
Ring-constrained Join: Deriving Fair Middleman Locations
from Pointsets via a Geometric Constraint

Man Lung Yiu
Department of Computer Science

Aalborg University
DK-9220 Aalborg, Denmark

mly@cs.aau.dk

Panagiotis Karras
Department of Informatics

University of Zurich
CH-8050 Zurich, Switzerland

karras@ifi.uzh.ch

Nikos Mamoulis
Department of Computer Science

University of Hong Kong
Pokfulam Road, Hong Kong

nikos@cs.hku.hk

ABSTRACT

We introduce a novel spatial join operator, the ring-constrained
join (RCJ). Given two sets P and Q of spatial points, the
result of RCJ consists of pairs 〈p, q〉 (where p ∈ P , q ∈ Q)
satisfying an intuitive geometric constraint: the smallest cir-
cle enclosing p and q contains no other points in P , Q. This
new operation has important applications in decision sup-
port, e.g., placing recycling stations at fair locations between
restaurants and residential complexes. Clearly, RCJ is de-
fined based on a geometric constraint but not on distances
between points. Thus, our operation is fundamentally dif-
ferent from the conventional distance joins and closest pairs
problems. We are not aware of efficient processing algo-
rithms for RCJ in the literature. A brute-force solution
requires computational cost quadratic to input size and it
does not scale well for large datasets. In view of this, we de-
velop efficient R-tree based algorithms for computing RCJ,
by exploiting the characteristics of the geometric constraint.
We evaluate experimentally the efficiency of our methods on
synthetic and real spatial datasets. The results show that
our proposed algorithms scale well with the data size and
have robust performance across different data distributions.

1. INTRODUCTION
In this paper, we identify a novel spatial join operator,

called ring-constrained join (RCJ). Given two spatial pointsets
P and Q, our goal is to find all pairs 〈p, q〉, such that p ∈ P ,
q ∈ Q, and the smallest circle enclosing p and q contains no
other points in P , Q. This simple geometric constraint cap-
tures an interesting and intuitive relationship between two
pointsets, as we will see later. Figure 1 depicts two datasets
P = {p1, p2} and Q = {q1, q2} on a map. The RCJ re-
sult pairs are 〈p1, q1〉, 〈p2, q1〉, and 〈p2, q2〉 as their smallest
enclosing circles do not contain other points. Observe that
〈p1, q2〉 is not a result pair as its circle contains some other
point (e.g., p2).

From a geometric point of view, each RCJ pair 〈pi, qj〉 cor-
responds to its smallest enclosing circle, with its center lo-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

x
0.5 1

0.5

1

y

p
2

p
1

q
1

q
2

Figure 1: Example of Ring-constrained Join

cation and radius. Such inherent, derived information is im-
portant for decision support applications. In general, given
two sets of facilities, the center locations of their RCJ pairs
can be used for placing third-party service stations so that
the services can be provided in a convenient manner. To il-
lustrate this, suppose that P and Q contain the locations of
cinemas and restaurants respectively. Each RCJ pair 〈pi, qj〉
satisfies the following beneficial properties:

• Convenience. Among all possible locations in the
space, the circle center is known to minimize the max-
imum distances [10] from both pi (a cinema) and qj

(a restaurant). Thus, the center can be regarded as
the most convenient location to both facilities. For in-
stance, a taxi stand or metro station may be built at
that center location.

• Fairness. The center (e.g., metro station or taxi stand)
is equidistant from a cinema and a restaurant. Since it
does not have bias towards a particular facility, this is
fair for passengers of both examined destinations (e.g.,
restaurant or cinema).

• Commercial Advantage. Metro passengers arriving
at the center always consider pi and qj to be their near-
est cinema and restaurant respectively. It is less likely
for the passengers to travel to other cinema or restau-
rant, provided that they are of similar quality. Besides,
people leaving from the cinema/restaurant will proba-
bly come back to the same central station.

Besides the above taxi-stand and metro scenarios, we il-
lustrate other important applications of RCJ in the following

examples.

• Recycling Stations. A recycling station has sev-
eral designated bins for accepting recyclable materials
(e.g., one for aluminum cans, one for glass contain-
ers, one for plastic bottles). The city council wants
to allocate recycling stations for appropriate pairs be-
tween restaurants and residential complexes in the city.
Large number of recycling stations are required due to
the huge amount of recyclable material (e.g., bottles,
biodegradable waste) produced by restaurants and res-
idential complexes. The RCJ results are used for plac-
ing each recycling station at a fair distance from the
corresponding restaurant and residential complex.

• Tourist Recommendation. A tourist asks for RCJ
pair(s) such that he/she will be able to visit both the
cinema and restaurant conveniently. In particular, the
RCJ result set can be sorted in ascending order of the
ring diameter so as to facilitate the tourist for making
his/her choice with ease. While browsing the sorted
list of RCJ results, the tourist has the flexibility to
determine whether an RCJ pair satisfies his/her pref-
erences, e.g., (i) he/she is not too far from the center
of the pair, or (ii) the qualities of the corresponding
cinema and restaurant are not too low.

• Postboxes. The post corporation intends to place its
post boxes at locations that are convenient to pub-
lic access. A nice distribution would be to have post
boxes located at centers of RCJ pairs between build-
ings. This is viewed as the self-RCJ problem, where
both sets P and Q contain locations of all buildings.

• School Bus Stops. A school bus company wishes
to allocate its bus stops such that they are close to
residential estates of children. Centers of RCJ pairs
between estates provide handy locations for placing
school bus stops. The RCJ result set can be sorted
in descending order of the number of children in the
residential estates associated with the RCJ pair. This
way, the management of the bus company will be able
to discover appropriate locations for its bus stops.

A (binary) spatial join operator takes two spatial datasets
P , Q as input and outputs a subset of the Cartesian product
P ×Q based on a join predicate. In this paper, we consider
the general scenario that P and Q are different datasets
(e.g., in the example of recycling stations). In the special
case where P and Q are identical (e.g., in the example of
postboxes), the operation is called the self-join. Examples
of traditional join operators on spatial pointsets include the
ǫ-distance join [2, 8] and the k-closest pairs join [6, 3, 13].
However, RCJ has fundamental differences from them.

First, each RCJ pair is semantically equivalent to a geo-
metric object (i.e., enclosing circle), and its inherent infor-
mation (e.g., circle center, radius) cannot be derived from
existing spatial join operators. Second, the join pairs of RCJ
adapt to the local data density; nearby pairs in dense regions
lead to small circles whereas pairs in sparse regions corre-
spond to large circles. In contrary to conventional spatial
join operators, RCJ results do not necessarily obey global
distance constraints. For example, in Figure 1, p2 is not close
to q1, however, 〈p2, q1〉 belongs to the RCJ result. Third,
RCJ does not rely on input parameters, other than the data

alone. On the other hand, the ǫ-distance join and the k-
closest pairs join rely on the distance parameter ǫ and the
cardinality parameter k respectively. Both ǫ and k require
domain-expert knowledge to specify at query time, and the
parameter-based behavior may vary significantly from region
to region, depending on the local density and distribution of
data.

