Evaluation of Iceberg Distance Joins

Yutao Shou!, Nikos Mamoulis!, Huiping Cao!,
Dimitris Papadias?, and David W. Cheung®

! Department of Computer Science and Information Systems,
University of Hong Kong,
Pokfulam Road, Hong Kong
{ytshou,nikos,hpcao,dcheung}@csis.hku.hk
2 Department of Computer Science
Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
dimitris@cs.ust.hk

Abstract. The iceberg distance join returns object pairs within some
distance from each other, provided that the first object appears at least a
number of times in the result, e.g., “find hotels which are within 1km to
at least 10 restaurants”. The output of this query is the subset of the cor-
responding distance join (e.g., “find hotels which are within 1km to some
restaurant”) that satisfies the additional cardinality constraint. There-
fore, it could be processed by using a conventional spatial join algorithm
and then filtering-out the non-qualifying pairs. This approach, however,
is expensive, especially when the cardinality constraint is highly selec-
tive. In this paper, we propose output-sensitive algorithms that prune
the search space by integrating the cardinality with the distance con-
straint. We deal with cases of indexed /non-indexed datasets and evaluate
the performance of the proposed techniques with extensive experimental
evaluation covering a wide range of problem parameters.

1 Introduction

The most common types of spatial joins involve intersection (e.g., “find all pairs
of roads and rivers that intersect”) or distance predicates (e.g., “find all hotels
that are within 100 meters from the coastline”). A large amount of research work
has been devoted to spatial joins due to their applicability in various GIS oper-
ations (e.g., map overlay) and high execution cost, which, in the worst case, is
quadratic to the size of the data. Several algorithms have been proposed to min-
imize the cost, considering cases where both [6], one [18,21], or neither [23,19,
2] dataset is indexed. Even though these methods were originally developed for
intersection joins, they can be easily adapted for distance joins (i.e., by extend-
ing the object boundaries by €/2 [17,20]). Nevertheless, spatial join operators
are optimized for queries that require all join results.

For typical geographic layers (e.g., rivers with road-lines), the size of the
join result is linear to the size of the data. However, users who want to analyze
spatial data often impose additional constraints that restrict the output size.

Such a query is the iceberg distance join, which, given two relations R, S, a
distance threshold €, and a cardinality threshold ¢, returns object pairs (r, s),
(r € R, s € S) within distance € from each other, provided that r appears at
least ¢ times in the join result. An example of a semi-join query in this class is
“find hotels which are close to at least t restaurants”. In pseudo-SQL it could be
expressed as follows:

SELECT H.id

FROM Hotels H, Restaurants R

WHERE dist(H.location,R.location) <= ¢
GROUP BY H.id

HAVING COUNT(x) >=t¢ ;

A spatial DBMS would evaluate this query by (i) processing the spatial join
using some existing algorithm and (ii) sorting/hashing the qualifying (r, s) pairs
by r.id to output all r € R which appear more than ¢ times in the joined pairs.
The spatial join operator itself may produce many results before filtering out
the ones that do not qualify the cardinality constraint ¢. In other words, the
methodology above is not output sensitive, i.e., its cost does not depend on the
result size, which is affected by t¢.

In this paper we propose output sensitive algorithms, by “pushing” the cardi-
nality constraint ¢ into the spatial join operators in order to filter out large parts
of the search space. We study the cases of both indexed and both non-indexed
joined datasets, by extending efficient algorithms for each case. The rest of the
paper is organized as follows. Section 2 provides background and related work. In
Section 3 we describe and optimize techniques for iceberg distance joins. Section
4 evaluates the proposed techniques with comprehensive experiments. Finally,
Section 5 concludes the paper with a discussion about related work.

2 Background and Related Work

Although our methods are applicable to any space-partitioning access method,
we only consider R—trees [11] due to their simplicity and popularity. The R~
tree indexes minimum bounding rectangles (MBRs) of objects and processes
fast the filter step of the most important query types, i.e., range queries, nearest
neighbors [14], and spatial joins. Section 2.1 provides background on intersection
join algorithms, while section 2.2 discusses distance join processing. Section 2.3
reviews related work on iceberg queries and motivates the problem studied in
this paper.

2.1 Spatial Joins

The R-tree join (RJ) [6] is the most influential algorithm for spatial joins when
both datasets are indexed by R-trees. Starting from the two roots, it syn-
chronously traverses the trees, following entry pairs that intersect. Upon reaching
the leaves, pairs of intersecting object MBRs are output. RJ employs two heuris-
tics that greatly reduce its computational cost. Given two nodes ng and ng to
be joined, if an entry eg in node ng does not intersect the MBR of node ng (i.e.,

the MBR of all entries contained in ng), then there can be no entry es € ng,
such that er and eg overlap. Using this observation, RJ performs two linear
scans in the entries of both nodes before applying intersection tests, and prunes
from each node the entries that do not intersect the MBR of the other node. The
second technique (forward sweep [2]), is based on plane sweep and applies sorting
on one dimension in order to reduce the quadratic number of comparisons for
candidate entry pairs. A breadth-first version of RJ with improved I/O cost was
proposed in [15].

