e.g. within the closest hundred
households. Under this assumption, performing an inverse 100NN query, using the set
of robbed households as Q, returns the set of possible suspects. A mono-chromatic in-
verse 3NN query for Q = {q1, q2} in Figure 1(b) returns {p4}. p6, for example, is
dropped, as q2 is not contained in the list of its 3 nearest neighbors.

Inverse Dynamic Skyline Query (I-DSQ). An inverse dynamic skyline query re-
turns the objects, which have all query objects in their dynamic skyline. A sample ap-
plication for the general inverse dynamic skyline query is a product recommendation
problem: assume there is a company, e.g. a photo camera company, that provides its
products via an internet portal. The company wants to recommend products to their
customers by analyzing the web pages visited by them. The score function used by the
customer to rate the attributes of products is unknown. However, the set of products
that the customer has clicked on can be seen as samples of products that he or she is
interested in, and thus, must be in the customer’s dynamic skyline. The inverse dynamic
skyline query can be used to narrow the space which the customers preferences are lo-
cated in. Objects which have all clicked products in their dynamic skyline are likely
to be interesting to the customer. In Figure 1, assuming that Q = {q1, q2} are clicked
products, I-DSQ(Q) includes p6, since both q1 and q2 are included in the dynamic
skyline of p6.

For simplicity, we focus on the mono-chromatic cases of the respective query types
(i.e., query points and objects are taken from the same data set); however, the proposed
techniques can also be applied for the bi-chromatic and the general case. For details,
refer to the full version of this paper [2].

Motivation. A naive way to process any inverse spatial query is to compute the
corresponding reverse query for each qi ∈ Q and then intersect these results. The prob-
lem of this method is that running a reverse query for each qi multiplies the complexity
of the reverse query by |Q| both in terms of computational and I/O-cost. Objects that
are not shared in two or more reverse queries in Q are unnecessarily retrieved, while
objects that are shared by two or more queries are redundantly accessed multiple times.



We propose a filter-refinement framework for inverse queries, which first applies a num-
ber of filters using the set of query objects Q to prune effectively objects which may
not participate in the result. Afterwards, candidates are pruned by considering other
database objects. Finally, during a refinement step, the remaining candidates are verified
against the inverse query and the results are output. When applying our framework to
the three inverse queries under study, filtering and refinement are sometimes integrated
in the same algorithm, which performs these steps in an iterative manner. Although for
Iε-RQ queries the application of our framework is straightforward, for Ik-NNQ and
I-DSQ, we define and exploit special pruning techniques that are novel compared to
the approaches used for solving the corresponding reverse queries.

Outline. The rest of the paper is organized as follows. In the next section we review
previous work related to inverse query processing. Section 3 describes our framework.
In Sections 4-6 we implement it on the three inverse spatial query types; we first briefly
introduce the pruning strategies for the single-query-object case and then show how to
apply the framework in order to handle the multi-query-object case in an efficient way.
Section 7 is an experimental evaluation and Section 8 concludes the paper.

2 Related Work

The problem of supporting reverse queries efficiently, i.e. the case where Q only con-
tains a single database object, has been studied extensively. However, none of the pro-
posed approaches is directly extendable for the efficient support of inverse queries
when |Q| > 1. First, there exists no related work on reverse queries for the ε-range
query predicate. This is not surprising since the the reverse �-range query is equal to
a (normal) ε-range query. However, there exists a large body of work for reverse k-
nearest neighbor (Rk-NN) queries. Self-pruning approaches like the RNN-tree [6] and
the RdNN-tree [14] operate on top of a spatial index, like the R-tree. Their objective is
to estimate the k-NN distance of each index entry e. If the k-NN distance of e is smaller
than the distance of e to the query q, then e can be pruned. These methods suffer from
the high materialization and maintenance cost of the k-NN distances.

Mutual-pruning approaches such as [10–12] use other points to prune a given in-
dex entry e. TPL [12] is the most general and efficient approach. It uses an R-tree to
compute a nearest neighbor ranking of the query point q. The key idea is to iteratively
construct Voronoi hyper-planes around q using the retrieved neighbors. TPL can be used
for inverse k-NN queries where |Q| > 1, by simply performing a reverse k-NN query
for each query point and then intersecting the results (i.e., the brute-force approach).

