Processing Ad-Hoc Joins on Mobile Devices

Eric Lo', Nikos Mamoulis', David W. Cheung', Wai Shing Ho', and Panos Kalnis?

1 Department of Computer Science and Information Systems, The University of Hong Kong
2 Department of Computer Science, National University of Singapore

Abstract. Mobile devices are capable of retrieving and processing data from re-
mote databases. In a wireless data transmission environment, users are typically
charged by the size of transferred data, rather than the amount of time they stay
connected. We propose algorithms that join information from non-collaborative
remote databases on mobile devices. Our methods minimize the data transferred
during the join process, by also considering the limitations of mobile devices. Ex-
perimental results show that our approach can perform join processing on mobile
devices effectively.

1 Introduction

Recently, mobile devices such as Personal Data Assistants (PDAs) and mobile phones
are fast emerging as components of our daily life. Many applications of mobile devices
access data on remote servers through a wireless network. For example, some people
may ask for stock ticks through their PDAs wirelessly. In addition to querying a single
remote information source, some mobile users may wish to combine information from
different remote databases. Consider for example a vegetarian, who visits Hong Kong
and looks for some restaurants recommended by both the HK tourist office and the HK
vegetarian community. He may issue a query that joins the contents of two relations in
Figure 1(a) hosted by the two different services:

SELECT R1. Nane, Rl.Address, R2.Cost FROM R1, R2 WHERE Rl1. Nane = R2. Nane

This query is an example of an ad-hoc join (where the join key is “Name”), with few
results compared to the large volume of input data, and the joined relations are located
at different non-collaborative servers. Since the target relations are non-collaborative
and users may pose queries on arbitrary sets of data sources, distributed mediator sys-
tems like HERMES [1] may not be applicable. Also, remote servers would only accept
simple input like selection queries, expressed in SQL through public interfaces, like
Web services, etc. Thus traditional distributed query processing techniques that involve
shipments of data structures like semijoin [2] and bloomjoin [3] are not applicable.

Downloading both relations entirely to perform a join operation on the mobile de-
vice may not be the best solution. First, some devices (e.g., mobile phones) do not
have enough memory to hold the large volume of data locally. Second, the network
traffic or QoS of various wireless data networking technologies such as CDMA [4],
IEEE 802.11 [5], WAP (www wapf or um or g) and 3G (vwvw noki a. com’ 3g/i ndex. ht ni)are all
strongly dependent on many factors such as the network workloads and the availabil-
ity of various network stations. As a result, mobile service providers often charge their

customers in terms of the amount of data transferred, rather than the amount of time
they stay connected to the service or the query processing cost on the data host. There-
fore, the cost of joining relations from different remote databases does not involve the
traditional 1/0 and CPU costs, but the transfer cost.

Name [Addres [Cos]

Name | Address | Cuisine [Qualit: ‘
| l l = l Y] Beta Food [Address A| 100 A 5001 A 3121
Alpha Food|Address 1|ThaiFood| 3 B 2350
- Bay SeaFood|Address B| 200 B 2
Beta Food |Address 2| Chinese 4
5 Delta Address C| 150 v 53T
- Y 160
HK Tourist Office (R1) HK vegetarian community (R2) .Z 125 Histogram on R2.Name
. . . Histogram on R1.Name
(a) Relations hosted by different services (b) Histograms of R1 and R2

Fig. 1. Examples relations and histograms

In this paper, we study the evaluation of joins on mobile devices, taking those issues
(independent data sources, limited memory size and transfer-cost based optimization)
under consideration. We propose RAMJ (Recursive and Adaptive Mobile Join) algo-
rithm that runs on a mobile device and joins two relations located on non-collaborative
remote servers. RAMJ partitions the data space and downloads statistical information
from the servers for each partition, before downloading the data to be joined. Based on
the statistics of a partition, RAMJ may adaptively choose to download data that fall into
that partition and join them using a join technique, or to apply RAMJ recursively for
retrieving more refined statistics there.

The rest of the paper is organized as follows. Section 2 describes various basic
approaches and RAMJ for evaluating equi-join queries on mobile devices. Section 3
describes how RAMJ can be applied on other query types. Section 4 reports the exper-
iment result. Section 5 describes the related work and we conclude in Section 6 with
some directions for future research.

