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Abstract—This paper studies the problem of finding objects with durable quality over time in historical time series databases.
For example, a sociologist may be interested in the top 10 web search terms during the period of some historical events; the
police may seek for vehicles that move close to a suspect 70% of the time during a certain time, etc. Durable top-k (DTop-k)
and nearest neighbor (DkNN) queries can be viewed as natural extensions of the standard snapshot top-k and NN queries
to timestamped sequences of values or locations. Although their snapshot counterparts have been studied extensively, to our
knowledge, there is little prior work that addresses this new class of durable queries. Existing methods for DTop-k processing
either apply trivial solutions, or rely on domain-specific properties. Motivated by this, we propose efficient and scalable algorithms
for the DTop-k and DkNN queries, based on novel indexing and query evaluation techniques. Our experiments show that the
proposed algorithms outperform previous and baseline solutions by a wide margin.

Index Terms—Durable query, time series, historical data, spatio-temporal databases.
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1 INTRODUCTION

THE top-k query [11], which selects k best objects
based on their ranking scores, is a common ap-

proach to obtaining a small set of desirable objects
from a large database. Recently, top-k search has been
extended to databases that contain multiple versions
of data objects, e.g., web archives, trajectory data, time
series, etc. Ranked retrieval in such applications may
need to consider not only an object’s value at one
particular time instance, but also its overall quality
during a time period [9][15][20].

In this paper, we study in depth the problem of
finding objects of consistent quality during a time
interval. We first study the durable top-k (DTop-k)
query that operates on a historical database where
each object is a 1D time series, i.e., at each time
instance, every series carries a single scalar. Given
k, time interval [tb, te) (called the query window), and
percentage 0 < r ≤ 1 (called the durability threshold),
a DTop-k query retrieves objects that appear in the
snapshot top-k sets for at least ⌈r·(te−tb)⌉ timestamps
during [tb, te). Figure 1(a) shows an example with 4
series s1–s4. Assuming higher scores are preferred,
a durable top-2 query with [tb, te) = [0, 4), r = 70%
retrieves s1 and s2, since they appear in the top-2 set
in at least 70% timestamps during [0, 4).
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Fig. 1. Example durable queries

We also identify a natural extension of the DTop-k
query: the durable k nearest neighbor (DkNN) query,
which considers at each time moment the k nearest
neighbors of a reference series sref . Consider again the
example of Figure 1(a), and the DkNN query with
sref = s4, k = 1, [tb, te) = [0, 4), r = 70%; i.e., we
are interested in the sequences that are the nearest
neighbor of s4 on at least 70% of the timestamps 0-3.
The only series that qualifies this query is s3, since
it is the NN of s4 75% of the time in [0, 4). As we
show in the paper, the DkNN query is much more
challenging compared to DTop-k, since the former is
rather resistant to materialization and indexing.

Durable queries are useful in many real world
applications. For example, consider Google Zeitgeist1,
which presents weekly statistics of search keywords,
each of which is associated with a time series of
its search volumes. A DTop-k (resp. DkNN) query
can be used to identify keywords that are frequently
searched (resp. most related) during some time pe-
riod, which may be further used by sociologists to
understand the impact of certain historical events.
A similar application is Twitter Trendsmap2, which
tracks frequently mentioned phrases and hashtags.
In SciScope3, a geospatial search engine built upon
a wide-area sensor network, durable queries may
be used by meteorologists to identify regions with
consistently high environmental indices in particular
time windows. In general, durable queries may serve
as fundamental tools in time series analysis; domain
experts can use their results to better understand their
data and trigger further investigation. We demon-
strate some interesting examples in Section 6.

Durable queries can naturally be extended for multi-

1. http://www.google.com/intl/en/press/zeitgeist2010/
2. http://trendsmap.com/
3. http://www.sciscope.org/
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dimensional time series, where at each time moment
every series carries an array of values. For top-k
search, in order to rank the series at every time
instance, we need to define an aggregate scoring
function on the values in the individual dimensions
(e.g., a linear function). For NN queries, we use a
distance measure (e.g., Euclidean distance) at each
timestamp between the reference series sref and the se-
quences; for example, a police officer may investigate
on vehicles consistently moving close to a pivot, e.g., a
suspect or a witness. Figure 1(b) illustrates an example
2D time series dataset containing the positions of three
moving objects s1-s3 at timestamps 0-3. Considering a
DkNN query with k = 1 and a period [0, 4), object s1
satisfies the query for r ≤ 75%, since it is the snapshot
NN of sref for timestamps 1-3.

To our knowledge, currently there is a very narrow
selection of solutions for the DTop-k query, and no
previous work on the DkNN query. The only ex-
isting solutions for DTop-k (reviewed in Section 2)
employ either brute-force search, or techniques that
are limited to specific domains. To fill this gap, we
propose an efficient method called top-k event scan-
ning (TES). TES exploits the fact that real-world time
series typically exhibit a certain degree of smooth-
ness, meaning that the changes in the top-k set at
adjacent timestamps are usually small, if at all. TES
indexes these changes and incrementally computes
the snapshot top-k sets at each timestamp of the
query window. To efficiently support DkNN queries
on 1D time series, we extend the methodology of
TES, and propose an efficient solution, query space
indexing (QSI), that indexes the query space. Going
one step further, we extend QSI to handle multi-
dimensional top-k and k-NN queries. Extensive exper-
iments using real and synthetic data confirm that the
proposed methods significantly outperform previous
ones, often by large margins. In the following, Section
2 surveys related work; Sections 3 and 4 describe the
proposed solutions for DTop-k and DkNN queries
on 1D time series, respectively; Section 5 discusses
query processing on multi-dimensional series; Section
6 evaluates the proposed methods experimentally;
Section 7 concludes the paper.

2 RELATED WORK
2.1 Consistent and Durable Queries
Lee et al. [15] were the first to study the consistent top-
k query, which is the special case of DTop-k with the
durability threshold r fixed to 100%. In the example of
Figure 1(a), a consistent top-2 query with time period
[0, 5) retrieves only object s2. The basic idea of the
solution in [15] (referred to as LHL) is to exhaustively
verify every object in the dataset against the query
definition. For each object s, LHL first checks whether
s belongs to the top-k set at timestamp tb. If so, LHL
continues to check if s is a top-k object at tb + 1;

otherwise, it discards s and starts with another object.
The process continues, until either s is eliminated, or
after checking the rank of s at every timestamp in
the query window. In order to accelerate snapshot
top-k membership checking, LHL pre-computes the
rank of each object at every timestamp, and organizes
this information into a sorted list, stored on disk in a
compressed format. For instance, in Figure 1(a), LHL
associates the list (1, 2, 2, 3, 3) to object s1, signifying
that s1 ranks 1st at timestamp 0, 2nd at time 1-2,
and 3rd at time 3-4. During query processing, LHL
scans the rank list of an object linearly from tb, until
reaching either te or a value larger than k.

LHL does not support DTop-k queries with r <
100%. To handle such cases, we extend LHL as fol-
lows. For each object s, we scan the part of its rank
list from timestamp tb to te, and count the number of
times that s is in the snapshot top-k sets. During the
scan, if we find that s is outside the top-k set for more
than (1− r) · (te − tb) timestamps, we drop s since it
cannot possibly reach the durability threshold r. The
set of objects that pass the verification are reported as
results. The main drawback of LHL is that it scales
poorly with the number of objects, as each object
initiates a list scan with at least one I/O read.