For reverse dynamic skyline queries, [3] proposed an efficient solution, which first
performs a filter-step, pruning database objects that are globally dominated by some
point in the database. For the remaining points, a window query is performed in a re-
finement step. In addition, [7] gave a solution for reverse dynamic skyline computation
on uncertain data. None of these methods considers the case of |Q| > 1, which is the
focus of our work.

In [13], the problem of reverse top-k queries is studied. A reverse top-k query re-
turns, for a point q and a positive integer k, the set of linear preference functions for
which q is contained in their top-k result. The authors provide an efficient solution for
the 2D case and discuss its generalization to the multidimensional case, but do not con-



sider the case where |Q| > 1. Although we do not study inverse top-k queries in this
paper, we note that it is an interesting subject for future work.

Inverse queries are very related to group queries, i.e. similarity queries that retrieve
the top-k objects according to a given similarity (distance) aggregate w.r.t. a given set of
query points [9, 8]. However, the problem addressed by group queries generally differs
from the problem addressed in this paper. Instead of minimizing distance aggregations,
here we have to find efficient methods for converging query predicate evaluations w.r.t.
a set of query points. Hence, new strategies are required.

3 Inverse Query (IQ) Framework

Our solutions for the three inverse queries under study are based on a common frame-
work consisting of the following filter-refinement pipeline:

Filter 1: Fast Query Based Validation: The first component of the framework, called
fast query based validation, uses the set of query objects Q only to perform a quick
check on whether it is possible to have any result at all. In particular, this filter verifies
simple constraints that are necessary conditions for a non-empty result. For example,
for the Ik-NN case, the result is empty if |Q| > k.

Filter 2: Query Based Pruning: Query based pruning again uses the query objects
only to prune objects in D which may not participate in the result. Unlike the simple
first filter, here we employ the topology of the query objects.

Filters 1 and 2 can be performed very fast because they do not involve any database
object except the query objects.

Filter 3: Object Based Pruning: This filter, called object based pruning, is more ad-
vanced because it involves database objects additional to the query objects. The strategy
is to access database objects in ascending order of their maximum distance to any query
point; formally:

MaxDist(o,Q) = max
q∈Q

(d(e, q)).

The rationale for this access order is that, given any query object q, objects that are close
to q have more pruning power, i.e., they are more likely to prune other objects w.r.t. q
than objects that are more distant to q. To maximize the pruning power, we prefer to
examine objects that are close to all query points first.

Note that the applicability of the filters depends on the query. Query based pruning

is applicable if the query objects suffice to restrict the search space which holds for
the inverse ε-range query and the inverse skyline query but not directly for the inverse
k-NN query. In contrast, the object based pruning filter is applicable for queries where
database objects can be used to prune other objects which for example holds for the
inverse k-NN query and the inverse skyline query but not for the inverse ε-range query.

Refinement: In the final refinement step, the remaining candidates are verified and the
true hits are reported as results.



4 Inverse ε-Range Query

We will start with the simpler query, the inverse ε-range query. First, consider the case
of a query object q (i.e., |Q| = 1). In this case, the inverse ε-range query computes all
objects, that have q within their ε-range sphere. Due to the symmetry of the ε-range
query predicate, all objects satisfying the inverse ε-range query predicate are within
the ε-range sphere of q as illustrated in Figure 2(a). In the following, we consider the
general case, where |Q| > 1 and show how our framework can be applied.

r1

r2
r3q

(a) Single query case.

q1

q2
q3

(b) Multiple query case.

Fig. 2. Pruning space for Iε-RQ.

4.1 Framework Implementation

Fast Query Based Validation: There is no possible result if there exists a pair q, q� of
queries in Q, such that their ε-ranges do not intersect (i.e., d(q, q�) > 2 · ε). In this case,
there can be no object r having both q and q� within its ε-range (a necessary condition
for r to be in the result).

Query Based Pruning: Let Sε
i ⊆ Rd be the ε-sphere around query point qi for all

qi ∈ Q, as depicted in the example shown in Figure 2(b). Obviously, any point in
the intersection region of all spheres, i.e. ∩i=1..mSε

i , has all query objects qi ∈ Q in
its ε-range. Consequently, all objects outside of this region can be pruned. However,
the computation of the search region can become too expensive in an arbitrary high
dimensional space; thus, we compute the intersection between rectangles that minimally
bound the hyper-spheres and use it as a filter. This can be done quite efficiently even in
high dimensional spaces; the resulting filter rectangle is used as a window query and all
objects in it are passed to the refinement step as candidates.

