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Abstract
Clustering is one of the most important analysis tasks in
spatial databases. We study the problem of clustering ob-
jects, which lie on edges of a large weighted spatial network.
The distance between two objects is defined by their short-
est path distance over the network. Past algorithms are
based on the Euclidean distance and cannot be applied for
this setting. We propose variants of partitioning, density-
based, and hierarchical methods. Their effectiveness and ef-
ficiency is evaluated for collections of objects which appear
on real road networks. The results show that our methods
can correctly identify clusters and they are scalable for large
problems.

1. Introduction
Clustering is one of the most important analysis tasks. The
goal is to divide a collection of objects into groups, such
that the similarity between objects in the same group is high
and objects from different groups are dissimilar. In spatial
databases, objects are characterized by their position in the
Euclidean space and, naturally, dissimilarity between two
objects is defined by their Euclidean distance.

In many real applications, however, the accessibility of
spatial objects is constrained by spatial (e.g., road) net-
works. It is therefore realistic to define the dissimilarity
between objects by their network distance, instead of the
Euclidean distance. The network distance between two ob-
jects p and q is defined by the length of the shortest path
that reaches q from p and vice versa, assuming an undi-
rected network graph. In addition, the distance between
two nodes of the network graph may not be proportional
to their Euclidean distance, as it can be characterized by
weights, capturing cost due to various conditions (e.g., traf-
fic, rough terrain, elevation, etc.).

Evaluation of spatial queries over spatial networks has al-
ready been studied by several researchers [17, 8, 16], rec-
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ognizing the important role, which the network is playing
in search. Secondary memory structures are designed to-
wards efficient processing of queries over spatial networks.
Nevertheless there is no previous work on clustering objects
that lie on spatial networks. For instance, assume that we
want to apply clustering on the set of restaurants that ap-
pear in a city map, considering the distance with respect to
the city road network. The resulting clusters may identify
areas, which can be of interest to touristic location-based
service providers or restaurant chains which want to open a
new branch in the city.

In this paper, we study the problem and propose several
solutions that extend existing clustering paradigms to op-
erate on network data. Our first technique falls into the
class of partitioning clustering methods [12]. It randomly
selects a set of k medoids and partitions the data into clus-
ters using them. Clusters are refined by iteratively swapping
medoids with random points as long as the clustering struc-
ture improves. Our second algorithm falls into the class of
density-based methods [13], placing points in the same clus-
ter if their distance is smaller than a threshold. Finally, we
propose an algorithm that conforms to the hierarchical clus-
tering paradigm. Our contributions can be summarized as
follows:

• We define the problem of clustering objects according
to their network distance. To our knowledge, this is the
first work on this interesting and important problem.

• We propose algorithms that apply dominant clustering
paradigms on the network-based clustering problem.
Our algorithms are carefully designed to avoid unnec-
essary distance computations and redundant accesses
of the network components.

• We provide an extensive and comprehensive experi-
mental evaluation of our techniques, which demon-
strates their effectiveness in the discovery of clusters
and their efficiency and scalability for large problems.

The rest of the paper is organized as follows. Section 2
provides background and related work on generic clustering
techniques and query processing methods for spatial network
data. Section 3 formally defines the problem settings and
discusses why existing methods are not appropriate for our
problem. In Section 4, we describe a network data storage
architecture and the proposed clustering algorithms. Sec-
tion 5 experimentally evaluates their effectiveness and effi-
ciency. The applicability of the techniques to network-based
clustering variants is discussed in Section 6. Finally, Sec-
tion 7 concludes with a discussion about future work.



2. Background and Related Work
A large number of clustering algorithms can be found in the
literature [6]. The generic definition of clustering is usually
refined depending on the type of data to be clustered and
the clustering objective. In other words, different clustering
paradigms use different definitions and evaluation criteria.

Partitioning methods divide the objects into k groups
and iteratively exchange objects between them until the
quality of the clusters does not further improve. k-means
and k-medoids are representative methods from this class.
In k-means algorithms, clusters are represented by a mean
value (e.g., a Euclidean centroid of the points in it) and
object exchanging stops if the average distance from ob-
jects to their cluster’s mean value converges to a minimum
value. k-medoids algorithms (e.g., PAM, CLARA [12], and
CLARANS [15]) represent each cluster by an actual object
in it. First, k medoids are chosen randomly from the dataset.
An evaluation function sums the distance from all points to
their nearest medoid. Then, a medoid is replaced by a ran-
dom object and the change is committed only if it results
to a smaller value of the evaluation function. A local opti-
mum is reached, after a large sequence of unsuccessful re-
placements. This process is repeated for a number of initial
random medoid-sets and the clusters are finalized according
to the best local optimum found.

Another class of (agglomerative) hierarchical clustering
techniques define the clusters in a bottom-up fashion, by
first assuming that all objects are individual clusters and
gradually merging the closest pair of clusters until a desired
number of clusters remain. Several definitions for the dis-
tance between clusters exist; the single-link approach consid-
ers the minimum distance between objects from the two clus-
ters. Others consider the maximum such distance (complete-
link) or the distance between cluster representatives. Divi-
sive hierarchical methods operate in a top-down fashion by
iteratively splitting an initial global cluster that contains
all objects. The cost of brute-force hierarchical methods is
O(N2), where N is the number of objects, which is pro-
hibitive for practical use. Moreover, they are sensitive to
outliers (like partitioning methods). Algorithms like BIRCH
[19] and CURE [5] were proposed to improve the scalability
of agglomerative clustering and the quality of the discovered
partitions. C2P [14] is another hierarchical algorithm sim-
ilar to CURE, which employs closest pairs algorithms and
uses a spatial index to improve scalability.

Density-based methods discover dense regions in space,
where objects are close to each other and separate them
from regions of low density. DBSCAN [13] is the most rep-
resentative method in this class. First, DBSCAN selects a
point p from the dataset. A range query, with center p and
radius ε is applied to verify if the neighborhood of p contains
at least a number MinPts of points (i.e., it is dense). If so,
these points are put in the same cluster as p and this process
is iteratively applied again for the new points of the cluster.
DBSCAN continues until the cluster cannot be further ex-
panded; the whole dense region where p falls is discovered.
The process is repeated for unvisited points until all clus-
ters and outlier points have been discovered. A limitation
of this approach (alleviated in [2]) is that it is hard to find
appropriate values for ε and MinPts.

There is limited work on clustering the nodes of a weighted
graph. An agglomerative hierarchical approach [7] treats
each node as a cluster and then merges the clusters until one

remains. The single-link variant of this method has com-
plexity O(|V |2), whereas the complete-link variant comes
with complexity O(|V |2 log |V |). Both methods are not scal-
able for large networks. Another variant [18] applies divi-
sive clustering on the minimum spanning tree of the graph,
which can be computed in O(|V | log |V |) time. However,
this method is very sensitive to outliers. CHAMELEON [10]
is a general-purpose algorithm, which transforms the prob-
lem space into a weighted k-NN graph, where each object is
connected with its k nearest neighbors. The weight of each
edge reflects the similarity between the objects. A graph-
partitioning technique [11] is then used to partition the k-NN
graph into small, dense subgraphs. The subgraphs are hi-
erarchically merged according to their interconnectivity (de-
fined by the total weight of the edges connecting points from
the two clusters) and their closeness (defined by the average
distance between points from the two clusters). This algo-
rithm can produce results of high quality, however, the com-
putation of the measures used for clustering have quadratic
cost, and the algorithm is not scalable to large problems.