U et al. [20] studied durable top-k queries in the
context of keyword search in web archives, where
each object is a web document that gets edited or
replaced over time. In addition to the parameters k,
[tb, te), and r, a durable query in [20] also involves
a keyword list Kw. The score of a document version
is calculated based on its relevance to the keywords
in Kw with an IR model. There are important differ-
ences between our work and [20]. First, computing
the relevance of a document to an arbitrary Kw is
both hard and expensive. Therefore, preprocessing
methods cannot be used to accelerate search, as in Ref.
[15] and in our work. Second, the data domain, i.e.,
versional documents, is quite special: the relevance of
keywords to documents remains relatively constant
in adjacent timestamps. When this assumption does
not hold, e.g., if all objects change values at every
timestamp, as in Figure 1(a), the methods in [20]
reduce to brute-force search. Hence, the solutions in
[20] are tailored to a specific domain, and are not
suitable for DTop-k queries in the general case.

2.2 Other Related Temporal Queries
Numerous solutions (e.g., [1][8][14]) have been pro-
posed for indexing time series to support similar-
ity search. Such queries retrieve time series that are
closest to a reference series, according to a certain
distance measure. Two popular distance measures are
(i) the Euclidean distance in the space defined by
considering each time instance as a dimension and (ii)
dynamic time warping (DTW) [14], which improves
robustness over the Euclidean distance by allowing
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mapping of shifted sequence elements. The Gemini
framework [8] addresses the dimensionality curse in
time-series indexing and search using dimensionality
reduction; popular methods in this direction include
Chebyshev polynomials [2], piecewise linear approxi-
mation [5], APCA [3], etc. These methods do not apply
to durable queries, as they focus on an object’s overall
similarity to a query, rather than their properties at
individual timestamps.

There is also a vast amount of existing work in
indexing and searching trajectories, where each record
contains the locations of a moving object at different
timestamps. TrajStore [6] is a full-featured storage
engine for trajectories using adaptive quad-tree in-
dices. Sherkat and Rafiei [18] propose a new class of
robust summaries for high-dimensional time series.
Chen et al. [4] propose a new distance measure for
multi-dimensional time series, as well as the corre-
sponding indexing and searching methods. Another
line of work focuses on spatio-temporal queries on
moving objects trajectories. Yu et al. [22] propose effi-
cient methods for continuous nearest neighbor search,
which continuously updates the nearest neighbor of a
query as objects update their locations. Güting et al.
[9] study a similar problem, termed TCkNN, but focus
on retrieving the nearest neighbors during a historical
period rather than the current ones. Specifically, a
TCkNN query finds, at each timestamp during the
given period, the NN of a reference trajectory. The
technical focus in [9] is to organize trajectories into
an R-tree-like structure [10], and then take advantage
of some pruning heuristics.

Compared to similarity queries, there is little work
on top-k queries for time series data, despite the
importance of such queries. Although it is possible
to simulate a top-k query by a k-NN query with an
imaginary reference time series that has the largest
domain value at each time moment, such a reduc-
tion is often “far from satisfactory” [16]; methods
designed for similarity search do not capture well
the unique properties of top-k search. Li et al. [16]
conducted a thorough study on the evaluation of
snapshot top-k queries (i.e., find the top-k objects at
a given timestamp) on continuous time series with a
piecewise linear representation. The focus of [16] is
clearly different from ours, both in terms of the query
nature and the data model used.

Jestes et al. [12] study aggregate top-k queries on
temporal data with a piecewise linear representation.
The goal is to find the top-k objects with the highest
aggregation scores (e.g., average, sum, etc.) in a given
time interval. The focus and the data model of [12]
are clearly different from ours, and their solutions
do not apply to durable queries. Another piece of
related work is the interval skyline query [13]. An
object si dominates another sj , if an only if si is
better than sj in at least one timestamp, and no
worse in all other timestamps. The set of objects that

are not dominated is then reported as the interval
skyline. The interval skyline and the durable top-k,
however, retrieve very different results. The former’s
result set includes objects with high values in a small
number of timestamps, whereas the latter identifies
objects with durable quality. For instance, in Figure
1(a), s1 is on the interval skyline as long as the query
window contains timestamp 0 (where s1 is the best
object), regardless of its scores in other time instances.
Consequently, the solutions of [13] are inapplicable
to our problems. The probabilistic top-k query [17],
which finds objects with high probability to be in the
top-k set, is also remotely related to this work, since
one can view each timestamp as a possible world, and
calculate the probability for each object. On the other
hand, the focus of [17] is clearly different from ours,
and their methods do not apply to durable queries.

Finally, recent-biased time series (i.e., recent times-
tamps are assigned higher weights than older ones)
have been studied in the context of online analysis
of streaming data. The focus of this work is differ-
ent, however, since we focus on offline queries over
historical data. For instance, in the various application
scenarios mentioned in Section 1, it is generally more
natural to consider timestamps within the query win-
dow as equally important, than giving higher weights
to more recent time instances. For this reason, in the
following we focus on the equal-weight time series
model, as is done in many existing work involving
historical data, e.g., [12][13][15]. Possible extensions of
the proposed algorithms to handle recent-based time
series is discussed in Section 7.

3 DURABLE TOP-k PROCESSING

This section focuses on DTop-k processing in settings
where each object s is associated with a single value
(i.e., its score) at each timestamp t. In other words,
the top-k scores of the objects at all timestamps are
known before query time. In practice, the value of
k is usually only a fraction of the total number of
objects in the database [11]. Hence, we use kmax to
denote the largest supported value of k in the target
application. For the ease of presentation, we assume
that all series in the dataset are sufficiently long to
cover the query window, i.e., each of them has a
value at every timestamp during [tb, te). If a series
starts after tb or terminates before te, we simply put
a (conceptual) value of −∞ on each of its undefined
timestamps. Meanwhile, we use ∆min = ⌈r·(te−tb)⌉ to
denote the minimum number of timestamps for which
an object should satisfy the corresponding snapshot
top-k query in order to appear in the DTop-k results.

Besides LHL [15] described in Section 2.1, another
naı̈ve solution (referred to as NAI) for the DTop-k
query is to compute the snapshot top-k results at
every timestamp, and report the objects that appear
in no less than ∆min snapshot top-k sets. Clearly, this
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technique has a high cost when the query window is
long. In the following we present a novel solution TES
that significantly outperforms both LHL and NAI.
Section 3.1 describes the general framework of TES.
Sections 3.2 and 3.3 present methods for storing and
retrieving the differences of the top-k sets along a time
interval. Section 3.4 discusses the general applicability
of TES to any query that aggregates top-k results from
multiple consecutive timestamps. Table 1 summarizes
common symbols used throughout this section.

TABLE 1
List of Frequent Notations

Symbol Meaning
[tb, te),W DTop-k query window and its length
k, kmax DTop-k query parameter and its max value
r,∆min Minimum percentage and number of

timestamps that a DTop-k result should
stay in the snapshot top-k sets

N,T Total number of objects and timestamps
S∗
t Snapshot top-k set at timestamp t

3.1 General Framework of TES
In many applications, due to time series continuity,
the relative ranks of an object at consecutive times-
tamps tend to be stable. Accordingly, the top-k set
may not change at every time instance; when it indeed
changes, the differences between the old and new
top-k sets are usually small. For instance, in Figure
1(a), the top-2 set remains the same at the first three
timestamps, and changes only partially later. Thus, it
is unnecessary to compute the snapshot top-k results
from scratch at each timestamp. TES builds on this ob-
servation; Algorithm 1 shows its general framework.
The basic idea of TES is to (i) compute the top-k set
at timestamp tb; (ii) find the next timestamp t′ > tb
where the top-k set changes and update it; (iii) repeat
step (ii) until t′ > te.