Object Based Pruning: As mentioned in Section 3 this filter is not applicable for in-
verse ε-range queries, since objects cannot be used to prune other objects.

Refinement: In the refinement step, for all candidates we compute their distances to all
query points q ∈ Q and report only objects that are within distance ε from all query
objects.



4.2 Algorithm

The implementation of our framework above can be easily converted to an algorithm,
which, after applying the filter steps, performs a window query to retrieve the candi-
dates, which are finally verified. Search can be facilitated by an R-tree that indexes D.
Starting from the root, we search the tree, using the filter rectangle. To minimize the I/O
cost, for each entry P of the tree that intersects the filter rectangle, we compute its dis-
tance to all points in Q and access the corresponding subtree only if all these distances
are smaller than ε.

5 Inverse k-NN Query

For inverse k-nearest neighbor queries (Ik-NNQ), we first consider the case of a single
query object (i.e., |Q| = 1). As discussed in Section 2, this case can be processed by the
bi-section-based Rk-NN approach (TPL) proposed in [12], enhanced by the rectangle-
based pruning criterion proposed in [4]. The core idea of TPL is to use bi-section-
hyperplanes between database objects o and the query object q in order to check which
objects are closer to o than to q. Each bi-section-hyperplane divides the object space
into two half-spaces, one containing q and one containing o. Any object located in the
half-space containing o is closer to o than to q. The objects spanning the hyperplanes
are collected in an iterative way. Each object o is then checked against the resulting
half-spaces that do not contain q. As soon as o is inside more than k such half-spaces,
it can be pruned. Next, we consider queries with multiple objects (i.e., |Q| > 1) and
discuss how the framework presented in Section 3 is implemented in this case.

5.1 Framework Implementation

Fast Query Based Validation Recall that this filter uses the set of query objects Q

only, to perform a quick check on whether the result is empty. Here, we use the obvious
rule that the result is empty if the number of query objects exceeds query parameter k.

Query Based Pruning We can exploit the query objects in order to reduce the Ik-NN
query to an Ik�-NN query with k� < k. A smaller query parameter k� allows us to
terminate the query process earlier and reduce the search space. We first show how k

can be reduced by means of the query objects only. The proofs for all lemmas can be
found in the full version of this paper [2].

Lemma 1. Let D ⊆ Rd
be a set of database objects and Q ⊆ D be a set of query

objects. Let D� = D −Q. For each o ∈ D�
, the following statement holds:

o ∈ Ik-NNQ(Q) in D ⇒ ∀q ∈ Q : o ∈ Ik
�
-NNQ({q}) in D

�
∪ {q},

where k
� = k − |Q|+ 1.

Simply speaking, if a candidate object o is not in the Ik�-NNQ({q}) result of some
q ∈ Q considering only the points D�∪{q}, then o cannot be in the Ik-NNQ(Q) result



considering all points in D and o can be pruned. As a consequence, Ik�-NNQ({q})
in D� ∪ {q} can be used to prune candidates for any q ∈ Q. The pruning power of
Ik�-NNQ({q}) depends on how q ∈ Q is selected.

From Lemma 1 we can conclude the following:

Lemma 2. Let o ∈ D − Q be a database object and qoref ∈ Q be a query object such

that ∀q ∈ Q : d(o, qoref ) ≥ d(o, q). Then

o ∈ Ik-NNQ(Q) ⇔ o ∈ Ik
�
-NNQ({qoref}) in D

�
∪ {q},

where k� = k − |Q|+ 1.

Lemma 2 suggests that for any candidate object o in D, we should use the farthest
query point to check whether o can be pruned.

o1

qref1
o2

d(o1,qref1)

(a) Pruning o1

o1 o2

qref2

d(o2,qref2)

(b) Pruning o2

Fig. 3. Ik-NN pruning based on Lemma 4

Object Based Pruning Up to now, we only used the query points in order to reduce
k in the inverse k-NN query. Now, we will show how to consider database objects in
order to further decrease k.

