
The VLDB Journal (2020) 29:893–917
https://doi.org/10.1007/s00778-019-00591-8

REGULAR PAPER

Top-k relevant semantic place retrieval on spatiotemporal RDF data

Dingming Wu1 · Hao Zhou1 · Jieming Shi2 · Nikos Mamoulis3

Received: 27 November 2018 / Revised: 11 September 2019 / Accepted: 2 November 2019 / Published online: 19 November 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
RDF data are traditionally accessed using structured query languages, such as SPARQL. However, this requires users to
understand the language as well as the RDF schema. Keyword search on RDF data aims at relieving users from these
requirements; users only input a set of keywords, and the goal is to find small RDF subgraphs that contain all keywords.
At the same time, popular RDF knowledge bases also include spatial and temporal semantics, which opens the road to
spatiotemporal-based search operations. In this work, we propose and study novel keyword-based search queries with spatial
semantics on RDF data, namely kSP queries. The objective of the kSP query is to find RDF subgraphs which contain the
query keywords and are rooted at spatial entities close to the query location. To add temporal semantics to the kSP query,
we propose the kSPT query that uses two ways to incorporate temporal information. One way is considering the temporal
differences between the keyword-matched vertices and the query timestamp. The other way is using a temporal range to
filter keyword-matched vertices. The novelty of kSP and kSPT queries is that they are spatiotemporal-aware and that they do
not rely on the use of structured query languages. We design an efficient approach containing two pruning techniques and a
data preprocessing technique for the processing of kSP queries. The proposed approach is extended and improved with four
optimizations to evaluate kSPT queries. Extensive empirical studies on two real datasets demonstrate the superior and robust
performance of our proposals compared to baseline methods.

Keywords Semantic place · RDF data · Spatiotemporal data

This work was supported in part by Grant No. 2019A1515011721
from Natural Science Foundation of Guangdong, China and by Grant
No. 61502310 from National Natural Science Foundation of China
and by Grant No. 17253616 from Hong Kong RGC.

B Jieming Shi
shijm@nus.edu.sg

Dingming Wu
dingming@szu.edu.cn

Hao Zhou
zhouhao2017@email.szu.edu.cn

Nikos Mamoulis
nikos@cs.uoi.gr

1 College of Computer Science and Software Engineering,
Shenzhen University, Shenzhen, China

2 School of Computing, National University of Singapore,
Singapore, Singapore

3 Department of Computer Science and Engineering,
University of Ioannina, Ioannina, Greece

1 Introduction

With the proliferation of knowledge-sharing communi-
ties like Wikipedia and the advances in automated infor-
mation extraction from the Web, large knowledge bases
like DBpedia [4] and YAGO [11] are constructed and
made available to the public. Such knowledge bases typ-
ically adopt the Resource Description Framework (RDF)
data model, which represents the data as collections of
〈subject, predicate, object〉 triples. RDF models data as
entities (subjects and objects) which are linked to other
entities, types, literals, or descriptions. For instance, triple
〈Montmajour_Abbey, dedication, Saint_Peter〉 models the
fact that Montmajour Abbey is dedicated to Saint Peter.
Therefore, an RDF knowledge base can also be seen as a
directed attributed graph, where nodes are entities, attributes
are types/literals, and the edges are predicateswhich describe
the relationships between nodes.

The English version of DBpedia currently describes 6.0M
entities, roughly including 1.5M persons, 810K places,
490K creative works, 275K organizations, 301K species, etc.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-019-00591-8&domain=pdf
http://orcid.org/0000-0002-7901-9876

894 D. Wu et al.

YAGO includes more than 10M entities (like persons, orga-
nizations, cities) and contains more than 120M facts about
these entities. Data.gov [3] is the largest open-government,
data-sharing Web site that has more than a thousand datasets
in RDF format with a total of 6.4 billion triples to date, cov-
ering information from business, finance, health, education,
local government, etc.Many excellent applications have been
developed on top of these data [30], e.g., Hospital Compare
[5], Patients LikeMe [8], Alternative Fueling Station Locator
[1], Crime in Chicagoland [2], SpotCrime [9].