While the top-k set is being updated, the durability
of the objects found in the set are also updated and
the objects that make it to the top-k durable result are
output. The durability ∆s of an object s is defined
by the number of timestamps in [tb, te) for which
the object is in the top-k. Two sets of objects are
maintained during the algorithm; a set CS of candidate
objects that are not yet confirmed to be durable top-k
results and a set RS of confirmed results. Whenever
an object s is found for the first time in the top-k set,
s is moved to CS if it is possible for s to make it to
the top-k result, based on the number of remaining
timestamps until te (line 7). As soon as a candidate
object is found at least ∆min times in the top-k set,
it is moved to RS (line 10). If there are not enough
timestamps for new objects to make it in the result and
CS is empty, the algorithm terminates, before having
to reach te (line 13).
Example. Consider the data in Figure 2 and a DTop-3
query q with [tb, te) = [0, 7), and durability threshold
r = 70%, meaning that a result object must be in

Algorithm 1 Top-k Event Scanning (TES)
TES(q)
// Input: q = {k, [tb, te), r} is the durable top-k query

1: ∆min ← ⌈r · (te − tb)⌉ , t← tb, CS ← ∅, RS ← ∅
2: while t < te do
3: Retrieve from disk the snapshot top-k set S∗

t at time t
4: Find the next timestamp t′ (t < t′ < te) where S∗

t′ ̸= S∗
t ;

if no such t′ exists, t′ ← te
5: for each object s ∈ S∗

t do
6: if s ̸∈ CS ∪RS and t ≤ te −∆min then
7: Add s to CS with ∆s = t′ − t
8: else if s ∈ CS then add t′ − t to ∆s

9: if ∆s ≥ ∆min then
10: Delete s from CS and add s to RS
11: if t > te −∆min then
12: Remove from CS every object s satisfying

∆s < ∆min − te + t′

13: if CS = ∅ then break
14: t← t′

15: return RS

the top-k set for at least ∆min = 5 timestamps. The
steps of the algorithm are illustrated at the bottom
of the figure. Initially, TES computes the top-k set
S∗
tb at time tb = 0, adds {s1, s2, s3} to CS, and sets

t = tb. The next timestamp ≥ t that the snapshot
top-k set changes is t′ = 2. Thus, TES increases the
durability counters of all objects in the previous top-
k set (i.e., {s1, s2, s3}) by t′ − t = 2. It also updates
t to 2 and the top-k set to S∗

t = {s1, s2, s4}. In the
next iteration, t′ = 5 is found and the durabilities
of S∗

t = {s1, s2, s4} are increased by t′ − t = 3.
Since counters ∆1 and ∆2 reach ∆min = 5, s1 and s2
are confirmed results, and moved to RS. Meanwhile,
candidate s3 is purged from CS, since it cannot meet
the 5 timestamps durability threshold, even if it is
a top-k object in all remaining time instances (i.e.,
5-6). In the third iteration, the only candidate s4 is
promoted to RS, leaving CS empty. Now, there are
only two timestamps left, insufficient for any new top-
k object (e.g., s5) to reach the durability threshold
∆min = 5. Hence, TES terminates reporting {s1, s2, s4}.

time1 2 3 4

score
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0 5 6
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Differences between adjacent 
snapshot top-k set
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Iteration t t′ CS(Object/Counter) RS
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2 2 5 s4/3 s1, s2
3 5 6 - s1, s2, s4

Fig. 2. Example of TES

In the above example, TES only computes the top-
k result at two timestamps (2 and 5) at which the
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snapshot top-k set changes, and applies two updates
to the top-k set (s4 replacing s3 at time 2 and s5
replacing s4 at time 5). Furthermore, the algorithm
stops early, before reaching te.

Clearly, the most expensive modules in the TES
framework are computing the snapshot top-k sets
and finding the next timestamp. Since the data are
historical, the overall query cost can be alleviated
by (i) precomputing the snapshot top-k sets at every
timestamp and (ii) indexing the timestamps where
the top-k set changes. Compared to a naı̈ve algorithm
that re-computes the top-k results at each timestamp,
TES clearly performs considerably fewer operations.
The overall efficiency of TES, however, depends upon
the implementation of the module that finds the next
change of the top-k set. In the next sections, we
discuss appropriate implementations for this module.

3.2 TESδ

We first describe an intuitive implementation of TES,
namely TESδ . The main idea is, for all possible values
of k, to directly materialize the changes between con-
secutive top-k sets. For instance, in Figure 2, changes
to the top-3 set are: (i) s4 replaces s3 at timestamp
2, (ii) s5 replaces s1 at time 5 and (iii) s3 replaces s5
at time 6. Assuming that kmax = 4, Table 2 lists, for
all k ≤ kmax the changes occurring between adjacent
snapshot top-k sets; for example, 2(+s4,−s3) means
that at timestamp 2, s4 enters the top-3 set, and s3
leaves. Although in this particular example, at each
timestamp, at most one object enters or leaves any
top-k set, multiple changes may happen to a top-k
set in the general case.

TABLE 2
Changes in Snapshot Top-k Sets in Fig. 2

k Timestamps (Changes)
1 1(+s2, −s1), 3(+s1, −s2), 4(+s2, −s1)
2 4(+s4, −s1)
3 2(+s4, −s3), 5(+s5, −s1), 6(+s3, −s5)
4 3(+s5, −s3), 5(+s3, −s1)

TESδ materializes the entire table that encodes the
changes for each k along the timeline (e.g., Table 2);
each row of the table is packed into disk blocks,
stored in a separate file, and indexed with a B+-
tree with time as the key. Given a DTop-k query,
the top-k set for t = tb is first retrieved from disk.
Then, TESδ searches the B+-tree corresponding to the
k-value of the query and finds the entry with the
smallest timestamp t′ > t. All timestamps between
t and t′ are skipped, and the new top-k set S∗

t′ at t′

is computed by updating the previous top-k result S∗
t

with the retrieved changes. For example, for a query
with k = 3, tb = 0, and te = 6, after the top-3 set
{s1, s2, s3} is found at tb = 0, the B+-tree of the 3rd
row is searched for the first entry with timestamp > 0;
that is entry 2(+s4, −s3). This entry implies that the
top-3 set becomes {s1, s2, s4} at t′ = 2. By linearly

scanning the entries while t′ < te, TESδ retrieves all
changes in the top-k set during the query interval.

Performance Analysis. The efficiency of TESδ de-
pends on the volatility of the dataset. Let Σ ≤ k ·
(te − tb) be the total number of times that any object
enters or exits the top-k set during the query window,
the total I/O cost of TESδ is O

(
logB T + Σ

B

)
, where

B is the size of a disk block. In the worst case,
the entire top-k set changes at every timestamp and
TESδ reduces to the naı̈ve algorithm. Such cases are
rare; TESδ usually answers a DTop-k query with a
significantly lower cost. The main drawback of TESδ ,
however, is that it imposes high storage overhead,
because rank changes of objects are replicated across
multiple rows of the table. In our example, the fact
that s1 moves from rank 1 to rank 3 at timestamp 4
is reflected in two entries timestamped 4: one in the
first row and one in the second row, because s1 exits
the top-1 and top-2 sets at the same time. Due to this
replication, in the worst case, the space complexity
of TESδ reaches O

(
k2max · T/B

)
. We address this is-

sue in a more sophisticated implementation of TES,
presented next.

3.3 TESλ

TESλ aims at achieving similar query performance
as TESδ with much lower space requirements. The
main idea is to compress the changes in the snapshot
top-k sets using a novel interval representation for
rank changes. As discussed above, at any timestamp
t, objects may enter or exit multiple top-k sets for
different values of k; these k values form a continuous
range, which we call a rank-change interval. In Figure 2,
at timestamp 4, s1 leaves both the top-1 and top-2 sets.
Instead of replicating these changes to two rows (as
done by TESδ in Table 2), TESλ represents this event
with a tuple ⟨−s1, [1, 3)⟩, which signifies that s1 leaves
all top-k sets for k ∈ [1, 3). Such a representation saves
significant space for long rank-change intervals.