Lemma 3. Let Q be the set of query objects and H ⊆ D−Q be the non-query(database)

objects covered by the convex hull of Q. Furthermore, let o ∈ D be a database object

and qoref ∈ Q a query object such that ∀q ∈ Q : d(o, qoref ) ≥ d(o, q). Then for each

object p ∈ H it holds that d(o, p) ≤ d(o, qoref ).

According to the above lemma the following statement holds:

Lemma 4. Let Q be the set of query objects, H ⊆ D−Q be the database (non-query)

objects covered by the convex hull of Q and let qoref ∈ Q be a query object such that

∀q ∈ Q : d(o, qoref ) ≥ d(o, q). Then for a given database object o ∈ D

∀o ∈ D −H−Q : o ∈ Ik-NNQ(Q) ⇔



at most k� = k − |H| − |Q| objects p ∈ D −H are closer to o than qoref , and

∀o ∈ H : o ∈ Ik-NNQ(Q) ⇔

at most k� = k − |H| − |Q|+ 1 objects p ∈ D −H are closer to o than qoref .

Based on Lemma 4, given the number of objects in the convex hull of Q, we can
prune objects outside of the hull from Ik-NN(Q). Specifically, for an Ik-NN query we
have the following pruning criterion: An object o ∈ D can be pruned, as soon as we find
more than k� objects p ∈ D−H outside of the convex hull of Q, that are closer to o than
qoref . Note that the parameter k� is set according to Lemma 4 and depends on whether o
is in the convex hull of Q or not. Depending on the size of Q and the number of objects
within the convex hull of Q, k� = k−|H|+1 can become negative. In this case, we can
terminate query evaluation immediately, as no object can qualify the inverse query (i.e.,
the inverse query result is guaranteed to be empty). The case where k� = k − |H| + 1
becomes zero is another special case, as all objects outside of H can be pruned. For all
objects in the convex hull of Q (including all query objects) we have to check whether
there are objects outside of H that prune them.

As an example of how Lemma 4 can be used, consider the data shown in Fig. 3 and
assume that we wish to perform an inverse 10NN query using a set Q of seven query
objects, shown as points in the figure; non-query database points are represented by
stars. In Figure 3(a), the goal is to determine whether candidate object o1 is a result,
i.e., whether o1 has all q ∈ Q in its 10NN set. The query object having the largest
distance to o1 is qref1. Since o1 is located outside of the convex hull of Q (i.e, o ∈

D − H − Q), the first equivalence of Lemma 4, states that o1 is a result if at most
k� = k − |H| − |Q| = 10 − 4 − 7 = −1 objects in D − H − Q are closer to o1

than qref1. Thus, o1 can be safely pruned without even considering these objects (since
obviously, at least zero objects are closer to o1 than qref1). Next, we consider object
o2 in Figure 3(b). The query object with the largest distance to o2 is qref2. Since o2 is
inside the convex hull of Q, the second equivalence of Lemma 4 yields that o2 is a result
if at most k� = k− |H| − |Q|+1 = 10− 4− 7+ 1 = 0 objects D−H−Q are closer
to o2 than qref2. Thus, o2 remains a candidate until at least one object in D−H−Q is
found that is closer to o2 than qref2.

Refinement Each remaining candidate is checked whether it is a result of the inverse
query by performing a k-NN search and verifying whether its result includes Q.

5.2 Algorithm

We now present a complete algorithm that traverses an aggregate R-tree (ARTree),
which indexes D and computes Ik-NNQ(Q) for a given set Q of query objects, using
Lemma 4 to prune the search space. The entries in the tree nodes are augmented with
the cardinality of objects in the corresponding sub-tree. These counts can be used to
accelerate search, as we will see later.