2 Processing of Ad-Hoc Equi-Joins

2.1 Basic approaches

A late-projection strategy. In highly selective joins, most tuples fail to contribute to
the result. One naive way to reduce the transfer cost and memory requirements of the
join is to download and join the distinct values of join keys only. Subsequently, only
tuples belonging to the join result entails downloading the rest of non-key attributes
from both sites. The late projection strategy avoids downloading the non-key attributes
which do not contribute to the result, and can be applied to all types of join queries.
Therefore we adopt this strategy in the rest of the paper.

Block-mergejoin (BMJ). The late-projection technique is better than downloading all
relations and joining them locally, but it is still insufficient when the results of the pro-
jections of join keys do not fit into the memory. A straightforward method to evaluate
the equi-join with limited memory is sort-merge join, by assigning the sorting part to the

servers. Then, only one block from each server is required to be in memory and com-
putational cost on the client is saved by forcing the servers to sort the data. The idea is
to download one block of ordered join keys from each relation (using the ORDER BY
SQL statement) and merge them, until one block is exhausted. Then a new block is
retrieved from the corresponding server and the process continues until one relation is
scanned.

Ship-data-as-queriesjoin (SDAQ). If two target relations R1 and R2 have large size
difference (e.g., R1 < R2), the join can be evaluated by downloading all join keys of
R1 to the device and sending each of them as a selection query to R2. Before that,
two SQL queries are sent to count the number of tuples on the join attributes in each
server, in order to identify the relation with smaller cardinality. This method resembles
the semijoin [2] approach in System R* [6], with the only difference that the join keys
are expressed as queries and shipped through the mobile devices indirectly. If the set of
join keys of the smaller relation does not fit into the device, SDAQ can be implemented
by downloading the join keys from R1 and sending them to R2, in a block-wise fashion,
like the block-merge join.

2.2 RAMJ: A recursive and adaptive approach

BMJ requires that all data from both relations are downloaded. SDAQ, on the other
hand, can only do better if the sizes of the relations differ much. In fact, when the data
distributions of the join keys are different, there may be empty key value ranges in one
relation that are densely populated in the other. Such knowledge may help avoid down-
loading data in these ranges, as we know that they do not participate in the join result.
Figure 1(b) shows two histograms summarizing the “Name” attribute of our example
relations. If the value ranges which are empty in one relation (e.g., bucket “Z” of R2),
they are pruned and their contents are not downloaded from the other relation (e.g., R1).

In general, remote services accept selection queries only, i.e., we cannot create any
temporary relation on remote servers to facilitate the collection of statistics. In view
of this, the intuition behind our method is to apply some cheap queries first, in order
to obtain some information about the distribution of the data values of join attributes
in both datasets. A simple way to construct a histogram on an attribute is to pose an
aggregate query. For this, we can use the SUBSTRI NG function and ROUND function.
An example SQL statement that returns the left histogram of Figure 1(a) (grouped by
first character) is given below. Notice that the HAVI NG clause avoids fetching value
ranges with no data to reduce data transferred.

SELECT SUBSTRI NG(Nane, 1, 1) AS Bucket, COUNT(Narme) AS Count FROM Rl
GROUP BY SUBSTRI NG(Nare, 1, 1) HAVI NG COUNT(Nane) > O

Retrieving and comparing histograms prior to actual data contents not only reduces
the join space; in fact, histogram buckets are also employed as the basic unit of our re-
cursive solution. Essentially, we divide the problem into G smaller ones. Subsequently,
each smaller join can be processed by a different method. Thus, for each pair {«;, 8;)
of buckets (where a; comes from R1 and 3; comes from R2), we consider one of the
following actions according to the bucket size:

Direct join. This method applies the merge-join algorithm for the current partition.
Essentially, the data in the partition are downloaded from R1 and R2 and then joined on
the mobile device, using BMJ.

Ship-join-keysjoin. This method shares the same idea of ship-data-as-queries join that
downloads the join keys of the smallest partition and sends them as selection queries to
the other service. It can be cheaper than direct join, if the data distributions in the two
buckets are very different.