Keyword search on RDF data RDF data are traditionally
accessed with the help of a structured query language, like
SPARQL [46,53,62]. However, a standard SPARQL query
over RDF data requires query issuers to fully understand
the language itself and be aware of the data domain. Hence,
SPARQL limits data access mostly to domain experts, since
it is not friendly to common users. Given this, a keyword
search model on RDF data emerged [20,42,56]. This model
allows users to retrieve information from RDF knowledge
bases without the direct use of SPARQL-like languages and
without the knowledge of the RDF data domain. RDF data
belongs to the category of linked data and can be modeled
as a directed graph with subjects and objects as vertices and
predicates as edges. For the purpose of keyword search, this
graph can be simplified [42] by eliminating outgoing edges
from subjects which connect to types or literals and by col-
lecting all the keywords in the URIs, types, and literals of
such entities to form a unified textual description for each
vertex. A keyword query retrieves a set of (small) subgraphs
where the vertices of each subgraph collectively cover all the
given keywords. Specifically, each of the retrieved subgraphs
includes (i) a root node (which is central to the subgraph), (ii)
a number of keyword nodes, each containing one or some of
the query keywords, and (iii) the shortest paths that connect
the keyword nodes to the root. The sumof the lengths of these
paths defines a looseness score for the subgraph [23,42,56].
Subgraphs of low looseness aremore appropriate as keyword
query answers and returned, because they represent a com-
pact and coherent part of the knowledge base related to the
keywords. This, in analogy tofinding the smallest (tuple) sub-
graphs in relational keyword query search [33] and general
keyword search on graphs [29].

Spatiotemporal RDF data RDF data have been enriched
to include additional semantics. For example, YAGO2 [32]
is an extension of the YAGO knowledge base that includes
spatial and temporal knowledge. Enriched knowledge bases
open the road to additional search and analysis operations,
such as spatiotemporal-based retrieval. To fully utilize spa-
tially enriched RDF data, the GeoSPARQL standard [13],
defined by the Open Geospatial Consortium (OGC), extends
RDF and SPARQL to represent geographic information

and support spatial queries. RDF stores such as Virtuoso
[10], Parliament [7], Strabon [41] are developed to sup-
port GeoSPARQL features. Liagouris et al. [44] extended
the RDF-3X data store [49] such that the locations of
spatial entities are encoded into their IDs; this facilitates effi-
cient evaluation of spatial search operations in GeoSPARQL
queries. To support spatiotemporal-oriented applications on
RDF data, stRDF [40] extends RDF with the ability to rep-
resent spatial and temporal data and stSPARQL [40] extends
SPARQL for querying stRDF data. The gst-store [60] system
has been designed for large RDF graphs integrating spa-
tial and temporal information. Still, all these systems share
the drawback of having to use a structured query language
(SPARQL), which limits the access of common users to RDF
data, as already discussed.

kSP and kSPT queries In this paper, we propose two novel
ways of searching spatial temporal RDF data, namely the
top-k relevant semantic place retrieval (kSP) query, which
combines keyword search with location-based retrieval and
the top-k relevant semantic place with temporal constraint
retrieval (kSPT) query, which adds a temporal constraint to
the kSP query. Both kSP and kSPT queries share the same
motivation as RDF keyword queries; they are independent of
the data domain and do not rely on structured languages such
as SPARQL, which makes them friendly to ordinary users.
On the other hand, the kSP and the kSPT query have the
following unique features compared to RDF keyword search.
These two types of queries retrieve semantic places, i.e., only
subgraphs rooted at a place entity and are query-location-
aware. In addition, the kSPT query is query-temporal-aware.