Figure 3 (left side) illustrates a more complex ex-
ample involving 8 objects s1–s8, and 3 timestamps 0–
2, with kmax = 8; different markers (e.g., triangles,
squares, etc.) are used for different objects. At times-
tamp 1, object s4 leaves the top-4, top-5, and top-6 sets,
generating a ⟨−s4, [4, 7)⟩ rank-change interval. At the
same time, s8 generates a ⟨+s8, [6, 8)⟩ event. The right
side of Figure 3 presents a tree structure of 7 nodes
storing all rank change events at timestamps 1 and
2, as 14 rank-change intervals. The directions of the
arrows on the intervals indicate whether the object
enters (up) or leaves (down) the corresponding top-
k sets. For example, the rightmost interval indicates
that s1 leaves the top-3 and top-4 sets at time 2.

To answer a DTop-k query, TESλ retrieves all rank-
change intervals that overlap with k during the query
window, ordered by time. Then, from these intervals,
TESλ extracts the corresponding objects, and applies
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Fig. 3. Example CJI-Tree of 8 time series over 3
timestamps; 14 rank-change intervals are distributed
into 7 tree nodes.

the changes to the previous top-k set. For instance,
consider a DTop-3 query spanning the time window
of Figure 3. No interval corresponding to timestamp
1 intersects with the horizontal line k = 3, indicating
no change to the top-3 set at time 1; concerning
the second timestamp, the two rightmost intervals
overlap with k = 3, signifying that object s1 leaves
and s6 enters the top-3 set.

Next we clarify how TESλ organizes and retrieves
rank-change intervals. The classic data structure for
intervals, which answers stabbing queries efficiently,
is the interval tree [7]. A straightforward implemen-
tation of TESλ would be to construct an interval tree
for each timestamp t, in order to efficiently obtain
intervals containing k at each timestamp t ∈ (tb, te).
However, this would require one tree search for each
t ∈ (tb, te), i.e., high I/O cost for long query windows.
Instead, TESλ employs a novel data structure, called
the conceptual joint interval tree (CJI-tree). In Figure 3,
the 14 intervals are organized into a CJI-tree with 7
nodes N1–N7. Essentially, the CJI-tree consists of 7
lists of intervals, one for each node.

The rank-change intervals are assigned to the CJI-
tree nodes as follows. Each node Ni is associated
with a value Ni.v; these values define a hierarchical
partitioning of the rank domain, explained soon. A
rank-change interval I is added to the highest tree
node Ni for which Ni.v ∈ I . To insert I to the
tree, I is first tested against the root node Nr. If I
contains Nr.v, then I is stored at Nr; otherwise, if
I is to the left (resp. right) of Nr.v, I is recursively
tested against the root of the left (resp. right) subtree
of Nr. The values associated with the nodes must
ensure that each interval overlaps with at least one
of such values in the entire tree. The CJI-tree is a
binary tree with exactly ⌈log2 kmax⌉ levels of nodes,
among which the leaf nodes are associated with mid-
dle points between two adjacent ranks. In Figure 3,
the leaves N4–N7 are assigned values 1.5, 3.5, 5.5 and
7.5, which are the mid-points of rank pairs (1, 2), (3,

4), (5, 6), and (7, 8). Values assigned to internal nodes
are the averages of the values for their corresponding
children. Continuing the example, for the next level
N2 and N3, N2.v = (N4.v + N5.v)/2 = 2.5, and
N3.v = (N6.v + N7.v)/2 = 6.5. Finally, for the root,
N1.r = (N2.v + N3.v)/2 = 4.5. Since a rank-change
interval has length at least one, it must intersect with
at least one of the values in the CJI-tree.

The CJI-tree is stored on disk as follows. A separate
file is created for each node Ni of the tree. The
intervals of Ni are sorted and grouped by time (recall
that each interval corresponds to the change in the
ranking of an object at a specific timestamp). Each
file is indexed by a B+-tree using time as key.

Algorithm 2 shows how the top-k set at a given
timestamp t is incrementally updated using the CJI-
tree. The main idea is to search the tree for nodes
that may contain intervals intersecting with rank k.
For each such node N , TESλ finds the partition corre-
sponding to timestamp t, and then obtains the set of
intervals overlapping k, as in the traditional interval
tree search algorithm [7]. The top-k set changes corre-
sponding to the retrieved intervals are applied to the
current top-k set (lines 5-8). In our running example,
to compute the top-3 set at timestamp 2, TESλ ini-
tializes the top-k set to the previous one {s1, s2, s3} at
time 1, and searches the CJI-tree starting from the root
N1. It then scans the partition for t = 2, and retrieves
two intervals overlapping k that correspond to objects
s1 and s6. Thus, s6 replaces s1 in the current top-k set.
After that, TESλ descends the tree to the left child N2

of N1. Since N2 does not contain a partition for t = 2,
TESλ continues to N5, which is empty. Since N5 is a
leaf, the algorithm stops the traversal, and returns the
current top-k set {s2, s3, s6}.

Note that the set of nodes (e.g., N1, N2, N5) cor-
responding to a specific k (e.g., k = 3) are fixed
throughout DTop-k evaluation. This means that, to
evaluate a DTop-k query, we first use the B+-trees
of the files corresponding to these nodes to find the
smallest time point > tb in them, and then scan these
linearly and concurrently from these time points.

Algorithm 2 Updating the Top-k Set using the CJI-tree
Compute Top-k(k, t, S∗

t−1)
// Input: k is the query parameter; t is the current

timestamp; S∗
t−1 is the snapshot top-k set at

the previous timestamp t− 1
// Output: The snapshot top-k set S∗

t at t
1: Initialize S∗

t to S∗
t−1

2: Use k to calculate the set of nodes, N, that needs to be accessed
3: for each node N ∈ N do
4: Retrieve from disk the list of rank-change intervals residing

at N that correspond to t, and overlap with k
5: for each interval I retrieved in the last step do
6: Let s be the object corresponding to I
7: if s ∈ S∗

t−1 then remove s from S∗
t

8: else Add s to S∗
t

9: return S∗
t

Cost balancing using λ. Although TESλ saves stor-
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age, it incurs additional I/O and CPU costs during
query processing for traversing the CJI-tree. To strike
a balance between storage and query response time,
we introduce a parameter λ(≥ 1) into TESλ: we store
in the CJI-tree only those rank-change intervals with
length at least λ, since intuitively longer intervals lead
to higher space savings. In particular, when λ = 2ℓ

with integer ℓ, the CJI-tree only needs ⌈log2 kmax⌉ − ℓ
levels to ensure that each interval is stored at one
node. The rest of the rank change information are
directly stored as in TESδ . To incrementally compute
a snapshot top-k set, TESλ retrieves rank change
information from both the TESδ table and the CJI-tree.
A smaller value of λ leads to lower storage cost but
higher query overhead; the reverse is also true.

Performance Analysis. We first analyze the storage
savings of TESλ with λ = 1. At each timestamp, in
the worst case all top-k results are different from
the previous timestamp, leading to 2k rank-change
intervals. Since each interval is stored exactly once
in the CJI-tree, the space overhead of the tree is
bounded by O (kmax · T/B), where kmax, T and B are
the maximum supported value for k, total number of
timestamps in the dataset, and block size, respectively.
Note that this is significantly lower than the storage
cost O

(
k2max · T/B

)
of TESδ . When λ > 1, intervals

with length up to λ are duplicated for up to λ
times. Thus, the overall space complexity of TESλ is
O (λ · kmax · T/B).