Given the importance of RCJ, it is essential to develop ef-
fective and efficient techniques for processing RCJ. The com-
putation of RCJ is challenging; a simple brute-force solution
is to perform a nested loop join between P and Q, examine
each possible join pair 〈p, q〉 and verify whether the pair is
a result by issuing range search for its enclosing circle. The
brute-force approach requires O(|P | · |Q|) range searches; it
is prohibitively expensive and does not scale well for large
datasets. To our best knowledge, there is no efficient algo-
rithm for RCJ computation in the literature. Motivated by
this, we first study how to reduce the search space, and then
present efficient algorithms for processing RCJ.

In summary, our contributions include:

• Introduction of the ring-constrained join (RCJ) oper-
ator, with applications to spatial decision support sys-
tems

• Development of crucial lemmas for pruning the search
space in RCJ computation

• Design of I/O-efficient algorithms for RCJ computa-
tion on spatial datasets indexed by R-trees

The rest of the paper is organized as follows. Section
2 discusses the related work on basic spatial queries and
spatial joins. Section 3 presents an index nested loop join
(INJ) approach for computing RCJ efficiently. Section 4
develops a bulk version of INJ to further optimize its I/O
cost. Section 5 experimentally evaluates the efficiency of
the proposed algorithms on both real and synthetic spatial
pointsets. We also demonstrate the differences between the
result set of RCJ and that of existing spatial join operations.
Finally, Section 6 concludes the paper.

2. RELATED WORK
Section 2.1 reviews basic query processing techniques on

a spatial index and Section 2.2 discusses the existing spatial
join types.

2.1 Spatial Query Processing
The most common spatial access method is the R-tree [5],

which hierarchically groups objects into disk pages and in-
dexes them by minimum bounding rectangles (MBRs). Fig-
ure 2 shows a set of points and an R-tree that indexes them.
The root node of this tree has three entries e1, e2, e3, each
having a pointer to a leaf node that stores data points. Ob-
serve that each non-leaf entry (say, e2) is associated with its
MBR, representing the minimum rectangle that encloses all
points in its subtree.

Popular spatial queries such as range queries and near-
est neighbor queries can be efficiently answered by R-trees.
Given a region W , a range query returns all points that in-
tersect W . In the example of Figure 2, a range query asks for
the points within distance 3 from q (i.e., the shaded area).
The root node of the R-tree is first visited. Then, the query
is evaluated by following entries whose MBRs intersect the

query region. For instance, e1 does not intersect the query
region so the subtree of e1 cannot lead to any query result.
On the other hand, the subtree of e2 is searched recursively
and the points in the corresponding node are checked to
obtain the result p7.

p
1

p
2 p

3

p
4

p
5

p
6

p
7

p
8

x

y

q
p
2

p
3

p
1

p
8

p
7

p
4

p
5

p
6

e
1

e
2

e
3

5 10 15

5

10

15

e .MBR
2

e .MBR
1

e .MBR
3

Figure 2: Spatial Queries on R-trees

Given a query point q and a positive integer k, a k nearest
neighbor (kNN) query retrieves the k closest points to q.
The incremental nearest neighbor (INN) algorithm [7] is the
state-of-the-art solution for processing kNN query on R-tree.
It employs a min-heap H that arranges visited R-tree entries
e based on the minimum distance mindist(q, e) [11] of their
MBRs from q. First, entries of the root node are inserted
into H. In each iteration, the top entry e of H is deheaped.
If e is a non-leaf entry, then the child node of e is accessed
and all its entries are inserted into H. Otherwise, e is a
leaf node entry and the corresponding point is reported as
the next NN. The procedure repeats until k points have
been found. As an example, we apply the INN algorithm
to process the 2-NN query of q in Figure 2. First, the root
entries e1, e2, e3 (together with their distances from q) are
inserted into H. Then the nearest entry e2 is retrieved from
H, its child node is read, and points p1, p7, p8 are inserted
into H. The next nearest entry in H is p7, which is reported
as the first NN of q. Continuing with the above procedure,
the next leaf entry deheaped from H (i.e., p8) is the second
NN of q.

The INN algorithm is not only applicable to NN search,
but it has also been successfully extended to process other
advanced spatial queries such as skyline retrieval [9] and re-
verse nearest neighbor search [16]. The rationale is that INN
serves as a spatial ranking operator for retrieving the points
in ascending order of their distances from q. The exact set
of retrieved points can be decided on-demand according to
specific application requirements (e.g., skyline search).

2.2 Spatial Joins
Given two spatial datasets P and Q, a spatial join returns

a set of pairs 〈p, q〉 (where p ∈ P and q ∈ Q), subject to
the join predicate, which selects qualified pairs for the join.
Examples of join predicates include the ǫ-distance [2, 8], the
k-closest pairs [6, 3, 13], and the k nearest neighbor join [17].

Table 1 summarizes the result sizes and the conditions
for a pair 〈p, q〉 to be qualified in the above spatial join
types. The inclusion of a pair 〈p, q〉 in the result set depends
on its pairwise distance dist(p, q) (as compared to others)
and user-specified parameters like ǫ, k. For instance, the
ǫ-distance join retrieves all pairs 〈p, q〉 with dist(p, q) below

ǫ. On the other hand, the k closest pairs join retrieves k

pairs such that their dist(p, q) are smaller than other pairs
in the Cartesian product P × Q. Regarding the k nearest
neighbor join, a pair 〈p, q〉 belongs to the result if q is one
of the k-th nearest neighbor of p in the dataset Q. Observe
that k nearest neighbor join produces asymmetric join pairs
(i.e., different results after exchanging P and Q) while the
other two return symmetric join pairs.

Join type Condition for a Result Symmetric
qualified pair 〈p, q〉 size

ǫ-distance dist(p, q) ≤ ǫ not fixed yes
k closest k-th smallest dist(p, q) k yes

pairs among pairs in P × Q

k nearest ∀q ∈ Q, k · |P | no
neighbor join k-th smallest dist(p, q)

Table 1: Summary of Spatial Join Types

We emphasize that RCJ is fundamentally different from
these distance-based spatial joins. Their result pairs are de-
cided by pairwise distances and parameters like ǫ, k. In
contrast, RCJ is based on an intuitive, non-parametric, and
geometric constraint, which solely determines the inclusion
of a pair in the result (i.e., the enclosing circle of the pair
contains no other points). Therefore, current spatial join
processing techniques [2, 8, 6, 3, 13] are not applicable to
RCJ.

To our knowledge, parameterless spatial join on pointsets
has only been studied in [19], which defines the common in-
fluence join between two pointsets P and Q as pairs 〈p, q〉
such that the Voronoi cell of p (in P) intersects the Voronoi
cell of q (in Q). Unfortunately, result pairs of common in-
fluence join cannot be exploited to determine RCJ results
effectively — it is not clear how the Voronoi constraint in
common influence join can be transformed to the ring con-
straint in RCJ.

x
0.5 1

0.5

1

y

p
2

p
1

p
3

Figure 3: Top-k Influential Site Query

Recently, influence-based spatial queries [18, 4] have been
proposed for discovering potentially useful points/locations
from two spatial datasets. They differ from spatial joins in
the sense that: (i) the result is a point/location (as opposed
to pairs of points), and (ii) two datasets play different roles
[18], where points in one dataset are labeled as sites and
the others are marked as objects. The influence of a site is
defined by the number of objects having it as the closest
site. In the example of Figure 3, the sites (e.g., cinemas) are
white points and the objects (e.g., residential buildings) are
black points. Each object is linked to its nearest site by a

dotted line. Based on this concept, the top-k influential site
query [18] retrieves the sites with top-k influence values. In
Figure 3, the influence values of p1, p2, and p3 are counted
as 3, 1, and 2 respectively. Thus, the top-1 influential site is
p1. On the other hand, the optimal location query [4] aims
to compute the location (as opposed to known sites) that
maximizes the influence value (defined above).

