
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MM 20XX 1

Efficient All Top-k Computation
A unified solution for all top-k, reverse top-k and top-m influential queries

Shen Ge, Leong Hou U, Nikos Mamoulis, David W. Cheung

Abstract—Given a set of objects P and a set of ranking functions F over P, an interesting problem is to compute the top ranked
objects for all functions. Evaluation of multiple top-k queries finds application in systems, where there is a heavy workload of
ranking queries (e.g., online search engines and product recommendation systems). The simple solution of evaluating the top-k
queries one-by-one does not scale well; instead, the system can make use of the fact that similar queries share common results
to accelerate search. This paper is the first, to our knowledge, thorough study of this problem. We propose methods that compute
all top-k queries in batch. Our first solution applies the block indexed nested loops paradigm, while our second technique is a
view-based algorithm. We propose appropriate optimization techniques for the two approaches and demonstrate experimentally
that the second approach is consistently the best. Our approach facilitates evaluation of other complex queries that depend on
the computation of multiple top-k queries, such as reverse top-k and top-m influential queries. We show that our batch processing
technique for these complex queries outperform the state-of-the-art by orders of magnitude.

Index Terms—all top-k queries, view-based index

F

1 INTRODUCTION

MANY real life applications support ranking of
products according to user preference function-

s. For example, consider an online store (e.g., Ama-
zon), which ranks blu-ray discs according to the pref-
erences of customers. Preferences could be explicitly
expressed by each user, or implicitly derived from us-
er purchase records. Preferences are typically defined
on some product features. For example, blu-ray discs
could be ranked based on their movie cast and release
date; recent movies having a good cast rank higher
than others. To simplify illustration and analysis, in
the rest of the paper, we assume that product features
take values from a normalized numerical domain; e.g.,
the quality of casting takes a score from 0 (worst) to
1 (best). This way, the products can be modeled by
multidimensional points; e.g., points p1, p2, p3, and
p4 are used to represent four products respectively in
Fig. 1. Modeling objects in such a multidimensional
space is common for diverse types of queries, such as
top-k queries [1], [2], [3], skyline queries [4], [5], and
market analysis queries [6], [7].

Given a preference function f , we can rank the
products p ∈ P according to f(p). Fig. 1 shows three
linear functions fa, fb, and fc which create three
object rankings as shown in the right part of the
figure. Each function is of the form f [x]x + f [y]y,
such that 0 ≤ f [x], f [y] ≤ 1 and f [x] + f [y] = 1. The

• S. Ge, N. Mamoulis and D. W. Cheung are with the Department of
Computer Science, University of Hong Kong, Pokfulam Road, Hong
Kong. E-mail: {sge,nikos,dcheung}@cs.hku.hk

• L. H. U is with the Department of Computer and Information Science,
University of Macau, Av. Padre Tomás Pereira Taipa, Macau. E-mail:
ryanlhu@umac.mo

fa

casting

re
le

a
s
e

 d
a

te

p1

fb

fa

fc

p2

p3 fb fc

top-1 disc

top-2 disc

p3

p2

p2

p3

p3

p1

x

y

p4

top-3 disc p1 p1 p4

fa’s top-3

fc’s top-3

fb’s top-3

(0,0)

(1,1)

Fig. 1. Top-k queries for online stores

functions are represented as vectors in the space that
contains the points. The object ranking for a specific
function f can be determined by the order of the
points are met if we sweep a line perpendicular to
the vector of f from point (1, 1) towards point (0, 0).
Different customers may have completely different
preferences. For instance, fb represents the preferences
of a customer, ub, who is concerned more about the
quality of casting than the release date. Accordingly,
p2 is the best product according to ub’s preferences.
Without loss of generality, we assume that all prefer-
ence functions f are linear and and the coefficients of
them are normalized; the score f(p) of an object p is
computed by the inner product

∑d
i=1(f [i] · p[i]) of f ’s

weights vector with p’s feature vector.
Generally speaking, users are more interested in

top ranked products. Given a constant k, in addition
with a ranking function f , a top-k query [1], [2], [3]
returns the k highest ranked objects according to f .
For example, consider the four products in Fig. 1. For
k = 3 and user ua, whose preferences are captured by
the linear function fa = 0.5x + 0.5y, the result of the
top-k query is TOP 3(fa) = {p3, p2, p1}.

Many applications have millions of users and nu-

0000–0000/00$00.00 c© 20XX IEEE

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MM 20XX 2

merous top-k queries may have to be evaluated si-
multaneously. Recommendation systems of online s-
tores is such an application (i.e., recommendations
to numerous users currently online). As another ex-
ample, consider a second-hand cars company, which
recommends cars to customers before the summer
season; the company issues multiple top-k queries,
one for each customer (depending on his/her indi-
vidual preferences), simultaneously. The result can be
computed by issuing an individual top-k query for
each user, TOP k(fi). This iterative approach becomes
too expensive when a large number of queries have to
be evaluated over a large number of products. Thus,
developing specialized techniques for processing mul-
tiple top-k queries is an important problem that has
been overlooked in past research. We call this problem
the all top-k query, ATOP k.

To the best of our knowledge, there is no efficient
approach to compute multiple top-k queries simulta-
neously. In this paper, we study two batch processing
techniques for this problem. The first is a batch indexed
nested loops approach and the second is a view-based
threshold algorithm. We also propose several novel
optimization techniques for these methods.

Besides products recommendation, other tasks,
such as product promotion analysis [8] and identify-
ing the most influential products [9], can benefit from
an efficient approach for computing multiple top-k
queries simultaneously, as we discuss in Section 3. We
demonstrate the utility of our result in these complex
analysis tasks; when ATOP k is used as a search
module for reverse top-k [8] and top-m influential [9]
queries, the evaluation cost of these queries greatly
decrease.

The rest of the paper is organized as follows. We
provide formal definitions and review preliminary
concepts in Section 2. The applicability of ATOP k

in the evaluation of related queries is discussed in
Section 3. An intuitive batch processing technique is
introduced in Section 4. In Section 5, we present an
alternative batch processing approach which extends
the view-based threshold algorithm [10] and fully
optimize it. Section 6 discusses how we can use
our techniques to support related queries, including
reverse top-k and top-m influential queries. In Sec-
tion 7, we experimentally evaluate our methods using
synthetic and real data. Section 8 discusses related
work. Finally, Section 9 concludes the paper.

2 PRELIMINARIES

This section includes all formal definitions and pre-
liminary concepts, based on which we build our
solutions. We begin by defining top-k and all top-k
queries.

Definition 1 (Top-k query, TOP k(f)): Given a set of
products P , a preference function f , and a positive
integer k, the top-k query TOP k(f) returns a subset

of k products from P , such that f(pi) ≥ f(pj), ∀pi ∈
TOP k(f), pj ∈ P\TOP k(f).

Definition 2 (All top-k query, ATOP k): Given a set
of products P , a set of preference functions F , and a
positive integer k, the all top-k query ATOP k returns
TOP k(f) for every function f ∈ F .

The reverse top-k query [8] is a derived concept.
Given a product pi and a set of user preferences,
a reverse top-k query, RTOP k(pi), returns the users
who have pi in their top-k results (Definition 3). For
example, for the data in Fig. 1, RTOP 2(p2) returns
functions fa and fb since p2 is ranked 2nd and 1st by
fa and fb, respectively. Product promotion is an appli-
cation of RTOP k(pi). Assume that a property agent
is promoting a new building to customers via web
advertisements. To minimize cost, the agent should
advertise the building only to those customers who
are potentially interested in it; in other words, product
pi should be advertised to users who would highly
rank pi, based on their known preferences.

Definition 3 (Reverse top-k query): Given a product
p, a positive integer k, a set of products P and a
set of user preferences F , the reverse top-k query
RTOP k(p) returns a subset of user preferences F ,
such that RTOP k(p) ⊆ F , and fi ∈ RTOP k(p) if and
only if ∃q ∈ TOP k(f) such that f(p) ≥ f(q).

The problem of finding the most influential prod-
ucts has been recently studied by Vlachou et al. [9].
The influence score Ik(pi) of a product pi (Definition 4)
is defined by the number of customers who have pi
in their top-k preferences.

Definition 4 (Influence score, Ik): Given product
dataset P , user preferences F , and a positive integer
k, the influence score of a product p is defined as
Ik(p) = |F ′|, where F ′ ⊆ F and F ′ = RTOP k(p).

Accordingly, the top-m influential query [9],
ITOPmk , finds the m most influential products (Def-
inition 5). Ranking is based on the influence scores
Ik. ITOPmk finds products of significant impact in the
market. Identifying products of high influence in a
large database (e.g., database of houses, second-hand
cars, etc.) can help companies to assess the popularity
of their current products and/or design new ones
with features similar to the most popular products.
For instance, the iPad is considered a good product
because it is ranked highly by many customers in a
survey [11]. Intuitively, the influence of a product in
the market is the number of customers who consider
it intriguing (i.e., rank it high in their preferences).