Regarding query processing, the number of
CJI-tree nodes that have to be searched and
scanned is ⌈log2 (kmax/λ)⌉. These searches cost
O (log2 (kmax/λ) · logB T ) due to the use of B+-trees.
The data (i.e., intervals) that have to be retrieved
from each node depend on the length of the query
window W = te − tb and the number of objects
that enter/exit the top-k set at each timestamp
inside the window. Assuming that the total number
of times any object enters or exits the top-k set
during W is Σ, the scanning cost is O (Σ/B).
Thus, the overall I/O cost for answering a DTop-k
query is O (⌈log2 (kmax/λ)⌉ · logB T + Σ/B), which
degenerates to TESδ when λ ≥ kmax.

3.4 Generality of TES
So far we have discussed the case where there is
a given durability threshold r and only objects that
pass this threshold are output. In some applications,
it might be hard for the user to give an appropriate
value for r. For such cases, an alternative is to ask the
user to specify the number m of objects to be retrieves
with the highest durability. TES can be easily adapted
to support this version of the DTop-k query: instead of
using the fixed threshold ∆min for pruning candidates,
we use a floating ∆min threshold defined by the m-th
durable object found so far, which we keep track of
while updating the durabilities of the candidates.

In addition, although we have presented TES in
the context of the DTop-k query, this method can be
used to answer any query that post-processes all top-
k query results inside a given time interval [tb, te).
For example, a data analyst might be interested in the
objects that enter and exit the top-k set the maximum
number of times during the query window. In this
case, the durability threshold can be replaced by an
instability threshold.

4 DURABLE k-NN PROCESSING

This section studies the evaluation of DkNN queries
on 1D time series. Recall from Section 1 that a DkNN
query contains a reference series sref , which has te−tb
values, one for each timestamp in the query win-
dow. Hence, there is a vast space of possible DkNN
queries, making effective materialization much more
difficult. A naı̈ve approach (referred to as NAI) is to
simply compute the snapshot k-NN results at every
timestamp, and combine them to answer the DkNN
query. NAI is clearly inefficient, because (i) the k-
NN set may not change at every timestamp and (ii)
snapshot k-NN computations are expensive as they
cannot be precomputed as in the DTop-k case. In the
following we describe a novel solution, namely query
space indexing (QSI), which indexes the results of all
possible DkNN queries, and stores them compactly.

Figure 4 illustrates an example with 4 object values
at a particular timestamp t. Assume that k = 1.
Observe that as long as the value of the reference
series sref at time t is above the bisector of s1 and s2,
the snapshot NN of sref at t is always s1. Meanwhile,
s1 cannot possibly be the NN of sref , when sref falls
below the bisector of s1 and s2. Similarly, the snapshot
NN of sref is s2, if and only if sref(t) lies between the
bisector of s1 and s2, and that of s2 and s3. Accord-
ingly, we split the value domain into 4 partitions as
in Figure 4(a), using the bisectors of adjacent objects.
The snapshot NN of sref at t can be derived based on
the partition where sref(t) lies in. Figures 4(b) and 4(c)
show the situations for k = 2 and k = 3, respectively.
Specifically, for k = 2, we partition the value domain
with the bisector of s1/s3 and that of s2/s4; for k = 3,
the split point is the bisector of s1 and s4.

value
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s4

s1

s2

s3
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NN
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(a) k = 1 (b) k = 2 (c) k = 3
Fig. 4. Example of value domain partitioning
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In general, consider N time series s1, s2, · · · , sN and
a given time t. Without loss of generality, assume that
s1(t) < s2(t) < · · · < sN (t). Moreover, with respect
to a given k, let B0 = −∞, Bi =

1
2 (si(t) + si+k(t)) for

i = 1, 2, · · · , N−k, and BN−k+1 = +∞. Sequence {Bi}
defines a partition of the value domain (−∞,+∞),
Π(t) = {π1,π2, · · · ,πN−k+1}, where πi = [Bi−1, Bi)
(i = 1, 2, · · · , N−k+1). We have the following lemma.

Lemma 1: If the reference series sref satisfies
sref(t) ∈ πi, then the k-NN set of sref at time t is
S∗
t (πi) = {si, si+1, · · · , si+k−1}.

Proof: By definition it is clear that si−1(t) <
Bi−1 < Bi < si+k(t). For any sref(t) ∈ πi and any j
satisfying i ≤ j ≤ i+ k − 1, let dj denote the distance
|sref(t)− sj(t)|, then we have dj < min {di−1, di+k}.
Considering the fact that from si−1(t) to si+k(t) there
are exactly k + 2 distinct values, we thus achieve the
conclusion: the k-NN set of sref at time t is indeed
S∗
t = {si, si+1, · · · , si+k−1}.
Using Lemma 1, the k-NNs of a reference series sref

at time t can be directly obtained from the correspond-
ing set S∗

t (πi) of the interval πi that contains sref(t).
The proposed solution (QSI) materializes the above

partitioning at every timestamp in the dataset; for
every possible value of k, the corresponding partitions
and their associated k-NN sets are stored in a file
indexed by a B+-tree with time as key. During the
processing of a DkNN query, the snapshot k-NN set
at any time t is directly retrieved from disk based
on the value of sref(t), rather than computed from
scratch as in NAI. To further improve performance,
QSI materializes additional information to avoid un-
necessary k-NN retrievals. Specifically, observe that
for each interval πi at t (denoted as πi(t)), its k-
NNs can be identical to that of an interval πj in the
following timestamp t′(> t), i.e., S∗

t (πi) = S∗
t′(πj). QSI

exploits this fact by linking such partition intervals
together into a partition-time index (PTI), stored on disk
along with the partitions. Figure 5 exhibits an example
where the first interval π1 at time 0 shares the same 2-
NN set {s1, s2} with the interval π1 at timestamps 1 to
3, and the interval π2 at 5. Accordingly, QSI links these
intervals, starting from π1(0), as shown in the figure.
Similarly, QSI links the interval π2(0) with π1(6) via
π2(1),π2(2),π2(3),π1(4) and π1(5), since they have the
same 2-NN set {s2, s3}.

QSI performs the following steps to answer a
DkNN query. First, it selects the interval π∗ that con-
tains the reference series sref at the first timestamp tb
of the query window, and returns the corresponding
k-NNs. Then, the method skips the subsequent times-
tamps where the snapshot k-NN sets of sref can be
derived from previous results, by following the links.
The process continues, until QSI finishes processing
all timestamps in [tb, te).

Figure 5 illustrates QSI on an example dataset,
where k = 2, [tb, te) = [0, 7). The symbol ‘-’ (e.g.,
at timestamps 2 and 3) indicates that the k-NNs

of sref are the same as in the previous linked time
instances. At tb = 0, the interval containing sref is
π2, and its corresponding 2-NN set is {s2, s3}. π2(0)
links to π2(1),π2(2),π2(3),π1(4), π1(5) and π1(6), with
the first three actually containing sref . Therefore, QSI
skips timestamps 1 to 3 and starts a new iteration
at timestamp 4. The same applies to the rest of the
query window [4, 7). The candidates after timestamp
4 are s1, s2, and s3. s3 is immediately reported as a
final result since it already satisfies the durability re-
quirement. s1 is no longer a candidate since it cannot
possibly reach the durability threshold. s2 remains a
candidate until being purged at timestamp 6.
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Fig. 5. Example of QSI

Algorithm 3 summarizes the QSI algorithm. At
each iteration, QSI checks the first timestamp t in the
current query time queue Γ and picks the πi(t) which
contains sref . Subsequent timestamps at which there
is an interval containing sref and linked from πi(t)
are collected into a set T (lines 4-6). QSI computes
the k-NNs of sref at timestamp t, and removes T
from the query time queue (line 7). If the number of
the timestamps together with the current timestamp
satisfies the durability condition |T | + 1 ≥ ∆min, the
k-NNs S∗

t are moved to the result set RS. Otherwise,
all objects in S∗

t are merged into the candidate list
CS and their counters are updated with |T |+1 (lines
8-11). Finally, all candidates are confirmed as final
results (line 12) or purged as non-results (line 13).
The iterations terminate when all query timestamps
are processed or the candidate set becomes empty.