3. INDEX NESTED LOOP JOIN
In our problem setting, we assume that each dataset (i.e.,

P , Q) is indexed by a disk-based R-tree (i.e., TP , TQ). Nev-
ertheless, our methodology is directly applicable to other
hierarchical spatial indexes (e.g., point quad-tree) as well.

In order to exploit the R-trees TP and TQ, we adopt a well-
known query processing technique, called index nested loop
join [14], for the efficient computation of the RCJ between
P and Q. Although this solution sounds straightforward, it
generates a number of non-trivial issues to be addressed, as
we will show shortly.

Algorithm 1 presents a high-level description of the frame-
work of our Index Nested Loop Join (INJ) solution. At Line
1, the loop iterates for each point q in Q (i.e., each leaf en-
try in TQ). Then, we follow a filter-verification approach to
compute RCJ pairs for the currently examined point q. In
the filter step (Line 2), we probe the tree TP , and retrieve
a candidate set S of points that potentially form RCJ pairs
with q. In the verification step (Lines 3-5), we examine each
point p ∈ S and access the trees TP and TQ. If the (small-
est) enclosing circle of p and q contains no other points in
P , Q, then the pair 〈p, q〉 is reported as a valid RCJ result
pair.

Algorithm 1 Index Nested Loop Join Framework for RCJ

algorithm INJ-Framework(R-tree TQ, R-tree TP)
/* search ordering */

1: for each leaf entry q in the tree TQ do

/* filter step */
2: S:=probe TP for candidates that match with q;

/* verification step */
3: for each p ∈ S do

4: if 〈p, q〉 satisfies the circle constraint then

5: report 〈p, q〉 as a result;

In the following, we identify important issues to be inves-
tigated in the remainder of this section.

Filter Step.
The implementation of the filter step (Line 2) is essential

to the overall performance of our algorithm. A simple ap-
proach is to declare the candidate set S as the set of points
in P . This technique is ineffective and places a heavy burden
on the verification step. Another extreme is to include into
S only the nearby points of q (from P). However, this tech-
nique is not guaranteed to discover all points of P that form
RCJ pairs with q. In Section 3.1, we propose an effective,
efficient, and correct implementation of the filter step.

Verification Step.
To verify whether a pair 〈p, q〉 belongs to the result (Lines

3-5), a simple method is to define the (smallest) enclosing
circle of the pair and then perform range searches on both
trees TP and TQ. In Section 3.2, we develop a more ef-

ficient verification technique, without necessarily accessing
data points (i.e., leaf entries) in TP and TQ.

Correctness of the Algorithm.
In Section 3.3, we elaborate on the Index Nested Loop

Join (INJ) Algorithm for RCJ evaluation, by incorporating
the above filter and verification steps. In addition, we will
establish the correctness of INJ, i.e., (i) no duplicate RCJ
pairs are produced, (ii) the result set contains no false posi-
tive pairs, (iii) there are no false negatives.

Search Order.
We observe that, the ordering of examining the points in

Q (Line 1) also plays an important role in the performance of
the algorithm. Section 3.4 discusses an appropriate ordering
of visiting the points in Q.

3.1 The Filter Step
We now examine the filter step (at Line 2 of Algorithm 1)

and propose efficient techniques for retrieving a candidate
set S of points in P that form potential RCJ pairs with a
given point q ∈ Q.

Reducing the Candidate Set.
In the following, we devise an effective technique to detect

unqualified points in P (that cannot produce RCJ pairs with
q) early, so that their expensive verifications can be saved.

Suppose that we have encountered a point p ∈ P during
the search. It is important to exploit p for filtering out
other points p′ ∈ P from joining with q. We first define the
notations below to facilitate our discussion.

Definition 1. Ψ+ and Ψ− regions.

Given a point q ∈ Q and a point p ∈ P , let L(q, p) be the line
passing through p and perpendicular to the line segment |qp|.
The spatial domain is divided by L(q, p) into two regions:
(i) the region Ψ+(q, p) that contains q, and (ii) the region
Ψ−(q, p) that does not contain q.

We present the following lemma for eliminating a point p′

from search, based on the locations of q and p.

Lemma 1. Pruning a point p′ ∈ P .

Let p be a point of P and q be a point of Q. Any other point
p′ ∈ P located in Ψ−(q, p) cannot join with q to form an
RCJ pair.

Proof. Figure 4 shows an exemplary spatial configura-
tion of points p, q, and p′. Let C′ be the smallest enclosing
circle of q and p′. The diameter of C′ (between q and p′)
must intersect the line L(q, p) at a location z (shown as a
gray point). Let C be the smallest enclosing circle of q and
z. Since the line segment |qp′| covers the line segment |qz|,
any point lying on (or inside) C must fall in C′.
As the line segment |qp| is perpendicular to L(q, p), the an-
gle ∠qpz is an right angle (i.e., 90◦). Thus, p lies on C,
which is inside C′ as explained above. As a result, the pair
〈p′, q〉 is not an RCJ pair.

Maximality of the Pruning Region.
Lemma 1 defines a valid pruning region Ψ−(q, p) in which

any other point p′ cannot form RCJ pairs with q. We now
investigate whether it is possible to exploit p for deriving a
larger pruning region (than Ψ−(q, p)). In other words, does

p'

p
q

L (q, p)

C'

C

z

(q, p)Ψ
–

(q, p)Ψ
+

Figure 4: Geometric Construction of Lemma 1

there exist some p′ in the region Ψ+(q, p) that can also be
pruned by p? It turns out that the answer is negative, as
explained by the lemma below.

Lemma 2. Maximal pruning region.

Let p′ ∈ P be a point located in the region Ψ+(q, p). The
validity of the pair 〈p′, q〉 (as an RCJ pair) is independent
of the point p.

Proof. By constructing a line parallel to L(q, p) and
passing through q, we partition the region Ψ+(q, p) into
three parts, as depicted in Figure 5a. Region I is the area
that contains points (e.g., p′

1) between q and p, region II is
the area with points (e.g., p′

2) behind q, and region III is the
line through q (e.g., covering p′

3).
Figure 5b illustrates the first case. We construct the loca-

tion z in the same way as the proof of Lemma 1, i.e., z is the
location on L(q, p) which is collinear with q and p′. Observe
that the enclosing circle C′ of the pair 〈p′, q〉 is completely
covered by the circle C passing through q, p, and z. As a
result, p does not fall in C′ and cannot be used to prune the
pair 〈p′, q〉.

Figure 5c depicts the second case. Except from the point
q, the circles C′ and C are disjoint. Again, p cannot fall in
C′.

Figure 5d exemplifies the third case, where the line seg-
ment |qp′| is parallel to L(q, p). Here, we define the location
µ as the center of the enclosing circle C′ between q and p′.
Since ∠µqp is an right angle, the segment |µp| must be no
shorter than the segment |µq|. Hence, we can construct a
circle C concentric to C′ such that C passes through the
point p. Note that p does not fall in C′, due to the concen-
tric relationship between the circles C and C′.

