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Abstract
We present Hecatoncheir, a plug-and-play C/C++ library for dis-
tributed and parallel management of big spatial data, which does
not depend on underlying engines such as Spark. Hecatoncheir
uses state-of-the-art algorithms for in-memory index-based spatial
query processing and the efficient C++ Boost Geometry for geome-
try comparisons in a distributed environment, achieving orders of
magnitude faster performance than Apache Sedona.
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1 Introduction
Existing distributed spatial libraries such as Apache Sedona
(sedona.apache.org), SpatialHadoop [2], SIMBA [11], LocationSpark
[9] and more, require Spark and Hadoop to be properly setup in
the cluster in order to be deployed upon them. Additionally, the
architectures of these frameworks were specifically designed to
integrate seamlessly with their underlying engines. As a result,
they inherit both the benefits of those engines and their limitations.
Moreover, spatial libraries like JTS (github.com/locationtech/jts),
GEOS (libgeos.org) and Google S2 are limited to providing APIs for
geometry operations, but they do not constitute standalone systems
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for distributed indexing, data partitioning, and query evaluation.
Several distributed spatial analytics frameworks have been com-
pared against each other [6], with Apache Sedona being considered
the most prominent and popular one. All these frameworks share
the following drawbacks:
Setup Complexity They are based on an underlying engine (e.g.,
Spark) which needs to be installed beforehand. The engines come
with their own dependencies; for example, cluster managers such as
YARN or Kubernetes. On top of that, the frameworks have their own
installation process as well and need to be configured to work along
with their underlying engine. Hence, they cannot be considered as
"plug-and-play" tools to the casual user.
Resource cost The spatial indexes provided by existing frame-
works are becoming outdated, with high construction and usage
costs. Their memory usage for large datasets often reaches tens of
gigabytes, while query throughput hovers around a few hundred
per minute [6]. In today’s era of cloud services and pay-as-you-go
pricing models, these limitations can significantly inflate opera-
tional costs for both users and enterprises.
No C/C++ support Currently, no distributed spatial data manage-
ment framework offers C/C++ support for their API. C/C++ are
usually the go-to language option for performance-focused imple-
mentations and, thus, there has been a huge gap in distributed
spatial data management in C/C++ until now.

In this paper we introduce Hecatoncheir, the first plug-and-play
C/C++ library for in-memory distributed and parallel spatial data
management. Hecatoncheir’s underlying layer is implemented us-
ingMPICH (mpich.org), a Message Passing Interface (MPI) standard.
Hecatoncheir offers optimized spatial partitioning and indexing
techniques to support scalable distributed spatial query processing,
without depending on external process and resource managers or
engines. It compiles and links using CMake, seamlessly integrating
into the user’s projects while encapsulating all distribution-related
complexities within a black-box logic for a plug-and-play experi-
ence. Currently, Hecatoncheir uses Boost Geometry for the geomet-
ric operations, as it outperforms GEOS. To scale computationally
intensive tasks, such as data partitioning and spatial query evalua-
tion [4, 10], Hecatoncheir employs intra-node parallelism through
OpenMP. By distributing and maintaining data in the main mem-
ory of each node, the system fully utilizes available resources for
efficient, scalable query execution, where each machine operates
independently, minimizing communication overhead.
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Table 1: Hecatoncheir and Apache Sedona features list.

Feature Apache Sedona Hecatoncheir
Language Java/Scala C/C++

Index RTree, QuadTree Two-layered Grid
Queries Range, (Distance) Join, kNN Range, (Distance) Join, kNN

We demonstrate Hecatoncheir by highlighting its ease of instal-
lation, requiring minimal user effort. The system features a simple
C++ API and an intuitive graphical user interface (GUI) that enable
users to partition data and evaluate spatial join queries with just
a few lines of C++ code or a few clicks. These operations can be
seamlessly executed across a selected set of machines. Addition-
ally, we demonstrate Hecatoncheir’s scalability, performance, and
memory efficiency, via a comparison against Apache Sedona. An
overview of both frameworks’ features can be seen in Table 1.

2 Architecture
Hecatoncheir’s architecture is summarized in Figure 1. The MPI
Layer is where all inter- and intra- process communication takes
place. Internally, the Query Processor uses the Index Layer [10] for
spatial queries, the results of which are potentially refined using
Boost Geometry (boost.org). The API is the entry point to the
system’s functionalities for the user.