The Partition Based Spatial Merge join (PBSM) [23] is based on the relational
hash join operator and applies on two non-indexed sets. The space is regularly
partitioned using an orthogonal grid and objects from both datasets are hashed
into the partitions, replicating the ones that span boundaries. Figure 1a illus-
trates a regular space partitioning incurred by PBSM and some data hashed into
the partitions. Data hashed into the same partitions are then joined in memory
using plane sweep. If two buckets to be joined do not fit in memory, the algo-
rithm is recursively applied for their contents. Since data from both datasets
may be replicated, the simple version of the algorithm may produce duplicates;
however, these can be avoided by a simple check [9,20]. When the data to be
joined are skewed, some partitions may contain a large percentage of the hashed
objects, whereas others very few objects, rendering the algorithm inefficient. To
handle skewed data, the cells of the grid are distributed to partitions according
to a hash function and the space covered by a partition is no longer continuous,
but consists of a number of scattered tiles. Figure 1b shows such a (round-robin
like) spatial hash function, where tiles with the same number are assigned to the
same bucket. A parallel, non-blocking version of PBSM was proposed in [20].

o | |
° o0 o 01 2 10,
o 0 ° H o
o ° 1o o diton [[i R
artition i o
o R T 2490 7
0% 0 ° 100 |gee 1o °
“ D° PR P
° o o e . e
ol 5 — ;| repartitioning 1O e T g
I G V2 R N P
o, e -5 s
° 0 8 0.:°1 1°2 10
o ol o | |

(a) data partitioning in PBSM (b) a spatial hash function

Fig. 1. Example of PBSM

Koudas and Sevcik [16] proposed a hierarchical partitioning that avoids data
replication, by assigning each object to the topmost layer where it does not span
any grid line. The Spatial Hash Join (SHJ) algorithm [19] defines hash-buckets
with irregular extents (which may overlap), such that each object from the inner
dataset is hashed to exactly one bucket and only objects from the outer one may
be replicated. Finally, the method proposed in [2] applies external plane sweep
after sorting both datasets on an axis. This method was later extended in [1] to
a unified technique for indexed and non-indexed inputs.

Another class of algorithms aims at joining a non-indexed dataset with an
R-tree. The Seeded Tree Join algorithm (STJ) [18] builds a second R—tree using
the existing one as a seed and then applies RJ. Slot Index Spatial Join (SISJ)
[21] is a hybrid of STJ and SHJ, which uses the existing R—tree in order to
determine the bucket extents. If H is the desired number of hash buckets, SISJ
finds the topmost level of the tree such that the number of entries is larger
or equal to H. These entries are then grouped into H (possibly overlapping)
partitions called slots, which define the bucket extents. Fach slot contains the
MBR of the indexed R—tree entries, along with a list of pointers to these entries.
The grouping policy used by SISJ is based on the the splitting heuristic of the
R*—tree [3]. The hashing and joining phase of SISJ is similar to the corresponding
phases of SHJ; all data from the R—tree indexed by a slot are loaded and joined
with the corresponding hash-bucket.

2.2 Distance Joins and related queries

Research on the distance join operator has mainly focused on point datasets,
because they are more relevant in applications of higher dimensionality (e.g.,
image processing, data mining), where the data are points. If two points r and
s are within distance €, then the circles d,, ds with centers r, s and radii /2
intersect, implying that their MBRs 7' and s’ intersect, as illustrated in Figure
2a. Therefore, given two point sets R and S that fit in memory, we can reduce
the O(|R||S]|) distance join cost, by applying a plane-sweep algorithm on the
MBRs of their circles. Then, we remove any false hits (like the one in Figure
2b) by exact distance calculations. Notice that point extension can be performed
dynamically and on-demand for each value of €, without any precomputations.
Figure 2c shows how this method can be generalized for R—tree MBRs (i.e., for
the RJ algorithm), which are extended to Minkowsky regions and approximated
by rectangles. An alternative method, which simplifies the join, is to extend
by € and approximate only the points (and MBRs) of one dataset. Figure 2d
illustrates the extension and approximation of r only, in the configuration of
Figure 2a. Distance joins are closely related to similarity retrieval in high-

ey
the extended
! |__— MBRs

M | —

i
|
(a) qualifying points (b) a false hit (c) a false hit (MBRs) (d) only r is extended

|

Fig. 2. Point and MBR extensions for distance join processing

dimensional spaces. [25] present the dynamic construction of a tree that indexes
the points using one dimension per level, and can efficiently find point pairs
within distance e. [17] develop a generalization of the algorithm in [16] and

compare it with an extension of RJ. Finally, an optimized method for problems
of medium dimensionality (e.g., 5-10 dimensions) is proposed in [5]. In summary,
these techniques are suitable for high dimensional problems without cardinality
constraints and for the case when the qualifying pairs are retrieved from the
same dataset.

For the spatial (i.e., 2-dimensional) domain, the algorithms of the previous
section are still applicable with some modifications. Furthermore, related work
has been proposed in the context of closest pairs (CP) queries. Given a threshold
k, a CP query retrieves the k closest pairs {r,s), r € R, s € S. CP queries have
been studied only for the case, where both R and S are indexed by R-trees. [13]
present an incremental algorithm (for unknown k), which is optimized in [26]. [8]
show that a depth-first join algorithm, adapted from RJ, can minimize random
I/Os in the presence of a buffer.

2.3 Iceberg queries

The term iceberg query was defined in [10] to characterize a class of relational
queries that retrieve aggregate values above some specified threshold (defined by
a HAVING clause). An example of an iceberg query in SQL is shown below:

SELECT part, region, sum(quantity)
FROM Sales

GROUP BY part, region

HAVING sum(quantity) >=t;

The motivation is that the data analyst is interested in retrieving only excep-
tional aggregate values that may be helpful for decision support. In this example,
we want to find {part,region) pairs with many sales, in order to organize ad-
vertisement campaigns there. A typical query optimizer would first perform the
aggregation for each (part,region) group and then find the ones whose aggre-
gate value exceeds the threshold. In order to avoid useless aggregations for the
pairs which disqualify the query, [10] present several hash-based methods with
output-sensitive cost. Similar techniques for data cubes and On-Line Analytical
Processing are proposed by [4,12].

The efficient processing of iceberg queries is also relevant to Spatial Databases.
We focus on iceberg distance joins, since joins are hard by nature and potential
improvements are very beneficial. Our proposal includes extensions, which can
be easily integrated to existing spatial join algorithms by the Spatial DBMS
developer. Notice that the algorithms in [10] are not applicable for our problem,
since they consider aggregate queries (not joins) on relational data.