Combining all three cases, we conclude that the validity of
the pair 〈p′, q〉 (as an RCJ pair) is independent of the point
p. In other words, the pruning region formulated by Lemma
1 is maximal.

Saving Filtering I/O Cost.
Having confirmed the completeness of the above pruning

rule, we now develop techniques for reducing the filter cost,
by accessing as few points as possible from TP , the R-tree of
P . For this purpose, we exploit a discovered point p ∈ P to
prune unqualified subtrees of TP that cannot contain points
for forming RCJ pairs with q. The lemma below shows when
an MBR e (for a non-leaf entry in the tree TP) becomes
unqualified for joining with q.

p'

p
q

L (q, p)(q, p)Ψ
+

1

p'
2

p'
3

(i)(ii) (iii)

p'

p
q

C'

C

z

L (q, p)

(q, p)Ψ
+

(a) partitioning of Ψ+(q, p) (b) p′ in the region I

p'

p
q

C'

C

z

L (q, p)

(q, p)Ψ
+

p'

pq

C'

C

L (q, p)

(q, p)Ψ
+

µ

(c) p′ in the region II (d) p′ in the region III

Figure 5: Locations of p′ in Unpruned Region Ψ+(q, p)

Lemma 3. Pruning an MBR e of some points in P .

Given two points p ∈ P , q ∈ Q, and an MBR e of some
points in P . If Ψ−(q, p) contains e, then any point p′ inside
e cannot join with q to form RCJ pairs.

Proof. True, due to Lemma 1 and the bounding prop-
erty of e.

The Filter Algorithm.
Until now, we have only discussed how to exploit an ac-

cessed point p for pruning the search space. We continue
to investigate how to obtain such a point p (from P). Ob-
serve in Figure 4 that, if p is close to q, then the pruning
region becomes large and many unqualified points in P can
be pruned away. In order to maximize the pruning power,
it is desirable to discover points of P in ascending order of
their distances from q. Hence, we integrate the incremental
NN algorithm [7] (described in Section 2.1) with our pruning
techniques into the filter algorithm.

Algorithm 2 corresponds to the pseudo-code of the filter
algorithm, which discovers all potential points in (the tree
TP of) P that can form RCJ pairs with the point q ∈ Q. The
set S is used to maintain the candidate points found so far.
As in [7], we employ a min-heap H for organizing the entries
in the tree TP to be visited. First, all root entries of the tree
TP are inserted into H with their mindist value from q. At
Line 6, we deheap an entry e (with the smallest mindist

value) from H. Recall that points in S come from the tree
TP and they may be used to prune e (by using Lemmas 1 or
3). In case e is pruned, we discard it and continue the loop
at Line 5. Otherwise, we check whether e is a non-leaf entry.
If e is a non-leaf entry, then we access its child node N ′ and
insert all entries of N ′ into H. Otherwise, e corresponds to a

point and we simply insert it into S. The process continues
until H becomes empty.

Algorithm 2 Filter Algorithm

algorithm Filter(Point q, R-tree TP)
1: S:=new set;
2: H:=new min-heap (with elements of (entry, key));
3: for each entry e ∈ TP .root do

4: insert (e, mindist(q, e)) into H;

5: while H is not empty do

6: deheap e from H;
7: if ∃p ∈ S, Ψ−(q, p) contains e then

8: discard the entry e; goto Line 5;

9: if e is a non-leaf entry then

10: read the child node N ′ pointed by e;
11: for each entry e′ ∈ N ′ do

12: insert (e′, mindist(q, e′)) into H;

13: else ⊲ e is a point
14: insert e into S;

15: return S;

Example of the Filter Algorithm.
The graphical example in Figure 6 illustrates how the filter

algorithm works. In this example, the R-tree TP (of the
dataset P) has a root node with four non-leaf entries e1,
e2, e3, e4, and each of them points to a leaf node. First,
the root entries (e1, e2, e3, e4) are inserted into H. Then,
e1 is deheaped (as it is the closest to q) and its points p1,
p2, p3 are inserted into H. Next, p1 is deheaped and it is
inserted into the set S. After e2 is deheaped, its points are
inserted into H. The next deheaped entry is p4. Since p4

does not fall in the pruning region of any point in S (e.g.,
the region Ψ−(q, p1)), it is inserted into S. Observe that the
entries to be deheaped later (i.e., e3, e4, p2, p3, p5, p6) will be
pruned by some point in S = {p1, p4}. Finally, H becomes
empty, the filter algorithm terminates and returns S as the
candidate set.

q

e
1p

1

e
2

e
4e

3

p
3

p
5

p
2

p
6 p

4

p
8

p
7

p
9

p
10 p

11

p
12

Figure 6: Example of the Filter Step

3.2 The Verification Step
This section elaborates the verification step in our frame-

work (Lines 3–5 of Algorithm 1). Pairs that pass through
the filter step need to be verified against both datasets P

and Q. Recall that a pair 〈pi, qj〉 is an RCJ result when it
satisfies the geometric constraint: the smallest circle enclos-
ing pi and qj contains no other points in P , Q. We focus on

the verification of the enclosing circle against Q because the
verification procedure against P is the same.

Case Study.
Figure 7a shows a pair 〈p2, q1〉 and its enclosing circle

C(µ, λ), where µ is the circle center and λ is the circle radius.
In the following, we illustrate various cases of the verification
step. We assume that, the point q3 and the non-leaf entries
e4, e5, e6 in Figures 7b,c,d reside in the R-tree index on Q.

• Point Inside the Circle. In Figure 7b, the point q3

falls in the circle so the pair 〈p2, q1〉 is pruned.

• Disjoint Entry. In Figure 7c, the non-leaf entry e4

does not intersect the circle. Since e4 is irrelevant to
the verification of the pair, the subtree of e4 is not
accessed.

• Intersecting Entry. In Figure 7c, the non-leaf entry
e5 intersects the circle and its subtree may contain
some point inside the circle. Thus, the subtree of e5

needs to be accessed.

• Entry with a Face Inside the Circle. In Figure
7d, the non-leaf entry e6 has one face (i.e., a side in
2D space) inside the circle. According to the prop-
erty of the minimum bounding rectangle [11, 15], it is
guaranteed that the subtree of e6 must contain a point
inside the circle. Therefore, the pair 〈p2, q1〉 is pruned,
without accessing the subtree of e6.

p
2

q
1

λ
µ

C (,)µ λ
p

2

q
1

q
3

(a) enclosing circle C(µ, λ) (b) a point q3

p
2

q
1

e
4

e
5

p
2

q
1

e
6

(c) two entries e4 and e5 (d) entry e6

Figure 7: Various Cases of the Verification Step

The Verification Algorithm.
Here, we summarize the above cases and extend the tech-

nique for verifying a set of circles concurrently. Algorithm 3
is the pseudo-code of the verification algorithm and its input
parameters are: (i) the current node N (of an R-tree) being
accessed, and (ii) a set S of circles to be verified. Initially,
the node N is set to the root node of the tree of Q (or P).

In case the entry e is a data point (i.e., N is a leaf node),
we examine each circle C ∈ S and discard those containing
e.