There is also related work on query processing over spa-
tial networks. The main focus of database research is how
to organize large sparse networks (e.g., road networks) on
disk, such that shortest path queries can be efficiently pro-
cessed. The shortest path between two network nodes can
be computed by Dijkstra’s algorithm [4]. This technique
starts from the source node ns and organizes its adjacent
nodes in a priority queue (i.e., heap) based on their distance
from the source. The closest node nc from ns is iteratively
removed from the heap and its adjacent nodes (with their
distances from ns via nc) are added on the heap. The pro-
cess continues until the destination node nd (with the short-
est path distance) is popped from the heap. An advantage
of Dijkstra’s algorithms is that each adjacency list is visited
at most once. The worst-case complexity of this method is
O(|E| log |E|), which is reduced to O(|V | log |V |) for planar
graphs due to Euler’s formula (|E| ≤ 3|V | − 6). Most spa-
tial network graphs are planar, or even if not planar they
are sparse enough for this complexity to hold.

CCAM [17] is a disk-based storage architecture that aims
at the minimization of I/Os during shortest path compu-
tations. Network nodes with their adjacency lists (i.e., out-
coming edges with their weights) are grouped into disk pages,
based on their connectivity and how frequently they are ac-
cessed together; neighbor nodes are placed in the same page
with high probability. Hierarchical indexes that group disk
pages, storing their summaries together with materialized
shortest path precomputations were proposed in [1, 9, 8]. Fi-
nally, evaluation of nearest neighbor queries, range queries,
and distance joins using the network distance, for objects
lying on spatial networks was recently studied in [16]. The
algorithms proposed there are extensions of Dijkstra’s short-
est path that utilize Euclidean distance bounds to accelerate
search.

3. Network-based Clustering
In this section, we formally define the problem space on
which we apply clustering and the distance metric used in
our settings. We then identify the peculiarities of the prob-
lem and discuss why existing clustering algorithms are in-
applicable or inefficient for objects that lie on a network.



3.1 Definitions

Definition 1. A network is an undirected weighted graph
G = (V,E,W ) where V is the set of vertices (i.e., nodes),
E is the set of edges, and W : E → IR+ associates each edge
to a positive real number. An object (i.e., point) is located
on an edge e ∈ E in the network. The position of the object
in the network can be expressed by the triplet 〈ni, nj , pos〉
where pos ∈ [0,W (e)] is the distance of the point from node
ni along the edge. To ensure the position of the object is ex-
pressed unambiguously by one triplet, we require that ni < nj
(assuming a total ordering of node labels).

Figure 1 shows an example of a network. Nodes are de-
noted by squares and each node has a label. The lines repre-
sent edges and each edge is associated with a distance label.
Objects are denoted by crosses. A point lies on exactly one
edge.1 For instance, p2 lies on the edge (n1, n3) and it is 1.0
units away from n1 along the edge. Therefore, its position
can be expressed by 〈n1, n3, 1.0〉.
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Figure 1: A network

Definition 2. Let p and q be two points, whose positions
are 〈na, nb, posp〉 and 〈nc, nd, posq〉, respectively. The di-
rect distance dL(p, q) between points p and q is defined by
|posp−posq| if na = nc and nb = nd (i.e., p and q lie on the
same edge); otherwise, it is defined as ∞. Given a point p
with position 〈na, nb, posp〉, the direct distance dL(p, na)
between p and na is posp. The direct distance dL(p, nb) is
defined by W (na, nb)− posp.

For instance, in Figure 1, dL(p2, p3) = 2.2, since the points
lie on the same edge. On the other hand, dL(p2, p1) = ∞.
The direct distance of a point from a network node is defined
only when the point is lying on an edge adjacent to the node.
In simple words, it is the network distance between the point
and the node based on the weight of the corresponding edge.
Thus, dL(p1, n1) = 1.3 and dL(p1, n2) = 2.7 − 1.3 = 1.4.
The direct distance can be found in constant time. Notice
that the direct distance of two points on the same edge is
not necessarily the shortest distance between them. Finally,
notice that the direct distance is symmetric, i.e., dL(p, q) =
dL(q, p) and dL(p, ni) = dL(ni, p).

Definition 3. Given nodes ni and nj, the network dis-
tance d(ni, nj) is defined as the distance of the shortest path
from ni to nj and vice versa.

The shortest path from ni to nj is the one for which the
sum of weights on the edges is the minimum. In Figure 1,
the network distance between n2 and n6 is 6.2.
1In real-life problems, some objects may not lie on edges of
the network. In such cases, we assume that the object is
represented by the position on the network which is most
directly accessible from it, as in [16].

Definition 4. Given points p and q, where p lies on edge
(na, nb) and q lies on the edge (nc, nd), the network dis-
tance d(p, q) is the distance of the shortest path from p to q.
d(p, q) is defined by minx∈{a,b},y∈{c,d}(dL(p, nx)+d(nx, ny)+
dL(ny, q)), if p and q lie on different edges; otherwise, d(p, q)
is the minimum of the previous quantity and dL(p, q).

The network distance (like the direct distance) is sym-
metric. The inequality d(p, s) ≤ d(p, q) + d(q, s) holds for
any p, q, s, because d(p, s) is the shortest distance between
p and s. Therefore, the network distance is a metric. Given
a collection of N points that lie on a network, our objective
is to group them into a set of clusters, according to some
clustering criteria. Since different clustering paradigms (i.e.,
partitioning, density-based, hierarchical) use different clus-
ter definitions and quality measures, we will elaborate them
when we present our network-based clustering algorithms
for each paradigm.

3.2 Application of existing methods
Straightforward application of the clustering methods re-
viewed in Section 2 is either infeasible or inefficient for our
problem. The replacement of the Euclidean distance by the
network distance increases the complexity, since now the dis-
tance between two arbitrary objects cannot be computed in
constant time, but an expensive shortest path algorithm is
required. Another problem is that we want not to cluster
network nodes, but objects which lie on arbitrary locations
on the graph edges. Thus, even the shortest path definition
is adapted for this case (see Definition 4).

One possible method to alleviate the problem is to pre-
compute the distance between every pair of network nodes
and store it in a 2D matrix of size O(|V |2). Dijkstra’s algo-
rithm can be applied for each node to compute its shortest
path distances to every other node. The total time complex-
ity is O(|V |2 log |V |) (for planar graphs). With this matrix,
the distance between any points can be found in constant
time using Definition 4. Then, existing clustering algorithms
(e.g., k-medoids) could be used to cluster the points. Never-
theless the time complexity of this method is high for large
graphs. In addition, this matrix could be prohibitively large
to store. For instance, if the graph has |V |=100K nodes, we
need to store |V |(|V | − 1)/2 ∼= 5× 109 distances, which are
expensive to manage and retrieve.2

Another problem which makes recent advanced cluster-
ing techniques inapplicable is that concepts like cluster cen-
troids and summaries, used by several clustering methods
(e.g., BIRCH, CURE, and C2P) cannot be defined in our
context. Clearly, given a group of objects on a network,
we cannot define their centroid using the network distance,
since there may not be a unique network point whose aver-
age distance from the points in the group is the minimum.
Even if there is such a point, finding it could be very expen-
sive. In addition, we cannot select cluster representatives

2A similar method could be applied to compute the dis-
tance between every pair of objects by applying Dijkstra’s
algorithm for the points (not the network nodes). This ap-
proach would be beneficial if the number N of objects is
much smaller than the number |V | of network nodes. In
this case, the distance matrix has size O(N2) and it can be
computed in O(N · |V | log |V |) time. However, in this pa-
per we are interested in problems where both |V | and N are
large.



that are not actual points in the cluster (e.g., by “shrink-
ing” medoids, as in CURE and C2P). On the other hand, it
is possible to approximate a cluster using actual representa-
tive points from it (i.e., actual medoids).