Definition 5 (Top-m influential query): Given a prod-
uct dataset P , a set of users preferences F , and a
positive integer k, the top-m influential query ITOPmk
returns a subset of m products from P , such that
ITOPmk ⊆ P and |ITOPmk | = m, Ik(pi) ≥ Ik(pj),
∀pi ∈ ITOPmk , pj ∈ P\ITOPmk .

For example, in Fig. 1, let k = 3 and consider
the three user preference functions F = {fa, fb, fc}.
The four products {p1, p2, p3, p4} have influence scores

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MM 20XX 3

{3, 2, 3, 1}, respectively. The score of p4 is only 1
because it appears in the top-3 set of only one function
(fc). Thus, ITOP 2

3 returns {p3, p1}.
In this paper, we study ATOP k and show how

it can be used as a module for efficient evalua-
tion techniques for RTOP k(p) and ITOPmk . Table 1
summarizes the notation used throughout the paper.
Our solution builds on methods for top-k queries
using materialized ranking views [10]. A material-
ized ranking view is simply the result of a top-k
query. Das et al. [10] proposed a Linear Programming
adaptation of the Threshold Algorithm (LPTA), which
extends the Threshold Algorithm (TA) [2] to apply
on views. LPTA sequentially accesses the results of
two or more materialized object rankings, based on
different views, in order to compute the top-k objects
of a new function. When an object p is accessed from
view vi, a random access is performed at each of
the other views to calculate the aggregate feature
score of object p. LPTA keeps track of the k objects
with the highest scores seen so far. These k objects
become the final top-k result if they have better scores
than the maximum possible score for all unseen objects.
The maximum possible score is computed by linear
programming in [10]. We illustrate this process by an
example in Section 5.

TABLE 1
Summary of Notations

Symbol Meaning

F the set of user preferences
P the set of products
f(p) score of product p by user preference f
p[i] the i-th dimension value of p
f [i] the i-th coordinate (weight) of f

TOPk a top-k query
ATOPk a all top-k query
RTOPk a reverse top-k query
Ik(p) top-k influence score of product p
ITOPm

k a top-m influential query

3 APPLICATIONS OF ATOP k AS A MODULE

Besides its direct applications (e.g., in recommender
systems), discussed in the Introduction, ATOP k can
also be used as a processing module of other queries.
We note that the solution for reverse top-k problem
proposed in [8] does not scale well, because every
reverse top-k query is answered by issuing a set of es-
sential top-k queries. If multiple reverse top-k queries
are issued (e.g., multiple products are to be promoted
at a holiday season), some of these top-k queries
might even have to be executed multiple times. Also
in [9], the object influence scores are calculated by
reverse top-k queries, therefore the proposed solution
does not scale well according to our discussion above.

In Fig. 2, we briefly summarize the relationship
between the all top-k (ATOP k) query that we s-
tudy in this paper and RTOP k(f)/ITOPmk . In [8],
a reverse top-k query RTOP k(f) is computed by a
set of top-k queries; however, not all these queries
need to be evaluated due to the use of pruning
strategies. In addition, according to [9], the influence
score of a product Ik(p) is equivalent to the size of
the reverse top-k result. Given a set of products and
a set of preference functions, the top-m influential
query ITOPmk is evaluated using the influence scores
of the products. Therefore, a large number of top-k
queries are implicitly involved in a top-m influential
query. Although pruning strategies and fine-tuned
execution ordering are employed in the state-of-the-
art solutions for RTOP k(f) and ITOPmk queries in
[8] and [9], respectively, neither solution optimizes
the core ATOP k module of these queries. In other
words, an efficient evaluation technique for all top-k
queries (ATOP k) would greatly benefit the evaluation
of RTOP k(f)/ITOPmk queries.

Fig. 2. Relationship of different queries

4 BATCH TOP-k PROCESSING

Top-k queries are extensively studied in the literature
[1], [2], [3], [10]. The state-of-the-art techniques aim
at minimizing the cost of a single top-k query with
the use of thresholding and/or indexing structures.
However, there is a lack of research on multiple top-
k evaluation. Motivated by this, in this section, we
propose a batch processing technique that indexes not
only the objects but also the functions, to support all
top-k computation.

This method can be considered as the counterpart
of block indexed nested-loops in relational databases
and spatial join queries in spatial databases [12].
Suppose that the objects are indexed by a multidimen-
sional index, e.g., R*-tree [13], and the functions are
also partitioned in groups. To group the functions, we
can first order them according to their position on the
Hilbert curve [14] that indexes the space of function
coefficients. Then, we split the curve into subintervals,
each defining a group, such that each group contains
no more than a ratio δ of the functions. Intuitively, a
group contains a small number of similar functions
that would share a number of results. Processing
the functions in the group simultaneously would be

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MM 20XX 4

faster than executing the queries individually, as some
search cost would be shared among the functions in
the group. In Section 7, we study the choice of δ and
evaluate alternative grouping strategies.

Let Fg be a group of functions; the group maximum
score sFg

max(p) of an object p computed by the functions
of the group is s

Fg
max(p) =

∑d
i=1 maxfg∈Fg

{fg[i]}p[i].
For a given Fg , we traverse the nodes and objects in
the R*-tree (e.g. Fig. 3(a)) in descending order of the
group maximum score. We first load the root of the R*-
tree, calculating s

Fg
max of all entries in it (i.e., for each

minimum bounding rectangle (MBR)). The maximum
possible score sFg

max(m) of an MBR m is the maximum
score of any possible object inside m. If higher values
are preferred in each dimension, the corner point of
an MBR with the largest values in all dimensions
is the point with the maximum score. We put all
accessed R*-tree entries and their maximum scores
into a priority queue and access them in descending
maximum score order. Each time an entry e is de-
heaped, if e is a non-leaf entry (e.g., Ma in Fig. 3(a)),
we calculate the maximum scores for all its children
and insert them into the priority queue. If e is a
leaf MBR (e.g., mb in Fig. 3(a)), then all functions in
Fg are computed against all the points in that leaf
node and the candidate lists of those functions in
Fg are updated accordingly. As an optimization (see
Lemma 1 below), we avoid processing an MBR m for
a function f ∈ F if the upper bound f(m) (computed
using the best corner of m) is worse than the k best
scores of f computed so far. We name this batch
processing technique as Batch Indexed Nested Loops
algorithm (BINL). We list the pseudocode for BINL in
Algorithm 1.

Algorithm 1 BINL Algorithm
Algorithm BINL(R,F, k)
R is the R*-tree index of the set of objects P

1: partition F into a set of g groups {F1, . . . , Fg} by Hilbert curve
2: for all Fi ∈ {F1, . . . , Fg} do
3: en-heap (R.root, 0) into PQ
4: while PQ is not empty do
5: de-heap the top element m from PQ
6: if m is an non-leaf MBR then
7: for all mi ∈ m do
8: compute the maximum possible score sFi

max(mi) to mi

9: en-heap (mi, s
Fi
max(mi)) into PQ

10: else if m is a leaf MBR then
11: for all fi ∈ Fi do
12: if fi(mi) is better than k-th candidate of fi then
13: evaluate fi for all objects in mi

14: update the candidate list of fi

Lemma 1 (MBR Pruning): An MBR m needs not be
evaluated by a function f if f(m) is no better than the
k-th score for the objects seen so far, where f(m) is
the maximum score of function f for any point in m.

Fig. 3(b) illustrates an example for BINL. Assume
that we are processing the group of functions Fg =

{fa, fb}. The accessing order based on s
Fg
max can be

conceptually captured by the order a perpendicular
plane to the dashed arrow in the figure crosses the

MBRs. Suppose that k = 2 and we have already
accessed four MBRs, M , Ma, mb, and Mb; p2 and p3

have already been seen by fa and fb and we have
{md,ma,mc} in the priority queue. Next, we get md

from the priority queue, which is a leaf MBR, therefore
its contents are evaluated using the functions in Fg .
Note that only fb evaluates the objects in md while fa
prunes md because fa(md) < fa(p2) < fa(p3).

casting

re
le

as
e

da
te

p1

p2

p3

x

y
p4

(0,0)

(1,1)

p5

p6

p7
p9

p8

M Ma

Mb

mc

md

ma

mb

(a) R*-tree grouping

casting

re
le

as
e

da
te

p1

p2

p3

x

y
p4

(0,0)

(1,1)

p5

p6

p7p9 p8mc

md

ma

fb

fa

fa’s
candidate

fb’s
candidate

accessing
order

(b) BINL processing

Fig. 3. An example of batch indexed nested loops

Discussion. Techniques similar to BINL have been
proposed before for All Nearest Neighbors Queries
(ANN) in spatial databases [12]. We note that BINL
does not support early termination, because the group
traversing order is generally different from the ear-
ly termination order of every single user preference
function in that group, which means that we have to
traverse the R*-tree once for every functions group.