Otherwise, the entry e is a non-leaf entry (i.e., N is a
non-leaf node). First, we eliminate each circle C ∈ S, which
contains a face of e. Then, we check whether e intersects
any remaining circle C ∈ S. If so, then the subtree of e

may contain some point falling in some circle C ∈ S, and we
perform the verification procedure recursively at the child
node of e.

It is well known that plane-sweep [2] is an efficient method
for detecting the intersection between two groups of rectan-
gles. This technique can be applied to accelerate the com-
parisons at Lines 3, 5, and 6 of the verification algorithm.
For the sake of readability, we do not discuss the details of
plane-sweep here.

Algorithm 3 Verification Algorithm

algorithm Verify(Node N , Set S)
1: for each entry e ∈ N do

2: if e is a point then

3: remove each C ∈ S, where C contains e;
4: else ⊲ e is a non-leaf entry
5: remove each C ∈ S, where C contains a face of e;
6: if ∃ C ∈ S, C intersects e then

7: read the child node N ′ pointed by e;
8: Verify(N ′, S);

3.3 The INJ Algorithm
Having explained the filter step and the verification step,

we are ready to present the Index Nested Loop Join (INJ)
Algorithm for RCJ evaluation (see Algorithm 4). It takes the
R-trees TP and TQ (on datasets P and Q) as input. At Lines
1–2, we iterate each leaf node N of the tree TQ and examine
each of its point q. First, we run the filter algorithm (i.e.,
Algorithm 2) to obtain the set S′ of candidate points from
P that may form RCJ pairs with the (currently examined)
point q. Then, for each retrieved point p ∈ S′, we define
its smallest enclosing circle C with q, and store the circle
into the set S. At Line 9, we invoke Algorithm 3 in order
to verify the circles of S against the points in tree TQ. The
remaining circles of S are then verified against the points
in the tree TP (at Line 10). Eventually, each circle in S is
reported as a RCJ result.

Algorithm 4 Index Nested Loop Join Algorithm for RCJ

algorithm INJ(R-tree TQ, R-tree TP)
1: for each leaf node N of the tree TQ do

2: for each point q in N do

3: S:=∅; ⊲ set of candidate pairs
4: S′:=Filter(q, TP); ⊲ filter step
5: for each p ∈ S′ do

6: let C be the enclosing circle of q and p;
7: C.p:=p; C.q:=q;
8: insert C into S;

9: Verify(TQ.root, S); ⊲ verification step
10: Verify(TP .root, S); ⊲ verification step
11: for each C ∈ S do

12: report 〈C.p, C.q〉 as a result;

We establish the correctness of the above INJ algorithm,
by the following lemma.

Lemma 4. Algorithm correctness.

The above algorithm produces exactly all the RCJ results for
the point q ∈ Q, i.e., the algorithm has no false negatives,
and the reported result set contains no duplicate pairs, no
false positive pairs.

Proof. First, no result is missed (i.e., no false negatives)
as only unqualified points in P are eliminated in the filter
step (according to the pruning rules in Lemmas 1 and 3).
Second, no duplicate result is generated as each point p ∈ P

is considered at most once, with respect to the same point q.
Third, each candidate RCJ pair 〈pi, qj〉 is verified against P

and Q to ensure no false positives (i.e., the enclosing circle
of the pair does not contain other points in P , Q).

3.4 Search Order
At Line 1 of Algorithm 4, each leaf node N of the tree TQ

is visited in order to compute all RCJ result pairs. However,
it does not specify a particular traversal order of accessing
leaf nodes from TQ.

We now investigate the effect of the traversal ordering on
the efficiency of the algorithm. Figure 8 shows the struc-
ture of the R-tree TQ and the corresponding locations of
points in the dataset Q. Apparently, a random order of ac-
cessing the leaf nodes would lead to poor performance. For
instance, suppose that we first process the points in e11 and
then process points in e2. Since e11 and e2 are far apart,
invocations of the filter and verification algorithms on their
points may access completely different nodes of the trees TP

and TQ. In this case, there is no locality of data accesses,
leading to expensive join evaluation.

contents of leaf nodes omitted

e
13

e
14

e
15

root node

e
1

e
2

e
3

e
4

e
5

e
6

e
7

e
8

e
9

e
10

e
11

e
12

e
1 e

2

e
3 e

4

e
5

e
6

e
7

e
9

e
10

e
11

e
12

e
8

e
13e

14

e
15

(a) R-tree TQ (on dataset Q) (b) Locations of points

Figure 8: R-tree Example

In real-world applications, a small memory buffer is em-
ployed usually to exploit data access locality and reduce the
number of page accesses from the disk. We suggest that an
appropriate search ordering is to apply the depth-first tra-
versal on the tree TQ. We formally present this method in
Algorithm 5. The input parameter N specifies the currently
examined node of the tree TQ and it is initially set to the
root node of TQ. If the entry e (in N) is a non-leaf entry,
then we continue the search recursively on its child node
(see Lines 3-4). Otherwise, the entry e is a data point q and
we apply the INJ algorithm on q in order to compute RCJ
pairs.

Algorithm 5 Depth-First Index Nested Loop Join for RCJ

algorithm INJ DF(Node N , R-tree TQ, R-tree TP)
1: for each entry e ∈ N do

2: if e is a non-leaf entry then

3: read the child node N ′ pointed by e;
4: INJ DF(N ′, TQ, TP);
5: else ⊲ e is a point q

6: apply Lines 3–12 of Algorithm 4 for the point q;

Figure 8 illustrates the operation of this algorithm; the

leaf nodes are processed in the order: e1, e2, e3, e4, e5,
etc. Thus, adjacent invocations of the filter and verification
procedures may share some common paths in the trees TP

and TQ. This way, the data access locality is exploited,
and the I/O cost can be improved significantly with a small
memory buffer.

4. BULK INDEX NESTED LOOP JOIN
In Section 4.1, we apply bulk computation techniques to

reduce the cost of the algorithm. Finally, Section 4.2 sug-
gests a powerful pruning rule for further optimizing the al-
gorithm.

4.1 Bulk RCJ Computation
In the last section, RCJ pairs are computed for each point

q ∈ Q separately. Since the filter and verification steps are
performed for each q, the total number of R-tree traversals
is proportional to |Q|. Thus, the processing cost becomes
high for large dataset Q.

Fortunately, the number of R-tree traversals can be sig-
nificantly reduced by performing RCJ computation concur-
rently for all points q residing in the same leaf node of the
tree TQ. We present the bulk version of Index Nested Loop
Join, called BIJ (Algorithm 6), to improve the total I/O cost.
It computes RCJ pairs for all points in a leaf node N (of the
tree TQ) concurrently. Note that the algorithm relies on the
bulk implementation of the filter algorithm Bulk Filter which
will be elaborated shortly. Set V contains all points in the
node N , and each q ∈ V is associated with its own candi-
date set q.S. We invoke the Bulk Filter function to retrieve
candidates for each point in V . Next, we define enclosing
circles for the candidates and verify them against the trees
TQ and TP . Finally, we report the remaining candidates as
RCJ pairs.