Recursive partitioning. This method breaks a partition into more refined ones and
requests histograms for them. Essentially, it further breaks a bucket into smaller ones,
hoping that some smaller buckets will be eliminated or cheap ship-join-keys joins will
be applied on them. However, if partitions’ data are uniform, it could be more expensive
than direct join, given the overhead for retrieving the histograms.

To illustrate, consider the level-1 histograms of Figure 1(b) again. After obtaining
the histograms, bucket Z of R1 can be pruned immediately, since the corresponding one
of R2 is empty. For bucket Y, as the number of join keys that fall into this bucket for both
relations is quite small and balanced, downloading them and applying direct join may
be the best choice because (i) the ship-join-keys join will have a larger overhead (for
downloading the data from R2, sending them to R1 as queries and then retrieving the
results) and (ii) the overhead of repartitioning and retrieving further statistics may not
pay-off for this bucket size. For bucket A, we may want to apply recursive partitioning,
hoping that data distribution in the refined buckets will be more skewed, helping to
prune the join space. The finer histogram of bucket A may consist of 26 sub-buckets
(“AA”,“AB”,....”AZ") by issuing a SQL statement that group by the first two characters.
Finally, for bucket B, ship-join-keys is arguably the best method since only two join
keys from R2 will be downloaded and shipped to R1.

2.3 Thecost model

We provide formulae which estimate the cost of each of the three potential actions
that RAMJ may choose. Our formulae are parametric to the communication cost of the
wireless network services. In general, T (B) bytes are transmitted through a network
for B bytes of data because some overhead are spent in each transfer unit (e.g., MTU
in TCP/IP). Let A; and A, be the per-byte transfer cost (e.g., in dollars) for accessing
R1 and R2 respectively. Sending a selection query @ to a server needs T'(Bsgr +
Byey) bytes, where Bggr, denotes the size of a SQL statement (different query types
have different Bggr, values) and By, reflects the cost of sending the key value that
defines the selection. Due to space constraints, details of derivation of the following
cost equations are omitted and interested readers are referred to [7].

Direct join. Let a; and 3; be the -th histogram bucket summarizing the same data
region of R1 and R2 respectively. Further, let |a;| and | 8;| be the number of tuples rep-
resented by «; and ;. The total transfer cost of downloading all key values represented
by a; and 3; and joining them on the mobile device is:

Ci(ai, Bi) = (M1 + A2)T(Bsqr + Brey) + MT (|| Brey) + A2T(|Bi| Brey) (1)

The first term is the transfer cost of two outgoing queries and the last two terms are the
transfer cost of downloading the data contents represented by «; and g;.

Ship-join-keysjoin. Assuming |a;| < |8, the total transfer cost C of joining «; and
B; using ship-join-keys join is:

Co(ai, Bi) = M(T(Bsqr + Brey) + T (|| Brey)) + A2(T(Bsqr + 2|ai|Brey)) (2)

The first term is the transfer cost of the selection query sent to R1 and its query result.
The second term is the transfer cost of the selection query sent to R2 for checking
existence of R1 keys and its query result.

Recursive partitioning. The cost C's of applying recursive partitioning on «; and 3;
composes of three sub-costs:

1. Ci(G, R1): The cost of retrieving G bucket-count pairs Ay (T'(G (Bkey + Bint))) that
refine bucket o; by submitting an aggregate COUNT query A1 (T'(Bsqgr + Brey)) t0 R1.

2. C(G, R2): The cost of retrieving G-bucket-count pairs from R2:
A2(T(G(Biey + Bint)))+ A2 (T (Bsqr + Bhey))
3. Letayjand B;; (j = 1---G) be the set of sub-buckets of a; and j; respectively.
After downloading the refined histograms, each pair of sub-buckets are examined re-
cursively to determine the next optimal transfer cost action. Therefore, the last sub-cost
of Cs is: Crp(ai, Bi) = Zf:l mingegq 9,33 Ci(e,j, Bi,j)

Since we have no knowledge on how the data are distributed in the sub-buckets, we
cannot directly determine the last sub-cost Cgrp(c;, 8;) (observe that it contains a C3
component), we introduce two different models to estimate this last sub-cost.