5 A VIEW-BASED APPROACH
In this section, we investigate an alternative, more
efficient approach than BINL. A well-accepted general
paradigm for efficient query processing, for different
data and query types, is to take advantage of ma-
terialized views with pre-computed results [15]. As
discussed in Section 2, LPTA [10] can be used to com-
pute top-k queries using views. Here we demonstrate
LPTA by an example in Fig. 4(a). In this example, we
use the same objects set from Fig. 1 and construct two
views, v1 and v2. Assuming that v1 and v2 have been
accessed 2 times respectively, the regions being ac-
cessed are shaded in the figure. Note that the unseen
region must be convex if all view functions are linear.
Given a linear function, the maximum score of any
objects in the convex unseen region must be smaller
than or equal to the scores of the convex points (of
the unseen region), which can be computed by linear
programming.

After two sorted accesses from each view, only three
objects, p2, p3, and p4, are seen so far and the prefer-
ence function fa keeps p3 as the top-1 candidate. LPTA
returns p3 for fa since the current maximum possible
score smax(fa) (computed by linear programming) is
already worse than the candidate’s score, fa(p3).

To support batch processing, when an object p is
accessed from a view, we can evaluate its scores for

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MM 20XX 5

casting

re
le

as
e

da
te

p1

fa

p2

x

y
p4

(0,0)

(1,1)
v1

v2

p3

unseen
region

2nd access
of v2

convex
point

2nd access
of v1

coco

fa(p3)

seen
regions of
v1 and v2

smax(fa)

(a) LPTA computation
casting

re
le

as
e

da
te p1fb

fa

fc

p2

x

y

p4

(0,0)

(1,1)

p3

smax(fa)

smax(fc)

smax(fb)

unseen
region

(b) BLPTA computation

Fig. 4. Top-k computation using ranking views

multiple top-k queries. For every top-k query being e-
valuated, we update the current result set if necessary.
A function is marked as stopped if its k-th candidate
score is no worse than the maximum possible score.
Based on this idea, we can answer multiple top-k
queries by traversing each view once. We call this
method Batched Linear Programming adaptation of
the Threshold Algorithm (BLPTA). The pseudo code
of BLPTA can be found in Algorithm 2.

Algorithm 2 BLPTA Algorithm
Algorithm BLPTA(V, P, F, k)

1: for all f ∈ F do
2: TOPk(f)← ∅ and mark f as running
3: while F is not empty do
4: for all v ∈ V do . access the views in round-robin fashion.
5: fetch next object p from v and update accessed regions
6: for all f ∈ F not marked as stopped do
7: if f(p) is better than k-th object TOPk(f) then
8: remove k-th object and insert p into TOPk(f)

9: compute maximum possible score smax(f)
10: if k-th object in TOPk(f) is better than smax(f) then
11: mark f as stopped and remove f from F

At every iteration of BLPTA, we fetch the next
object p from one of the views in a round-robin fash-
ion and update the top-k candidates for each of the
running functions. In Fig. 4(b), the top-1 candidates of
fa, fb, and fc are p3, p2, and p3, respectively, after
2 accesses from each of the views. The maximum
possible scores, smax, of the functions are shown by
three different lines in Fig. 4(b). In this example, all
functions are marked as stopped after the 2nd access
from each view since the corresponding smax score is
no better than the candidate score. Therefore, BLPTA
exits the while-loop and returns the all top-k result.

BLPTA terminates early if all functions are marked
as stopped. However, this method is costly since (1)
the maximum possible scores are computed by linear
programming, (2) functions are not partitioned into
groups, and (3) every object being accessed from
views is unavoidably evaluated. In the remainder of
this section, we discuss and resolve these three issues
and propose an optimized version of the algorithm.

5.1 Avoiding linear programming
Given a set of pre-computed views V , BLPTA (and
LPTA as well) can compute the top-k queries using

a subset of V and the selection can be determined
by the cost estimation technique suggested in [10].
However, the maximum possible score is still comput-
ed by linear programming. Considering the fact that
this computation will be carried out for all running
preference functions against all accessed objects, it
easily becomes the bottleneck. Motivated by this, we
first redesign our method to avoid linear program-
ming computation. Instead of using a subset of pre-
computed views, we construct the views based on some
constraints, such that the maximum possible score
can be derived from the cross point of d hyperplanes
(technique to be discussed shortly). We now introduce
the constraints that we impose when constructing
views (Definition 6).

Definition 6 (d-bounding views): A preference func-
tion f is bounded by d views {v1, . . . , vd} if and only
if there exists a d-dimensional vector r, such that
∀ri, ri ≥ 0 and

∑d
i=1 rivi = f .

Intuitively, a preference function f being bounded
by d views means that the direction of f is enclosed
by the directions of d views. Fig. 5(a) demonstrates
an example. Suppose that fa = 1

2x+ 1
2y and consider

two views, v1 = 2
3x + 1

3y and v2 = 4
9x + 5

9y, in the
system. There exists a vector r = (1

4 ,
3
4) that makes

r1v1 + r2v2 = fa. Therefore, we say that views v1 and
v2 are a set of d-bounding views for fa.

casting

re
le

as
e

da
te p1

fa

p2

x

y

(0,0)

(1,1)

1st access
of v1

v2=4/9x+5/9y

1st access
of v2

p4

smax(fa)=fa()

unseen
region

p3

v1=2/3x+1/3y

cross
point

(a) By d-bounding views

casting

re
le

as
e

da
te p1

fa

p2

x

y
p4

(0,0)

(1,1)

p3

p

v1 v2

4th access
of v2

unseen
region

4th access
of v1

convex
point

smax(fa)

cross
point

fa(φ)

(b) By other views

Fig. 5. Example of different views settings

Besides, we define as the scanning hyperplane of a
view v, the hyperplane which is perpendicular to v’s
vector and intersects the last object seen in v. The
dashed lines (orthogonal to the preferences vectors)
in Fig. 5 illustrate scanning hyperplanes. Formally, if
s is the last score seen in v, the scanning hyperplane
of v is defined by the set of points x which satisfy
v[1]x[1] + . . .+ v[d]x[d] = s.

By basic geometry, we can easily show that there
is only one cross point φ being intersected by d
hyperplanes in the d dimensional space. We illustrate
the cross point φ in Fig. 5(a). Assume that all user
preferences in the system are bounded by d views.
Theorem 1 shows that the cross point φ is the point x
that maximizes the score of any unseen objects (proofs
of all theorems are in Appendix A). For completeness,
we show in Fig. 5(b) that if f is not bounded by the
views, then f(φ) is no longer the maximum possible

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MM 20XX 6

score (i.e., smax(fa) < fa(φ)).
Theorem 1: For a set of user preferences F being

bounded by d-bounding views (v1, . . . , vd), f(φ) is no
worse than the score of any unseen objects, where φ
is the cross point of the scanning hyperplanes of the
d-bounding views.

According to Theorem 1, f(φ) can be viewed as the
maximum possible score smax(f) in BLPTA. Clearly,
we can mark a function as stopped if f is bounded by
the corresponding d-bounding views and the value of
f(φ) is not better than the k-th candidate score. The
remaining problem is to calculate the cross point φ of
d scanning hyperplanes. For every view vi and its last
seen score si, we have

vi[1]φ[1] + ...+ vi[d]φ[d] = si

Since we have d different equations in total, φ can be
found by solving a simple linear system, φ = A−1B,
where A is the set of d views and B is the set of last
seen scores. Formally:

φ =


v1[1] . . . v1[d]

...
...

...
vd[1] . . . vd[d]


−1 

s1

...
sd


Discussion. The views based computation can stop
early if the preferences functions are bounded tightly
by the views. For instance, we can mark fa as stopped
after accessing one object from each of views in
Fig. 5(a); while we need to access three objects in
total from the views in Fig. 4(a). However, finding the
tightest d-bounding views is equivalent to a problem
of finding minimum volume enclosing simplices [16],
which is NP-hard. The most loose d-bounding views
are the base views (e.g., v1 = x, v2 = y, and v3 = z in
the 3D space). In the next section, we study how to
tighten these views by a partitioning technique.

5.2 View-based partitioning
We can take advantage of partitioning the functions
into groups instead of processing them one-by-one.
Before we introduce the partitioning process, we show
how to construct a (d − 1)-simplex by intersecting
the vectors of d-bounding views to a hyperplane HP
(i.e., HP(X) = x[1] + . . . + x[d] = 1). For a set of
d-bounding views, we can find their corresponding
point using a linear system. For instance, pv1 and pv2
are the corresponding points of v1 and v2, respectively,
in Fig. 6(a). These d corresponding points construct a
(d− 1)-simplex (∆d-1) [17] on hyperplane HP , that is
a (d − 1)-dimensional generalization of a 2D triangle
or a 3D tetrahedron. In Fig. 6, we illustrate two such
simplices in 2 and 3 dimensional spaces (the 1-simplex
∆1 is a line segment and the 2-simplex ∆2 is a 2D
triangle).