Algorithm 6 Bulk Index Nested Loop Join for RCJ

algorithm BIJ(R-tree TQ, R-tree TP)
1: apply depth-first traversal on the tree TQ;
2: for each encountered leaf node N do

3: S:=∅; ⊲ set of candidate pairs
4: V :=∅; ⊲ set of points
5: for each q ∈ N do

6: q.S:=∅; ⊲ set of candidate points for point q

7: insert q into V ;

8: Bulk Filter(V , TP); ⊲ filter step
9: for each q ∈ V do

10: for each p ∈ q.S do

11: let C be the enclosing circle of q and p;
12: C.p:=p; C.q:=q;
13: insert C into S;

14: Verify(TQ.root, S); ⊲ verification step
15: Verify(TP .root, S); ⊲ verification step
16: for each C ∈ S do

17: report 〈C.p, C.q〉 as a result;

We proceed to discuss the implementation of Bulk Filter.
Bulk Filter (Algorithm 7) differs from the original filter (Al-
gorithm 2) in the following aspects:

• A location q is defined as the centroid location of points
q ∈ V . Data points in the tree TP are then examined
in ascending order of their distances from q (instead of
each individual q ∈ V).

• At Line 7, if the entry e can be pruned with respect to
all q ∈ V , then we discard it and continue the loop at
Line 5

• At Lines 14-16, the entry e is examined against each
q ∈ V separately; for the currently examined q, e is
inserted into the candidate set q.S (of q) when e cannot
be pruned with respect to q.

Algorithm 7 Bulk Filter Algorithm

algorithm Bulk Filter(Set V , R-tree TP)
1: H:=new min-heap (with elements of (entry, key));
2: let q be the centroid location of points q ∈ V ;
3: for each entry e ∈ TP .root do

4: insert (e, mindist(q, e)) into H;

5: while H is not empty do

6: deheap e from H;
7: if ∀q ∈ V , ∃p ∈ q.S, Ψ−(q, p) contains e then

8: discard the entry e; goto Line 5;

9: if e is a non-leaf entry then

10: read the child node N ′ pointed by e;
11: for each entry e′ ∈ N ′ do

12: insert (e′, mindist(q, e′)) into H;

13: else ⊲ e is a point
14: for each q ∈ V do

15: if ∀p ∈ q.S, Ψ−(q, p) does not contain e then

16: insert e into q.S;

4.2 Optimizing the Bulk Filter
In Section 3.1, we have shown how to reduce the search

space for a given point q ∈ Q, using an encountered point
p from P . We now consider another similar technique for
search space reduction. Suppose that we have encountered
two points q and q′ from Q, but no points from P . The fol-
lowing lemma provides us a search space reduction method
by exploiting q′.

Lemma 5. Symmetric pruning rule.

Given two points q and q′ in Q, let L(q, q′) be the line passing
through q′ and perpendicular to the line segment |qq′|. Any
point p′ ∈ P located in Ψ−(q, q′) cannot join with q as RCJ
result.

Proof. The logic of the proof (see Figure 9) is the same
as the one in Lemma 1, except that the point p (in Lemma
1) is replaced by the point q′.

A practical issue is how the point q′ should be chosen
(from Q) for applying Lemma 5 on the point q. It is de-
sirable that: (i) q′ should be close to q, in order to have
high pruning power, and (ii) no extra I/O cost is required
for obtaining q′. Next, we demonstrate how Bulk Filter (Al-
gorithm 7) is adapted to incorporate the above pruning rule
for enhancing the filtering effectiveness. In Bulk Filter, the
input parameter V contains a set of points in a leaf node
of the tree TQ. Fortunately, these points satisfy both of the
above requirements as they reside in the same leaf node as
the point q. In order to utilize the pruning power of points
in the set V , at the condition of Lines 7 and 15, we replace
the term p ∈ q.S by the following:

p ∈ q.S ∪ (V − {q})

p'

q'
q

C'

C

z

L (q, q')

(q, q')Ψ
–

(q, q')Ψ
+

Figure 9: Geometric Construction of Lemma 5

Point p refers to a point that can be used for pruning the
search space of point q. In this case, p can be a point in
the candidate set q.S or any point in the set V , except from
the point q itself. The above pruning condition offers the
benefit that, even when the candidate set q.S is empty, the
points q ∈ V can help in shrinking the search space.

5. EXPERIMENTAL EVALUATION
This section evaluates the efficiency of our proposed algo-

rithms using synthetic and real datasets. Uniform synthetic
datasets (UI data) were generated by assigning random val-
ues to coordinates of points independently. In order to ob-
tain meaningful RCJ results from real datasets, data points
of both datasets P and Q should span over the same ge-
ographical region. For this purpose, we obtained several
real 2D spatial pointsets of U.S., from the U.S. Board on
Geographic Names1. Table 2 summaries their characteris-
tics and Table 3 depicts the corresponding join combinations
with them. Coordinate values in all datasets are normalized
to the interval [0, 10000]. Each dataset is indexed by an
R∗-tree [1] with disk page size of 1K bytes.

ID Description Cardinality

PP Populated Places 177983
SC Schools 172188
LO Locales 128476

Table 2: Summary of Real Datasets

Combination Dataset Q Dataset P

SP SC PP
SP′ PP SC
LP LO PP
LP′ PP LO

Table 3: Join Combinations

We compare the performance of our proposed RCJ algo-
rithms:

• INJ (Index Nested Loop Join), Algorithm 5

1http://geonames.usgs.gov/index.html

• BIJ (Bulk Index Nested Loop Join), Algorithm 6

• OBJ (Optimized Bulk Index Nested Loop Join), an
optimized version of Algorithm 6 with the symmetric
pruning rule in Section 4.2

The algorithms were implemented in C++ and experiments
were performed on a Pentium D 2.8GHz PC with 1GB mem-
ory. In practical applications, a small memory buffer is em-
ployed to exploit the locality of data accesses and reduce
the number of page faults. We set the default size of the
memory buffer to 1% of the sum of both tree sizes (for P

and Q). We measured both I/O time and CPU time of the
algorithms, by charging 10ms per page fault (a typical value
[14]). Observe that, I/O time captures the number of page
faults while CPU time roughly models the total number (in-
cluding repeated) of R-tree node accesses.

Section 5.1 demonstrates the differences of the RCJ result
set from those of existing spatial join operators. Section 5.2
studies the performance of our RCJ algorithms with respect
to different factors.

5.1 Result Sets of RCJ and Other Spatial Joins
From our early discussion in the Introduction, we under-

stand that RCJ is defined based on a geometric constraint
whereas existing spatial join operators (e.g., the ǫ-range join,
the k closest pairs, the k nearest neighbor join) are defined
based on the distances between the points. Due to this fun-
damental difference, RCJ cannot be reduced into those spa-
tial join operators.

Here, we aim to demonstrate empirically the differences
between their result sets. Let S be the result set of RCJ and
S′ be the result set of another spatial join operator. From
the information theoretic point of view, the precision and
recall of S′ with respect to S are defined as:

precision(S′

, S) =
|S ∩ S′|

|S′|
· 100%

recall(S′

, S) =
|S ∩ S′|

|S|
· 100%

Observe that the possible values of precision and recall fall
between 0% and 100%. S′ resembles S when both the recall
and precision values are high.

First, we study the effect of the join distance ǫ on the
precision and recall values of the ǫ-range join result set with
respect to the RCJ result set. Figure 10 shows the precision
and recall values as a function of ǫ, for the join combinations
SP and LP. There are many false negatives at low ǫ and the
number of false positives becomes high at high ǫ. When ǫ

increases, the precision decreases and the recall increases.
Observe that no single ǫ value achieves both high precision
and recall.