QSI accelerates DkNN processing in two
ways. First, similar to TES, QSI can skip the
retrieval/computation of snapshot k-NNs, when the
reference series stays in the same linked intervals.
Second, QSI operates on a compact representation
of the data, which only keeps the rank list of the
time series IDs, rather than their specific values
at each timestamp. The links between intervals in
different timestamps are kept into a separate index
file. Hence, QSI is expected to be more efficient
than NAI, especially when snapshot k-NNs change
infrequently. The main drawback of QSI, however,
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Algorithm 3 Algorithm QSI for DkNN queries
QSI(q)
// Input: q = {sref , k, [tb, te), r} is the durable k-NN query

1: ∆min ← ⌈r · (te − tb)⌉, CS ← ∅, RS ← ∅
2: Initialize the priority query time set Γ← [tb, te)
3: while Γ ̸= ∅ and CS ̸= ∅ do
4: t← first(Γ) and remove t from Γ
5: Retrieve from disk the partition πi(t) of sref at timestamp t
6: T ←

{
t′ ∈ Γ|sref(t′) ∈ π′

i(t
′) and π′

i(t
′) is derivatively

linked by πi(t)}
7: Retrieve from disk the k-NN set S∗

t for πi(t) and Γ← Γ−T
8: if |T |+ 1 ≥ ∆min then
9: RS ← RS ∪ S∗

t , and CS ← CS − S∗
t

10: else
11: Add each s ∈ S∗

t into CS with ∆s increased by |T |+ 1

12: Add {s ∈ CS|∆s ≥ ∆min} into RS
13: Remove {s ∈ CS|∆s+|Γ| < ∆min} from CS

14: return RS

is its pre-computation cost for building the PTI for
different values of k. Nevertheless, since k in k-NN
queries are typically much smaller compared to top-k
queries, we expect this cost to be bearable.

Performance Analysis. The efficiency of QSI de-
pends on how well the query sref is consistent with
the links. At every timestamp t, O (logB(N − k))
I/O is required to locate sref into a certain parti-
tion πi(t). Let α ≤ te − tb be the total number of
times that sref deviates from the PTI links within
the query window, then a cost O

(
α·k
B

)
is needed to

retrieve the k-NN sets. Therefore the overall query
cost of QSI is O

(
(te − tb) · logB(N − k) + α·k

B

)
. In the

worst case α = te − tb, making QSI no better than
the naı̈ve solution that retrieves k-NN set at every
timestamp; however such cases are rare. As to the
storage cost, for each k ≤ kmax, O ((N − k) · T/B)
space is used to store the bisectors. Therefore
the total storage cost is

∑kmax

k=1 O ((N − k) · T/B) =
O (kmax · T · (N − kmax − 1) /B).

5 MULTI-DIMENSIONAL QUERIES
QSI (described in Section 4) can be adapted to answer
DkNN queries on multi-dimensional time series, e.g.,
trajectories. In this problem, every data object (and the
reference series) has a multi-dimensional value at each
timestamp, and the distance between two such values
is given by the Euclidean metric. Given a timestamp
t, a part of value space with identical k-NNs at t is
an order-k Voronoi cell [7].

Figure 6(a) shows an example 2D durable k-NN
query with three data objects s1-s3, and their cor-
responding Voronoi cells, assuming that k = 1. For
instance, all possible positions of sref that fall into
the upper cell containing s1 have s1 as their nearest
neighbor. Similar to the 1D case, QSI partitions the
value space using a regular grid, whose granularity Π
is a user-defined parameter. Given a partition P and
a timestamp t, the k-NNs of P at t can be uniquely
determined, if P is completely contained in a single
Voronoi cell, e.g., P1 in the example. In this situation,

the PTI index contains the snapshot k-NNs of P at
time t, as well as the next timestamp t′ > t that k-
NN set changes. Otherwise (e.g., partition P2), QSI
marks in the PTI index that the k-NN set of P as
undetermined. The query processing algorithm is the
identical to that of the 1D case (i.e., Algorithm 3).
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s2
s3

P1

P2

(a) QSI for DkNN

s1

s2

s3

1

1

x

y

0

P1

P2

s4

s1

s3
s2

(b) QSI for DTop-k
Fig. 6. Example multi-dimensional durable queries

QSI can also be extended to answer multi-
dimensional DTop-k queries where the scores of the
objects are obtained by a linear function f as part of
the query. Figure 6(b) illustrates a 2D example with
4 objects s1-s4. Suppose that all objects have positive
values on both dimensions, and that the score function
takes the form f = ax + (1 − a)y; 0 ≤ a ≤ 1.
The space for all possible ranking functions can be
represented by the line x + y = 1, on which each
point p represents the score function that intersects
x+ y = 1 on p. Different portions of the line segment
x + y = 1, 0 ≤ x ≤ 1 correspond to score functions
with different top-k results [21]. For instance, the parts
of the line that correspond to s1, s2, s3 as the top-1
result are shown in Figure 6(b). QSI splits the line
segment x + y = 1 into a user-defined number Π of
partitions, each of which may have a deterministic
top-k set (e.g., P1, whose top-1 is s2), or not (e.g., P2).
The PTI index can be constructed accordingly, and
the query processing module can directly be used. We
found in our experiments that QSI is most effective on
1D DkNN queries. Its efficiency gains for 2D queries is
relatively small; for higher (> 2) dimensional queries,
the query cost reduction of QSI is marginal, and does
not justify its high storage overhead. Hence, how to
effectively handle high-dimensional durable queries
remains an open problem.

6 EXPERIMENTAL EVALUATION
We implemented all proposed algorithms and their
competitors in C++. The experiments were run on a
Linux 2.6.28 server with an Intel Core 2 Quad 2.66GHz
CPU and 4GB of RAM. The page size is set to 4KB,
the default page size of the OS. We use four datasets:
(i) AOL (from www.gregsadetsky.com/aol-data) is a
real web search log of around 650k users from Mar
1 to May 31, 2006. We count the frequency of every
search term on each day, and obtain a time series
dataset of 9098 terms over 92 days. Terms with very
low frequencies are ignored. (ii) Stock (from wrds-
web.wharton.upenn.edu) contains real daily closing
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prices of 13k stocks traded in the New York Stock
Exchange from Jan 1, 2000 to Dec 31, 2009 (2515 work-
ing days in total). We consider each stock as a time
series, and each working day as a timestamp; stocks
are ranked in decreasing order of their prices. (iii)
Air Pollution Index (API) (from www.epd-asg.gov.hk)
summarizes the hourly air pollution condition in var-
ious districts of Hong Kong, for the past 10 years.
The total number of series and timestamps are 14
and 95844 respectively, and smaller pollution values
are preferred in the top-k ranking. (iv) Synthetic
datasets were generated with a random walk model
[19], which contains 5k series and 10k timestamps.
For each time series si, we first generate an initial
value si(0) uniformly from [0, 100]. Then, for each
timestamp t ∈ [1, 10000), we randomly choose a value
α(t) from the normal distribution with mean 0 and
standard deviation σ, and set si(t) to si(t− 1) + α(t).
σ is a parameter evaluated in the experiments.