3 Algorithms for iceberg distance joins

Figure 3 illustrates an iceberg distance join example. The user is interested in
retrieving hotels and the restaurants within € distance from them, provided that
the number of such restaurants is at least ¢ = 3. The result of the iceberg join
should be {(ha, 2}, (h2,73), (h2,74)}. On the other hand, h; and hs are also close

to some restaurants (i.e., they belong to the result of the conventional distance
join) but they do not qualify the cardinality threshold ¢.

The iceberg distance join is an asymmetric operator, since the cardinality
constraint ¢ applies only on the occurrences of values from R. In other words,
RX S # S X R, in general. Due to this property we have to distinguish between
the four cases (i) R and S are not indexed, (ii) R and S are indexed, (iii) only
R is indexed, or (iv) only S is indexed. For each of the above cases we discuss
how to process the cardinality constraint ¢ together with the join. For joined
inputs that fall into case (i), we propose extensions of PBSM [23]. For case (ii),
we extend RJ [6] and we discuss adaptations of SISJ [21] for cases (iii) and (iv).
Finally, we show how our methods can be applied for variations of the iceberg
distance join query.

AN C G C3
e/ o\ N

/ ! s’

e, l/ 9]\ Or4\\ A

N 1 Y ety Cy Cs Ce

\ v Thy

AN < \/ _ o //
N \Vz - C7 Cg C9
Fig. 3. Iceberg distance join example Fig. 4. Replication of points from S

3.1 R and S are not indexed

When neither dataset is indexed, we can process the join, using a hash algorithm
based on PBSM [23], called Partitioned Iceberg Distance Join (PIDJ). In this
section, we present a number of progressively more optimized variations of this
method.

Avoiding duplication of results and sorting. In order to avoid sorting the
results for validating the cardinality constraint, and at the same time eliminate
duplicates, we extend only the objects in S by €. In other words, each point in R
is hashed to ezactly one bucket, based on the cell that contains it. On the other
hand, points from S are extended to circles and hashed to multiple partitions
(for each cell they intersect). For instance, point s € S depicted in Figure 4 is
hashed to buckets corresponding to cells Cy, Cy, and C5. Finding these cells is a
two-step process. First, we locate the cells, which intersect the circle-bounding
rectangle s’ (i.e., C1, Cy, Cy, and Cy). Then, the distance to the qualifying cell
boundaries is computed and used to prune false alarms (i.e., C}).

The second phase of the algorithm, loads for each cell C, the corresponding
buckets R, and S, and joins them. If the buckets are too large to be joined in
memory, their contents are repartitioned using a finer grid and PIDJ is applied
recursively. Here, we have to note that in most cases at least R, will fit in
memory, since only points from S, are replicated. In such cases repartitioning can
be avoided, by building for example a main-memory R—tree for R,, as suggested
by [19,21]. Because the points from R are not duplicated, we can immediately

count their occurrences in the joined pairs. Thus, after obtaining the results for
the bucket pair (R, S;), we sort them in memory on r.id and report the pairs
for those r.id that appear at least ¢ times.

Filtering out small buckets. If the distance threshold € is small and the
cardinality threshold ¢ is large, we can expect that some joined buckets will not
return any results. This can happen, when the number of objects in S, is smaller
than ¢, in which case, it is obvious that no r € R, qualifies the query. Therefore,
we can use the cardinalities of the buckets, which are already tracked, to prune
bucket pairs.

Although this method already avoids loading some bucket pairs, we can still
do better by re-scheduling the hashing process. Thus, we first hash S and then
R. By doing so, we can immediately spot the cells, which may not contain any
results, and mark them. This approach has two benefits. First, all data from R
which fall into disqualifying cells are filtered out immediately; hashing them to
a bucket (i.e., writing them) is avoided. Second, pages from the memory buffer,
which would normally be allocated for disqualified partitions, are now free for
use by the remaining partitions.

Filtering out uniform, sparse buckets. Filtering cells that contain fewer
than t points from S can reduce the join cost significantly if ¢ is large, but it
can still leave many buckets S, which provide no result. Can we do better? The
answer is yes, if we have knowledge about the distribution of points inside each
bucket. The rationale is that if the points from S, are uniformly distributed and
the cell extent is much larger than €, we can prune the bucket, or parts of the
bucket that may not give any results.

To illustrate the idea, consider the shaded cell C, of Figure 5a, and assume
for simplicity that the length of each side of the cell is 4 x e. While hashing S, we
construct a fine grid F with microcells of length € at each side, which captures
the distribution of objects in S. The dashed cells in Figure 5a show the part of
this grid that influence cell C,, i.e., the distribution of points whose extended
circle intersects C,. A counter for each microcell indicates the number of points
from S which fall there.

Let us assume that ¢ = 50 and have a closer look to the points in S, that
fall into and around the individual microcells of length € in C,. Observe that
the points from R that fall into the microcell ¢; shown in Figure 5b can only
join with objects in S, that fall into ¢; and its surrounding microcells (i.e., the
numbered ones in Figure 5b). The total number of objects in these microcells is
just 16 < t, indicating that no object from R that falls into c¢; can participate in
the iceberg join result. All microcells in C, are eliminated by this process, thus
we can prune the whole C,. Observe that C, cannot be pruned by considering
only the total number of points in this partition, since |S,| = 75 > t.