Next, we repeat the above experiment for the k-closest
pairs join and the k nearest neighbor join. Figure 11 plots
the precision and recall values with respect to the parameter
k, for the k-closest pairs join. Figure 12 illustrates the pre-
cision and recall values as a function of k, for the k nearest
neighbor join. Note that the trends in both figures follow
the one in Figure 10. In summary, the result set of RCJ is
significantly different from that of existing spatial join types,
even when their parameters (e.g., ǫ or k) are fine-tuned to
maximize the resemblance.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

q
u
a
lit

y
 (

%
)

range

precision
recall

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

q
u
a
lit

y
 (

%
)

range

precision
recall

(a) SP (b) LP

Figure 10: Resemblance of ǫ-Range Pairs vs ǫ, Real Data

 0

 20

 40

 60

 80

 100

0.0e0 4.0e4 8.0e4 1.2e5

q
u
a
lit

y
 (

%
)

k

precision
recall

 0

 20

 40

 60

 80

 100

0.0e0 4.0e4 8.0e4 1.2e5 1.6e5 2.0e5

q
u
a
lit

y
 (

%
)

k

precision
recall

(a) SP (b) LP

Figure 11: Resemblance of k-Closest Pairs vs k, Real Data

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

q
u
a
lit

y
 (

%
)

k

precision
recall

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

q
u
a
lit

y
 (

%
)

k

precision
recall

(a) SP (b) LP

Figure 12: Resemblance of k Nearest Neighbor Pairs vs k,
Real Data

According to our experimental result, the number of RCJ
result pairs are 111763 and 171139 for the join combinations
SP and LP respectively. Due to the geometric constraint of
RCJ, its result cardinality is comparable to the input data
size and does not overwhelm the user. On the other hand,
the result size of existing spatial join operator (e.g., the ǫ-
range join) is either too small or too large as an appropriate
parameter value (e.g., ǫ) cannot be easily determined apriori.

5.2 Efficiency of RCJ Computation

Performance on Real Datasets.
Before studying the performance of our algorithms, we in-

vestigate the sizes of their candidate sets on real data. Recall
that an efficient algorithm should generate small number of
candidates in order to minimize the verification cost. Table
4 shows the candidate size of our RCJ algorithms on real
data. As mentioned in the Introduction, the brute-force so-
lution (denoted by BRUTE) takes the complete Cartesian
product between P and Q as the candidate set. For the ba-

sis of comparison, we also include the actual number of RCJ
results. Observe that the candidate size of INJ is four orders
of magnitude lower than BRUTE, confirming the effective-
ness of our pruning rule in reducing the search space. Since
BIJ performs bulk computation for each group of points (in
the same leaf node) concurrently, the tree traversal order in
filter and verification steps may not be optimal with respect
to each individual point in the group. Thus, BIJ has a larger
candidate size than INJ. Nevertheless, the bulk computation
of BIJ reduces the number of tree traversals significantly and
BIJ has better performance than INJ in general, as we will
see later. Clearly, the candidate size of OBJ is on average
30% of INJ and it stays very close to the actual number of
RCJ results.

Data combination

Algorithm SP LP

BRUTE 3.06E+10 2.28E+10
INJ 767570 571289
BIJ 1161214 1243187
OBJ 175189 227352

RCJ Results 111763 171139

Table 4: Number of Candidate Pairs, Real Data

We proceed to study the performance of INJ, BIJ, and
OBJ with respect to different factors. BRUTE is excluded
from subsequent experiments due to its huge candidate size.

Figure 13 shows the cost (execution time) of the algo-
rithms for the join combinations in Table 3. The execution
time is decomposed into I/O time and CPU time. BIJ per-
forms better than INJ because the bulk computation tech-
nique greatly reduces the number of node accesses (and thus
saving CPU time from processing them). The reduction in
I/O time is not large due to the memory buffer. Since OBJ
applies an additional pruning technique (in Section 4.2), it
outperforms its competitors. Recall in Section 3.4 that the
size of the tree TQ affects the number of tree traversal oper-
ations on the other tree TP . Hence, the join combination LP
(with a smaller TQ than that of LP′) performs better than
LP′. It is worth noticing that, OBJ has robust performance
across different join combinations.

I/O

CPU

time (s)

SP LP SP' LP'

join combination

INJ

OBJ

BIJ

0

500

1000

1500

2000

INJ INJ

INJ

BIJ BIJ

BIJ

OBJ OBJ
OBJ

Figure 13: The Effect of Join Combination, Real Data

Experiments on Synthetic Datasets.
All of our RCJ algorithms follow a filter-verification ap-

proach for RCJ computation. We now examine the cost of

the verification step relative to the total cost. Figure 14
shows the cost of the algorithms on synthetic UI datasets,
at |P | = |Q| = 200K. The left column refers to our RCJ
algorithms (with both filter and verification steps), whereas
the right column represents the variants of our algorithms
without the verification step. Observe that the correspond-
ing cost differences between these two columns are small,
reflecting the high efficiency of our verification step. Since
the filter step in our algorithms is effective in discarding un-
qualified pairs, only a small number of candidates need to
be verified against both datasets P and Q. Thus, the veri-
fication step becomes very efficient, incurring less than 25%
of the total cost.

I/O

CPU

time (s)

Without

INJ

OBJ

BIJ

INJ

BIJ

OBJ

0

200

400

600

800

1000

1200

Verification

With

Verification

Figure 14: The Cost of RCJ Algorithms, |P | = |Q| = 200K,
Synthetic UI Data

Figure 15 plots the performance of the algorithms (on
synthetic data) as a function of the buffer size, which is
expressed as the fraction of total tree sizes. As the buffer
size increases, more R-tree nodes can be cached in the buffer
and the I/O time of all algorithms falls. OBJ outperforms
the other algorithms in all cases. At low buffer size, the
performance gap between OBJ and its competitors widens.

I/O

CPU

time (s)

buffer (%)

INJ

OBJ

BIJ

0

500

1000

1500

2000

2500

3000

3500

4000

0.2 0.5 1 2 5

INJ

INJ
INJ INJBIJ

BIJ BIJ BIJOBJ OBJ OBJ OBJ

Figure 15: The Effect of Buffer Size, |P | = |Q| = 200K,
Synthetic UI Data

Next, we test the scalability of the algorithms with syn-
thetic datasets. Figure 16a shows the cost of the algorithms
with respect to the data size n, where both datasets P and
Q have n (kilo) points each. All three algorithms are scal-
able for large datasets. In particular, the performance gap
between OBJ and its competitors widens as n increases. Be-
sides, Figure 16b shows the size of the RCJ result set as a

function of n. The result cardinality grows linearly with n.
We then study the performance of the algorithms on syn-

thetic datasets with respect to the cardinality ratio |P | : |Q|,
by fixing the sum of data sizes |P | + |Q| to 400K points.
Figure 16a plots the cost of the algorithms for different car-
dinality ratio |P | : |Q|. As the ratio increases, the size of Q

decreases, fewer filter and verification operations have to be
executed, and thus the cost decreases. Observe that OBJ has
stable performance across different cardinality ratio. Figure
16b shows the result cardinality of RCJ with respect to the
ratio |P | : |Q|. The result size is maximized when both P

and Q have the same size.