Finally, a potential solution would be to transform the
weighted graph G to a new graph G′, where each node np
in G′ is an object p from the original network G and there
is an edge (np, nq) in G′, if there is a path from p to q in G
not passing via any other object s. The weight of this edge
corresponds to the length of the (shortest) path between p
and q. Figure 2a illustrates such a transformation; the orig-
inal network is shown on the left and the transformed one
on the right. Weights are omitted for simplicity. After the
transformation, a graph-based clustering algorithm could be
used for clustering. However, this method has several lim-
itations. First, the transformation from G to G′ is quite
expensive requiring many shortest path computations. Sec-
ond, the transformed graph may no longer be planar and it
can contain complex components, increasing the complexity
of distance computations. For instance the ring on the left
of Figure 2b translates to a clique. In general, we expect
that the transformation will increase the complexity of the
graph making it harder to search, as exemplified in both
cases of Figure 2. Finally, existing clustering methods for
weighted graphs (e.g., [10]) do not scale well, as discussed
in Section 2.
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Figure 2: Transforming of networks with objects to
conventional weighted graphs

4. Network-based Clustering Techniques
In this section, we present a storage architecture for the net-
work graph and the objects that lie on it. Then, we propose
partitioning, density-based, and hierarchical algorithms that
apply on this scheme to cluster the objects efficiently.

4.1 Disk-based storage of the network
The core module of a clustering algorithm on a graph is
the shortest path computation between any pair of network
nodes, since this is essential for determining the network dis-
tance. In real-life problems, the size of the network (as well
as the number of objects to be clustered) can be large, there-
fore we need efficient disk-based representations for them.

We use a disk-based storage model that groups network
nodes based on their connectivity and distance, as suggested
in [17]. A graphical illustration of our files and indexes for
the network of Figure 1, is shown in Figure 3. Our model
allows efficient access of the adjacency lists and points. The
adjacency list and the points are stored in two separate flat
files. To facilitate efficient access, these flat files are then
indexed by B+–trees.

The point-IDs are assigned in such a way that for the
points on the same edge, IDs are sequential and their posi-
tion offsets are in ascending order. One clustering operation
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Figure 3: Disk-based storage representation

may ask for the edge a particular point lies on. To support
this query efficiently, we store the points (position offsets)
on the same edge in a point group. At the beginning of the
point group, we also store the edge and number of points on
the edge. After that, a sparse B+–tree is built on this flat
file, with keys the first point ID of each points group. For
example, consider the network of Figure 1; p2 and p3 are in
the same group (i.e., same edge) and their position offsets
1.0 and 3.2 are stored in the points flat file. The edge (1, 3)
and the number of points on the edge 2 are stored at the
beginning of the point group. In a leaf node entry of the
points B+–tree, the key 2 points to the corresponding point
group in the flat file.

The number of adjacent nodes of node ni is stored at the
beginning of its adjacency list. For each adjacent node nj of
the node ni, we store the adjacent node ID, the weight of the
edge (ni, nj) and a reference pointer to its point group (i.e.,
the ID of the first point in the group). If the edge does not
have any point group, a NULL pointer is stored. A B+–tree
is built on the adjacency list file. For this tree, the key is
the node ID and the value is a pointer to its adjacency list.
For the example of Figure 1, the adjacent nodes of n1 are
n2 and n3 so we store n2 at the beginning of the adjacency
list. After that, we store the detail information about edges
(1, 2) and (1, 3) in the points file.

This storage model is simple and supports the required
operations by our clustering algorithms. The adjacency list
module is similar to that used by CCAM [17]. However, we
also use the points file, which is absent in CCAM (CCAM
indexes network nodes only). The model in [16] is essen-
tially more complex than ours, since it stores the spatial
location of the indexed objects in the same representation
and indexes them using an R–tree. We do not use this model
here. First, we assume no dependencies between Euclidean
and network distance. Second, our algorithms need not ac-
cess the objects and network nodes based on their spatial lo-
cation. Nevertheless our algorithms can be applied on that
representation, as well.

4.2 Partitioning-based clustering
In this section, we propose a partitioning algorithm for our
problem. As discussed, the centroid for a group of objects
that lie on a network cannot be defined or computed easily,
thus, we explore the application of a k-medoids algorithm.

Initially, a set of k points (medoids) is randomly selected
from the data. Each point is then assigned to the clus-
ter corresponding to the nearest medoid reachable from it.
While partitioning, an evaluation function is applied to com-
pute the quality of the partition. Let mi be a medoid and



Ci its corresponding cluster for i ∈ [1, k]. A cluster is
good if the points in the cluster are near to the medoid.
The evaluation function for a set of clusters is defined as
R({(Ci,mi) : i ∈ [1, k]}) =

∑
i∈[1,k]

∑
p∈Ci d(p,mi). The

lower the value of R, the better the corresponding parti-
tioning is. After a partitioning is evaluated, a medoid is
replaced by a random point from the dataset and the points
are reassigned to clusters based on the new medoid-set. If
the R value of the new partitioning is better than the one
before the replacement, the change is committed. Other-
wise, the change is rolled-back and a new medoid replace-
ment is attempted. If for a given set of medoids, a number
of changes does not lead to a better clustering, the process
ends (a local optimum has been reached) and the medoids
and clusters are finalized.

4.2.1 Finding the nearest medoid for each node
One of the main issues of k-medoids is how to assign the
points to clusters fast. As discussed in Section 3.2, it is
too expensive to precompute and store the distances be-
tween every pair of network nodes (or objects). Thus, the
point assignment has to be performed dynamically for every
medoid.