Applications Both the kSP and the kSPT query find a num-
ber of interesting applications. For instance, the kSP query
can be used by patients who want to find nearby hospi-
tals which offer treatment for specific conditions, companies
which want to investigate the business environment of some
potential nearby sites, journalists whowant to search for facts
related to location-dependent subjects, etc. The aimof a kSPT
query is to retrieve nearby places that are not only relevant to
the search keywords but also satisfy the given temporal con-
straint. It can be used by journalists who want to find nearby
places where recent information or the information for a cer-
tain time period could be found, marketing managers who
need to investigate nearby places to collect the recent sales
information of one type of product, and a data analyst who
may want to look for historical information related to some
time period in a knowledge base.

A kSP query takes a query location, a set of query key-
words, and the number k of requested places as arguments,
and returns as result the top-k tightest qualified semantic
places (TQSP) according to a scoring function that considers
both the spatial distance to the query location and the graph

123

Top-k relevant semantic place retrieval on spatiotemporal RDF data 895

proximity of the occurrences of keywords in the RDF graph
to the places. A qualified semantic place satisfies two condi-
tions: (i) it is a tree rooted at a place entity (i.e., a vertex of the
RDF graph associatedwith a spatial location, e.g., via hasGe-
ometry predicates) and (ii) the documents associated with all
the vertices in the tree collectively cover all query keywords.
In accordance with existing work on RDF keyword search
[20,42,56], the looseness score of a qualified semantic place
is measured by aggregating the graph distances between the
place (root) and the occurrences of the covered keywords at
the nodes of the tree. The kSP query returns the k places
with the smallest combined looseness and spatial distance
to the query location, based on an aggregate function (e.g.,
weighted sum).

The kSPT query extends the kSP query by consider-
ing temporal semantics of the entities in RDF graph. We
introduce two variants of the kSPT query, i.e., the kSPTd

query and the kSPTr query. Besides the three arguments in
the kSP query, the kSPTd query has a timestamp and the
kSPTr query has a temporal range. The kSPTd query returns
the top-k TQSPs according to a scoring function that con-
siders both the spatial distance to the query location and
the temporal difference-based looseness (TDL). The kSPTr

query retrieves k TQSPs with the smallest combined tem-
poral range-based looseness (TRL) and spatial distance to
the query location. Both TDL and TRL are variants of the
looseness of a qualified semantic place (QSP). TDL assigns
weights (e.g., difference between the query timestamp and
the timestamp of keyword-matched nodes) to the graph dis-
tances between the place (root) and the occurrences of the
covered keywords at the nodes. TRL considers the nodes
whose timestamps belong to the given temporal range when
constructing semantic places.

Data representation and indexing Our previously pub-
lished work [55] is the first work that proposes and studies
kSP queries, and this paper extends it and proposes kSPT
queries; therefore, no other existing system and algorithmic
support for kSP and kSPT query evaluation. Typical RDF
stores are designed for SPARQL queries; however, kSP and
kSPT queries require graph browsing and search operations
(e.g., breadth-first search). Therefore, we opt to represent the
RDF data in their native graph form (i.e., using adjacency
lists) in memory,1 as in [65]. In addition, in a preprocess-
ing phase, we perform the following. First, we extract the
document descriptions of all vertices and index them by
an inverted file, which enables fast finding of the vertices
that contain given keywords in their documents. Second, all
place vertices are spatially indexed by an R-tree [26], which

1 Disk-based graph representations for RDF data (e.g., [67]) can also
be used for larger-scale data.

facilitates incremental nearest place retrieval from the query
location.

Query evaluation Apossible kSPquery evaluation approach
would be to extend the bottom-up algorithm for keyword
search on graphs [29,42]. For each query keyword t , the
algorithm first determines the set of vertices whose docu-
ments contain t . From those vertices, it explores the graph
by breadth-first search and finds the first common vertex that
all the query keywords can reach. If this commonvertex is not
a place vertex, the algorithm keeps running until a common
place vertex is found. This vertex together with the shortest
paths leading to vertices covering all keywords would form
a qualified semantic place. By continuing this search, it is
possible to identify all TQSPs in increasing order of loose-
ness. For each identified place, the spatial distance can be
computed and the top-k TQSPs can be reported in the end.
However, there is no obvious way of determining the top-k
TQSPs before finding all qualified semantic places. There-
fore, this method is expected to be slow; i.e., kSP queries
cannot be efficiently evaluated by a straightforward exten-
sion of keyword search approaches [29,42].