In addition, this method can also save us I/Os even when C, is not pruned.
Assume for example that ¢ = 20. Figure 5c¢ shows a bitmap for C, indicating
which microcells may contain qualifying points from R. The bitmap can be
constructed by adding to a microcell’s counter the counters of the surrounding
ones. We use this (lightweight) bitmap as a replacement of the fine grid F, to

€
O RN SR T 2 N I N O S N
1@ T2z E 1 T } N
[R e L~ [| N |
o2 B EGE4J\ SOk | i
S I I A 2R S R - [I _
O R ' . | Cjonjo |
L R T — - T —l==F—4-- L = —= = = — -
3 270 1 jo |3, L ! oo o]
2 |1 0 13 3 |2 ! Lo | | o |
[) S S Y [R T I

(a) a fine statistical grid (b) the influence cells of ¢; (c) the filtering bitmap

Fig. 5. Pruning buckets or data space using an e-length grid

prune points from R, while hashing the dataset; if a point r € R falls into a
microcell with a 0, it can be immediately eliminated, reducing the size of R,
on disk. The generation, computation and management of F and its associated
bitmap comes with little overhead, assuming that |S| is much larger than the
total number of microcells. For instance, if € = 1% of the map’s length, we need
space for 10,000 integers, or just 40Kb of memory. If € is much smaller, we can
use as length a multiple of €, trading memory space with accuracy. The speedup
improvement due to this technique is significant, as demonstrated in Section 4.

Figure 6 shows a pseudocode of PIDJ with all optimizations we have dis-
cussed. Before join processing, the space is partitioned at two levels, by the
regular grid G which defines the buckets and by the fine grid F (lines 1-2). A
counter for the number of points from S that fall in each microcell, is initialized
(lines 3-4). Then, S is read and each s € S is hashed to the buckets that corre-
spond to the cells intersected by its extended area (lines 5-9). After hashing S,
cells with fewer objects than ¢ are pruned. For each cell C); that is not pruned, a
bitmap like the one in Figure 5c is defined (using F) to mark regions, in which
points from R can potentially participate in the result. If there are no such re-
gions, we can prune the whole cell (lines 10-16). The next phase of the algorithm
hashes each point from R to exactly one cell C,. that contains it, provided that
neither this cell nor the corresponding microcell ¢, from F have been pruned
(lines 17-21). Finally, the algorithm loads all bucket pairs that correspond to
active cells, performs the distance join in memory, and applies the cardinality
constraint ¢ to output the qualifying pairs (lines 22-27).

3.2 R and S are indexed

In this section we propose extensions of the R—tree join algorithm [6] for the
iceberg join query. The join can be evaluated by (i) applying RJ to get all object
pairs (r, s) within distance ¢, and (ii) sorting them by r.id to bring together pairs
with the same r.id in order to validate the threshold constraint ¢. Sorting (or
hashing) in step (ii) is essential, since RJ does not produce the pairs clustered
by r.id. In the next section we propose a modification of RJ that employs a
priority queue to produce the join results clustered. In section 3.2 we propose an

Algorithm PIDJ(Objectset R, Objectset S, real e, int t)

1. define the regular grid G according to the available memory; /* like PBSM */
2. define the fine grid F according to ¢;

3. for each microcell ¢, € F

4. cg.count 1= 0;

5. for each object s € S

6. extend s to a circle s, with center s and radius ¢;

7. for each cell C; € G intersected by sc

8. hash s to the corresponding partition Ss;

9. ¢s := microcell in F containing s; ¢s.count++;

10. for eachcell C, € G

11. if |Sz| <t /*size of corresponding partition of S is small */
12. prune Cy;

13. else

14. use fine grid F to compute ¢, .bit,Ve, € C; (and Cy.bitmap);
15. if C;.bitmap has no 1’s

16. prune Cy;

17. for each object r € R

18. Cr := cell in G containing r;

19. ¢ := microcell in F containing r;

20. if C, has not been pruned and c,.bit =1

21. hash r into partition R, that corresponds to C,;

22. for eachcell C, € G

23. if C, has not been pruned

24. load R, and S, and perform the distance join in memory;
25. for each r € R, in the join result

26. if r appears at least ¢ times in the result;

27. output all join pairs that contain r;

Fig. 6. Partitioned Iceberg Distance Join

improved version of this algorithm that can save I/Os by pruning nodes in the
R~tree of R, which may not point to qualifying r € R.

Avoiding sorting. RJ is a depth-first search algorithm, since after joining a
pair of nodes, it solves the subproblems created by their intersecting entries one
by one. Thus it holds in memory only two paths pr and pg from the R-trees
that index R and S, respectively. On the other hand, our adapted R—tree based
Iceberg Distance Join (RIDJ) algorithm traverses the trees in a fashion between
depth-first search and breadth-first search. We use a priority queue P, which
organizes qualifying entry pairs (eg, es) with respect to the lower x-coordinate
er’s MBR. Ties are broken by using egr’s node level as a second priority key;
higher level entries get higher priority. In case of an additional tie, we use eg.id as
a second key to prevent interleaving of entry pairs at the same level with the same
lower x-coordinate. Initially, PQ contains the roots of the trees (i.e., their MBRs
and pointers to them). At each step of the algorithm, the first pair is fetched

from P() and the distance join algorithm is applied for the corresponding nodes.
When joining a pair of nodes ng and ng, the qualifying entry pairs (eg,es)
are enqueued in P(). By continuing this way, the algorithm guarantees that the
distance join results (r,s) will be clustered by r.id. The trade-off is that more
memory might be required compared to the original RJ. A similar technique
that employs a priority queue to traverse data in sorted order was proposed in
[1].

A pseudocode of the algorithm is shown in Figure 7. At each step it gets the
next pair {e;, ;) from P(), which can be either a pair of intermediate node entries
or a pair of objects. In the first case, it applies the main-memory distance join
algorithm for the R-tree nodes pointed by e; and e; and enqueues the qualifying
entry pairs (lines 7-8). In the second case, it continuously removes pairs from
PQ as long as they contain the same entry e;. These correspond to the results of
the distance join algorithm. Since they are clustered by r.id, we can count them
immediately in order to validate the cardinality constraint ¢ (lines 10-14) and
output potential pairs that qualify the iceberg join. The pseudocode assumes
that the two R—trees have the same height, but it can be easily extended for the
general case. Details are omitted for the sake of readability.