Optimistic Estimation. When the join is highly-selective, the data distribution of the
two datasets is quite different; thus, one way to deal with the unknown component is to
optimistically assume all buckets are pruned in next level:

Cs(as, Bi) = Cu(G, R1) + Cr(G, R2) ®)

This model tends to obtain finer statistics in each level. It is a simple approach with
small computation demand and shown to be quite effective in the experiment section.

Estimation by Linear Interpolation. This model estimates the last sub-cost Crp(a;, 5;)
more accurately, but with higher computation cost on the client device. The idea is to
exploit the histograms in the coarser level to speculate the local data distribution in the
next level. To estimate the last sub-cost Crp (a;, 8;), the counts of sub-buckets «;,; and
Bi,; have to be determined. Take «; as an example. We propose to distribute the count
of a; to its sub-buckets «; ; by linear interpolation. Adjacent buckets are selected to be
the interpolation points because they are more related to local skew. Thus, to estimate
the data distribution in the buckets of the finer level, only two adjacent buckets (a;—1
and a;1) of the current bucket («;) at the current level are selected. The sub-buckets
are then weighted by the following formulae:

W = las| + (o] — loa])(2(F — G/2) — 1)/2G i j > G/2
Wa,, = loil + (Jaim1] — ls])(2(G/2 - §) + 1)/2G i j < G/2

Wao, ; = lai| + (Jeita| = les)(G = [G/2])/G ifj > G/2
Wa, ; = lai| + (Jei-1| — |ai)([G/2] = 5) /G if j < G/2
After weighting, the count of bucket «; is distributed to the sub-buckets according to
the weights, i.e. |a; ;| = |az~|Wi,j/ZjG:1 W;,;. Now, for each bucket pair of the next

When G is even {

When G is odd {

level, the cost of direct join (C1(a,;, B:,5)) and ship-join-keys join (C2(«;,;, Bi,;)) can
be determined using the estimates, according to equations 1 and 2. However, the sub-
cost Crp(ei,j, Bi,;) cannot be estimated, as those sub-buckets may recursively be par-
titioned and there is no more information to further estimate their recursive actions.
Fortunately, the lemma below provides an appropriate upper-bound for our estimation.

Lemmal. Let a; and j3; be the i-th bucket of the G-bucket equi-width histograms
downloaded from R1 and R2 respectively. The cost Crp(a;, 8;) is bounded by the in-

equality: Crp(ai, Bi) < Z?:l min(Ci (e, Bi,3), C2(aij, Bij)) O

A proof of the lemma can be found in [7]. Using Lemma 1, we can estimate an upper
bound for Cgp (e, B;). Hence, C3 becomes: o

Cs(as, i) = Cn(G, R1) + Ci(G, R2) + Y min(Ci(i ;, Bi), Ca (v, Bii)) (4)

Jj=1
24 TheRAMJ algorithm

Although the action and the cost estimation of every bucket are determined in runtime,
RAMJ defers all bucket actions and execute them in batches according to their action
types. Thus a constant number of queries is sent out in each level and reduces the packet
headers overhead, since multiple requests are “compressed” in a single statement.
Algorithm RAMJ(R1, R2,G, L)
/* G is the partition granuality; L is the list of buckets currently served*/
1. Hg: = BuildHist(R1, G, L);
Hgs = BuildHist(R2, G, L);
For each bucket pair {(c;, 8;), a; € Hr1,8; € Hra2,a; = 3;

Crmin :=min(C1 (i, Bi), C2(ai, Bi), Cs(as, Bi));

If Crmin = C1(as, B;), add current bucket to Lea;

If Crinn = C2(0, Bi), add current bucket to Leo;

If Crnin. = Cs(a, Bi), add current bucket to L¢s;
If Lc1 # 0, execute direct join V buckets € Les;
If Loa # 0, execute ship-join-keys join V buckets € Loa;
0. If Les ;é 0, RAMJ(R]., R2, G, ch);