Before evaluating efficiency, we demonstrate the
usefulness of durable queries with several sample
queries on AOL and Stock. Table 3 shows the results
of three DTop-100 queries over AOL, using r = 50%.
The first query has a time window of one month.
As expected, most results are general terms related
to daily lives (e.g., google, yahoo, map), which have
relatively high durability. As we narrow down the
time window to a fortnight (second query) or a week
(third query), we start seeing results related to certain
historical events. For clarity, results of the first query
are not repeated for the second and the third query.
For example, American Idol, a popular singing com-
petition, was approaching a season finale during that
time. Also, May 14 was the Mother’s Day in 2006 and
“mother” is a popular keyword in the third query.

TABLE 3
Sample DTop-100 query results on AOL

Query Term (Durability)
google (100%), free (100%), yahoo (100%),1/5/2006 · · · , home (96.8%), mapquest (96.8%),≀ · · · , sale (74.2%), university (71.0%), · · ·31/5/2006 unit (54.8%), john (54.8%)

3/5/2006
≀ star (62.5%), medical (62.5%),

18/5/2006 mother (50%), idol (50%), love (50%)

6/5/2006
≀ mother (88.9%), star (66.7%), love (55.6%),

14/5/2006 restaurant (55.6%)

Results of sample DTop-10 queries on Stock data are
shown in Table 4. The table contains the 5 stocks that
appear most frequently in the daily top-10 stocks by
turnover during the specified query periods. Observe
that the results of queries with different time windows
can be radically different. These experiments indicate
that durable queries can be very useful to financial
time series analysts; further analysis of their results is
beyond the scope of this paper.

Table 5 summarizes the query parameters used in

TABLE 4
Sample DTop-10 queries and the results on Stock

Query Stock (Durability)
1/3/2001 MICROSOFT (100%), CISCO (100%),

≀ NASDAQ (96.8%), INTEL (93.5%),
31/3/2001 ORACLE (85.5%)
3/1/2007 SPDR (100%), ISHARES (100%),

≀ APPLE (97.6%), GOOGLE (84.8%),
31/12/2007 EXXON MOBILE (68%)

1/7/2009 BOA(100%), SPDR(100%), ISHARES(95.2%),
≀ STREETTRACKS (85.7%),

31/8/2009 CITIGROUP (57.1%)

the efficiency experiments. In each experiment, we
vary one parameter and set all others to their defaults.
Note that the API dataset uses smaller values for
parameters k and kmax, since it contains relatively few
(14) time series. The parameter w = (te − tb)/T is the
relative query window length, where T is the total
number of timestamps. The start point of the query
window tb is randomly chosen from the range [0,
T−⌈w·T ⌉], and te is calculated accordingly. For DkNN
queries, the reference time series sref is computed by
averaging 10 random data series at each timestamp.

TABLE 5
Query parameters (default values in bold)

Parameters Values

k
Stock, AOL 1, 10, 25, 50, 100, 250, 500

API 1, 2, 4, 6

kmax
Stock 32, 64, 128, 256, 512
API 8

r 50%, 60%, 70%, 80%, 90%
w = (te − tb)/T 1%, 5%, 10%, 15%, 20%

In all the experiments, we execute the methods 100
times, and average their number of page accesses
and CPU time. It is worth mentioning that, although
our datasets are small enough to fit into memory, we
decide to implement all methods on disk-based data,
and use cold buffers. The reason is that our methods
are not dedicated to specific dataset sizes, and other
real datasets (e.g., Google Zeitgeist data or an AOL-
like web search log over a much longer time period)
can be too large to fit into the memory. We used rel-
atively small datasets, because (i) some of the (naı̈ve)
methods do not scale well with the database size and
(ii) we could not find larger real datasets. Still, the
results on these data provide useful conclusions about
the relative efficiency of the methods. In the following,
Sections 6.1 and 6.2 present the results for DTop-k and
DkNN experiments, respectively.

6.1 Durable Top-k Evaluation
We first evaluate methods LHL [15], NAI, TESδ and
TESλ for DTop-k queries. To be fair, we compare with
an efficient NAI implementation, which employs a file
organization that materializes the top-kmax rankings
for all timestamps, orders them by time and packs
them to disk pages. This file is then indexed by a
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B+-tree. Given a DTop-k query, NAI uses the B+-tree
to find the first top-kmax ranking inside the query
time range and then sequentially accesses all top-k
rankings in the file that are relevant to the query.
Note that the worst-case query costs of LHL and NAI
are O

(
N · te−tb

B

)
and O

(
logB T + (te − tb) · k

B

)
respec-

tively, which are costly when N is large or the query
window is long. In addition, for TESλ, we fix the
value of λ to 1, meaning all rank changes are stored
in the CJI-tree, which maximizes space efficiency but
increases query processing costs. The impact of λ is
evaluated towards the end of this subsection.

Figures 7(a) and 7(b) plot the I/O cost and CPU
time, respectively, as functions of parameter k on the
AOL dataset, and Figures 8(a) and 8(b) on Stock data.
Parameters w and r are set to their defaults. On Stock,
we exclude the results for LHL [15], because its I/O
and CPU costs are at least an order of magnitude
higher than the remaining methods in all settings, as
LHL exhaustively checks all 13k series. Clearly, TESδ

consistently beats both naı̈ve methods in all settings,
in terms of both I/O and CPU costs. While TESλ is
not so competitive with very short queries (Figures
7(a) and 7(b), where the query window has length
⌈92×10%⌉ = 10) ,it shows significant advantage when
the query window gets longer (Figures 8(a) and 8(b),
where the query length is ⌈2515× 10%⌉ = 252) .

(a) IO cost (b) CPU time

Fig. 7. Effect of k on AOL

(a) IO cost (b) CPU time

Fig. 8. Effect of k on Stock

The I/O cost of NAI is not sensitive to parameter k,
because it retrieves the materialized top-kmax results
for each timestamp from disk during the query win-
dow. The I/O cost of TES increases with k, for two
reasons. First, larger k leads to the retrieval of more
rank change information (the probability that the top-
k result changes increases with k) . Second, a larger k
decreases the chance for early termination; manually

checking reveals that when k > 25, early termination
rarely occurs. Comparing the two variants of TES,
TESδ is considerably more efficient than TESλ in terms
of I/O, since the latter requires accessing multiple
nodes in the CJI-tree. The main advantage of TESλ,
however, is its flexibility, evaluated later.

The CPU time of all methods grows linearly with
k. Both versions of TES consistently beat NAI by a
wide margin. Unlike I/O, the difference in CPU time
between TESδ and TESλ is marginal, since they share
the same module for candidate set updates, which
dominates the CPU overhead. Figure 8(b) also shows
the number of DTop-k results with the poly-line and
the vertical axis on the right. The number of results
increases with k, since a larger k lowers the threshold
for objects to enter the top-k set.

Figure 9 repeats the same experiments on the API
data. The results for LHL are also included, since there
are few (i.e., 14) time series, and the query windows
are long; these settings favor LHL. TES is again the
clear winner in all settings in terms of I/O. LHL
has the lowest CPU overhead for this dataset, since
scanning the compressed rank lists takes negligible
time. However, its I/O cost is considerably higher
than TES, and I/O is the dominating factor here,
as the CPU times of all methods are below 10ms,
which is equivalent to less than 2 random I/Os on our
server. Hence, LHL incurs the highest overall query
response time. The performance of NAI and TES leads
to similar conclusions as on the Stock dataset, except
that random fluctuations have a higher impact, due
to the abnormal shape of the data, i.e., few, but very
long time series. Finally, the number of DTop-k results
increases with k, for the same reason as on the Stock
data. We omit testing the effect of k on synthetic
data, since the results are similar to those of Stock. In
addition, we exclude additional experiments on AOL
from the paper, because this dataset shows similar
results as Stock with short query windows.