Comm 
Layer

C++ API

Spatial Index

Boost Geometry

Query Processor

Internal Layers

Data 
Loader

Network

GUI

Figure 1: Hecatoncheir architecture overview.

2.1 Data Loading and Distribution
The Host partitions user data acrossWorkers using a coarse-grained
spatial grid, whose tiles are assigned to Workers in a round-robin
manner [7]. An object is sent to the Worker responsible for any tile
its minimum bounding rectangle (MBR) overlaps. This coarse grid
acts as a global spatial index, and its granularity (e.g., 100 × 100
for 10 Workers) ensures more tiles than Workers, promoting load
balancing and limiting fragmentation of nearby objects, which is
important for distance-based queries. An illustration for a (global)
dataset is shown in Figure 2 (bold lines).

Each Worker stores and indexes its assigned tiles using a much
finer grid, with granularity set so that the number of cells is divisible
by the number of threads, facilitating intra-node parallelism during
query evaluation. Both grid granularities can be set manually or
optimized automatically based on data distribution.

The Host is solely responsible for partitioning the data across
Workers, which introduces considerable overhead. To mitigate this,
if supported by the storage medium (e.g., SSD, NVMe), the Host
spawns threads to parallelize both data reading and distribution.
Each thread performs its own MPI calls, sending object batches
to Workers based on a coarse partitioning grid. The batch size is
configurable to (i) avoid exhausting Host memory and (ii) allow

Figure 2: Spatial partitioning using a coarse grid.

Workers to begin processing before the entire dataset is read. Since
each thread maintains a batch per Worker, the Host’s memory
usage is approximately 𝑛𝑢𝑚𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ×𝑛𝑢𝑚𝑤𝑜𝑟𝑘𝑒𝑟𝑠 ×𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 , plus
additional space for in-memory partitioned data. Hence, batch size
must be chosen with memory limits and input size in mind.
2.2 MPI Layer
Communications in Hecatoncheir are illustrated in Figure 3. All
machines in the cluster are connected within the same network
by (passwordless) SSH. One of the machines takes the role of the
Host. A user program, i.e. a Driver, communicates exclusively with
the Host using MPI through the API. The Host is also a Worker,
however it has the extra responsibility of communicating with the
Driver. After receiving the Driver’s requests, the Host propagates
them to the Workers, returning any relevant messages or results to
the Driver when necessary.

Each Worker (including the Host), spawns 2 processes: The Con-
troller and the Agent. The Controller receives/sends messages and
performs no CPU intensive tasks. The Agent performs all requested
operations on the machine. Each Agent communicates only with
its Controller (its parent process in the same machine). This way,
Agents can work on tasks in parallel, while their Controllers can
continue communicating with the Host or each other. Additionally,
Agents utilize the available threads in the machine to parallelize
their assigned tasks and operations.

Driver Controller

Host/Worker 0

Agent

Controller

Worker 1

Agent Controller

Worker 2

Agent Controller

Worker N

Agent...

Figure 3: Communication setup.

2.3 Internal Layers
Hecatoncheir’s internal layers are hidden from the user. The MPI
layer is not part of the internal layers. Even though the Driver
communicates with the Host through MPI calls as well, this is done
via specific API calls (i.e., the user does not do MPI calls directly).