In brief, the challenges are twofold.First, not all vertices in
the graph are candidate results since kSPqueries look for spa-
tial entities only. Second, the simple application of existing
approaches on RDF keyword search (e.g., [29,42]) is ineffi-
cient. As an alternative, we propose a basic semantic place
retrieval algorithm (BSP) that retrieves the place vertices in
the RDF graph in ascending order of their spatial distances to
the query location using the R-tree. For each retrieved place
vertex p, BSP computes the corresponding TQSP, i.e., the
smallest subtree of the RDF data graph, which is rooted at p
and covers all query keywords. TQSP computation is done
by browsing the graph from p in a BFS manner until the
query keywords are covered. The top-k places are returned
as the results when there is no chance for the place vertices
that have not been retrieved yet (based on lower bounds of
their scores) to outrank the top-k places so far.

BSP is also inefficient because it computes the TQSP of
each candidate place, an expensive operation for place ver-
tices that either cannot cover all the query keywords or have
worse scores than the top-k places so far. Hence, we pro-
pose two approaches for pruning the search space. The first
discards unqualified places which do not have a TQSP cov-
ering all query keywords. The second one prunes places by
aborting their TQSP computation early, based on dynami-
cally derived bounds on their looseness. The extension of
BSP which applies the two pruning techniques is referred to
as semantic place retrieval with pruning (SPP). To further
improve the performance of kSP search, we introduce a data
preprocessing technique, which aggregates for each place
and for sets of nearby places the keywords covered by the
vertices in their α-radius word neighborhoods (in the RDF

123

896 D. Wu et al.

data graph). By indexing the preprocessed data,we can define
pruning rules for place vertices and for the R-tree nodes that
spatially index them. We design a Semantic Place retrieval
algorithm (SP) which applies these rules in addition to the
pruning techniques of SPP.An extensive empirical studywith
two real data sets confirms the effectiveness and robustness
of SP.

To evaluate kSPT queries, the proposed algorithm SP is
extended by incorporating the temporal constraint check-
ing and calculation into the TQSP construction. Specifi-
cally, dynamic bounds on temporal constraint-based loose-
ness (Sect. 4.1.2) are derived to prune places by aborting
their TQSP computation early. The α-radius-based bounds
(Sect. 4.1.3) are introduced to help pruning place vertices and
the R-tree nodes. However, as shown in our experiment, on
DBpedia data, it takes hundreds of milliseconds to evaluate a
kSP query using algorithm SP, while it takes tens of seconds
to compute a kSPT query using the extended version of algo-
rithm SP. The performance gap is orders of magnitude. The
challenges lie in three aspects First, dynamic bounds and the
α-radius-based bounds are derived based on the minimum
temporal difference between the query timestamp and the
timestamps of the vertices whose documents contain termw,
denoted as dtm(q.δ, w). However, the bounds are loose when
the vertex whose timestamp is used to compute dtm(q.δ, w)

is not reachable from a place or a node, which means that
pruning is not effective. Second, the reachability test is used
multiple times in the algorithm and its performance dif-
fers from word to word. Materializing reachable vertices
for expensive words is expected to save the computation
cost. However, the external storage needed grows rapidly,
and it will incur I/O cost that is also time inefficient. Third,
loading the α-radius temporal word neighborhood is time-
consuming, since all the lengths of the shortest paths from
places/nodes towordswithin theα-radius are stored, together
with the corresponding timestamps. Having observed the
above disadvantages of the extended algorithm SP for the
kSPT query, four optimizations are proposed: (i) tighter
bounds on temporal constraint-based looseness are derived,
(ii) materializing reachable vertices for frequent words to
reduce the cost incurred by reachability tests, (iii) downsiz-
ing the α-radius temporal word neighborhoods so that the
cost of loading long posting lists from disk is reduced, and
(vi) a pruning rule for R-tree nodes which contains multiple
places is introduced.