I/O

CPU

time (s)

n (kilo)

0

1000

2000

3000

4000

5000

50 100 200 400 800

INJ

OBJ

BIJ

OBJ

OBJ
OBJOBJ

BIJ

BIJ
BIJBIJ

INJ

INJ
INJINJ

0.0e0

5.0e5

1.0e6

1.5e6

2.0e6

 0 200 400 600 800

re
s
u

lt
 s

iz
e

n (kilo)

(a) time (b) result cardinality

Figure 16: The Effect of Data Size n, |P | = |Q| = n, Syn-
thetic UI Data

I/O

CPU

time (s)

0

500

1000

1500

2000

1:4 1:2 1:1 2:1 4:1

cardinality ratio |P|:|Q|

INJ

OBJ

BIJ
INJ

INJ

INJ

INJ

OBJ OBJ OBJ OBJ

BIJ

BIJ
BIJ

BIJ

0.0e0

1.0e5

2.0e5

3.0e5

4.0e5

1:4 1:2 1:1 2:1 4:1

re
s
u

lt
 s

iz
e

cardinality ratio |P|:|Q|

(a) time (b) result cardinality

Figure 17: The Effect of Cardinality Ratio |P | : |Q|, |P | +
|Q| = 400K, Synthetic UI Data

We proceed to examine the performance of the algorithms
with respect to different data distributions. Given a para-
meter w, we generate w clusters of points in the dataset
P (Q) such that (i) all clusters have the same number of
points, (ii) the center of each cluster is randomly chosen in
the space domain [0, 10000]2, and (iii) points in the same
cluster follow Gaussian distribution, with standard devia-
tion 1000 along each dimension. Figure 18a shows the cost
of the algorithms on synthetic Gaussian datasets P (and
Q), as a function of the number of clusters w, by fixing
each data size |P | (|Q|) to 200K points. As w increases,
the points are distributed more evenly in the space and the
datasets become less skewed. Obviously, OBJ outperforms
its competitors and its performance is less sensitive to the
data distribution. Figure 18b plots the result cardinality of
RCJ with respect to w. When w increases, the result size
first increases and then tends to be stabilized as the data
distribution becomes less skewed.

I/O

CPU

time (s)

number of clusters

INJ

BIJ

OBJ

INJ

INJ
INJ

BIJ BIJ BIJ

OBJ OBJ OBJ

0

200

400

600

800

1000

1200

2 5 10 15 20

INJ

BIJ

OBJ

0.0e0

1.0e5

2.0e5

3.0e5

4.0e5

 2 4 6 8 10 12 14 16 18 20

re
s
u
lt
 s

iz
e

number of clusters

(a) time (b) result cardinality

Figure 18: The Effect of Number of Clusters w, |P | = |Q| =
200K, Synthetic Gaussian Data

6. CONCLUSIONS
In this paper, we have introduced the interesting prob-

lem of ring-constrained join (RCJ), which has various ap-
plications in decision support systems. Besides, RCJ is a
challenging problem as there are no existing I/O-efficient
methods for processing it. Motivated by this, we have ex-
ploited the characteristics of RCJ and developed a funda-
mental lemma for reducing the search space effectively. We
then applied the lemma for R-tree based search and pre-
sented several algorithms for evaluating RCJ.

Our solutions are experimentally evaluated on both real
and synthetic datasets. The algorithm OBJ outperforms its
competitors in all cases, scales well with large datasets, and
its performance is robust across different data distributions
(including real datasets). In addition, we demonstrate that
the result set of RCJ cannot be well expressed in terms of
conventional spatial join types (e.g., the ǫ-distance join, the
k-closest pairs, the k nearest neighbor join).

In the future, we first plan to devise accurate I/O cost
models for our proposed algorithms, by analyzing the ef-
fect of their pruning techniques on search space reduction.
Our second research direction is to determine the theoret-
ical upper bound of RCJ result size. In our experimental
evaluation, we observed that the result cardinality is linear
to the input data size. We intend to study the result size
for the “worst” possible data distributions. Yet another im-
portant research topic is the generalization of RCJ to other
contexts. Recall that our current RCJ definition is built on
the concept of circle/ring, a geometric shape exclusively de-
fined in the Euclidean space. Therefore, we need to explore
alternative definitions of the circle constraint and its cen-
ter for other distance metrics: (i) the Manhattan distance
(as opposed to the Euclidean distance), and (ii) the shortest
path distance along a road network [12] that restricts the
locations of points.

7. ACKNOWLEDGEMENT
This work was supported by grant HKU 7155/06E from

Hong Kong RGC.

8. REFERENCES
[1] N. Beckmann, H.-P. Kriegel, R. Schneider, and

B. Seeger. The R*-tree: An Efficient and Robust
Access Method for Points and Rectangles. In
SIGMOD, 1990.

[2] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient
Processing of Spatial Joins Using R-Trees. In

SIGMOD, 1993.

[3] A. Corral, Y. Manolopoulos, Y. Theodoridis, and
M. Vassilakopoulos. Closest Pair Queries in Spatial
Databases. In SIGMOD, 2000.

[4] Y. Du, D. Zhang, and T. Xia. The Optimal-Location
Query. In SSTD, 2005.

[5] A. Guttman. R-Trees: A Dynamic Index Structure for
Spatial Searching. In SIGMOD, 1984.

[6] G. R. Hjaltason and H. Samet. Incremental Distance
Join Algorithms for Spatial Databases. In SIGMOD,
1998.

[7] G. R. Hjaltason and H. Samet. Distance Browsing in
Spatial Databases. TODS, 24(2):265–318, 1999.

[8] N. Koudas and K. C. Sevcik. High Dimensional
Similarity Joins: Algorithms and Performance
Evaluation. In ICDE, 1998.

[9] D. Papadias, Y. Tao, G. Fu, and B. Seeger.
Progressive Skyline Computation in Database
Systems. TODS, 30(1):41–82, 2005.

[10] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui.
Aggregate Nearest Neighbor Queries in Spatial
Databases. TODS, 30(2):529–576, 2005.

[11] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
Neighbor Queries. In SIGMOD, 1995.

[12] S. Shekhar and S. Chawla. Spatial Databases: A Tour.
Prentice Hall, 2003.

[13] H. Shin, B. Moon, and S. Lee. Adaptive Multi-Stage
Distance Join Processing. In SIGMOD, 2000.

[14] A. Silberschatz, H. F. Korth, and S. Sudarshan.
Database System Concepts. McGraw-Hill, 5th edition,
2005.

[15] A. Singh, H. Ferhatosmanoglu, and A. S. Tosun. High
Dimensional Reverse Nearest Neighbor Queries. In
CIKM, 2003.

[16] Y. Tao, D. Papadias, X. Lian, and X. Xiao.
Multi-dimensional Reverse kNN Search. VLDBJ, To
Appear.

[17] C. Xia, H. Lu, B. C. Ooi, and J. Hu. Gorder: An
Efficient Method for KNN Join Processing. In VLDB,
2004.

[18] T. Xia, D. Zhang, E. Kanoulas, and Y. Du. On
Computing Top-t Most Influential Spatial Sites. In
VLDB, 2005.

[19] M. L. Yiu, N. Mamoulis, and P. Karras. Common
Influence Join: A Natural Join Operation for Spatial
Pointsets. In ICDE, 2008, To Appear.