Algorithm 1 Inverse kNNQuery
Require: Q, k, ARTree

1: //Fast Query Based Validation

2: if |Q| > k then

3: return ”no result” and terminate algorithm
4: end if

5: pq PriorityQueue ordered by maxqi∈QMinDist
6: pq.add(ARTree.root entries)
7: |H| = 0
8: LIST candidates, prunedEntries

9: //Query/Object Based Pruning

10: while ¬pq.isEmpty() do

11: e = pq.poll()
12: if getPruneCount(e,Q, candidates, prunedEntries, pq) > k − |H| − |Q| then

13: prunedEntries.add(e)
14: else if e.isLeafEntry() then

15: candidates.add(e)
16: else

17: pq.add(e.getChildren())
18: end if

19: if e ∈ convexHull(Q) then

20: |H|+ = e.agg count

21: end if

22: end while

23: //Refinement Step

24: LIST result

25: for c ∈ candidates do

26: if q
o
ref ∈ knnQuery(c, k) then

27: result.add(c)
28: end if

29: end for

30: return (result)

In a nutshell, the algorithm, while traversing the tree, attempts to prune nodes based
on the lemma using the information known so far about the points of D that are included
in the convex hull (filtering). The objects that survive the pruning are inserted in the
candidates set. During the refinement step, for each point c in the candidates set, we run
a k-NN query to verify whether c contains Q in its k-NN set.

Algorithm 1 is a pseudocode of our approach. The ARTree is traversed in a best-
first search manner [5], prioritizing the access of the nodes according to the maximum
possible distance (in case of a non-leaf entry we use MinDist) of their contents to the
query points Q. In specific, for each R-tree entry e we can compute, based on its MBR,
the farthest possible point qoref in Q to a point p indexed under e. Processing the entries
with the smallest such distances first helps to find points in the convex hull of Q earlier,
which helps making the pruning bound tighter.

Thus, initially, we set |H| = 0, assuming that in the worst case the number of non-
query points in the convex hull of Q is 0. If the object which is deheaped is inside the



convex hull, we increase |H| by one. If a non-leaf entry is deheaped and its MBR is
contained in the hull, we increase |H| by the number of objects in the corresponding
sub-tree, as indicated by its augmented counter.

During tree traversal, the accessed tree entries could be in one of the following sets
(i) the set of candidates, which contains objects that could possibly be results of the
inverse query, (ii) the set of pruned entries, which contains (pruned) entries whose sub-
trees may not possibly contain inverse query results, and (iii) the set of entries which
are currently in the priority queue. When an entry e is deheaped, the algorithm checks
whether it can be pruned. For this purpose, it initializes a prune counter which is a
lower bound of the number of objects that are closer to every point p in e than Q’s
farthest point to p. For every entry e� in all three sets (candidates, pruned, and priority
queue), we increase the prune counter of e by the number of points in e� if the fol-
lowing condition holds: ∀p ∈ e, ∀p� ∈ e� : dist(e, e�) < dist(e, qoref ). This condition
can efficiently be checked [4]. An example where this condition is fulfilled is shown in
Figure 4. Here the prune counter of e can be increased by the number of points in e�.

q1
q2

e
q3

q4

e�‘

Fig. 4. Calculating the prune count of e

While updating prune counter for e, we
check whether prune counter > k − |H| −

|Q| (prune counter > k−|H|−|Q|+1) for
entries that are entirely outside of (intersect)
the convex hull. As soon as this condition is
true, e can be pruned as it cannot contain ob-
jects that can participate in the inverse query
result (according to Lemma 4). Considering
again Figure 4 and assuming the number of
points in e� to be 5, e could be pruned for
k ≤ 10 (since prune counter(5) > k(10)−
|H|(2)−|Q|(4) holds). In this case e is moved
to the set of pruned entries. If e survives prun-
ing, the node pointed to by e is visited and
its entries are enheaped if e is a non-leaf en-
try; otherwise e is inserted in the candidates

set. When the queue becomes empty, the fil-
ter step of the algorithm completes with a set of candidates. For each object c in this
set, we check whether c is a result of the inverse query by performing a k-NN search
and verifying whether its result includes Q. In our implementation, to make this test
faster, we replace the k-NN search by an aggregate ε-range query around c, by setting
ε = d(c, qcref ). The objective is to count whether the number of objects in the range is
greater than k. In this case, we can prune c, otherwise c is a result of the inverse query.
ARTree is used to process the aggregate ε-range query; for every entry e included in
the ε-range, we just increase the aggregate count by the augmented counter to e without
having to traverse the corresponding subtree. In addition, we perform batch searching
for candidates that are close to each other, in order to optimize performance. The details
are skipped due to space constraints.