A preliminary version of this paper has appeared in [55].
In that work, we only defined and studied kSP queries.
Here, besides introducing temporal constraints and extend-
ing algorithm SP to evaluate kSPT queries, we introduce four
optimizations that help further improve the performance of
the query evaluation.

Outline Section 2 introduces the definition of the kSP and
the kSPT queries and relevant concepts. Algorithms for eval-
uating kSP queries are presented in Sect. 3 and algorithms for
processing kSPTqueries are introduced inSect. 4.Our empir-
ical study is reported in Sect. 5. Related work is reviewed in
Sect. 6, and we conclude in Sect. 7.

2 Problem definition

A spatiotemporal RDF knowledge base can be modeled as
a directed graph where each vertex vi refers to an entity
and edges represent triples that associate entities based on
predicates. Some of the entities are associated with spatial
coordinates. We call such entities place vertices or places
for short. We use v to denote any vertex in the RDF graph,
while p is especially used to denote place vertices. Some of
the entities are associated with timestamps. Each RDF triple
corresponds to a directed edge from an entity (subject) to
another entity (object). In accordance with previous work on
RDF keyword search, we construct, for each entity, a doc-
ument ψ from the entity’s URI and literals. In addition, for
each triple, the description of the predicate is added to the
document of the object entity. A semantic place is a subtree
of the RDF graph rooted at a place vertex. Given a place ver-
tex as the root, multiple semantic places can be constructed.
In other words, in the RDF graph, a place is associated with
multiple semantics by being connected to different vertices.

Example 1 Figure 1 shows the graph representation of sev-
eral triples extracted from DBpedia. The squares are place
vertices and the circles are non-place vertices in the RDF
graph, representing entities. The edges (labeled by predi-
cates) model the relationships between entities. Each entity
is associated with a textual description (document) extracted
from itsURI, predicates, and literals [42]. Table 1 displays the
documents of all vertices in Fig. 1 (due to space constraints,
for each document, only some of the terms are shown). The
spatial coordinates of p1 and p2 in Fig. 1 are shown in Fig. 2.
Vertices v2 and v3 have timestamps. The tree consisting of
vertices {p1, v1, v2} rooted at p1 is a semantic place. The

2

2

1

3

<Musée Marmottan Monet>

<Musée Picasso>

<Claude Monet>

<Art museums and galleries in Pairs>

<Pablo Picasso>

<birthDate> 1840/11/14

<birthDate> 1881/10/25

1p

Fig. 1 RDF graph

123

Top-k relevant semantic place retrieval on spatiotemporal RDF data 897

Table 1 RDF Documents

p1: {musée, marmottan, Monet}

v1: {art, museum, galleries, Paris}

v2: {Claude Monet, French, impressionist, painting}

v3: {Pablo Picasso, Spanish, impressionist, painting}

p2: {musée, Picasso}

.)(, .1p 48 859299 2 2673

.)(, .2p 48 859730 2 362439

.)(, .1q 48 85 2 28

.)(, .2q 48 865 2 357

Fig. 2 Map of places in Fig. 1 and query points

tree rooted at p2 with vertices {p2, v1, v3} is another seman-
tic place.

2.1 kSP query

A top-k relevant semantic place retrieval (kSP) query q con-
sists of three arguments: the query location q.λ, the query
keywords q.ψ , and the number k of requested semantic
places. A qualified semantic place w.r.t. a kSP query is
formally defined in Definition 1. Generally speaking, the
documents of the vertices in a qualified semantic place col-
lectively cover all the query keywords.

Definition 1 Qualified Semantic Place (QSP) Given a kSP
query q and an RDF graphG = 〈V , E〉, a qualified semantic
place is a tree Tp = 〈V ′, E ′〉 rooted at place vertex p, such
that V ′ ⊆ V , E ′ ⊆ E , and ∪v∈V ′v.ψ ⊇ q.ψ .