(a) IO cost (b) CPU time

Fig. 9. Effect of k on API

Figure 10 investigates the effect of query window
size w. The performance advantage of TES is clear in
all settings. The I/O and CPU costs for all methods
increase with w, since a longer query window causes
more snapshot top-k retrievals in NAI and TES, and
the scanning of longer portions of the rank lists in
LHL. TES is generally more robust against w than
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LHL and NAI in terms of I/O. The number of results
decreases with w, since fewer objects exhibit durable
quality over a longer time frame. Results on Synthetic
are omitted, since they lead to similar conclusions.

(a) IO cost (Stock) (b) CPU time (Stock)

(c) IO cost (API) (d) CPU time (API)

Fig. 10. Effect of w on real datasets

Next we focus on the impact of the durability
threshold r. We show results only for Stock in Figure
11, which are consistent with the results on other
datasets. Results for LHL are omitted since it imposes
orders of magnitude higher costs. The I/O and CPU
costs for all methods remain stable with different r,
and their relative performance remains the same as
in previous experiments. r affects the I/O cost only if
it can help early termination. Larger values of r can
achieve a cost decrease this way, but for the default
values of the other parameters (k and w) the effect is
not dramatic.

(a) IO cost (b) CPU time

Fig. 11. Effect of r on Stock

Figure 12 studies the impact of time series smooth-
ness, using synthetic datasets generated with different
values of σ, i.e., the scale of the random walk at
each timestamp. Other parameters are fixed to their
defaults. Increasing σ has little effect to NAI, since
NAI retrieves the top-k set at each timestamp irre-
spective of the data volatility. On the other hand,
as σ increases, more changes occur in the top-k sets
between consecutive timestamps, which negatively
affects TES. Still, even for the largest value of σ TES

is much faster than NAI. The number of query results
drops with σ as fewer sequences satisfy the durability
constraint when volatility increases.

(a) IO cost (b) CPU time

Fig. 12. Effect of σ on synthetic datasets

Having established the superiority of TES over the
naı̈ve methods, we next analyze the intrinsic proper-
ties of TES. Figure 13 demonstrates the flexibility of
TESλ on the Stock data, with default values for k, w
and r, and varying λ, i.e., the minimum length for a
rank-change interval to be stored in the CJI-tree. λ = 0
corresponds to the TESλ tested above, and λ = +∞
reduces to TESδ . Clearly, a small λ saves storage space,
but also decreases query I/O performance. The CPU
time, on the other hand, is not significantly affected
by λ, indicating that the CJI-tree imposes negligible
CPU overhead. In practice, the choice of λ depends
on the target application; we recommend setting λ as
large as the amount of storage permits to obtain high
query performance.

(a) IO cost (b) CPU time

Fig. 13. Effect of λ on Stock

Finally, Table 6 lists the index sizes for TESδ and
TESλ with λ = 1 on Stock for various values of
kmax, i.e., the maximum allowable value for k and on
Synthetic for various values of the volatility parameter
σ. With large kmax or σ, the index size of TESδ can be
several times higher than that of TESλ. The difference
increases with kmax, as longer rank change intervals
exist, which are replicated in TESδ . Similarly, larger
volatility increases the average length of the intervals.
Nevertheless, in all settings, even for TESδ the index
size remains manageable. Considering its high query
performance, TESδ is the ideal solution for DTop-k
queries in applications involving data with similar
sizes as the ones used in our experiments.

6.2 Durable k-NN Evaluation
Next we present experimental results for DkNN pro-
cessing. Figure 14 shows the impact of k on the
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TABLE 6
Index Size (unit: MB)

Stock kmax 32 64 128 256 512
TESδ 0.9 3.1 9.4 27.4 80.7
TESλ 1.0 2.9 6.9 14.6 29.2

Synthetic σ 0.1 0.2 0.4 0.8 1.6
TESδ 142.5 170.8 194.2 224.3 282.3
TESλ 110.1 111.0 110.5 110.1 110.7

I/O and CPU costs (both in logarithmic scale). The
proposed algorithm QSI consistently beats the naı̈ve
method NAI, sometimes by more than an order of
magnitude. The computational costs for both methods
increase with k, for similar reasons as in the DTop-k
experiments. With growing k, the performance gap
between QSI and NAI gradually closes, because the
k-NN sets at adjacent timestamps share fewer objects,
forcing QSI to retrieve more data. Compared to DTop-
k, there are considerably fewer DkNN results with the
same parameters. The reason is that objects’ ranking
scores tend to be stable, whereas their similarity to a
reference object exhibit significant variations at differ-
ent timestamps.

(a) IO cost (Stock) (b) CPU time (Stock)

(c) IO cost (API) (d) CPU time (API)
Fig. 14. Effect of k on real datasets

Figures 15 and 16 present the results with vary-
ing query window size w and durability threshold
r, respectively. QSI is again the clear winner in all
settings; the performance gap between QSI and NAI
is not significantly affected by w or r. The costs of both
methods increase with w, and decrease with growing
r, as expected. The benefits of using QSI are more
pronounced on API than on Stock, since recomputing
snapshot k-NN sets in NAI is more expensive on Stock
with a large number of series.

Finally, Figure 17 evaluates NAI and QSI on the
synthetic data, with varying smoothness levels con-
trolled by σ. Unlike the DTop-k results, here the I/O
and CPU costs for both QSI and NAI decrease with in-
creasing σ (meaning less smooth data). This is because
as the data becomes more volatile, the number of
results drops quickly. After σ reaches 0.4, the number

(a) IO cost (Stock) (b) CPU time (Stock)

(c) IO cost (API) (d) CPU time (API)
Fig. 15. Effect of w on real datasets

(a) IO cost (Stock) (b) CPU time (Stock)

(c) IO cost (API) (d) CPU time (API)
Fig. 16. Effect of r on real datasets

of results approaches zero, which often leads to early
termination. For σ > 0.4, further increase of σ has
negligible effects on query performance.

(a) IO cost (b) CPU time
Fig. 17. Effect of σ on synthetic datasets

Summarizing the experiments, the proposed meth-
ods TES and QSI significantly outperform their naı̈ve
counterparts, often by over an order of magnitude.
Meanwhile, TES can be tuned to effectively balance
its storage overhead and query efficiency. The costs of
TES and QSI are generally low (i.e., up to hundreds
of random I/Os and tens of milliseconds), suggesting
that durable queries can be readily applied in practice.
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7 CONCLUSION
We studied the evaluation of durable queries over
historical time-series databases, which find applica-
tion in a variety of analytical tasks. For durable top-
k queries, we proposed the TES framework, which
exploits time series smoothness to reduce query costs.
For durable k-NN, we developed a novel solution
QSI, which indexes the query space and avoids un-
necessary snapshot k-NN queries. By experimentation
with both real and synthetic data, we showed that
the proposed methods are very efficient compared to
naı̈ve alternatives and the previous state-of-the-art.

Currently, all proposed solutions are discussed un-
der the assumption that each timestamp is equally
important; thus, an interesting topic for future work is
to extend them to handle applications with different
weights on different timestamps. For example, for top-
k queries, the user might be interested in objects that
appear in the top-k sets frequently at the beginning
or at the end of the query window. In this situation, a
possible adaptation of TES would be to maintain the
time-weighted sum ∆s for each candidate object s,
and devise pruning strategies accordingly. Similarly,
extensions for durable k-NN queries to the time-
weighted model is also an interesting direction for
further investigation. Finally, we also plan to study
the robustness of durable queries in the presence of
noise, which is common in the time series data.
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