Let M be the set of medoids. Given a network node ni,
assume that mni is the nearest medoid in M reachable from
ni. Given a point p, lying on edge (nx, ny), the distance
from p to its closest medoid can be found by:

d(mp, p) = min { d(mnx , ni) + dL(nx, p),

d(mny , ny) + dL(ny, p),

min
i∈[1,k]

dL(mi, p)} (1)

In other words, mp is the closest medoid reachable via nx,
or the closest medoid reachable via ny, or mp lies on the
same edge as p and its direct distance from p is the small-
est compared to the previous two quantities. Since the di-
rect distances can be computed efficiently, the problem is
reduced to finding the distance from each node to its near-
est medoid. The algorithm shown in Figure 4 performs ex-
actly this. It concurrently traverses the network around all
medoids assigning nodes to their nearest medoids. First, a
priority queue Q is initialized. Each entry B of the queue
has a node-ID B.node, a medoid-ID B.med, and the short-
est path distance from B.med to B.node. Initially, all nodes
from the edges, where the medoids lie are enqueued. Then,
the function Concurrent Expansion is called, which ap-
plies Dijkstra’s algorithm concurrently for all medoids. If a
node has been dequeued before (line 3), we know that it has
been already assigned to some medoid with a smaller dis-
tance than the current (guaranteed by the priority queue),
and therefore we need not change the information about it
or traverse the graph again from it. Otherwise, its unas-
signed neighbors nz with their distance from the currently
dequeued medoid are enqueued. At the end of the algo-
rithm, all nodes have been tagged with information about
their nearest medoids and their distances from them. The
points are then scanned and assigned to clusters according
to Equation 1, computing the evaluation function for the
current partitioning at the same time.

Algorithm Medoid Dist Find(medoids M)
1 for each node ni, assigned[i]:=false;
2 Q:=new priority queue;
3 for each medoid mi ∈M
4 let mi lie on the edge (nx, ny);
5 create new queue entries Bx, By;
6 Bx.node:=nx; Bx.med:=mi; Bx.dist:=dL(mi, nx);
7 By.node:=ny; By.med:=mi; By.dist:=dL(mi, ny);
8 enqueue(Q,Bx); enqueue(Q,By);
9 Concurrent Expansion(Q);

Function Concurrent Expansion(queue Q)
1 while (notempty(Q))
2 B:=dequeue(Q);
3 if (not assigned[B.node]) then

4 mB.node:=B.med;

5 d(mB.node, B.node):=B.dist;
6 assigned[B.node]:=true;
7 for each adjacent node nz of B.node
8 if (not assigned[nz ]) then
9 create a new entry B′;
10 B′.node:=nz ; B′.med:=B.med;
11 B′.dist:=B.dist+W (e(nz, B.node));
12 enqueue(Q,B′);

Figure 4: Finding nearest medoid for each node

4.2.2 Incremental replacement of node distances
The k-medoids method only replaces one medoid at each
iteration. The nearest medoid information of many nodes
may be the same as that from the previous iteration. Instead
of running the algorithm of Figure 4 for every iteration,
we can incrementally update the nearest medoids of nodes
using the algorithm of Figure 5. First, all nodes that were
assigned to the replaced medoid oldm are unassigned. All
neighbors of those nodes that belong to some other medoid
are enqueued in a queue Q. Then, the nodes which define
the edge where the new medoid newm lies are also enqueued.
Finally a function Concurrent Expansion(Q) is invoked.
This function is the same as the one of Figure 4, except from
two changes; lines 3 and 8 change to the following:

· · ·
3 if (not assigned[B.node]) or (B.dist < d(mB.node, B.node))) then
· · ·
8 if (not assigned[nz ]) or

(B.dist+W (e(nz, B.node)) < d(mnz , nz))) then
· · ·

These changes capture the cases where the nearest medoid
for a node has to be updated because it might be closer
to the new medoid newm. In general, this method is better
than finding the nearest medoid distance for each node from
scratch every time there is a change. However, it needs to ac-
cess information about the previous medoids of nodes. For
each network node, information about its nearest medoid
and distance from it can be stored and incrementally up-
dated on the disk-based structure, if too large to store in
memory. The performance savings of this method in com-
parison to running the one of Figure 4 for every iteration, are
expected to increase with k, since the larger k is, the smaller
the fraction of information that changes after a medoid re-
placement.

4.3 Density-based clustering
The convergence (and cost) of k-medoids depends on the
choice of the medoids and cannot be estimated a priori. If



Algorithm Inc Medoid Update(medoids oldm, newm, M)
1 Q:=new priority queue;
2 for each ni ∈ V such that mni = oldm
3 mni :=null; //reset nearest medoid info
5 for each adjacent node nz of node ni
6 if (mnz ∈ {M − oldm}) then
7 Create a new entry B;
8 B.node:=ni; B.med:=mnz ;
9 B.dist:=d(mnz , nz) +W (e(nz, ni));
10 enqueue(Q,B);
11 let newm lie on the edge (nx, ny);
12 create new entries Bx, By;
14 Bx.node:=nx; Bx.med:=newm; Bx.dist:=dL(newm,nx);
15 By.node:=ny; By.med:=newm; By.dist:=dL(newm,ny);
16 enqueue(Q,Bx); enqueue(Q,By);
17 Concurrent Expansion(Q);

Figure 5: Incremental update of nearest medoids

the local optimum is far from the initial medoids assign-
ment, many iterations are required and the cost of the algo-
rithm is high. Another problem of k-medoids is that outliers
are included in the clusters, since all points are essentially
grouped. Outliers may degenerate the structure of a cluster
and affect the evaluation function. Density based clustering
algorithms [13] cluster points based on their local density
and can handle outliers in low-density regions. In this sec-
tion, we apply the density-based paradigm to cluster objects,
located on a spatial network.

DBSCAN is a density-based method [13], which given a
random point p, identifies the cluster, where p belongs, by
applying an ε-range query around p and checking if there are
at least MinPts points in this range. If so, a new cluster
for p is created containing the points in the range query.
DBSCAN iteratively applies range queries for the new points
in the cluster, until it cannot be expanded any further. We
can directly apply this method on our network model. A
main module of the algorithm finds the ε-neighborhood of
a point p in the network. This can be done by expanding
the network around p and assign points until the distance
exceeds ε (a similar range search algorithm was proposed in
[16]).

Essentially, a range search query has to be performed for
every object p, which may be expensive if the number of
points is large. In the next paragraph, we propose a fast
technique that works for the case where MinPts = 2; i.e.,
the sufficient condition that two points are placed in the
same cluster is that their distance is at most ε.

4.3.1 An ε-Link algorithm
Our density-based clustering algorithm iteratively picks un-
clustered points from the dataset and runs the ε-Link al-
gorithm, shown in Figure 6, to discover the cluster which
contains them. Clustering terminates if there are no more
unassigned points. Given a point m, the idea is to browse
the network using Dijkstra’s algorithm, however, the short-
est path for every node now changes dynamically as new
points are assigned in the cluster. The algorithm starts by
visiting the edge where m lies and traversing it in both direc-
tions, inserting into the current cluster C the visited points
as long as their direct distance from the previous point is at
most ε (lines 6–9). If the nodes nx and ny are within ε dis-
tance from the last clustered point in their direction, they
are inserted into a queue Q together with their distances
(lines 10–11).

Consider the example of Figure 7 and assume that ε =
5. Assume also that we start from point m on the edge
(n1, n2). This edge is traversed first from m in the direction
towards n1. The first point found there is p1 having distance
6 > ε from m, thus this and the next points (if any) in this
direction are not inserted to C. Node n1 is also not enqueued
in Q, since its distance from the last clustered point (i.e., m)
is greater than ε. Then the edge is traversed from m towards
n2. In this case, p2 and p3 are inserted to the cluster. Also
n2 is enqueued since its distance dL(n2, p3) = 4 from the
last clustered point (i.e., p3) is smaller than ε.