For the ease of presentation, in the rest of the paper, a semantic
place is also denoted by 〈p, (v1, v2, . . .)〉, where p is the
root and (v1, v2, . . .) includes all the other vertices. Given a
kSP query, there may exist multiple semantic places with the
same root p but different (v1, v2, . . .) sets. Following existing
work on keyword search over graphs [29,42], we define the
looseness of a qualified semantic place in Definition 2.

Definition 2 Looseness Given a qualified semantic place
Tp = 〈V ′, E ′〉, the length of the shortest path from root p to
keyword wi ∈ q.ψ is dg(p, wi) = minv∈V ′∧wi∈v.ψ d(p, v),
where d(p, v) is the length of the shortest path from p
to v. The looseness of Tp is defined as L(Tp) = 1 +
∑

wi∈q.ψ dg(p, wi).

Looseness aggregates the proximity of the querykeywords
in the qualified semantic place in terms of graph distance.We
add 1 to the sum of the paths from p to the nearest occurrence
of each keyword for normalization purposes (as we will see
later, the case of L(Tp) = 0 should be avoided in our scoring
function for kSP results). The smaller the looseness, themore
relevant the root (i.e., the place) is to the vertices that cover
the query keywords. Thus, given a place vertex p as the root,
we seek for the tightest qualified semantic place (TQSP) for
the given query keywords, which is the qualified semantic
place rooted at p with the smallest looseness.2

Example 2 Assume that the given query keywords are q.ψ =
{impressionist, art}. Based on the RDF example shown
in Fig. 1, two qualified semantic places can be found,
i.e., 〈p1, (v1, v2)〉 and 〈p2, (v1, v3)〉. The looseness of
〈p1, (v1, v2)〉 is calculated by 1 + 1 + 1 = 3, where
dg(p1, impressionist) = 1, dg(p1, art) = 1.

Definition 3 Top-k Relevant Semantic Place Retrieval Given
a kSP query q on a spatiotemporal RDF graph, the result of
q includes k TQSPs minimizing scoring function f (L(Tp),

S(q, p)), where S(q, p) is the spatial distance between the
query location and the root of the semantic place.

Recall that each place p has a unique TQSP, and therefore,
it appears at most once in a kSP result. The kSP query aims at
finding the semantic places that (i) are spatially close to the
query location, (ii) cover the query keywords, and (iii) have
a tree in which the query keywords are closely connected.
Without loss of generality, Euclidean distance S(q, p) is used
as spatial distance in this work. The proposed algorithms
are directly applicable when the spatial network distance is
used instead. In our algorithms, the places are retrieved in
ascending order of Euclidean distance, using the R-tree. This
module can be replaced by any existing algorithm that incre-
mentally retrieves places based on the network distance [50].

Scoring function f (L(Tp), S(q, p)) can be any mono-
tonic aggregate function which considers both L(Tp) and
S(q, p). The kSP evaluation approaches proposed in this
paper are independent to how f is defined. Without loss of
generality, in the rest of the paper we use Eq. (1) as the scor-
ing function. For normalization purposes, Lτ and Sτ are the
maximum allowed looseness (e.g., Lτ = 50) and the max-
imum allowed Euclidean distance (e.g., Sτ = 1000 km),
which means the Euclidean distance more than 1000 km is

2 If multiple trees rooted at p have the same minimum looseness, we
can: (1) break ties arbitrarily and select one of them to be the TQSP
for p or (2) keep all trees with the same minimum looseness in a set. If
we use option (2), the result of a kSP query would the top-k qualified
semantic place sets. The methods proposed in this paper are applicable
for both options. For the ease of presentation, we adopt option (1) in
the rest of the paper.

123

898 D. Wu et al.

the same as 1000 km and the semantic places with loose-
nesses larger than 50 are as loose as those whose loosenesses
are 50.

f (L(Tp), S(q, p)) = L̂(Tp) × Ŝ(q, p),

L̂(Tp) = min(L(Tp), Lτ)

Lτ

, Ŝ(q, p) = min(S(q, p), Sτ)

Sτ

.