Algorithm RIDJ(Objectset R, Objectset S, real e, int t)

1. er:=(MBR of R, ptr to root node of R’s R—tree);

2. es:=(MBR of S, ptr to root node of S’s R-tree);

3. Initialize PQ and enqueue (eg, es);

4. while PQ is not empty

5. get next (e;, e;) from PQ;

6. if e; and e; are non-leaf node entries

7. distance-join nodes n;, n; pointed by e; and e;; /* same as in RJ */
8. add qualifying entry pairs (er, es), er € nr, es € ns to PQ;

9. else /* e; and e; are leaf node entries */

10. counter := 1;

11. while e;.id = er.id of the first pair (er,es) in PQ

12. get next (er,es) from PQ and put it in a memory-buffer B;

13. counter := counter + 1;

14. if counter > t output (e;, e;) and the results in B; /* found results */

Fig. 7. R—tree based Iceberg Distance Join

Pruning R—tree nodes early. The only benefit of the RIDJ algorithm de-
scribed above compared to RJ, is that it avoids sorting the distance join results
for validating the cardinality constraint ¢t. However, it does not consider ¢ dur-
ing the R—tree join process. In this section, we propose an improved version
that prunes R-tree nodes early, considering ¢. The motivation is that, due to
PQ@, the node pairs to be joined are produced clustered on R. In other words,
if (e, e;) is the pair currently first in PQ, we know that if there are any other
pairs containing e;, these will be the next ones in the queue.

We can exploit this property to prune node pairs as follows. Whenever we
retrieve a pair (e;, e;) from PQ, we continue fetching more pairs (eg, es) as long
as e;.id = eg.id (just like we do for the leaf level). Now for the current e; € R we
have a list L(e;) = {es1,€s2,---,€esk} that join with it and we know that these
are the only ones (at the same level in the R—tree indexing S) that join with
e;. If the total number of points indexed by entries in L(e;) is smaller than ¢,
no object in R indexed by the subtree rooted at e; can participate in the result.
Thus we do not have to join the node pairs indexed by e; and the entries in
L(e;). Using this observation, we can prune early many R—tree node pairs if ¢
is large enough. Since the exact number of objects indexed by an intermediate
entry is not known, we use an upper bound based on the fanout of the tree
nodes.! Alternatively we could employ the aggregate R—tree [22], which stores
for each intermediate entry the number of objects in its sub-tree.

3.3 Only one dataset is indexed

In this section, we discuss an adaptation of SISJ that borrows ideas from PIDJ
(discussed in Section 3.1). Let us first assume that only dataset R is indexed.
While hashing S, we construct the fine grid F and create a bitmap for each slot,
similar to the one depicted in Figure 5c. If all bits in this bitmap are 0, we can
prune the corresponding slot, which means (a) we avoid loading the part of the
tree indexed by this slot, (b) we avoid loading the corresponding bucket from
S. Naturally, we expect this technique to work best for small values of e, large
values of ¢, and uniform data from S in the pruned buckets.

The case where S is indexed is harder to handle. The reason is that objects
r € R are now replicated to multiple buckets. Therefore it is possible that some
r within distance € of objects s € S may belong to different slots. In that case,
it will be impossible to prune a slot, unless it does not overlap with any other
slots. Therefore, we can only process the iceberg join using the conventional two-
step processing, i.e., (i) apply SISJ to evaluate the distance join, (ii) sort the
pairs (r, s) to count the occurrences of each r and report the iceberg join result.
Alternatively, we can ignore the R—tree for S and employ PIDJ. Since PIDJ does
not require sorting, it can be faster than the two-step, conventional technique.

3.4 Adaptation to special types of iceberg distance joins

Our algorithms can be easily adapted for other forms of iceberg join queries.
One is the iceberg semi-join, discussed in the introduction. In this case, we are

! When e; points to a leaf node, we perform an additional optimization. The entries
in L(e;) are clustered to sets, such that no two entries in different sets are within
distance € from each other. Then, we initially use an upper bound for the total
number of objects in each set using the fanout of the nodes. Finally, we visit the
nodes pointed by the entries one-by-one, and replace the contribution of each of
them to the upper bound by the actual number of objects in them. If at some point
the upper bound becomes smaller than ¢, we can prune this set of entries. We do
the same for the remaining sets, until e; is pruned, or we are forced to perform the
distance join.

interested only in the objects r € R, which qualify the iceberg distance join con-
straints. A straightforward way to process the semi-join is to evaluate the iceberg
distance join, and output only the distinct r which appear in the resulting pairs
{r, s). However, we can do better by exploiting statistical information. Consider
for instance the grid F, as depicted in Figure 5a. This grid has granularity € and
captures the number of s € S that fall into each cell, as explained in Section 3.1.
Observe that while reading (and hashing) R, if point » € R falls into a microcell
¢, with c,.count > t, we can immediately output r, without hashing or joining
it, because we know for sure that it will participate in the semi-join result (since
there are at least ¢ objects from S in the same microcell, i.e., within distance e
from it?).

In another iceberg distance join query, the cardinality constraint ¢ may not
provide a lower threshold for the occurrences of r € R in the distance join pairs,
but an upper threshold. For instance, in this case we might be interested in
hotels which are close to at most t restaurants. Again, for this query we can
use the fine grid F to detect early pruned regions for R; if ¢,.count > t for a
microcell ¢;, we can prune the microcell, since we know that every r that falls
there joins with at least ¢t s € S. Therefore, the bit-mapping technique now uses
the counters in the microcells instead of adding to them the ones of the influence
microcells around them. Finally, the proposed techniques can be easily adapted
for the iceberg join, when the number of appearances should be in the range
between to,, and t,, times. For each ¢, its counter provides a lower bound of
the join results and the counters in its influence region an upper bound. These
bounds can be used in combination with #;4,, and ¢,, to prune disqualifying cells.