6 Inverse Dynamic Skyline Query

We again first discuss the case of a single query object, which corresponds to the reverse
dynamic skyline query [7] and then present a solution for the more interesting case
where |Q| > 1. Let q be the (single) query object with respect to which we want to
compute the inverse dynamic skyline. Any object o ∈ D defines a pruning region, such
that any object o� in this region cannot be part of the inverse query result. Formally:

Definition 2 (Pruning Region). Let q = (q1, . . . , qd) ∈ Q be a single d-dimensional

query object and o = (o1, . . . , od) ∈ D be any d-dimensional database object. Then the

pruning region PRq(o) of o w.r.t. q is defined as the d-dimensional rectangle where the

ith dimension of PRq(o) is given by [ q
i+oi

2 ,+∞] if qi ≤ oi and [−∞,
qi+oi

2 ] if qi ≥ oi.

The pruning region of an object o with respect to a single query object q is illustrated
by the shaded region in Figure 5(a).

q

o

(a) pruning region

oo4
o1

o
o3

q

o2

q
o5
o7o8

o6
7

(b) candidates

Fig. 5. Single-query case

Filter step. As shown in [7], any object p ∈ D can be safely pruned if p is contained
in the pruning region of some o ∈ D w.r.t. q (i.e. p ∈ PRq(o)). Accordingly, we can
use q to divide the space into 2d partitions by splitting along each dimension at q. Let
o ∈ D be an object in any partition P ; o is an I-DSQ candidate, iff there is no other
object p ∈ P ⊆ D that dominates o w.r.t. q.

Thus, we can derive all I-DSQ candidates as follows: First, we split the data
space into the 2d partitions at the query object q as mentioned above. Then in each
partition, we compute the skyline3, as illustrated in the example depicted in Figure
5(b). The union of the four skylines is the set of the inverse query candidates (e.g.,
{o1, o2, o3, o5, o6, o8} in our example).

Refinement. The result of the reverse dynamic skyline query is finally obtained
by verifying for each candidate c, whether there is an object in D which dominates q

w.r.t. c. This can be done by checking whether the hypercube centered at c with extent
2 · |ci − qi| at each dimension i is empty. For example, candidate o5 in Figure 5(b) is
not a result, because the corresponding box (denoted by dashed lines) contains o7. This
means that in both dimensions o7 is closer to o5 than q is.

3 Only objects within the same partition are considered for the dominance relation.



6.1 IQ Framework Implementation

Fast Query Based Validation Following our framework, first the set Q of query ob-
jects is used to decide whether it is possible to have any result at all. For this, we use
the following lemma:
Lemma 5. Let q ∈ Q be any query object and let S be the set of 2d partitions derived

from dividing the object space at q along the axes into two halves in each dimension. If

in each partition r ∈ S there is at least one query object q� ∈ Q (q� �= q), then there

cannot be any result.

q2
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Fig. 6. Pruning regions of query objects

Query Based Pruning We now propose a filter, which uses the set Q of query objects
only in order to reduce the space of candidate results. We explore similar strategies as
the fast query based validation. For any pair of query objects q, q� ∈ Q, we can define
two pruning regions, according to Definition 2: PRq(q�) and PRq�(q). Any object in-
side these regions cannot be a candidate of the inverse query result because it cannot
have both q1 and q2 in its dynamic skyline point set. Thus, for every pair of query ob-
jects, we can determine the corresponding pruning regions and use their union to prune
objects or R-tree nodes that are contained in it. Figure 6 shows examples of the pruning
space for |Q| = 3 and |Q| = 4. Observe that with the increase of |Q| the remaining
space, which may contain candidates, becomes very limited.

The main challenge is how to encode and use the pruning space defined by Q, as
it can be arbitrarily complex in the multidimensional space. As for the Ik-NNQ case,
our approach is not to explicitly compute and store the pruning space, but to check on-
demand whether each object (or R-tree MBR) can be pruned by one or more query pairs.
This has a complexity of O(|Q|2) checks per object. In the full version of the paper [2],
we show how to reduce this complexity for the special 2D case. The techniques shown
there can also be used in higher dimensional spaces, with lower pruning effect.