Algorithm ε–Link(ε, point m, cluster C)
1 for each ni ∈ V NNdist[ni]:=∞;
2 Q:=new priority queue; C:={m}; clustered[m]:=true;
3 find edge (nx, ny) where m lies;
4 create new entries Bx, By;
5 p:=m; nextp:=next point on (nx, ny) from m to nx;
6 while (nextp 6= null) and (not clustered[nextp])

and (dL(p, nextp) ≤ ε)
7 p:=nextp; C:=C ∪ {p}; clustered[p]:=true;
8 nextp:=next point on (nx, ny) from m to nx;
9 Bx.node:=nx; Bx.dist:=dL(p, nx);
10 if (Bx.dist ≤ ε)) then enqueue(Q,Bx);
11 apply lines 6–11 for ny as well;
12 while (notempty(Q))
13 B:=dequeue(Q);
14 if (B.dist < NNdist[B.node])) then
15 NNDist[B.node]:=B.dist;
16 for each node nz adjacent to B.node
17 p:=B.node; nextp:=next pt from B.node to nz ;
18 if (nextp 6= null) and (not clustered[nextp])

and ((dL(nextp,B.node) + B.dist) ≤ ε)
19 newdB.node:=dL(nextp,B.node);
20 newdnz :=dL(nextp, nz);
21 p:=nextp; C:=C ∪ {p}; clustered[p]:=true;
22 nextp:=next point from B.node to nz ;
23 while (nextp 6= null)

and (not clustered[nextp])
and (dL(p, nextp) ≤ ε)

24 newdnz :=dL(nextp, nz);
25 p:=nextp; C:=C ∪ {p};
26 clustered[p]:=true;
27 nextp:=next point from B.node to nz ;
28 if (NNDist[B.node] > newdB.node) then
29 Bnew.node:=B.node;
30 Bnew.dist:=newdB.node;
31 enqueue(Q,Bnew);
32 if (no points on edge (B.node, nz)) then
33 newdnz :=B.dist+W (nz, B.node)};
34 if (NNDist[nz ] > newdnz )

and (newdnz ≤ ε) then
35 Bnew.node:=nz ;
36 Bnew.dist:=newdnz ;
37 enqueue(Q,Bnew);

Figure 6: The ε–Link clustering algorithm

While Q is not empty, the first node (e.g., n2 in Figure 7)
is dequeued from it. The condition in line 14 ensures that
the node’s distance from C has changed since the last time
it was dequeued. Only then the edges adjacent to it are
visited and traversed to possibly insert points in the clus-
ter. In our example, assume that (n2, n3) is the first such
edge to be examined. The points on the edge (if any) are
traversed (lines 18–27), checking whether there are at most
ε away from the nearest point to the cluster so far (cap-
tured by B or the last clustered point on that edge). In our
running example, p4 will not be clustered since its known
distance from the cluster is dL(B.node, p4) + B.dist = 7,
where B.node = n2 and B.dist = 4. In this case, no new
node will be enqueued since we know that (i) the distance
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Figure 7: Example of ε-Link clustering

of n2 to the cluster has not been changed and (ii) there are
some points on (n2, n3), which are not clustered, thus n3

cannot be closer than ε from the cluster. The next neigh-
bor n4 of n2 is now visited. In this case, we can find no
points on edge (n2, n4). However, we check (lines 33–34)
the distance of n4 from the cluster (via n2); if this distance
is smaller than ε we’ll have to enqueue n4, since some object
may be reachable via it. Otherwise, like in our example, n4

is not enqueued (its distance is 6). Next, we move to edge
(n2, n5). In this case, the first point there (p5) has distance
5 ≤ ε and therefore it is clustered. After this, (i) we enqueue
n2 again, since its distance from the cluster has decreased
(it is now dL(n2, p5) = 1) and (ii) we enqueue n5, since its
distance from the cluster is dL(n5, p5) = 4. Next, n2 is de-
queued again (this time B.dist = 1) and its adjacent edges
are re-visited. The reader will notice that now (i) p4 is clus-
tered (but n3 is not enqueued) and (ii) n4 is enqueued with
distance 3. The algorithm continues by dequeuing n4 and
checking its neighbor edges until the cluster is discovered.

The user can specify an optional parameter min sup so
that clusters with fewer than min sup points are declared
as outliers. Observe that the algorithm does not necessarily
traverse the whole network, but only the edges which con-
tain the points or are within ε distance from some point.
Its worst case complexity is at most one graph traversal
(cost of each iteration by k-medoids). Therefore, this al-
gorithm is much faster than k-medoids. Also, its cost is
deterministic for a given problem and parameters, as op-
posed to k-medoids, which is a randomized algorithm. The
memory requirements is the NNdist array used to store the
current distance of each network from the cluster, and a
bitmap (clustered) that indicates whether a point has been
clustered before. If NNdist cannot fit in memory, we can
store/update this information for each node into the disk-
based structure described in Section 4.1. An appropriate
value for ε may be hard to determine a priori. A possible
way to solve this problem is to use a value determined by
the user’s experience, or by sampling on the network edges.

4.4 Hierarchical clustering
In this section, we propose a hierarchical algorithm, which
starts by considering each point as a cluster, and iteratively
merges the closest pair of clusters with a single graph traver-
sal. We then discuss methods that make this algorithm scal-
able for large problems.

4.4.1 A Single-Link algorithm
Like most hierarchical methods, our algorithm initially as-
sumes that each point is a cluster. It then iteratively merges

the closest pair of clusters until one cluster remains. The
user may opt to stop the algorithm after a desired num-
ber of k clusters have been discovered. Clusters are merged
according to the single-link approach.

Figure 8 shows a pseudocode for the algorithm. During
the first (initialization) phase (lines 3–21), all edges of the
network are accessed and each point p on them (if any) is
inserted to a separate cluster Cp. In addition, all pairs of
directly connected clusters (i.e., consecutive points on the
same edge) are inserted into a priority queue P together with
their distance. Consider for example, edge (n1, n2) in the
network of Figure 9. Points p1, p2, p3 form clusters Cp1 , Cp2 ,
Cp3 , respectively, and entries 〈Cp1 , Cp2 , 1〉, 〈Cp2 , Cp3 , 2〉 are
inserted into P . For every edge (nx, ny), let p be the point
on the edge closest to nx and q the point on the edge closest
to ny. Entries 〈nx, dL(nx, p), Cp〉 and 〈ny, dL(ny, q), Cq〉 are
inserted into a hash table T organized on node-ID (lines 6
and 13).3 For our example of Figure 9 and for edge (n1, n2),
entries 〈n1, 5, Cp1〉, 〈n2, 4, Cp3〉, are inserted into T .

Then, for each node ni in T we update information about
its nearest adjacent cluster and enqueue it into a priority
queue Q (lines 14–19). For our running example and for
node n2, 〈n2, 2, Cp5〉 will be enqueued in Q, since the nearest
cluster to n2 is Cp5 . Moreover, if there are more than one
tuples for ni in T , this means that ni is adjacent to multiple
clusters and we can compute the distances between these
clusters via ni. We insert into P all pairs consisting of the
nearest adjacent cluster to ni and any other cluster adjacent
to ni (lines 20–21). We need not add more pairs, since no
pair of clusters can be merged unless it contains the nearest
cluster. For instance, there are three entries for n2 in T ,
since n2 is adjacent to three clusters. Thus, we insert to P
entries 〈Cp5 , Cp3 , 6〉 and 〈Cp5 , Cp4 , 5〉. We need not insert
entry 〈Cp3 , Cp4 , 7〉, since Cp3 cannot be merged with Cp4

via n2, unless Cp5 and Cp4 are merged first (they are the
closest pair).