BOooNoalwD

The above shows the RAMJ algorithm. RAMJ follows the bucket-wise approach
and it is recursive; given two remote relations R1 and R2, the algorithm first draws
two G-bucket equi-width histograms Hg; and Hpg, that summarize the distribution
of join key in R1 and R2 (Lines 1-2). In Bui | dHi st , L is the set of buckets from
the previous level that are currently refined as a batch. When RAMJ is called for the
first time, L corresponds to a single bucket that covers the whole domain of the join
attribute. For each refined bucket range that exists in both relations, RAMJ employs
the cost model to estimate the cost of each of the three potential actions for the current
bucket. The action of each bucket is deferred until the costs of all buckets have been
estimated. Finally, Lines 8-10 execute each of the three actions (if applicable) for the
corresponding set of bucket ranges, as a batch. We note here, that if the memory of the
device is limited, the device may not be able to support action deferring or even direct
join or ship-join-keys join for a specific bucket (or set of buckets). In this case, recursive
partitioning is directly used without applying the cost model to choose action.

3 Processing of Other Join Queries

We have discussed RAMJ for the case where there is a single join attribute. In case
of multiple attributes, RAMJ can be simply adapted by retrieving multidimensional
histograms and adjusting the cost formulae accordingly.

Sometimes, users may apply some selection constraints on the joined relations. Con-
straints are usually expressed by (allowed) value ranges on the attribute domain. Con-
sider the example query in the introduction, assume that the user is now only interested
in restaurants with cost lower than $20 recommended by both HK tourist office and
vegetarian community:

SELECT R1. Nane, Rl.Address, R2.Cost FROM R1, R2 WHERE R1. Nanme=R2. Nane and R2.Cost<20

RAMJ can efficiently process such queries by “pushing” the selections as early
as possible, following the common optimization policy of database systems. The selec-
tions are sent together with the histogram requests to avoid including disqualified tuples
in the bucket counts. Therefore, only tuples that satisfy all conditions are summarized
and the adaptivity of our algorithm is not affected.

RAMJ is also useful for iceberg semijoin queries. As an example, consider the query
“find all restaurants in R1 which are recommended by at least 10 users in a discussion
group R2”. Such queries require joining two remote relations and retrieving only the
tuples in one (e.g., R1) that join with at least ¢ tuples in the other (e.g., R2). The result
is usually small, making it useful to the mobile user. RAMJ can easily handle such
queries by modifying the aggregate COUNT query in Bui | dHi st procedure; buckets
with count less than the threshold ¢ are not included in the histogram. This can be
achieved by modified the HAVI NG predicate from “HAVI NG COUNT (Attribute) > 0”
to “HAVI NG COUNT (Attribute) > ¢”. As a result, large parts of the data space can be
pruned by the cardinality constraint early.

4 Performance Experiments and Results

To evaluate the effectiveness of the proposed RAMJ algorithm, we have conducted ex-
periments on both real and synthetic datasets. The remote datasets resided on two Ora-
cle 8i servers. We have implemented RAMJ on mentioned cost models, i.e., optimistic
(RAMJ-OPT) and linear interpolation (RAMJ-LI). In addition, we also report results
for an optimal version of RAMJ (OPTIMAL) that pre-fetches the next-level histograms
to determine the “optimal” action for each bucket. This version is only of theoretical in-
terest, and serves as a lower bound for our cost model. The mobile device is simulated
by a Pentium PC with 8MB memory available to RAMJ. We compare all versions of
RAMJ with the basic approaches, i.e., block-merge join (BMJ) and ship-data-as-query
join (SDAQ). For fairness, all implemented algorithms employ the late-projection strat-
egy (i.e., joining the set of join attributes only).