4 Experimental evaluation

We evaluated the performance of the proposed techniques for a wide range of
settings, using synthetic and real data of various cardinalities and skew. The real
datasets, which were originally line segments, were converted to points, by taking
the center of the segments. Files T1 and T2 [7] contain 131,461 roads and 128,971
rivers, respectively, from an area in California. AS and AL [24] contain 30,674
roads and 36,334 railroads, respectively, from Germany. The buffer size was set
to 20% of the total size both joined datasets occupy on disk. As a measure of
performance, we counted random I/Os. The sequential I/Os were normalized to
random ones according to current disk benchmarks (e.g., a random page access
costs as much as 10 sequential ones, if the page size is 8Kb). The experiments
were run using a T00MHz Pentium III processor.

4.1 Evaluation of PIDJ

In this section we evaluate the performance of PIDJ under various experimental
settings. We compare the three progressively more optimized versions of the al-
gorithm. The baseline implementation (referred to as PIDJ;) avoids duplication

2 Actually for defining the microcells here we use a value smaller than €, which is the
side of the minimum enclosed square in a circle with radius €¢/2. We skip the details
for the sake of readability.

and sorting. In addition to these, PIDJ; filters out buckets using their cardinal-
ities without applying the fine grid F refinement. Finally PIDJ3 includes all the
optimizations described in Section 3.1. For these experiments the page size was
set to 8Kb.

In the first experiment, we compare the I/O performance of the three PIDJ
versions for several pairs of joined datasets, by setting the distance threshold
€ to 2% of the data-space projection, and varying the value of the cardinality
threshold ¢. Figures 8 and 9 plot the I/O cost of the algorithms as a function of
t for the joins AS M AL and AL X AS, respectively; in the first case the relation
R where t applies is AS and in the second it is AL (notice that the join is
asymmetric, therefore it is possible to have different results and performance in
these two cases). Observe that the improvement of PIDJ, over PIDJ; is marginal
for the tested values of ¢. This is because the number of buckets in this case is
small (only 25 in this example) and the regions that they cover are quite large.
PIDJ> cannot prune buckets, since all of them contain a large number of points
from R. On the other hand, the fine grid F employed by PIDJ3 manages to prune
a large percentage of R; as t increases more cells are pruned by the bit-mapping
method and less data from R are hashed.

160 160
140 140
120 120
100 100

60 —o—PIDJ1 60 ¢=PIDJI
40 —8—PIDJ2 40 &= PIDI2
204 |—A—PIDI3

20 —A—PIDJ3

1 100 200 300 400 500 1 100 200 300 400 500
cardinality threshold t cardinality threshold t

Fig.8.1/0 cost, ASX AL, e =2% Fig.9.1/0 cost, AL X AS, e = 2%

700 600 B
600 B 500
500 400
400 300
300
—e—PIDI 200 —o—PIDI1
200
—&-PIDR2 100 —B—PIDR2
100
—a—PIDI3 —&—PIDJ3

1 1000 2000 3000 4000 5000 6000 1 1000 2000 3000 4000 5000 6000
cardinality threshold t cardinality threshold t

Fig.10. I/O cost, T1 X T2, e =2% Fig.11. I/O cost, T2 X T1, e = 2%

For the Tiger files T1 and T2, on the other hand, PIDJ, reduces significantly
the cost of the baseline implementation (especially for the T1 X T2 pair). Figures
10 and 11 plot the I/O cost of the three versions of PIDJ. The improvement of
PIDJ; is significant also in this case. The large improvement of PIDJ is due to
the large values of ¢ tested, and due to the fact that now grid G is finer than for

the AS X AL joins.> The sparse areas of the map are usually pruned using G
and the rest are very dense this is why PIDJ3 adds little improvement.

In the next set of experiments we compare the three versions of PIDJ for
joins on synthetic data. For this purpose we generated four synthetic datasets
G1, G2, Ul, and U2, as follows. All datasets contain 200K points. G1 and G2
were created according to a Gaussian distribution with 10 clusters. The centers of
the clusters for both files were randomly generated. The sigma value of the data
distribution around the clusters in G1 was set to a random value between 1/5
and 1/10 of the data space. Thus, all clusters are similar, they spread around the
whole data-space, and the resulting dataset has little skew. On the other hand,
the sigma value of the clusters in G2 has high variance; half of the clusters are
very skewed, with sigma between 1/10 and 1/20 of the data space, and the other
half have little skew (sigma is between 1/3 and 1/5). In this way we wanted
to simulate the case where both datasets are non-uniform, but one of them has
higher skew in some regions. Ul and U2 contain uniformly distributed points.

Figures 12 and 13 plot the I/O cost for G1 X G2 and G2 X G1, respectively.
In both joins, PIDJ3 achieves significant improvement over the baseline version
of the algorithm. Notice that for G2 X G1 the improvement is larger. This
is due to the fact that G1 is more uniform than G2, so if it is taken as S,
the probability that PIDJ3 prunes a microcell increases. We also experimented
with other combinations of skewed data with similar results. In general, the
improvement of PIDJ3 over PIDJ, increases with the uniformity of the data,
since more regions corresponding to the microcells ¢; € F are pruned. The
experiment plotted in Figure 14 validates this argument. This time we joined
two uniform datasets Ul and U2. Note that uniformity is normally the worst
setting for an iceberg join algorithm, since buckets cannot be pruned using their
global statistics. As expected, here PIDJ; has no improvement over PIDJy, since
the number of data from U2 in each bucket is the same and larger than ¢ (unless ¢
becomes very large). On the other hand, PIDJ3 for ¢ > 200 starts pruning many
cells in F, sharply until it converges to the cost of just reading and hashing S.