(1)

Example 3 Consider an example kSP query q with query
location q.λ = q1 as shown in Fig. 2 and query keywords
q.ψ = {impressionist, art}. Places p1 and p2 are located
at (48.86, 2.27) and (48.86, 2.36), respectively in Fig. 2.
Based on the RDF graph in Fig. 1 and the documents in
Table 1, given that Lτ = 10 and Sτ = 10; semantic place
Tp1 = 〈p1, (v1, v2)〉 has S(q1, p1) = 0.014 and L(Tp1) =
3, f (L(Tp1), S(q1, p1)) = L(Tp1)/10 × S(q1, p1)/10 =
0.00042; semantic placeTp2 = 〈p2, (v1, v3)〉has S(q1, p2) =
0.08 and L(Tp2) = 3, f (L(Tp2), S(q1, p2)) = 0.0024.
Therefore, Tp1 is returned as top-1 and Tp2 ranks second
for the kSP query q.

If the query location of the kSP query q is changed to
q.λ = q2 and the query keywords are unchanged, Tp2 is
returned as the top-1 semantic place and Tp1 ranks second.

2.2 kSPT query

The top-k spatiotemporal semantic place retrieval (kSPT)
query extends the kSP query by considering the temporal
dimension. A kSPT query q consists of four arguments: a
query location q.λ, a set of query keywords q.ψ , a temporal
argument, and the number k of requested semantic places.
Besides the spatial proximity and the textual relevance con-
sidered in the kSP query, the kSPT query also takes the
temporal proximity into account when ranking the candidate
semantic places.

In particular, in the kSPT query, users can specify a subset
of the query keywords in q.ψ on which they wish to apply
the temporal argument. The scoring function for the QSPs
of the kSPT query then becomes γ · f (L∗(Tp), S(q, p)) +
(1 − γ) · f (L(Tp), S(q, p)) (0 ≤ γ ≤ 1), where L∗(Tp) is
the looseness of the QSP computed by using only the query
keywords for which we want to consider temporal informa-
tion, and L(Tp) is the looseness of the QSP using only the
query keywords without temporal information, equivalent to
the looseness in the kSP query. In the next section, we will
explain how to compute L∗(Tp) for different definitions of
temporal relevance. In the rest of the paper, to make the pre-
sentation concise, we will assume that γ = 1. When γ = 0,
the kSPT query reduces to the kSP query. The proposed algo-
rithms can easily be adapted for the case where 0 < γ < 1.

We now propose two variants of the kSPT query, i.e., the
kSPTd query that considers the temporal difference between

the keywords in the QSPs and temporal argument of the
query when constructing the QSPs and the kSPTr query that
retrieves the QSPs which satisfy a given temporal range. The
specializations of L∗(Tp) for these two variants are Ld(Tp)

and Lr (Tp).

2.2.1 kSPTd query

The temporal argument in the kSPTd query q is a timestamp
q.δ. Next, we define the temporal difference-based looseness
of a QSP in Definition 4.

Definition 4 Temporal Difference-Based Looseness (TDL).
Given a QSP Tp = 〈V ′, E ′〉, the minimum temporally
weighted length of the path from root p to keywordwi ∈ q.ψ

is

ddg (p, wi) = min
v∈V ′∧wi∈v.ψ

d̂(p, v) × d̂ t (q.δ, v.δ),

d̂(p, v) = min(1 + d(p, v), Lτ)

Lτ

,

d̂ t (q.δ, v.δ) = min(1 + dt (q.δ, v.δ), Dt
τ)

Dt
τ

, (2)

where d(p, v) is the length of the shortest path from p to
v and dt (q.δ, v.δ) is the temporal difference3 between the
query timestamp q.δ and the timestamp of the vertex v.δ. If
vertex v has no timestamp, i.e., v.δ = ∅, dt (q.δ, v.δ) =
Dt

τ . D
t
τ and Lτ are used for normalization purposes. Lτ

is the maximum allowed looseness that is the same as in
Eq. 1. Dt

τ is the maximum allowed temporal difference
(e.g., Dt

τ = 100 days), which means the temporal differ-
ence more than 100 days is the same as 100 days. The
temporal difference-based looseness of Tp is defined as
Ld(Tp) = ∑

wi∈q.ψ ddg (p, wi)/|q.ψ |.