A simplex can easily be partitioned by a point
inside it (see Definition 7). In Fig. 7, for example, we

casting

re
le

as
e

da
te

fa

x

y

(0,0)

(1,1)

v1

v2

1-simplex
Δ1

pv1

pv2

pfa

HP

(a) 1-simplex

(1,1,1)

(0,0,0)

v3

v2

v1

2-simplex
Δ2

pfa

pv1

pv2

pv3

HP

(b) 2-simplex

Fig. 6. Examples of d-bounding views projection

have three basic bounding views and four functions
in the 3D space. On the hyperplane, we create a ∆2

based on the corresponding points from v1, v2, and v3.
We can partition the ∆2 into three sub-simplices (i.e.,
∆2

1, ∆2
2, and ∆2

3) by adding view v4 (see Fig. 7(b)).
Definition 7 (Simplex partitioning): Given a ∆d-1 and

a point p inside the simplex, ∆d-1 can be partitioned
into d isolated ∆d-1s being split from p towards the
vertices of the simplex.

Theorem 2 shows that the function fa pass-
es through point pfa in the interior of ∆d-1 =
{pv1 , . . . , pvd} if and only if f is bounded by
{v1, . . . , vd}. In Fig. 7(b), the corresponding d-
bounding views of ∆2

1, ∆2
2, and ∆2

3 are {v1,v2,v4},
{v1,v3,v4}, and {v2,v3,v4}, which bound functions
{fa,fb}, {fd}, and {fc}, respectively.

Theorem 2: A function (or a view) is bounded by
a set of d-bounding views if and only if it passes
through the interior of the (d-1)-simplex defined by
the d-bounding views.

HP

(1,1,1)

(0,0,0)

fa

v3

v2

v1

2-simplex
Δ2

fb
fc

fd

fb
fc

fd

fa

(a) Simplex construction

(1,1,1)

(0,0,0)

v3

v2

v1

fb
fc

v4

fd

fa

Δ21
Δ22

Δ23

(b) Splitting using v4

Fig. 7. An example of partitioning

Note that simplex partitioning creates new sets of
d-bounding views that are tighter than the original d-
bounding views. This makes computation more effi-
cient as discussed in Section 5.1. For instance, finding
the top-k result of fd using {v1, v3, v4} is faster than
using {v1, v2, v3}. For the sake of generating tighter
boundings, we can recursively partition the simplex.
On the other hand, this might create a large amount of
views. Therefore, there is a tradeoff between achieved
tightness and the number of views, which should be
considered in the process.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MM 20XX 7

Accordingly, we propose an algorithm that recur-
sively partitions the initial simplex. After each parti-
tioning, we assign each function to the sub-simplex
where its projection falls. We use a parameter λ to
control the number of views being created during
this process. We do not further split a simplex if the
number of functions being bounded by it is less than
a ratio λ of the total.

The partitioning procedure is described by Algo-
rithm 3. We first construct the simplex ∆d-1 based on
the d-bounding views V (e.g., v1, v2, and v3 in Fig. 7)
and assign the entire set of preferences functions to
∆d-1.F (∆d-1.F denotes the associated preference func-
tion set F of the simplex ∆d−1). Lines 3–12 describe
an iterative process that recursively partitions the sim-
plex. Given a point inside a simplex (e.g., the average
point of all vertices, vavg), we partition the simplex
∆d-1 into d sub-simplices using Definition 7 (line 5).
Every bounding function f of ∆d-1 is assigned to
one of the d sub-simplices. Clearly, the simplex is not
tight enough if it bounds many functions. Therefore,
we further partition a sub-simplex if the number of
bounding functions is larger than a threshold (con-
trolled by parameter λ).

Algorithm 3 d-bounding views partitioning
Algorithm partitioning(V, F, λ)

1: construct ∆d-1 for V and set ∆d-1.F := F
2: push ∆d-1 into a queue Q
3: while Q is not empty do
4: ∆d-1 := Q.pop()
5: partition ∆d-1 into {∆d-1

1 , . . . ,∆d-1
d } using vavg := AVGvi ∈ V

6: for all f ∈ ∆d-1.F do
7: assign f to ∆d-1

i if f is in the interior of ∆d-1
i

8: for all ∆d-1
i ∈ {∆d-1

1 , . . . ,∆d-1
d } do

9: if size(∆d-1
i .F) ≥ λ · size(F) then

10: push ∆d-1
i into Q . further partition ∆d-1

i
11: else
12: ∆G := ∆G ∪ {∆d-1

i }
13: return ∆G

5.3 Simplex execution order
Even through the simplices (generated by Algorith-
m 3) can be evaluated independently at any order,
the memory usage can be controlled better if the
execution order is well designed. According to our
partitioning approach, each simplex contains d views
and each view is used by multiple simplices. A view
can be removed from memory after all relevant sim-
plices have been evaluated. To minimize the total
memory usage, we should define an execution order
such that the maximum number of views kept in
memory is minimized. Finding the optimal order is a
combinatorial problem, therefore we adopt a greedy
approach, where the next simplex is decided by the
views kept in memory. Intuitively, a view vmin should
be cleaned up first if vmin is used by the fewest
simplices among all views in memory. In other words,
we first evaluate all simplices that use vmin, in order
to remove vmin from memory as early as possible. The

effectiveness of this approach is demonstrated in our
experiments.

5.4 Accessing multiple objects from views
Recall that whenever a leaf MBR m is accessed by
BINL, every function fg in Fg first examines whether
m can be pruned by the candidate set of fg , according
to Lemma 1 (see Section 4). However, the objects
being accessed from views are unavoidably evaluated
by the functions in BLPTA. For the sake of batch
pruning, we fetch a set of objects from a view instead
of one object at each access. In order to have stable
performance at different data distributions, we stop
fetching objects from a view if the volume of the
accessed objects’ MBR is larger than a threshold ω. In
addition, we apply the same pruning idea as BINL,
i.e., not every object is necessarily evaluated by the
functions, improving pruning effectiveness.

5.5 Putting all together
We are now ready to present our ETA algorithm (Ef-
ficient adaptation of the Threshold Algorithm), which
integrates all techniques been discussed. ETA first
partitions the functions into groups; each of group is
bounded by a corresponding set of d-bounding views
(see Section 5.2). Given the execution order of the
groups (see Section 5.3), we evaluate the functions in
batch using the corresponding d-bounding views. At
every iteration, for each group, we access the views
in a round-robin fashion. At each access, we fetch
multiple objects from the views, until the MBR m of
them has a larger volume than ω (see Section 5.4). Sub-
sequently, we update the cross point φ of d scanning
hyperplanes (see Section 5.1).

In the next step, we examine whether the objects
belonging to m should be examined by a function
using the MBR pruning technique (see Lemma 1 in
Section 4). Moreover, the result of a function f is
confirmed by the condition whether f(φ) is no better
than the candidate set of f , and f is marked as stopped
in this case (see Section 5.1). The all top-k results of
a group are found as soon as all functions in the
group are marked as stopped. Algorithm 4 is a detailed
pseudocode for ETA.

In our implementation for ETA, we assume that the
set of objects is indexed by a multidimensional access
method and that the views are not pre-computed and
materialized. A view is computed on-demand using
an off-the-shelf top-k computation algorithm (e.g.,
BRS [3]). In order to reduce memory consumption of
computed view rank lists, the memory held for a view
is released after the view is no longer needed.

5.5.1 Cost Simulation Analysis
We observe that the benefit of tightening the views
(i.e., minimizing λ) drops proportionally to the size
of simplices in ETA. To demonstrate this, we propose

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MM 20XX 8

Algorithm 4 ETA Algorithm
Algorithm ETA(V, P, F, k, ω, λ)

1: for all f ∈ F do
2: TOPk(f)← ∅ and mark f as running
3: ∆G := partitioning(V, F, λ) . Section 5.2
4: while ∆G is not empty do
5: ∆d-1

i := select(∆G); ∆G := ∆G − {∆d-1
i } . Section 5.3

6: while ∆d-1
i .F is not empty do

7: for all v ∈ ∆d-1.V do
8: fetch objects until their MBR volume Vm ≥ ω . Section 5.4
9: compute cross point φ using d-scan hyperplanes . Section 5.1

10: for all f ∈ ∆d-1
i .F do

11: if f(m) is better than k-th score in TOPk(f) then
12: for all p ∈ m do
13: if f(p) is better than k-th score in TOPk(f) then
14: remove k-th object and insert p into TOPk(f)

15: if f(φ) is no better than k-th score in TOPk(f) then
16: mark f as stopped and remove f from ∆d-1

i .F

a model that simulates the accessing cost for differ-
ent view settings (i.e., represented by their angles)
using 2D data. In Figure 8(a), we illustrate two d-
ifferent views (v1 and v2) where their angles to the
top horizontal line are θ1 and θ2, respectively. For
the sake of analysis, we assume that the objects are
uniformly distributed in the domain area. Based on
this assumption, the scanned area a(m) of accessing a
specific number of objects (i.e., m objects) is the same
for any view/function (i.e., a1(m) = a2(m)).