We have also tracked the computational cost of the three versions and com-
pared it with the I/O difference. Figure 15 plots these costs for G2 X G1. Observe
that the costs of PIDJ; and PIDJ> are almost identical since they essentially
perform the same computations. PIDJs can only avoid hashing some objects
from R, but this affects mainly the I/O cost. On the other hand, PIDJ3 prunes
more buckets and many r € R using F. In effect, it computes much fewer joined
pairs in its hash-join part, which is reflected in the CPU cost. For ¢ = 1 and
t = 100 the overhead of the fine grid F does not pay-off, this is why PIDJ; is
slightly slower than PIDJ; and PIDJ,. The computational costs of the methods
show similar trends for the other joined pairs and are therefore omitted.

In the next experiment, we study the effects of € in the three versions of PIDJ.
Figure 16 plots the I/O cost of AL X AS as a function of € when ¢ = 400. The
improvement of PIDJ3 over the simpler versions of the algorithm decreases with

3 The datasets are larger, thus more memory (20% of the total size) is allocated for
the join and more buckets are defined.

1600

1200
1400 1150
R R - S— | i
1200 1100
1000
1050
800
1000
6001 [—e—PIDJI —o—PIDJI
400 930
—8—PIDJ2 —E—-PIDJ2
200 900
—a—PIDJ3 —&—PIDJ3
04 ; 850 : : . ‘ ‘ ‘ ‘ ‘
1 200 400 600 800 1000 1 200 400 600 800 1000 1200 1400

cardinality threshold t

Fig.12. I/0 cost, G1 X G2, e = 2%

cardinality threshold t

Fig.13. I/0 cost, G2 M G1, e = 2%

500 30

450 f—n 49‘9—m
400 25

350

200 20
250 15
200

150 —6—PIDJI 10 —o—PIDJ1

100 —8—PIDJ2 5 —8—PIDJ2

50 —A—PIDJ3 ——PIDI3

0 T T T T T T 0+ T T T T T T T 1
1 100 200 300 400 500 600 1 200 400 600 800 1000 1200 1400

cardinality threshold t

Fig.14. I/0 cost, U1 X U2, e = 2%

cardinality threshold t

Fig.15. CPU time (sec), G2 X Gl, e =
2%

200 2000
180 1800 1 |—@—PIDJI
160 1600 { | —8—PIDI2
140
14009 _a—pIDJ3
120 1200
100 1000
80 —o—PIDJ1 800
© —&—PIDJ2 0o
40 400
20 —&—PIDJ3 200
0+ T T T 1 0+ r T T 1
1% 2% 3% 4% 1% 2% 3% 4%

distance threshold epsilon

Fig.16. I/O cost, AL X AS, ¢t = 400

2000
—o—PIDJ1
1600 —&—PIDJ2
—a—PIDJ3
1200
800
400
0+ T

100K 200K 300K 400K

cardinality of GX

Fig.18. I/O cost, G2 X GX, ¢ = 2%,
t = 1400

distance threshold epsilon

Fig.17. 1/0 cost, G2 X G1, t = 1400

5.0E+07 —¥— # pairs computed
—X— # pairs in output

4.0E+07

3.0E+07

2.0E+07

1.0E+07

0.0E+00 T T T T T T T |
1 200 400 600 800 1000 1200 1400

cardinality threshold t

Fig.19. I/O cost, G2 X G1, e = 2%

€ because of two reasons. First, the number of results increases, therefore much
fewer cells are pruned. Second, the effectiveness of F decreases significantly with
€, since the grid becomes much coarser (recall that F is defined based on ¢€). In
practice, we expect iceberg joins with small e for more selective and more useful
result. Figure 17 shows a similar trend for query G2 X G1, after fixing ¢ = 1400.

The next experiment tests the scalability of the algorithm to the problem
size. We joined G2 with many synthetic files GX, with the same cluster settings
as G1, but varying size from 50K objects to 400K objects. In these experiments
€ = 2% and ¢t = 1400. Figure 18 shows the performance of PIDJ as a function
of the size of GX. Observe that the improvement of PIDJ3; decreases with the
problem size, but this can be explained by the increase of the query output. On
the other hand, the performance of PIDJ, decreases more rapidly. This is due
to the fact that as the cardinality increases, fewer buckets can be pruned by the
global constraint.

Finally, we test how PIDJ3; adapts to the output size. Figure 19 shows the
number of pairs within distance e which have been computed by the algorithm
(i.e., not pruned by F) and the number of pairs in the iceberg join output.
The upper line reflects the cost of the algorithm. The joined pair is G2 X G1,
e = 2%, and t varies. Indeed, the cost of the algorithm drops as its output
decreases, however, not at the same rate, since pruning a large percentage of
false pairs becomes harder as t increases. In summary, PIDJ, after employed
with all heuristics, is a robust, output sensitive algorithm for computing iceberg
distance joins. Its efficiency is mainly due to the introduction of the fine grid F
and the corresponding bit-mapping technique.

4.2 Evaluation of RIDJ

In this section we evaluate the performance of the RIDJ algorithm for iceberg
distance join queries. For this, we built two R—trees for the real datasets AS and
AL, with node size 1Kb. We used a small node size, since this facilitates pruning
in RIDJ; the fanout of the nodes is not very large and for values of ¢ which
return results (i.e., in the range 100-1000) it becomes possible for the algorithm
to prune R—tree node pairs early.

The following experiment validates this assertion. We performed the join
AL X AS for different values of ¢ and € and compared the performance of three
algorithms; RJ, RIDJ and RIDJ employed with the pruning heuristic. Figures
20 shows the performance of the algorithms for € = 2% and various values of t.
Observe that the cost difference between RJ and the basic version of RIDJ is
the same for all values of ¢. It translates to the overhead of RJ to sort a large
number of pairs that qualify the distance join (around 3.6 million for this join) in
order to validate the cardinality threshold ¢. Most page accesses are sequential,
this is why the normalized cost difference is not extreme. On the other hand, the
version of RIDJ with pruning is output sensitive. Many node pairs are pruned
as t increases (and the result decreases).