During the second expansion phase (lines 22–44), nodes
are dequeued from Q and the distance to their nearest clus-
ter is doubled and compared with the top element in P . If it
is larger, this means that we can find no closer pair of clus-
ters to merge than the top element of P . Thus, we merge
clusters until it is possible to find a closest merging via the
currently dequeued node B.node from Q (lines 25–26). In
our running example, the first dequeued element from Q is
〈n4, 1, Cp6〉 and the top element of P is 〈Cp1 , Cp2 , 1〉. Since
2×B.dist ≥ 1, we dequeue the top pair of clusters (Cp1 , Cp2)
from P and merge them. Similarly, we merge {Cp1 , Cp2}
with Cp3 (their distance is 2 in the next top pair of P ). The
next top element in P is now 〈Cp5 , Cp4 , 5〉, which violates
the while condition of line 25. Since the top node in Q (i.e.,
n4) has not been dequeued before (we keep a bitmap array
expanded to verify this), we expand the network from n4

and we visit all its neighbors nz.
4 There are three cases;

in the first one, nz has been reached from the same cluster
before. In this case, if it can be reached faster via B.node,

3Using a hash table T could be avoided if for every node
nx we locate all adjacent points directly by accessing its
adjacent edges. However, this causes many random accesses
to the points file, whereas now we only perform a single scan
on this file.
4If B.node had been expanded before, then we know that
B.node has been visited before from a closer cluster, thus
we ignore it.



Algorithm Single–Link(dendrogram C)
1 Q:=new priority queue; P :=new priority queue;
2 T :=new hash table with entries 〈NID, dist, CID〉

and hash-key NID;
3 for each network edge (nx, ny) with points on it
4 ps:=first point on (nx, ny);
5 Cps :={ps}; //define new cluster;
6 insert into T row 〈nx, dL(nx, ps), Cps 〉;
7 p:=ps; nextp:=next point on (nx, ny) from p to ny;
8 while (nextp 6= null)
9 Cnextp:={nextp};
10 enqueue(P, 〈Cp, Cnextp, dL(p, nextp)〉);
11 p:=nextp;
12 nextp:=next point on (nx, ny) from p to ny;
13 insert into T row 〈ny, dL(ny, p), Cp〉;
14 for each ni ∈ V NNclus[i]:=null;
15 for each group of tuples Ti ∈ T with same NID, ordered by dist
16 ti1:=first tuple in Ti;
17 NNclus[ti1.NID]:=ti1.CID;
18 NNdist[ti1.NID]:=ti1.dist;
19 enqueue(Q, 〈ti1.NID, ti1.dist, ti1.CID〉);
20 for each tuple tij ∈ Ti, j > 1
21 enqueue(P, 〈ti1.CID, tij .CID, ti1.dist+ tij .dist〉);
22 for each ni ∈ V expanded[i]:=false;
23 while there are still > 1 clusters
24 B:=dequeue(Q);
25 while (2× B.dist ≥ P.top.dist)

and there are still > 1 clusters
26 dequeue and merge top pair of clusters in P ;
27 if (not expanded[B.node])

and there are still > 1 clusters then
28 expanded[B.node]:=true;
29 for each node nz adjacent to B.node
30 if (NNclus[B.node] = NNclus[nz ]) then
31 if (NNdist[B.node] +W (B.node, nz) < NNclus[nz ])then
32 NNdist[nz ]:=NNdist[B.node] +W (B.node, nz);
33 enqueue(Q, 〈nz, NNdist[nz ], NNclus[nz ]);
34 else if NNclus[nz ] 6= null then
35 enqueue(P, 〈NNclus[B.node], NNclus[nz ],
36 NNdist[B.node] +NNdist[nz ] +W (B.node, nz)〉);
37 if (not expanded[nz ]) and

(NNdist[B.node] +W (B.node, nz) < NNclus[nz ]) then
38 NNclus[nz ]:=NNclus[B.node];
39 NNdist[nz ]:=NNdist[B.node] +W (B.node, nz);
40 enqueue(Q, 〈nz, NNdist[nz ], NNclus[nz ]);
41 else // NNclus[nz ] = null
42 NNclus[nz ]:=NNclus[B.node];
43 NNdist[nz ]:=NNdist[B.node] +W (B.node, nz);
44 enqueue(Q, 〈nz, NNdist[nz ], NNclus[nz ]);

Figure 8: The Single–Link clustering algorithm

we update its distance from the cluster and enqueue it in Q
(lines 32–33). In the second case, nz has been last reached
from another cluster. In this case, we have discovered a path
connecting the two clusters. The cluster pair is enqueued in
P and if nz was not expanded before (i.e., it might be ex-
panded in the future) and it can be reached faster via B.node
we update its distance from the cluster and enqueue it in Q
(lines 35–40). In the last case, it is the first time nz is vis-
ited by the algorithm. Its distance to the nearest cluster via
B.node is updated and nz is inserted into Q (lines 42–44).

In our example, and for the neighbor n3 of the currently
dequeued node n4 we find that n3 was last reached by cluster
Cp4 . Thus we add on the heap P the cluster-pair (Cp6 , Cp4)
with distance 1+2+1 = 4. Since the distance from n3 to its
nearest cluster did not change, we needn’t do anything else.
The next node to be dequeued from Q is n2 (with distance
2 from Cp5), which causes the top pair (Cp6 , Cp4) of P to be
merged. The algorithm continues this way and terminates
if all clusters are merged5 (or if k clusters remain, given a

5For efficient merging of clusters, we use the weighted-union
heuristic of Union Find [4].
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Figure 9: Example of hierarchical clustering

parameter k). It correctly computes the dendrogram C of
merged clusters due to the logic of the priority queues P and
Q; no pair from P is merged if it is possible to find a closer
pair via the top node of Q. Its correctness is not proven
here, due to space constraints. For our example, the final
dendrogram is shown on the right part of Figure 9.

4.4.2 Making Single-Link scalable
The algorithm of Figure 8 initializes one cluster for each
point in the dataset. Moreover it initializes a very large
heap P of candidate cluster pairs to be merged. In large
problems, the O(N) information needed to be stored for the
N clusters (e.g., cluster-IDs) and the size of heaps P and Q
may exceed the memory capacity of the system. In order to
reduce this information, we can use a simple heuristic. In the
first phase, we immediately merge points on an edge, whose
distance is at most δ, where δ is a user-defined threshold.
In Figure 9, for instance, if δ = 2, then p1, p2, and p3 are
immediately merged to a single cluster in the first phase
of the algorithm. Moreover, at lines 15–21 of Figure 8, we
immediately merge all cluster pairs in P with distance at
most δ. In this way, the number of clusters to start with
and the sizes of the queues significantly reduce. The price
to pay is that we lose the first merges of the dendrogram,
however, these are not usually important to the data analyst.
An appropriate value of δ can be chosen by sampling on the
dense edges of the network. Notice that the selection of
δ is not as restrictive as the selection of ε in ε-Link, since
dense clusters for distances ε > δ will still be discovered by
Single-Link.