Given the scanned area a(m), the cross point φ of
the scanning hyperplanes (computed by a(m)), and a
bounded user preference function θ, we can calculate
the minimum accessed distance Dmin(a(m), θ, φ) of
the user preference in the unseen region by LPTA.
Besides, given the angle θ and the scanned area k/N
of a view/function, we can compute the accessed
distance, D(k/N, θ), by simple geometry.

To determine the cost for a specific user function f
(i.e., represented by θ), we need to count the number
of accessed objects m from each view such that the
top-k score is not worse than maximum possible
score (i.e., minimum accessed distance). This can be
modeled by Dmin(a(m), θ, φ) ≤ D(k/N, θ), where m
can be calculated given the values of k, θ, and φ.

casting

re
le

as
e

da
te

x

y

(0,0)

f

v1

v2

θ2

θ1

a1(m)

D(a(m),θ1)

D(
a(

m
),θ

2)

a2(m)

ϕ

(a) A 2D example

 0.01

 0.1

 1

 0.001 0.01 0.1 1

R
el

at
iv

e
C

os
t

Ratio λ

Simulated

(b) Simulated cost

Fig. 8. Cost analysis

Figure 8(b) shows our simulation result as a func-
tion of λ where the value of θ and φ can be derived
by λ and k is set to 20. The relative cost decreases as
λ decreases; however, when λ is smaller than 0.02, the

benefit of further partitioning of the simplices is not
significant. On the other hand, we have to compute
more views if we decompose more simplices. It is
clear that we should stop our simplex partitioning
at some point by considering the tradeoff between
these two factors. In this work, we set λ to 0.02 based
on both numerical and experimental analyses (see
Section 7).

6 EFFICIENT REVERSE TOP-K AND TOP-M
INFLUENTIAL COMPUTATION

In this section, we show how we can use our ATOP k

algorithms to facilitate the evaluation of reverse top-
k RTOP k(p) and top-m influential ITOPmk queries.
First, we briefly review the state-of-the-art solutions
to these problems from [8] and [9].

6.1 State-of-the-art RTOP k solution
Given a set of objects P and a set of preference
functions F , the reverse top-k query of an object
p ∈ P returns the subset of F that contains p in
their top-k result. A naı̈ve method computes a reverse
top-k query by evaluating the preference functions
one by one. [8] proposed evaluating the functions
in a given order. Intuitively, the top-k results are
similar (or exactly the same) if two functions, fi and
fj , are very close1. In other words, if fi does not
have p in its top-k result, then most probably p is
not in fj ’s top-k either. Therefore, we can skip the
evaluation of fj if fj(p) < maxpi∈TOPk(fi) fj(pi) since
p is ranked worse than at least k other objects. This
method is termed Reverse top-k Threshold Algorithm
(RTA) in [8]. However, this process might evaluate all
functions, in the worst case.

We demonstrate the reverse top-k computation in
Fig. 9(a). Given the execution order based on cosine
similarity (i.e., fc, fa, fb) and k = 3, we want to
answer RTOP k(p5). According to the given order, we
first evaluate fc where the top-k result is {p3, p1, p4}
and find that fc is not in the reverse top-k set of
p5. Before we evaluate next function fa, we first
apply fa on fc’s top-k set and compute a thresh-
old θ = max{fa(p3), fa(p1), fa(p4)}). In this example,
fa(p5) < θ, which indicates that fa is not the reverse
top-k of p5 and needs not be evaluated. On the other
hand, fb(p5) ≥ θ, therefore fb has to be evaluated.

6.2 State-of-the-art ITOPmk solution
Given a set of objects P , a set of functions F , and
k, the top-m influential query returns the m objects
that have the highest influence scores, defined by the
size of RTOP k(p). A straightforward solution is to
evaluate a reverse top-k query for each object. Note
that each reverse top-k query is evaluated by multiple

1. Closeness can be measured by a cosine function.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MM 20XX 9

casting

re
le

as
e

da
te p1fb

fa

fc

p2

p3

x

y

p4

max
{fa(p3),fa(p5),fa(p1)}

fc’s top-3
{p3,p1,p4}

(0,0)

(1,1)

p5

max
{fb(p3),fb(p5),fb(p1)}

processing
order

(a) Reverse top-k query

casting

re
le

as
e

da
te

p1fb

fa

fc

p2

p3

x

y

p4

(0,0)

(1,1)

p5

constrained
dynamic
skyline

fb’s top-3

fa’s top-3

fc’s top-3

(b) Top-m influential query

Fig. 9. Examples of other queries

top-k queries. The cost becomes too high if F and
P are large. In [9], a technique that estimates the
maximum possible influence score U(q) of an object q
is proposed. This can be computed by

U(q) = | ∩∀pi∈CDS(q) RTOP
k(pi)|,

where CDS(q) is the constrained dynamic skyline of
q (see Definition 8).

Definition 8 (Constrained Dynamic Skyline Set):
Given a set of objects P and an object q, we denote
as Pc ⊆ P the set of all objects pi, such that
∀di=1 : q[j] ≤ pi[j]. An object pi ∈ Pc belongs to the
constrained dynamic skyline set CDS(q) of object q,
if it is not dynamically dominated with respect to q
by any other point p′ ∈ Pc.
CDS(q) finds a set of dynamic skyline objects in the

region being constrained by q; this region is bounded
from q towards the best point (1, . . . , 1). In the exam-
ple of Fig. 9(b), suppose k is set to 3, CDS(p5) contains
{p1, p2} and U(p5) = 2 (= |{fa, fb} ∩ {fa, fb, fc}|).

Assuming that P is indexed by a multidimensional
access method, we can traverse the objects pi ∈ P
in decreasing order of U(pi). Similar to other branch-
and-bound (BB) processing techniques (e.g., [3]), the
first m de-heaped objects are the result of the query.
This BB algorithm is the best approach in [9] and
it is much faster than the straightforward solution.
However, BB essentially executes a large amount of
top-k queries indirectly, since every reverse top-k
query is evaluated by a set of top-k queries.

6.3 Using all top-k computation
In this section, we study how we can use ATOP k

to evaluate RTOP k and ITOPmk . We also discuss
why our approach is superior to the state-of-the-art
solutions.

RTOP k using ATOP k. After having computed an
ATOP k, we have the top-k results of all functions.
For the objects and functions of Fig. 9, the ATOP k

results are shown in Fig. 10(a). By “inverting” this
table, as shown in Fig. 10(b) we can obtain the reverse
top-k sets of all objects. Thus, any RTOP k query can
be answered easily by fetching a row in the inverted
table. The space requirement is only O(|F | · k).

TOPk top-3 result
fa p3, p2, p1
fb p2, p3, p1
fc p3, p1, p4

(a) All top-k results

RTOPk reverse top-3 result Ik

p1 fa, fb, fc 3
p2 fa, fb 2
p3 fa, fb, fc 3
p4 fc 1

(b) Inverted table

Fig. 10. All reverse top-k computation

ITOPmk using ATOP k. Having computed the invert-
ed table, which lists the reverse top-k set of each
object, we can easily find the influence score of any
object by accessing the corresponding row. In fact,
for a ITOPmk query, we only need the cardinality of
each list; our objective is to find the m lists with the
largest cardinality. Thus, even if we do not have the
inverted table, we can simply scan the all top-k result
and find the objects with the largest influence scores.
The details are listed in Algorithm 5.

Algorithm 5 Top-m influential query using ATOP k

Algorithm ITOP − ATOP (V, P, F, k, λ)
1: for ∀p∈P I

k(p)← 0 . Initialize influence scores
2: ATOPk ← run all top-k computation
3: for all f ∈ F do
4: for all p ∈ ATOPk[f] do . ATOPk[f] ≡ TOPk(f)
5: Ik(p)← Ik(p) + 1

6: return the top-m objects p with respect to Ik(p)

Discussion. In [8] and [9], many top-k queries are
evaluated if F and P are large, while in [9] multi-
ple reverse top-k queries are executed and some of
them may even share the same top-k queries, which
are evaluated multiple times in this case. For a fair
comparison, we implemented an optimized version of
BB, named Optimized Branch-and-Bound algorithm
(OBB), which caches the results of previously issued
top-k queries and reuses them if necessary. Still, as
we show in Section 7, OBB is much slower than our
“ITOPmk using ATOP k” approach.

7 EXPERIMENTAL EVALUATION

According to the methodology in [4], we generated
three types of datasets, independent (IND), correlated
(COR), anti-correlated (ANT). In IND datasets, the
feature values are generated uniformly and indepen-
dently. COR datasets contain objects whose values are
correlated in all dimensions. ANT datasets contain
objects whose values are good in one dimension and
tend to be poor in other dimensions. In addition, we
generate clustered (CLU) datasets by randomly select-
ing C independent objects, and treat them as cluster
centers. Each cluster object is generated by a Gaussian
distribution with mean at the selected cluster center
and standard deviation 5% of each dimension domain
range. We set C to 10 by default.