The real data set contains information of 152K restaurants crawled from
r est aur ant r ow. com We split the restaurant data into different (overlapping) sets
according to the cuisine they offered. We then joined these sets to retrieve restaurants
offering more than one type of cuisine. We present an illustrative experiment that joins

Algorithm Real Data NegExp-Gaussian Zipf-Gaussian Zipf-NegExp
Transferred (Bytes)[No. of joined keys|Transferred (Bytes) [No. of joined keys| Transferred (Bytes)[No. of joined keys|Transferred (Bytes)[No. of joined keys|
BMJ 266.22K 80116 80124 80120
SDAQ 180.15K 181944 [139728 | [143580 |
RAMJ-OPT]| 116.67K 163 48654 420 35056 184 77114 1148
RAMJ-LI n/a [40956 | [25680 | 67092
OPTIMAL 66.2K 35100 21436 34848

Table 1. Experimental results

relation steaks (4573 tuples) with vegetarian (2098 tuples) to identify the restaurants
that offer both steak and vegetarian dishes. Experiments joining different cuisine com-
binations have similar results. Table 1 shows that the data transferred by RAMJ-OPT
are only 44% and 65% compared to BMJ and SDAQ respectively. SDAQ transferred
less bytes than BMJ because the size differences between the two input relations of the
restaurant datasets are significant. RAMJ-OPT is more close to OPTIMAL than both
BMJ and SDAQ because of its adaptivity. RAMJ-LI was not tested on string data joins
since the distribution of characters is independent at different levels.

Next, we study the performance of our algorithms on synthetic data, under different
settings. In particular, we studied the amount of data transferred on joining relations in
different data distribution by RAMJ. Each input relation consists of 10,000 tuples of
integers with domain size 100,000, and G is set to 20.

Overall performance. To model the real scenario of ad-hoc joining, we generated data
with 3 different distributions: Gaussian, Negative Exponential (NegExp) and Zipf (with
skew parameter § = 1). Table 1 shows that RAMJ outperforms BMJ and SDAQ even
when the data have similar distribution (e.g., when joining Negative Exponential data
with Zipf data). RAMJ-LI is better than RAMJ-OPT, and closer to OPTIMAL, because
RAMJ-LI employs a more accurate cost model.

Theimpact of data skew. Since RAMJ is designed for highly selective join, we study
how data skew affects the performance of RAMJ. We generated 6 relations with dif-
ferent Zipf distribution by varying the skewness (#) from 0 (uniform distribution) to 1.
Each of them was joined with the Gaussian data relation. Figure 2(a) shows that the
total number of bytes transferred by RAMJ decreases when the join selectivity (8) in-
creases. It is because when the data distribution is skewed, parts of the search space are
pruned and for some buckets cheap ship-join-keys joins are performed, hence, the his-
tograms retrieved by RAMJ pay-off. BMJ transfers a constant amount of bytes because
it downloads all tuples, independent of the data skew. If the data are near-uniform, BMJ
outperforms RAMJ-OPT because RAMJ-OPT optimistically retrieves more statistics
unsuccessfully hoping to prune the search space. On the other hand, RAMJ-LI outper-
forms BMJ and SDAQ in all cases because it is less sensitive to data skew.

The impact of memory size. We evaluate how memory of mobile devices affects the
transfer cost. Figure 2(b) shows the performance of joining the Gaussian and Zipf (6=1)
distributions by RAMJ again, under different memory settings. As expected, the trans-
fer cost increases when the memory is very limited (less than 20K). It is because many
buckets cannot execute their optimal actions, but need to apply recursive partitioning

BM) —— BM) ——
P~ SDAQ ---x-
PTT SS — RAMJ-OPT - RAMJ-OPT -
"""" RAMJ-LI & RAMJ-LI -
OPTIMAL —-=-— OPTIMAL -

KBytes Transferred
3
KBytes Transferred

595 joined

L aszioined”

“ g4 joined

0 02 04 06 08 1 5 0 15 20 25 30 3 40 45 50
Theta Memory (KBytes)

(@) Varying s (b) Varying m

Fig. 2. Synthetic data experiments

if those actions cannot be performed with the available memory. Note that the transfer
cost stabilizes to a constant when the memory is larger than 20K memory. This figure
shows that only a small memory on the mobile device suffices for RAMJ to perform the
speculated optimal actions.

Summary of other experiments. We also ran RAMJ:
i) in different granularities, results show that the performances of RAMJ is unaffected
by G, if G is not very small (G < 5).
ii) in different input relation sizes, which draw similar conclusions as the experiments
we presented.
iii) on another real dataset, the DBLP bibliography, results show that RAMJ-OPT trans-
ferred 66% of BMJ and 69% of SDAQ respectively.