5. Experimental Evaluation
In this section, we evaluate the effectiveness and efficiency
of the proposed techniques. We implemented all clustering
algorithms described in Sections 4.2, 4.3, and 4.4 in C++.
Experiments were run on a PC with a Pentium 4 CPU of
2.3GHz. In all experiments, we used a memory buffer of
1Mb and the page size was set to 4Kb.

We used four real road networks, depicted in Figure 10.
All networks are connected and for each of them the num-
ber of nodes and edges are in parentheses after the code-
name. The first dataset (NA) consists of main roads in
North America obtained from www.maproom.psu.edu/dcw/

and cleaned to form a connected network. The other three
are road maps of San Francisco (SF), San Joaquin County
(TG), and Oldenburg (OL), obtained from [3]. Since the
original SF and TG networks were not connected, we ex-
tracted the largest connected component from them. The
weights of the graph edges were set equal to the Euclidean
distance of the connected nodes. This does not affect the
generality of the methods and at the same time facilitates



evaluation of the results by visualization.
On the road networks, we generated data that simulate

real world clusters. The density and spread of the clusters
are controlled by two parameters; an initial separation dis-
tance sinit and a magnification factor F > 1. Let |Cfinal|
be the total number of points in a generated cluster. Ini-
tially, a random edge of the network and the first point of
the cluster is generated on it. Then, the network is traversed
using Dijkstra’s algorithm. Whenever an edge is met for the
first time, points are generated on it. Let |C| be the current
size of the cluster. The distance from a newly generated
point to the previous one is randomly chosen in the range

[0.5scur, 1.5scur], where scur = sinit + sinit(F − 1) |C|
|Cfinal|

.

Roughly speaking, the approximate distance scur between
two consecutive generated points is initially sinit and in-
creases as the network is expanded to reach sinit×F for the
final point. This models the case where the cluster has a
dense “core” and becomes sparser at its boundaries. In all
generated pointsets of size N we experimented with, 99%
points were evenly distributed to k equal-sized clusters and
1% were randomly generated outliers. F was set to 5.

NA (175813, 179179) SF (174956, 223001)

TG (18263, 23874) OL (6105, 7035)

Figure 10: Four datasets used in experiments

5.1 Clustering effectiveness
In general, the proposed methods discover correctly clusters
according to their definitions. Figure 11 shows a representa-
tive example of the discovered structures by the algorithms.
Other tested datasets give similar results. In this exper-
imental instance, we have generated 20,000 points on the
OL network (this network is quite small and clusters can
be easily spotted on its visualization). 19,800 points were
evenly distributed to k = 10 clusters, whereas 1% of the
data (i.e., 200 points) are outliers, randomly generated.

Figure 11a shows a typical result of the k-medoids algo-
rithm, when given a initial set of random k medoids. In
order to control the cost of the algorithm, we allowed only
15 unsuccessful swaps for termination to a local optimum.
The result is quite different compared to the natural clus-

ters, which can be easily spotted by the reader. Some origi-
nal clusters are merged or split and every outlier is included
in some cluster. We have also tested an “ideal” case (see
Figure 11b), where the initial set of medoids were the first
points of the generated clusters. Even in this case, the algo-
rithm cannot discover all clusters exactly (observe that the
leftmost cluster is split), suffering from the problems most
single-representative methods have [6].

On the other hand, the density-based algorithms (the
adaptation of DBSCAN and our ε-Link method) discover
correctly the clusters, if given the appropriate parameter
values ε and MinPts. Figure 11c shows the result of both
algorithms, when ε = 1.5 × sinit × F and MinPts = 2.
Essentially, the results of the algorithms are identical and
correct. DBSCAN can also discover the clusters for larger
values of ε and MinPts, however, at higher cost.

The hierarchical method (Single-Link) can discover the
clusters, but it needs more time due to the expensive initial
phase (every point is a cluster and the size of P is O(N)).
Figure 11d plots the result of this method when the scala-
bility heuristic is used with a small δ = sinit × F . In this
case, the number of clusters to start with is one order of
magnitude smaller than N and so are the sizes of the heaps
P and Q. Notice that we only plot with colors large clusters
of > 100 points. At the stage of Figure 11e, the 10 large
clusters have been discovered. Figure 11f shows a latter set
of 6 large clusters in the hierarchy, where two triplets of
original clusters close to each other have been merged. If
the user decides to terminate the algorithm at some point,
clusters with a single of few points are treated as outliers
by the algorithm. An interesting property of Single-Link
is that, according to its definition, it discovers exactly the
same clusters as ε-Link, at the point where the next popped
element from P has distance > ε. In other words, a version
of Single-Link that stops merging when the next distance
exceeds a parameter ε produces identical results as ε-Link.

5.2 Efficiency and Scalability
We tested the efficiency and scalability of the algorithms
under various problem settings. In the first experiment, we
compare the effects of incremental medoid replacement on
the run-time of k-medoids. We generated 500K points in
k clusters on the SF network. Figure 12 shows the aver-
age speedup achieved by the incremental medoid replace-
ment, over the naive assignment of points to clusters from
scratch, after some medoid replacement. As expected, the
speedup increases with k, since the number of network nodes
(and points) that are re-located to another cluster becomes
smaller.

Table 1 shows the time spent by k-medoids to converge
to a local optimum given a random set of k initial medoids.
The table includes the number of iterations, as well as the
execution time of each iteration (initial and incremental) of
k-medoids for four datasets generated on networks NA, SF,
TG, and OL, distributed to k = 10 clusters. The number of
points are 500K, 500K, 50K, and 20K, respectively (roughly
three times the number of network nodes). Observe that in
all cases an incremental iteration takes roughly four times
less than the first iteration, an improvement consistent with
the speedup of Figure 12 for k = 10. We can also see that the
algorithm converges quite fast; the local optimum is found
after 4–8 iterations plus 15 unsuccessful medoids replace-
ments are attempted from them. Of course, the overall cost



(a) k-medoids (b) k-medoids (best) (c) DBSCAN & ε-Link

(d) Single-Link, after the initial phase (e) Single-Link, after reaching ε (f) Single-Link, when finding 6 large clusters

Figure 11: Visualization of clustering results
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Figure 12: Speedup of incremental replacement

of the algorithm depends on the number of local optima
which are evaluated until the clusters are finalized to the
best one.

We measured the execution cost of k-medoids, DBSCAN,
ε-Link, and the hierarchical Single-Link algorithm, using the
datasets of the previous experiment. Table 2 shows the costs
of the four methods. For k-medoids, we include the cost of
finding only one local optimum; even in this case the al-
gorithm is much slower than the other methods (usually
producing much worse results, too). For DBSCAN, we set
MinPts = 2 and used the same ε as ε-Link uses, i.e., the

Table 1: Execution cost of k-medoids (sec)
# iterations first one next ones

NA 21 20.6 5.8
SF 19 23 5.6
TG 22 1.4 0.39
OL 23 0.47 0.11

minimum value that discovers all clusters correctly, based
on their generation. Notice that with these values DB-
SCAN has the lowest cost than any other combination of
values that can successfully discover the clusters. ε-Link
with the same (optimal) ε can discover the clusters much
faster, due to its more systematic way of visiting the network
for each cluster. This demonstrates that straightforward ap-
plication of existing clustering methods on the problem are
much more expensive than our specialized network-based
techniques. For Single-Link, we included the cost of discov-
ering the whole dendrogram which requires a traversal of
the whole graph. Moreover, we used the scalability heuris-
tic and set δ = 0.7 × ε. With this setting, heaps P and
Q are small enough to be easily accommodated in memory.
Single-Link is slower than ε-Link because it essentially tra-
verses the whole graph in order to compute the complete
dendrogram.