Object Based Pruning For any candidate object o that is not pruned during the query-
based filter step, we need to check if there exists any other database object o� which
dominates some q ∈ Q with respect to o. If we can find such an o�, then o cannot have
q in its dynamic skyline and thus o can be pruned for the candidate list.



q1 o1

q2
Fig. 7. Refinement area defined
by q1, q2 and o1

Refinement In the refinement step, each candidate
c is verified by performing a dynamic skyline query
using c as query point. The result should contain all
qi ∈ Q, otherwise c is dropped. The refinement step
can be improved by the following observation (cf. Fig-
ure 7): for checking if a candidate o1 has all qi ∈ Q in
its dynamic skyline, it suffices to check whether there
exists at least one other object oj ∈ D which prevents
one qi from being part of the skyline. Such an object
has to lie within the MBR defined by qi and q�i (which

is obtained by reflecting qi through o1). If no point is within the |Q| MBRs, then o1 is
reported as result.

6.2 Algorithm

The algorithm for I-DSQ, during the filter step, traverses the tree in a best first man-
ner, where entries are accessed by their minimal distance (MinDist) to the farthest query
object. For each entry e we check if e is completely contained in the union of pruning
regions defined by all pairs of queries (qi, qj) ∈ Q; i.e.,

�
(qi,qj)∈Q PRqi(qj). In addi-

tion, for each accessed database object oi and each query object qj , the pruning region
is extended by PRqj (oi). Analogously to the Ik-NN case, lists for the candidates and
pruned entries are maintained. Finally, the remaining candidates are refined using the
refinement strategy described in Section 6.1.

7 Experiments

For each of the inverse query predicates discussed in the paper, we compare our pro-
posed solution based on multi-query-filtering (MQF), with a naive approach (Naive)
and another intuitive approach based on single-query-filtering (SQF). The naive algo-
rithm (Naive) computes the corresponding reverse query for every q ∈ Q and intersects
their results iteratively. To be fair, we terminated Naive as soon as the intersection of
results obtained so far is empty. SQF performs a Rk-NN (Rε-range / RDS) query using
one randomly chosen query point as a filter step to obtain candidates. For each can-
didate an ε-range (k-NN / DS) query is issued and the candidate is confirmed if all
query points are contained in the result of the query (refinement step). Since the pages
accessed by the queries in the refinement step are often redundant, we use a buffer to
further boost the performance of SQF. We employed R∗-trees ([1]) of pagesize 1Kb to
index the data sets used in the experiments. For each method, we present the number of
page accesses and runtime. To give insights into the impact of the different parameters
on the cardinality of the obtained results we also included this number to the charts.
In all settings we performed 1000 queries and averaged the results. All methods were
implemented in Java 1.6 and tests were run on a dual core (3.0 Ghz) workstation with 2
GB main memory having windows xp as OS. The performance evaluation settings are
summarized below; the numbers in bold correspond to the default settings:



parameter values

db size 100000 (synthetic), 175812 (real)
dimensionality 2, 3, 4, 5
ε 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1
k 50, 100, 150, 200, 250
# inverse queries 1, 3, 5, 10, 15, 20, 25, 30, 35
query extent 0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006

The experiments were performed using several data sets:

– Synthetic data sets: Clustered and uniformly distributed objects in d-dimensional
space.

– Real Data set: Vertices in the Road Network of North America 4. Contains 175,812
two-dimensional points.

The data sets were normalized, such that their minimum bounding box is [0, 1]d. For
each experiment, the query objects Q for the inverse query were chosen randomly from
the database. Since the number of results highly depends on the distance between in-
verse query points (in particular for the Iε-RQ and Ik-NNQ) we introduced an addi-
tional parameter called extent to control the maximal distance between the query ob-
jects. The value of extent corresponds to the volume (fraction of data space) of a cube
that minimally bounds all queries. For example in the 3D space the default cube would
have a side length of 0.073. A small extent assures that the queries are placed close to
each other generally resulting in more results. In this section, we show the behavior of
all three algorithms on the uniform data sets only. Experiments on the other data sets
can be found in the full version of the paper [2].