2.3.1 Boost Geometry. Boost Geometry offers a wide variety of
geometric operations and data structures, which can be used to post-
process objects that pass the filter step of spatial queries on complex
object geometries, such as range selections and intersection joins.
Hence, for objects or object pairs that pass the MBR-based filter
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step of such queries, the Workers access their geometries and use
the Boost Geometry library for the refinement step.
2.3.2 Index Layer. As explained, during data loading, each Worker
re-partitions its local data by a fine-grained uniform grid. Non-point
geometries are further indexed using Two-Layer partitioning [10];
in each fine cell, the objects are divided two four classes, depending
on whether the bottom-left point of their MBR begins (A) inside
that cell, (B) in a previous cell on Y axis, (C) in a previous cell on X
axis, or (D) in a previous cell on both axes. Object MBRs that overlap
with more than one cell are replicated and classified. Fine-grid cells
indexed by a Worker 𝑤 store only the objects assigned to 𝑤 and
are not visible to other workers. The local indices are stored in the
main memories of the Workers. In addition, each Worker computes
and stores a raster approximation [4] for each object assigned to
it. The granularity of the fine grid is in the order of a thousand
partitions for each dimension. In this demo, it is 800× 800, i.e., each
tile of the coarse grid includes 10× 10 cells. Grid-based partitioning
and indexing facilitates fast data updates.
2.3.3 Query Processing Layer. Query processing takes place after
setting up Hecatoncheir and all data has been partitioned to and
indexed by the Workers. Since our query processing algorithms
do not require re-partitioning the input data, the preprocessing
cost of data files is one-off. Queries are evaluated in parallel by
each Worker using their local (fine-grid) index. The results are then
collected by the Host and returned to the Driver. The following
queries are currently supported by Hecatoncheir:
Range Queries (Polygonal or Box) The user (Driver) submits a
range query or a batch of range queries to the Host. The Host Con-
troller determines which partitions of the coarse grid overlap with
the query to identify the Workers responsible for evaluating it and
sends the query to these Workers. Range queries on non-point data
are evaluated using the Two-Layer partitioning scheme [10] that
identifies candidates fast using their MBRs and does not generate
duplicate results. A refinement step is performed for each candidate
object to verify whether the geometry is actually intersecting the
query range, using Boost Geometry. To avoid refining all candidates
the Worker first accesses their raster approximations [4] and apply
the query there. Range queries on point data are easier to evaluate,
as no refinement is necessary. The contents of cells that are fully
covered by the query range are automatically returned as results,
without any comparisons. For a query batch, the Host distributes
the queries to Workers in sub-batches and each Worker evaluates
its sub-batch in-parallel using its local threads.
Topological Joins Spatial join queries between datasets contain-
ing non-point objects are first broadcast to all Workers. Based on
the predicate, Workers use their local indexes to perform the join
between the partitioned datasets. Supported spatial predicates for
joins include: Equals, Disjoint, Intersects, Inside, Contains, Meets. All
topology joins are enhanced through APRIL for better performance
[3]. The system computes the result of Disjoint implicitly as the
complement of Intersects, which is faster to derive. The partitioning
of objects within cells to classes [10] accelerates the filter step of the
spatial join. The pre-computed APRIL approximations of objects
[4] further reduce the number of pairs for which the computation-
ally expensive refinement step is applied (using Boost Geometry).
Each worker performs the join for each of their own partitions
independently and in parallel.

Distance queries Hecatoncheir also supports distance spatial
queries, including 𝜖-range queries (given a query point 𝑞, retrieve
all points with distance at most 𝜖 to 𝑞), 𝑘NN queries (find the 𝑘
nearest neighbors to query point 𝑞), and 𝜖-distance joins (given two
input datasets, find the pairs of objects in them having distance at
most 𝜖 to each other). For 𝜖-range queries and 𝑘NN queries, pro-
cessing of each query is done independently at each Worker which
may include query results and the results are combined at the Host.
For instance if the query is at a boundary of the coarse grid, two
Workers compute and report their 𝑘NN results (i.e., 2𝑘 objects),
which are then refined at the Host. Count and distribution statistics
for the coarse grid are kept and used by the Host to determine the
relevant Workers for each query. For distance joins, Workers coor-
dinate with each other and exchange points at the borders of the
coarse grid, to facilitate correct and duplicate-free join computation
[5] whilst minimizing the communication overhead.

2.4 C++ API & Interface
Hecatoncheir’s API (header-based) facilitates access to the system’s
features, without burdening the user with low-level implementation
details. The Driver initializes Hecatoncheir by calling the appropri-
ate initialization method, specifying the desired number of Workers
and their host IP addresses. Passwordless SSH connection between
the Driver’s machine and the Workers must be properly setup. The
user then can develop their own program to load and query their
datasets with just a few method calls.

Additionally, we provide a web-based GUI that enables users to
interact with Hecatoncheir without writing any code. The interface
abstracts the underlying communication with Hecatoncheir’s API,
allowing users to configure and execute spatial queries through
an easy-to-use point-and-click workflow. A snapshot of a spatial
query execution through Hecatoncheir’s GUI is shown in Figure 4.

Figure 4: Snapshot of spatial query execution through Heca-
toncheir’s GUI.

2.5 In-Memory Management
Hecatoncheir is designed to perform all operations in memory
without requiring all data to be memory-resident. For instance,
non-point geometries, which can have a significant memory foot-
print, can be stored on disk and loaded on-demand during query
processing, ensuring that only the required objects are brought
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into memory when needed. This is attributed to Hecatoncheir’s
filter-and-refine approach, that uses space-efficient approximations
such as MBRs [1] and APRIL [4] as effective filters.