Next, we test the scalability of the methods to the num-
ber N of points and the size |V | of the network. We first



Table 2: Execution cost of the algorithms (sec)
k-medoids DBSCAN ε-Link Single-Link

NA 136.2 74.1 18.3 24.6
SF 124.1 62.4 11.6 25.9
TG 9.6 4.03 0.33 1.45
OL 2.8 0.92 0.12 0.48

generated N=100K, 200K, 500K, 1000K points on the SF
network, grouped in k = 10 clusters, except from 1% of
outliers. Figure 13 shows the execution cost of the four al-
gorithms as a function of the number of points N . Observe
that all algorithms are scalable with N , however, there are
differences in the cost increase rate. The costs of DBSCAN
and ε-Link are directly proportional to N . This is due to the
fact that the points file is accessed randomly and sometimes
multiple times. With the increase of N , more edges become
populated and randomly accessing the points on them has
severe impact on performance. On the other hand, the costs
of k-medoids and Single-Link increase very slowly, appear-
ing to depend mainly on the size of the network. This can
be explained by the fact that both algorithms traverse the
whole network, but the accesses of the points file are limited
and sequential; k-medoids scans and assigns the points once
for every iteration, whereas Single-Link scans the points file
only once during its first step, using the heaps and traversing
the network onwards.
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Figure 13: Scalability with N

In the next experiment, we extracted connected compo-
nents of SF, consisting of 10%, 20%, and 50% nodes. We
also used the original network (100%). On each network, we
generated 200K points in k = 10 clusters, including 1% of
outliers, as usual. Figure 14 shows the costs of the algo-
rithms as a function of the network size. Again, all meth-
ods are scalable. In this case, the costs of k-medoids and
Single-Link increase proportionally to |V |, since the meth-
ods traverse the whole network. On the other hand, the part
of the network traversed by the density-based algorithms in-
creases slowly, since the number of edges that contain points
(and need to be visited) does not change significantly with
the network size. Nevertheless we observed that Single-Link
has similar cost to ε-Link, if we stop the algorithm when the
merge distance exceeds ε.

In summary, assuming a planar network, the costs of DB-
SCAN and ε-Link are linear to N and affected only by
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Figure 14: Scalability with |V |

the number of nodes |V ′| which are spanned by the clus-
ters. On the other hand, k-medoids (one iteration) and
Single-Link traverse the whole network, thus their cost is
O(|V | log |V |+N). The worst-case complexity of all meth-
ods (assuming that the clusters span the whole network) is
O(|V | log |V |+N).

5.3 Discovery of interesting clusters
If N is large, Single-Link produces a huge hierarchy of clus-
ters which can be hard to analyze manually. Figure 15 plots
the merge distance of the last 249 cluster pairs, popped from
heap P , while Single-Link clusters the Oldenburg dataset
of Section 5.1. We can spot three merge instances, where
the distance difference between consecutive merges changes
significantly (see the arrows on the figure). These merges
correspond to interesting levels of clustering. For instance,
the first one has the sharpest distance change and occurs
when the merge distance has reached ε (see Figure 11e),
i.e., when the original clusters have been discovered. We
can detect these sharp changes manually from this graph
and trace back the (incremental) history of merges to re-
cover the interesting clustering level.

It would also be nice if Single-Link could automatically
detect these interesting levels. For this task, the algorithm
can maintain a vector {d1 − d0, d2 − d1, . . . , dK − dK−1}
with differences between the distances of the last K con-
secutive merges and incrementally compute their average
davg = 1

K

∑K
i=1 (di − di−1). If the distance of the next

merge is significantly larger than davg, Single-Link can hint
the user for an interesting level in the merge hierarchy. In
this way, multiple interesting levels of different resolution
can be identified. For instance, if a sparse cluster contains
multiple dense ones, the two levels would be identified at a
single pass of Single-Link.

6. Discussion
Network-based clustering is useful for a variety of data anal-
ysis tasks and is not limited to the problem definition we
have studied in this paper. The proposed algorithms are
general enough to be applied for several interesting variants.

Our model allows clustering on networks, where arbitrary
types of weights can be assigned on the edges. For instance,
the weight on an edge connecting two network nodes could
be their Euclidean distance, the time to travel from one
node to another, the cost (price) of traversing the edge,
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etc. Depending on the measure used, clustering may re-
turn different results, providing multiple clustering layers to
the data analyst. Apart from this, it is possible to combine
different weight measures with an aggregate function. An
advanced problem is the discovery of time-dependent clus-
ters in a model, where edge weights vary with time. For
example, traffic on a road segment depends on the time of
the day and/or the date of the week. Based on this model,
we can derive clusters whose content is time-parameterized.

Another application is the discovery of clusters across dif-
ferent networks (e.g., a road network and a river/canal net-
work) by combining both of them. For this, we can define
transition edges that connect pairs of points from the net-
works (e.g., piers). Transition weights are assigned on them
to model the cost of transition. In this way, shortest path
distances between objects from different original networks
can be defined in the combined network and discovered clus-
ters may contain objects lying on both graphs.

7. Conclusion
In this paper, we have studied the problem of clustering ob-
jects which lie on a large spatial network. We presented ef-
ficient algorithms of three different paradigms, namely par-
titioning, density-based, and hierarchical. The algorithms
avoid computing the distances between every pair of points,
by exploiting the properties of the network.

A qualitative comparison between the methods shows that
k-medoids is not effective; due to the randomized nature of
search, it fails to discover the best partitioning within lim-
ited time. Moreover, it may split clusters and include out-
liers in them. On the other hand, ε-Link (and DBSCAN)
can correctly discover the clusters if they are given the ap-
propriate parameters. Finally, Single-Link can also correctly
discover the clusters at a node of the merging dendrogram.

A cost comparison between the methods shows that k-
medoids is the most expensive one due to the multiple times
it requires to traverse the graph. ε-Link is very efficient be-
cause it accesses only the part of the graph that contains
points. However, the points are accessed randomly (as op-
posed to k-medoids and Single-Link). DBSCAN has similar
properties to ε-Link, but it is much slower because the graph
is traversed less systematically (a range query is issued for
every point in the dataset). Single-Link is fast, given the
fact that it traverses the whole graph. Moreover, Single-
Link does not rely on parameters like ε and can discover
clusters at multiple hierarchies.

In Section 5.3, we described a method that can assist the
automatic discovery of interesting clusters during Single-
Link. In the future, we plan to further investigate the ap-
plicability of this method. We will also develop hierarchical
algorithms that consider distances between multiple points
from the merged clusters (e.g., representatives). Finally, we
plan to study the extensions of the problem, discussed in
Section 6.
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