7.1 Inverse ε-Range Queries

We first compared the algorithms on inverse ε range queries. Figure 8(a) shows that
the relative speed of our approach (MQF) compared to Naive grows significantly with
increasing ε; for Naive, the cardinality of the result set returned by each query depends
on the space covered by the hypersphere which is in O(εd). In contrast, our strategy ap-
plies spatial pruning early, leading to a low number of page accesses. SQF is faster than
Naive, but still needs around twice as much page accesses as MQF. MQF performs even
better with an increasing number of query points in Q (as depicted in Figure 8(b)), as
in this case the intersection of the ranges becomes smaller. The I/O-cost of SQF in this
case remains almost constant which is mainly due to the use of the buffer which lowers
the page accesses in the refinement step. Similar results can be observed when varying
the database size (Figure 8(e)) and query extent (Figure 8(d)). For the data dimension-
ality experiment (Figure 8(c)) we set epsilon such that the sphere defined by ε covers
always the same percentage of the dataspace, to make sure that we still obtain results
when increasing the dimensionality (note, however, that the number of results is still
unsteady). Increasing dimensionality has a negative effect on performance. However

4 Obtained and modified from http://www.cs.fsu.edu/∼lifeifei/SpatialDataset.htm. The original
source is the Digital Chart of the World Server (http://www.maproom.psu.edu/dcw/).
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Fig. 8. Iε-Q algorithms on uniform data set

MQF copes better with data dimensionality than the other approaches. Finally, Figure
8(f) compares the computational costs of the algorithms. Even though Inverse Queries
are I/O bound, MQF is still preferable for main-memory problems.

7.2 Inverse k-NN Queries

The three approaches for inverse k-NN search show a similar behavior as those for the
Iε-RQ. Specifically the behavior for varying k (Figure 9(a)) is comparable to varying
ε and increasing the query number (Figure 9(b)) and the query extent (Figure 9(d))
yields the expected results. When testing on data sets with different dimensionality,
the advantage of MQF becomes even more significant when d increases (cf. Figure
9(c)). In contrast to the Iε-RQ results for Ik-NN queries the page accesses of MQF
decrease (see Figure 9(e)) when the database size increases (while the performance
of SQF still degrades). This can be explained by the fact, that the number of pages
accessed is strongly correlated with the number of obtained results. Since for the Iε-
RQ the parameter ε remained constant, the number of results increased with a larger
database. For Ik-NN the number of results in contrast decreases and so does the number
of accessed pages by MQF. As in the previous set of experiments MQF has also the
lowest runtime (Figure 9(f)).

7.3 Inverse Dynamic Skyline Queries

Similar results as for the Ik-NNQ algorithm are obtained for the inverse dynamic sky-
line queries (I-DSQ). Increasing the number of queries in Q reduces the cost of the
MQF approach, while the costs of the competitors increase. Since the average number
of results approaches 0 faster than for the other two types of inverse queries we choose
4 as the default size of the query set. Note that the number of results for I-DSQ intu-
itively increases exponentially with the dimensionality of the data set (cf. Figure 10(b)),
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Fig. 9. Ik-NNQ algorithms on uniform data set

thus this value can be much larger for higher dimensional data sets. Increasing the dis-
tance among queries does not affect the performance as seen in Figure 10(c); regarding
the number of results in contrast to inverse range- and k-NN queries, inverse dynamic
skyline queries are almost insensitive to the distance among the query points. The ra-
tionale is that dynamic skyline queries can have results which are arbitrary far from the
query point, thus the same holds for the inverse case. The same effect can be seen for
increasing database size (cf. Figure 10(d)). The advantage of MQF remains constant
over the other two approaches. Like inverse range and k-NN queries, I-DSQ are I/O
bound (see Figure 10(e)), but MQF is still preferable for main-memory problems.

8 Conclusions

In this paper we introduced and formalized the problem for inverse query processing.
We proposed a general framework to such queries using a filter-refinement strategy
and applied this framework to the problem of answering inverse ε-range queries, in-
verse k-NN queries and inverse dynamic skyline queries. Our experiments show that
our framework significantly reduces the cost of inverse queries compared to straight-
forward approaches. In the future, we plan to extend our framework for inverse queries
with different query predicates, such as top-k queries. In addition, we will investigate
inverse query processing in the bi-chromatic case, where queries and objects are taken
from different data sets. Another interesting extension of inverse queries is to allow the
user not only to specify objects that have to be in the result, but also objects that must
not be in the result.
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pages 365–376, 2010.
14. C. Yang and K.-I. Lin. An index structure for efficient reverse nearest neighbor queries. In

Proc. ICDE, 2001.