In addition, we experimented with two real dataset-
s, NBA [18] and Household [19]. NBA contains 12,278

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MM 20XX 10

statistics from regular seasons during 1973-2008, each
of which corresponds to the statistics of an NBA
player’s performance in 6 aspects (minutes played,
points, rebounds, assists, steals, and blocks). House-
hold consists of 3.6M records during 2003-2006, each
representing the percentage of an American family’s
annual expenses on 4 types of expenditures (electric-
ity, water, gas, and property insurance).

All methods were implemented in C++ and the
experiments were performed on an Intel Core2Duo
2.66GHz CPU machine with 8 GBytes memory, run-
ning Ubuntu 11.04. Table 2 shows the ranges of the
investigated parameters. In each experiment, we vary
a single parameter, while setting the others to their
default values (shown in bold in Table 2). Our system
uses a 4KB page size. In order to measure the exact
I/O cost, we assume no memory buffer is available.

Parameter sensitivity experiments. We first study
the effect of various tuning factors on the algorithms,
BINL and ETA. We investigate the effect of δ (group-
ing ratio in BINL), the effect of different grouping
strategies for BINL, λ (splitting ratio in ETA), and ω
(size of accessed objects’ MBR in ETA).

Figure 11(a) shows the effect of δ on the cost of
BINL for different dimensionality values d. For very
small δ values, the cost is high since forming either a
single group or many small groups is not beneficial
for BINL. Therefore we set δ = 0.02 by default; BINL
performs well with this value at any dimensionality.
Regarding the function grouping strategy in BINL, we
compare Hilbert curve ordering to cosine similarity
based grouping (BINL-SG) (proposed in [9]) and ETA
bounding view partitioning (BINL-EG) (proposed in
this paper), in Figure 11(b). The result shows that
Hilbert grouping (BINL) outperforms the other t-
wo methods for varying dimensionality d, justifying
grouping the function vectors by Hilbert curve order-
ing in our implementation.

ETA has two parameters, λ and ω, and its cost is
affected by both of them. We investigated how various
values of these parameters affect the cost. Here, we
plot the cost of ETA as a function of one parameter
(λ or ω) while setting the other to the default value.
Based on the result, we choose λ = 0.02 and ω = 10−4

that show robust performance at any dimensionality.

Scalability experiments. In this set of experiments,
we demonstrate the superiority of our all top-k meth-
ods, BINL (Section 4) and ETA (Section 5.5) compared
to the naı̈ve approach and a simple skyline based
solution (Skyband). The naı̈ve approach evaluates the
top-k queries one-by-one using BRS [3]. Skyband first
collects the objects in the k-skyband (using BBS [5])
and then evaluates the top-k queries one-by-one over
it.

Fig. 12(a) shows the response times of the four
methods as a function of dimensionality d, after set-
ting all other parameters to their default values. Cost

 1

 10

 100

 0.001 0.01 0.1 1

R
es

po
ns

e
Ti

m
e

(s
ec

)

Ratio δ

d=2
d=3
d=4
d=5
d=6

(a) Effect of δ

 1

 10

 2 3 4 5 6

R
es

po
ns

e
Ti

m
e

(s
ec

)

Dimensionality d

BINL
BINL-EG
BINL-SG

(b) Effect of grouping

 0.1

 1

 10

 100

 0.001 0.01 0.1 1

R
es

po
ns

e
Ti

m
e

(s
ec

)

Ratio λ

d=2
d=3
d=4
d=5
d=6

(c) Effect of λ (ω = 10−4)

 1

 10

 100

10-7 10-6 10-5 10-4 10-3 10-2 10-1

R
es

po
ns

e
Ti

m
e

(s
ec

)

Parameter ω

d=2
d=3
d=4
d=5
d=6

(d) Effect of ω (λ = 0.02)

Fig. 11. Sensitivity experiments

grows exponentially with d for all methods. ETA
is at least 8, 2.5 and 1.5 times faster than Naı̈ve,
Skyband, and BINL, respectively in all experiments.
The skyline-based approach does not scale well with
dimensionality due to the increasing number of ob-
jects in the skyband. For large values of d, the gap
between BINL and ETA becomes smaller, because the
MBRs that group multiple accessed objects in ETA
becomes too large, reducing the effect of the MBR
pruning technique.

Fig. 12(b) compares performance as a function of k.
ETA is at least 8.6, 3.48, 2.1 times faster than Naı̈ve,
Skyband, and BINL, respectively. All methods are
sensitive to k since the problem becomes harder as
k increases.

The response times for different numbers of prod-
ucts |P | are shown in Fig. 12(c). The cost is not very
sensitive to |P | since the products are indexed and we
only need to access a small fraction of the data.

Fig. 12(d) shows the response time of all methods
for different numbers of functions |F |. The response
time increases linearly with |F |, since there are more
top-k queries being evaluated. Our ETA still performs
the best, followed by BINL, Skyband, and Naı̈ve.

Data distribution. As shown in Fig. 13(a), ETA is at
least one order of magnitude faster than Naı̈ve and
2.6 times faster than BINL for different data distri-
butions of P and independently distributed F . ANT
distributed objects are the hardest case since top-k
computation becomes hard in this case. Interestingly,
the gap between ETA and the other methods widens
in this case. One of the reasons is that our d-bounding
views partitioning technique provides better grouping
than the Hilbert curve grouping. We also evaluat-
ed our methods for the CLU F where we generate
the functions coefficients in clusters. As shown in
Fig. 13(b), ETA is again the best method which is at

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MM 20XX 11

TABLE 2
Range of parameter values

Parameter Values

|P | (in thousand) 10, 25, 50, 100, 200, 400
|F | (in thousand) 10, 25, 50, 100, 200
Dimensionality d 2, 3, 4, 5, 6

Data distribution for P IND, ANT, COR, CLU
Data distribution for F IND, CLU

k 2, 5, 10, 20, 40, 80
m 2, 5, 10, 20, 40, 80

BINL grouping ratio, δ 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1
ETA splitting ratio, λ 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1

ETA volume of accessed objects’ MBR, ω 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1

 0.1

 1

 10

 100

 2 3 4 5 6

R
es

po
ns

e
Ti

m
e

(s
ec

)

Dimensionality d

Naive
BINL
ETA

Skyband

(a) Effect of d

 0.1

 1

 10

 100

 2 5 10 20 40 80

R
es

po
ns

e
Ti

m
e

(s
ec

)

k

Naive
BINL
ETA

Skyband

(b) Effect of k

 0.1

 1

 10

 100

 10 25 50 100 200 400

R
es

po
ns

e
Ti

m
e

(s
ec

)

Number of Products, |P| (in thousand)

Naive
BINL
ETA

Skyband

(c) Effect of |P |

 0.1

 1

 10

 100

 10 25 50 100 200

R
es

po
ns

e
Ti

m
e

(s
ec

)

Number of User Preferences, |F| (in thousand)

Naive
BINL
ETA

Skyband

(d) Effect of |F |

Fig. 12. Effect of different parameters for ATOP k

least one order of magnitude faster than Naı̈ve and
2.6 times faster than BINL. We conclude that ETA is
the best method for all distribution combinations.

 0.1

 1

 10

 100

IND ANT COR CLU

R
es

po
ns

e
Ti

m
e

(s
ec

)

Distribution of Products

Naive
BINL
ETA

(a) Varying distribution of P

 0.1

 1

 10

 100

IND ANT COR CLU

R
es

po
ns

e
Ti

m
e

(s
ec

)

Distribution of Products

Naive
BINL
ETA

(b) Varying distribution of P
(CLU F)

 0.1

 1

 10

 100

 2 5 10 20 40 80

R
es

po
ns

e
Ti

m
e

(s
ec

)

k

Naive
BINL
ETA

(c) NBA

 0.1

 1

 10

2,003 2,004 2,005 2,006 ALL

R
es

po
ns

e
Ti

m
e

(s
ec

)

Year

Naive
BINL
ETA

(d) Household

Fig. 13. Varying data distribution

Fig. 13(c) plots the response time of all methods
on the NBA real dataset. We instantiated P from this
dataset (12,278 records) and set other parameters to
their default values. Again, ETA is consistently better
than Naı̈ve and BINL for all values of k. Summing
up, ETA is the best solution for ATOP k queries,
typically being one order of magnitude faster than
Naı̈ve solution and 2-3 times faster than BINL.

In Fig. 13(d), we demonstrate the response time of
all methods using another real dataset, Household.
We instantiated P from the Household dataset (in-
cluding 3.6M records). We divided Household into
four datasets with 516K, 514K, 1.25M, and 1.35M
records from years 2003, 2004, 2005, and 2006 respec-
tively. The feature values in Household are discrete,
so there are some tuples having the same feature
values in all dimensions; in this case the objects are
grouped to a single capacitated object. The number
of different discrete objects are 242K, 250K, 520K,
and 542K, respectively in the four years, while there
are 1.55M different ones in total. We demonstrate
the response time of all three methods of the data
in these four years as well as the whole data in
Figures 13(d). ETA again performs best in all cases,
being at least 36 and 4 times faster than Naı̈ve and
BINL, respectively. Even though the cardinality of the
entire dataset (ALL) is several times larger than that
of the yearly datasets, the response time does not
increase much, being consistent with the trends in
Fig. 12(c).