3 Demonstration
The functionality of Hecatoncheir is demonstrated through a sce-
nario that simulates the process that casual user would follow to
download, install, and utilize the system. Additionally, Apache
Sedona will run side-by-side with Hecatoncheir during the demon-
stration, to further showcase the latter’s superior performance.

3.1 Setup & Usage
To showcase Hecatoncheir’s plug-and-play design, we demonstrate
its deployment by downloading it directly from its GitHub repos-
itory onto a cluster of virtual machines. Each node in the cluster
operates on a fresh installation of Ubuntu 22.04, configured with
only the minimum requirements necessary for Hecatoncheir: (i)
host set up with Boost Geometry 1.73, CMake 3.22, and C/C++17;
(ii) MPICH installed on all nodes; and (iii) passwordless SSH config-
ured between the nodes. Once downloaded, we build Hecatoncheir
using the installation script and we execute the provided test suite
to validate inter-node connectivity, communication, and the sys-
tem’s deployment in the cluster. We demonstrate Hecatoncheir’s
easy-to-use API by live-coding and executing queries in real time,
with just a few lines of code. At the same time, we will monitor the
virtual machines’ resources consumption and load balancing using
our cluster manager’s overview platform.

3.2 Performance and Scalability
We showcase Hecatoncheir’s scaling-out ability by running a spatial
intersection join scenario between the Lakes (8.4M polygons) and
Parks (10M polygons) OSM datasets [8], using an increasing number
of VMs on a cluster that runs on 5 host computers. Each VM runs
on an Intel CPU i9 (4 cores), clocked at 3.70GHz and 12GB RAM.
The virtual machines run Ubuntu 22.04 LTS and have C++17 and
MPICH 4.0 installed. Table 2 shows the scalability of Hecatoncheir’s
indexing and join evaluation as the number of Workers increases.
We will analyze to the attendees the reasons behind scalability.
Namely, Hecatoncheir’s preparation cost remains unaffected by the
number of Workers, with the only added cost being a few extra
inter-node communications. At the same time indexing and query
time drop due to the use of two-level parallelism, with operations
executed concurrently by Workers and their threads.

Attendees will be able to interact with Hecatoncheir through
either its GUI or its C++ API to execute spatial query scenarios and
observe its performance, compared against Apache Sedona side-by-
side. Table 3 shows a comparison with 2 executor-cores per VM,
10GB of memory per executor, QuadTree partitioning with sam-
pling enabled, RTree indexing per Spark partition and underlying
Hadoop for data distribution. In Sedona, to avoid expensive index
rebuild for each query, we simulated batch range query processing
as a spatial join between the queries and the dataset. Hecatoncheir
is at least two orders of magnitude faster than Sedona on range
queries. Additionally, Apache Sedona took 1425 seconds to run
a Lakes-Parks spatial join scenario of Table 2 on 10 nodes while
Hecatoncheir finished in 6 seconds. The memory requirements
of Hecatoncheir increase with the number of machines, due to a

Table 2: Hecatoncheir’s scalability.

Hecatoncheir/Nodes 2 4 6 8 10
Partitioning Time (sec) 64.03 64.09 64.19 64.25 64.35
Indexing Time (sec) 12.35 8.16 6.12 5.10 4.16
Join Time (sec) 19.30 12.95 10.50 7.05 5.86

Total Memory (GB) 13.9 14.8 15.9 17.7 18.2
Mean Abs. Dev. (GB) 0.47 0.34 0.40 0.77 0.73

Table 3: Hecatoncheir and Apache Sedona comparison on a
cluster with 10 nodes.

10K Range Queries on 2.25M points
Selectivity % Sedona time (s) Hecatoncheir time (s)

0.01 24 0.1
0.1 32 0.13
1 209 0.27

8.7M and 10M spatial join for polygon datasets
Sedona Hecatoncheir

Time (s) 1425 6
Total Memory (GB) 42.65 18.2
Mean Abs. Dev. (GB) 0.77 0.73

finer grid used with more machines that results in more replication
[10]. As shown in Table 3, Hecatoncheir requires less than half the
memory occupied by Sedona for the exact same query and both
frameworks achieve a balanced memory requirement across the
nodes, based on their Mean Absolute Deviation of memory usage
across nodes. Overall, Hecatoncheir’s superior performance is at-
tributed to its use of advanced spatial data management techniques.
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