In the experiment of Figure 21, the cardinality threshold is fixed to ¢ = 400
and € varies. Observe that the cost of RJ increases with €, since more pairs
qualify the distance join as € is relaxed. On the other hand, the cost of the ba-

sic RIDJ algorithm remains constant, since the algorithm exploits the buffer to
avoid incurring more I/O accesses than the total number of nodes in both trees.
The efficiency of the pruning heuristic diminishes with the increase of €, because
the lists L(e;) increase significantly due to the increase of the extended MBRs
by €/2 while processing the distance join. Nevertheless, at the same time, the
number of the iceberg query results increases significantly with e. In summary,
RIDJ, when employed with the pruning heuristic, is an output sensitive algo-
rithm that manages to prune the search space, by exploiting gracefully the query
constraints.

3500 6000]
3000 5000 —8—RIDJ
2500 4000 —A—RIDJ w/ pruning

2000 3000
1500 @ _ _ _
2000
1000 o~ RJ
—&—RIDJ

1000
500 —A— RIDJ w/ pruning

1 100 200 300 400 500 1% 2% 3% 4%
cardinality threshold t distance threshold epsilon

Fig.20. I/O cost, AL X AS, e =2% Fig.21. I/O cost, AL X AS, ¢t =400

5 Conclusions

In this paper we have shown how spatial join algorithms can be adapted for the
interesting class of iceberg distance join queries. The proposed methods exploit
data density and distribution statistics, obtained while processing the query, to
shrink the search space according to the cardinality constraint ¢. In an attempt
to cover all possible indexing presumptions for the joined data we have extended
a hash-based algorithm (PBSM) and a index-based method (RJ). We have also
described adaptations for single-index algorithms. Finally, we have discussed how
our methods can be used to process special types of iceberg distance joins.

We conducted a comprehensive experimental evaluation, which demonstrates
that the proposed techniques are indeed output sensitive; their cost steadily
decreases with ¢. The current study considers iceberg distance joins between
point-sets. In the future, we will study their application to joins of datasets
containing objects with spatial extent. It would also be interesting to see how
they can be adapted for iceberg intersection joins, where, instead of the distance
threshold e, intersection is considered. Finally, an interesting issue for future
work is how ranking predicates can be embedded in distance join algorithms
(e-g., output the top-k hotels with the largest number of nearby restaurants).

References

1. L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, J. Vahrenhold, and J. S. Vitter.
A unified approach for indexed and non-indexed spatial joins. In Proc. of EDBT
Conference, 2000.

2. L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter. Scalable sweeping-
based spatial join. In Proc. of VLDB Conference, 1998.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient
and robust access method for points and rectangles. In Proc. of ACM SIGMOD
Int’l Conference, 1990.

K. S. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg
cubes. In Proc. of ACM SIGMOD Int’l Conference, 1999.

C. B6hm, B. Braunmiiller, F. Krebs, and H.-P. Kriegel. Epsilon grid order: an
algorithm for the similarity join on massive high-dimensional data. In Proc. of
ACM SIGMOD Int’l Conference, 2001.

T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient processing of spatial joins
using R-trees. In Proc. of ACM SIGMOD Int’l Conference, 1993.

Bureau of the Census, TIGER/Line Precensus files: 1990 Technical Documenta-
tion, 1989.

A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos. Closest pair
queries in spatial databases. In Proc. of ACM SIGMOD Int’l Conference, 2000.
J.-P. Dittrich and B. Seeger. Data redundancy and duplicate detection in spatial
join processing. In Proc. of Int’l Conf. on Data Engineering (ICDE), 2000.

M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman. Com-
puting iceberg queries efficiently. In Proc. of VLDB Conference, 1998.

A. Guttman. R-trees: a dynamical index structure for spatial searching. In Proc.
of ACM SIGMOD Int’l Conference, 1984.

J. Han, J. Pei, G. Dong, and K. Wang. Efficient computation of iceberg cubes with
complex measures. In Proc. of ACM SIGMOD Int’l Conference, 2001.

G. R. Hjaltason and H. Samet. Incremental distance join algorithms for spatial
databases. In Proc. of ACM SIGMOD Int’l Conference, 1998.

G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. TODS,
24(2):265-318, 1999.

Y.-W. Huang, N. Jing, and E. A. Rundensteiner. Spatial joins using R-trees:
Breadth-first traversal with global optimizations. In Proc. of VLDB Conference,
1997.

N. Koudas and K. C. Sevcik. Size separation spatial join. In Proc. of ACM
SIGMOD Int’l Conference, 1997.

N. Koudas and K. C. Sevcik. High dimensional similarity joins: Algorithms and
performance evaluation. In Proc. of Int’l Conf. on Data Engineering (ICDE), 1998.
M.-L. Lo and C. V. Ravishankar. Spatial joins using seeded trees. In Proc. of ACM
SIGMOD Int’l Conference, 1994.

M.-L. Lo and C. V. Ravishankar. Spatial hash-joins. In Proc. of ACM SIGMOD
Int’l Conference, 1996.

G. Luo, J. F. Naughton, and C. Ellmann. A non-blocking parallel spatial join
algorithm. In Proc. of Int’l Conf. on Data Engineering (ICDE), 2002.

N. Mamoulis and D. Papadias. Integration of spatial join algorithms for processing
multiple inputs. In Proc. of ACM SIGMOD Int’l Conference, 1999.

D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP operations in spatial
data warehouses. In Proc. of SSTD, 2001.

J. M. Patel and D. J. DeWitt. Partition based spatial-merge join. In Proc. of ACM
SIGMOD Int’l Conference, 1996.

Penn State University Libraries, Digital Chart of the World,
http://www.maproom.psu.edu/dcw/, 1997.

K. Shim, R. Srikant, and R. Agrawal. High-dimensional similarity joins. In Proc.
of Int’l Conf. on Data Engineering (ICDE), 1997.

H. Shin, B. Moon, and S. Lee. Adaptive multi-stage distance join processing. In
Proc. of ACM SIGMOD Int’l Conference, 2000.