I/O cost and peak memory usage. Fig. 14(a) and
14(b) show the I/O cost and peak memory usage2

of all three methods as a function of dimension-
ality d, after setting all other parameters to their
default values. The I/O costs of all three methods
(Naı̈ve, BINL, and ETA) grow exponentially with
the dimensionality. This result is consistent with the
corresponding response time experiment (Fig. 12(a));
ETA accesses several times to two order of magnitude

2. We get the peak memory usage by adding/substracting the
memory usage of data structures on their construction/destruction.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MM 20XX 12

fewer pages than other two methods. However, ETA
may use more memory than Naı̈ve and BINL since
each view keeps some data structures for incremental
top-k computation; still the required memory is not
excessive. Also, if the execution order is randomly
selected (ETA-NoOrder), then the execution consumes
3.89 times more memory than ETA at d = 6.

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 2 3 4 5 6

IO
s

Dimensionality d

Naive
BINL
ETA

(a) I/O cost vs. d

 1

 10

 2 3 4 5 6

P
ea

k
M

em
or

y
(M

B
)

Dimensionality d

Naive
BINL
ETA

ETA-NoOrder

(b) Peak memory vs. d

Fig. 14. Extra experiments for ATOP k

Reverse top-k and top-m influential computation.
We now demonstrate the use of ATOP k queries in the
computation of reverse top-k and top-m influential
queries. For these two problems, we compare the
state-of-the-art solutions [8], [9] to the ATOP k-based
alternatives that we introduced in Section 6.3.

For reverse top-k queries, we plot the response time
of ATOP k-based reverse top-k search using ETA vs.
the average response time of RTOP k processing using
RTA [8]. The queries are selected randomly from k-
skyband objects in order to avoid meaningless results
(i.e., no user function considers the query in their
top-k result). As shown in Fig. 15(a), RTA is only 2.6
to 13.2 times faster than ETA when dimensionality d
varies from 2 to 6. However, ETA computes the all
top-k result which can be used to answer any reverse
top-k result (see Fig. 10(b)). In other words, if we are
to execute more than 13 RTOP k queries in d = 6,
ETA should be preferred to RTA, because the total
response time will be better in this case. Thus, RTA
is not appropriate in settings where multiple reverse
top-k queries are to be executed. Comparing the two
queries for different values of k (Fig. 15(b)) leads to
similar conclusions.

 0.1

 1

 10

 2 3 4 5 6

R
es

po
ns

e
Ti

m
e

(s
ec

)

Dimensionality d

RTA avg.
ETA

(a) Effect of d

 0.1

 1

 10

 2 5 10 20 40 80

R
es

po
ns

e
Ti

m
e

(s
ec

)

k

RTA avg.
ETA

(b) Effect of k

Fig. 15. Response time of ETA over that of RTA

For top-m influential queries, we compare our
ITOPmk using ATOP k (ITOP-ATOP) approach (see
Section 6.3) to the state-of-the-art solution BB and its

optimized version OBB (as discussed in Section 6.3).
Fig. 16(a) shows the response time for these methods
as a function of k. As k increases, OBB becomes much
better than original BB since OBB caches the results of
previous top-k computations. However, OBB is still 17
times slower than our ITOP-ATOP approach, which
performs an all top-k query and uses its results to
evaluate the ITOPmk query. Fig. 16(b) shows how the
cost is affected by m. The response times of BB and
OBB are linearly increasing with m, because BB and
OBB unavoidably compute more maximum possible
influence scores when m becomes larger and this
introduces additional reverse top-k queries. However,
our approach is completely insensitive to m since we
have already collected all necessary data for ITOPmk
by an ATOP k computation.

 0.1

 1

 10

 100

 1000

 2 5 10 20 40 80

R
es

po
ns

e
Ti

m
e

(s
ec

)

k

BB
OBB

ITOP-ATOP

(a) Effect of k

 0.1

 1

 10

 100

 1000

 10000

 2 5 10 20 40 80

R
es

po
ns

e
Ti

m
e

(s
ec

)

m

BB
OBB

ITOP-ATOP

(b) Effect of m

Fig. 16. Comparison of different ITOPmk approaches

Fig. 17 shows some additional experiments on
ITOP km queries (varying dimensionality and data dis-
tribution). Our ITOP-ATOP method consistently beat
other methods by 1 to 2 orders of magnitude for vari-
ous values of d. In addition, for different distributions
of P for IND F , our method greatly outperforms BB
and OBB, especially in the ANT case where BB and
OBB take 2827 and 607 seconds, respectively, while
ITOP-ATOP runs in only 0.64 seconds.

 0.1

 1

 10

 100

 1000

 10000

 2 3 4 5 6

R
es

po
ns

e
Ti

m
e

(s
ec

)

Dimensionality d

BB
OBB

ITOP-ATOP

(a) Effect of d

 0.1

 1

 10

 100

 1,000

 10,000

IND ANT COR CLU

R
es

po
ns

e
Ti

m
e

(s
ec

)

Distribution of Products

BB
OBB
ITOP−ATOP

(b) Varying distribution of P
(IND F)

Fig. 17. Varying dimensionality and data distribution

In summary, running an all top-k query using
our best method ETA is a much better alternative
that repetitive executions of RTA if multiple reverse
queries are to be evaluated. In addition, evaluating
an all top-k query using ETA and using its result to
evaluate an ITOPmk query is 1-2 orders of magnitude
faster than the state-of-the-art method proposed in
[9], even if this method is optimized to re-use cached
results of top-k queries.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MM 20XX 13

8 RELATED WORK

8.1 Top-k queries

Top-k queries [1], [2], [3] provide a convenient way
for users to find important objects according to their
preferences. In [2], a threshold algorithm (TA) has
been proposed to combine object ranks from different
sorted lists with a help of an aggregate function f . TA
scans the lists sequentially, in a round-robin fashion,
and computes the aggregate score of each encountered
object, while maintaining the current top-k set, until
it is guaranteed to be the result. Due to its popularity,
many variants of TA have been proposed (e.g., [1]).
Onion [20] and PREFER [21], [22] top-k methods rely
on pre-processing. Onion [20] pre-computes convex
hull layers of the data and evaluates linear top-k
queries by scanning objects incrementally, from exte-
rior layers to interior layers. Onion stops when it is
guaranteed that the remaining layers cannot contain
any other results. The high complexity of convex
hull computations (O(nd/2) in d-dimensional space)
makes Onion too expensive to be used in practice.
Also Onion cannot be used when dataset is frequently
updated because re-computations of convex hulls are
needed in this case. PREFER [21], [22] first generates
materialized views; a top-k query is answered by
scanning the views with most similar preferences to
the query. An algorithm to determine the best views
to be materialized when top-k queries are pipelined
is proposed. However, as demonstrated in [22], we
need to materialized many views before we can en-
sure satisfactory performance. In addition, similar to
Onion, PREFER is only suitable for static data. The
performance of Onion can be improved with the use
of indexing [23]; however, building robust indexes is
quite expensive.

BRS [3] is a branch-and-bound approach for an-
swering top-k queries over a set of objects that are
indexed by an R*-tree. BRS uses a heap to maintain
candidate entries, traversing the R*-tree in a top-down
manner. At every iteration, BRS fetches the best entry
from the heap. If the entry is a leaf entry of the R*-tree,
then it is output as the next result in the ranking; the
algorithm stops if we have enough results. If the entry
is in an intermediate node, then the corresponding
node is accessed and for each of its entries e a max
score is computed and e is inserted into the heap.
As shown in [3], BRS is an I/O optimal algorithm,
meaning that it accesses only the tree nodes which
may contain the top-k results. Since max score is a
general concept, this algorithm can be applied to both
monotone and non-monotone preference functions.

Recently, a group recommendation problem has been
studied in [24]. Given a group of people, a consensus
relevance score function is used to model the interests
and preferences of all group members. The score of an
object is defined as a linear combination of group rele-
vance and group disagreement. Using the monotonicity

of relevance and disagreement, a TA-like algorithm is
designed for top-k processing. This paper shares the
same intuition with our paper to recommend products
to a group of users. However, we focus on providing
different recommendations to different users based on
their individual preferences, while the goal in [24] is
to provide a consensus recommendation of all user-
s. Another technical difference is that our methods
are designed for computing multiple top-k queries
simultaneously for a large number (∼10K) of users,
while the group size in [24] is very small (<10). The
proposed solution in [24] is obviously inapplicable to
our problem.