Readers that interest on the detail of these experiment results and the query process-
ing time of RAMJ (all finished with seconds) are referred to [7].

5 Redated Work

We are aware of no work in the area of transfer-cost based query optimization (measured
in dollars/byte) in the context of join queries on mobile devices. Nonetheless, query
processing in a decentralized and distributed environment has been studied extensively
in the past two decades [8,2,6]. Transfer cost optimization is discussed in some of
these works. However, the traditional distributed database model assumes cooperative
servers (in a trusted environment), which is not the case in our problem. Notice that,
although we have adapted the semijoin [8] approach for this problem, its cost is higher
than the other methods in practice.

Our work is also related to distributed query processing using mediators (e.g., [1]).
Nevertheless we study queries that combine information from ad-hoc services, which
are not supported by mediators. Join processing on mobile devices considering transfer-
cost minimization has been studied in [9, 10]. In [9] the mobile clients are distributed
database nodes (pairs of nodes are collaborative in nature). On the other hand, [10]
applies similar techniques with this paper, but considers spatial joins only.

10

6 Conclusionsand Future Work

Emerging mobile devices such as PDAs and mobile phones are creating opportuni-
ties for users to access information from anywhere and at any time. However, mobile
devices have some limitations that make traditional query processing technology in-
appropriate. In this paper, we studied join queries on remote sources which are non-
collaborative and are not logically connected via mediators. We addressed two issues:
(i) the limited resources of the device and (ii) the fact that users are charged by the
amount of transferred information, rather than the processing cost on the servers. In-
deed, users are typically willing to sacrifice a few seconds in order to minimize the
query cost in dollars. Furthermore, we proposed RAMJ, an adaptive algorithm that
recursively partitions the data space and retrieves statistics that dynamically optimize
equi-join queries. We also discussed how RAMJ can be extended to answer other types
of joins including iceberg semijoins and constrained equi-joins. Finally, we evaluated
RAMJ on several synthetic and real datasets. Our experiments reveal that RAMJ can
outperform the basic approaches for a wide range of highly-selective joins.

RAMJ evaluates the basic equi-join efficiently. Indeed, RAMJ provides a basic
framework to evaluate many highly-selective query types that may also involve joining
(e.g., evaluating skyline and top-k query over a set of attributes that resided in different
non-collaborative servers). In future, we will extend our approach for multi-way join
queries, by utilizing the histograms to estimate the size of intermediate join results.

References

1. Adali, S., Candan, K.S., Papakonstantinou, Y., Subrahmanian, V.S.: Query caching and op-
timization in distributed mediator systems. In: Proc. of ACM SIGMOD. (1996) 137-148

2. Bernstein, P.A., Goodman, N.: Power of natural semijoin. SIAM Journal of Computing 10
(1981) 751-771

3. Mullin, J.K.: Optimal semijoins for distributed database systems. IEEE Tran. on Software
Engineering 16 (1990) 558-560

4. Knisely, D.N., Kumar, S., Laha, S., Nanda, S.: Evolution of wireless data services: 1S-95 to
CDMA2000. IEEE Comm. Magazine (1998) 140-149

5. Kapp, S.: 802.11: Leaving the wire behind. IEEE Internet Computing 6 (2002)

6. Mackert, L.F., Lohman, G.M.: R* optimizer validation and performance evaluation for dis-
tributed queries. In: Proc. of VLDB. (1986) 149-159

7. Lo, E., Mamoulis, N., Cheung, D.W., Ho, W.S., Kalnis, P.: Processing ad-hoc joins on
mobile devices. Technical report, The University of Hong Kong (2003) Awvailable at
http://www.csis.hku.hk/“dbgroup/techreport.

8. Bernstein, P.A., Chiu, D.M.W.: Using semi-joins to solve relational queries. Journal of the
ACM (JACM) 28 (1981) 25-40

9. Lee, C.H., Chen, M.S.: Processing distributed mobile queries with interleaved remote mobile
joins. IEEE Tran. on Computers 51 (2002) 1182-1195

10. Mamoulis, N., Kalnis, P., Bakiras, S., Li, X.: Optimization of spatial joins on mobile devices.

In: Proc. of SSTD. (2003)