8.2 Other related queries
There is plenty of work on skyline evaluation (e.g.,
[4], [5], [25]). The concept of skyline is based on the
dominance relationship. The objective is to find the
objects that are not dominated by others. The skyline
operator was first proposed in [4]. Papadias et al. [5]
proposed an incremental skyline algorithm that access
a minimal number of nodes from an R*-tree that
indexes the data. An object-based space partitioning
method that provides efficient skyline computation in
high dimensional spaces was proposed in [25].

Several new queries were proposed recently to as-
sist the analysis tasks of product manufacturers. [26]
uses the concept of dominance for business analysis
from a microeconomic perspective, proposing a data
cube model (DADA) to summarize the dominance
relationships between objects in all combinations of
dimensions. The space is modeled by the grid of di-
mensional value combinations (assuming that features
have small integer domains) and each cell summarizes
the dominance of products in it. In [6], the problem
of creating competitive products have been studied.
In [7], the authors aim at finding the best sub-space
for a query object where it is highly ranked. Miah et
al. [27] studied an optimization problem that selects a
subset of attributes of a product t such that t’s short-
ened version still maximizes t’s visibility to potential
customers.

9 CONCLUSION
In this paper, we studied the problem of batch evalu-
ation of numerous top-k queries. To our knowledge,
this is the first thorough study for this problem. We
proposed two batch processing techniques; the first is
a batch indexed nested loops approach and the second is
a view-based threshold algorithm with a set of optimiza-
tion techniques, including d-bounding views, simplex
partitioning, and batch objects accessing. We demonstrat-
ed that ATOP k queries can be used to boost the
performance of reverse top-k and top-m influential
queries. In the future, we plan to study alternative
techniques for ATOP k queries that employ parallel
processing. Moreover, we intend to study additional
queries that can make use of ATOP k as a module.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, MM 20XX 14

ACKNOWLEDGMENT

This work was supported by grant HKU 715711E from
Hong Kong RGC.

REFERENCES

[1] S. Chaudhuri and L. Gravano, “Evaluating Top-k Selection
Queries,” in VLDB, 1999, pp. 397–410.

[2] R. Fagin, A. Lotem, and M. Naor, “Optimal Aggregation
Algorithms for Middleware,” in PODS, 2001.

[3] Y. Tao, D. Papadias, V. Hristidis, and Y. Papakonstantinou,
“Branch-and-Bound Processing of Ranked Queries,” Informa-
tion Systems, vol. 32, pp. 424–445, 2007.

[4] S. Börzsönyi, D. Kossmann, and K. Stocker, “The Skyline
Operator,” in ICDE, 2001, pp. 421–430.

[5] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive Skyline
Computation in Database Systems,” ACM Trans. Database Syst.,
vol. 30, no. 1, pp. 41–82, 2005.

[6] Q. Wan, R. C.-W. Wong, I. F. Ilyas, M. T. Özsu, and Y. Peng,
“Creating Competitive Products,” PVLDB, vol. 2, no. 1, pp.
898–909, 2009.

[7] T. Wu, D. Xin, Q. Mei, and J. Han, “Promotion Analysis in
Multi-Dimensional Space,” PVLDB, vol. 2, no. 1, pp. 109–120,
2009.

[8] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørvåg,
“Monochromatic and bichromatic reverse top-k queries,” IEEE
Trans. Knowl. Data Eng., vol. 23, no. 8, pp. 1215–1229, 2011.

[9] A. Vlachou, C. Doulkeridis, K. Nørvåg, and Y. Kotidis, “Iden-
tifying the Most Influential Data Objects with Reverse Top-k
Queries,” PVLDB, vol. 3, no. 1, pp. 364–372, 2010.

[10] G. Das, D. Gunopulos, N. Koudas, and D. Tsirogiannis, “An-
swering Top-k Queries Using Views,” in VLDB, 2006, pp. 451–
462.

[11] Retrevo Survey http://www.retrevo.com/content/blog/201
0/11/holiday-shopping-trends-and-black-friday-special-rep
ort.

[12] J. Zhang, N. Mamoulis, D. Papadias, and Y. Tao, “All-Nearest-
Neighbors Queries in Spatial Databases,” in SSDBM, 2004, pp.
297–306.

[13] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The
R*-Tree: An Efficient and Robust Access Method for Points
and Rectangles,” in SIGMOD Conference. ACM Press, 1990,
pp. 322–331.

[14] T. Bially, “Space-Filling Curves: Their Generation and Their
Application to Bandwidth Reduction,” IEEE Transactions on
Information Theory, vol. 15, no. 6, pp. 658–664, 1969.

[15] A. Y. Halevy, “Answering Queries Using Views: A Survey,”
VLDB J., vol. 10, no. 4, pp. 270–294, 2001.

[16] A. Packer, “NP-Hardness of Largest Contained and Smallest
Containing Simplices for V- and H-Polytopes,” Discrete &
Computational Geometry, vol. 28, no. 3, pp. 349–377, 2002.

[17] J. Munkres, Elements of Algebraic Topology, 2nd ed. Prentice
Hall, Jan. 1984, ch. 1.1.

[18] NBA Basketball Statistics http://www.databasebasketball.c
om/.

[19] Household dataset http://www.ipums.org/.
[20] Y.-C. Chang, L. D. Bergman, V. Castelli, C.-S. Li, M.-L. Lo,

and J. R. Smith, “The Onion Technique: Indexing for Linear
Optimization Queries,” in SIGMOD Conference, 2000, pp. 391–
402.

[21] V. Hristidis, N. Koudas, and Y. Papakonstantinou, “PREFER: A
System for the Efficient Execution of Multi-parametric Ranked
Queries,” in SIGMOD Conference, 2001, pp. 259–270.

[22] V. Hristidis and Y. Papakonstantinou, “Algorithms and Appli-
cations for Answering Ranked Queries Using Ranked Views,”
VLDB J., vol. 13, no. 1, pp. 49–70, 2004.

[23] D. Xin, C. Chen, and J. Han, “Towards Robust Indexing for
Ranked Queries,” in VLDB, 2006, pp. 235–246.

[24] S. Amer-Yahia, S. B. Roy, A. Chawla, G. Das, and C. Yu,
“Group Recommendation: Semantics and Efficiency,” PVLDB,
vol. 2, no. 1, pp. 754–765, 2009.

[25] S. Zhang, N. Mamoulis, and D. W. Cheung, “Scalable Sky-
line Computation Using Object-Based Space Partitioning,” in
SIGMOD Conference, 2009, pp. 483–494.

[26] C. Li, B. C. Ooi, A. K. H. Tung, and S. Wang, “DADA: A
Data Cube for Dominant Relationship Analysis,” in SIGMOD
Conference, 2006, pp. 659–670.

[27] M. Miah, G. Das, V. Hristidis, and H. Mannila, “Standing Out
in a Crowd: Selecting Attributes for Maximum Visibility,” in
ICDE, 2008, pp. 356–365.

Shen Ge received his Bachelor’s and Mas-
ter’s Degree in Computer Science from the
Department of Computer Science and Tech-
nology in Nanjing University, China, in 2005
and 2008, respectively. He is currently a PhD
candidate at the Department of Computer
Science, University of Hong Kong, under the
supervision of Prof. Nikos Mamoulis. His re-
search focuses on query processing on mul-
tidimensional and spatial-textual data.

Leong Hou U received his Bachelor Degree
in Computer Science and Information Engi-
neering in 2003 from the National Chi Nan
University, Taiwan, and received his Master
Degree in E-Commerce in 2005 from the
University of Macau, Macau. He received
his PhD Degree in Computer Science from
the University of Hong Kong in 2010. He
is currently an Assistant Professor at the
University of Macau. His research interest in-
cludes spatial and spatio-temporal databas-

es, advanced query processing, web data management, information
retrieval, data mining and optimization problems.

Nikos Mamoulis received a diploma in Com-
puter Engineering and Informatics in 1995
from the University of Patras, Greece, and
a PhD in Computer Science in 2000 from
the Hong Kong University of Science and
Technology. He is currently a professor at the
Department of Computer Science, Universi-
ty of Hong Kong, which he joined in 2001.
His research focuses on management and
mining of complex data types, privacy and
security in databases, and uncertain data

management. He served as PC member in more than 80 internation-
al conferences on data management and mining. He is an associate
editor for IEEE TKDE and the VLDB Journal.

David W. Cheung received the M.Sc. and
Ph.D. degrees in computer science from
Simon Fraser University, Canada, in 1985
and 1989, respectively. Since 1994, he has
been a faculty member of the Department
of Computer Science in The University of
Hong Kong. His research interests include
database, data mining, database security
and privacy. Dr. Cheung was the Program
Committee Chairman of the Fifth Pacific-Asia
Conference on Knowledge Discovery and

Data Mining (PAKDD 2001), Program Co-Chair of PAKDD 2005,
Conference Chair of PAKDD 2007, and the Conference Co-Chair of
the 18th ACM Conference on Information and Knowledge Manage-
ment (CIKM 2009).