TDL aggregates the proximity of the query keywords in a
QSP in terms of both the graph distance and the temporal
difference. TDL favors the nearby vertices on the graph that
not only match the query keywords but also are temporally
close to the query timestamp. For normalization purposes,we
add 1 to both d(p, v) and dt (q.δ, v.δ) (as we will see later,
the case of Ld(Tp) = 0 should be avoided in our scoring
function for kSPTd results). The smaller the TDL, the more
relevant the root (i.e., the place) is to the vertices that cover
the query keywords. Thus, given a place vertex p as the root,
we seek for the TQSP for the given query keywords, which
is the QSP rooted at p with the smallest TDL.

Example 4 Consider a kSPTd query with keyword q.ψ =
{Spanish, impressionist}, timestamp q.δ = “1881/10/20”,

3 The temporal difference could be measured in days, minutes, etc.

123

Top-k relevant semantic place retrieval on spatiotemporal RDF data 899

and query location q2 in Fig. 2. Based on the spatiotem-
poral RDF example shown in Fig. 1, given Lτ = 10 and
Dt

τ = 10, a QSP is Tp2 = 〈p2, (v3)〉. The TDL of Tp2 is
(1 + 1 + 1)/10 × (1 + 5)/10 = 0.9, where d(p2, v3) = 1,
dt (q.δ, v3.δ) = 5 days.

Definition 5 Top-k Spatiotemporal Semantic Place Retrieval
Based on Temporal Difference Given a kSPTd query q on
a spatiotemporal RDF graph, the result of q includes k
TQSPs minimizing scoring function f (Ld(Tp), S(q, p)),
where S(q, p) is the spatial distance between the query loca-
tion and the root of the semantic place. Scoring function
f (Ld(Tp), S(q, p)) is defined as

f (Ld(Tp), S(q, p)) = Ld(Tp) × Ŝ(q, p), (3)

where Ŝ(q, p) is the normalized Euclidean distance defined
in Eq. 1.

Recall that each place p has a unique TQSP, and therefore,
it appears at most once in a kSPTd result. The kSPTd query
aims at finding the TQSPs that (i) are spatially close to the
query location, (ii) cover the query keywords, and (iii) have a
tree inwhich the query keywords are closely connected based
on both the graph distance and the temporal difference.

2.2.2 kSPTr query

The temporal argument in the kSPTr query q is a temporal
range q.r . Based on q.r , the keywords in q.ψ are divided
into two groups: q.ψr (temporal range relevant) and q.ψ r̄

(temporal range irrelevant), such that q.ψr ∩ q.ψ r̄ = ∅ and
q.ψr ∪ q.ψ r̄ = q.ψ . A keyword wi in q.ψ is assigned to
q.ψr , if there exist some vertices whose documents con-
tain wi and whose timestamps belong to the query temporal
range q.r . A keyword w j in q.ψ is assigned to q.ψ r̄ , if all
the vertices whose documents contain wi either do not have
timestamps or have timestamps only outside the query tem-
poral range q.r . Next, we define the temporal range-based
looseness of a QSP in Definition 6.

Definition 6 Temporal Range-Based Looseness (TRL)Given
a QSP Tp = 〈V ′, E ′〉, let L(Tp,W) be the looseness of Tp

for keyword setW , i.e., L(Tp,W) = ∑
wi∈W dg(p, wi). The

temporal range-based looseness of Tp is defined as

Lr (Tp) = 1 + β · min(L(Tp, q.ψr), Lτ)

Lτ

+ (1 − β) · min(L(Tp, q.ψ r̄), Lτ)

Lτ

,

where β is used to adjust the importance of the temporal
range relevant keywords.

The TRL aggregates the proximity of the query keywords
and favors the temporal range relevant keywords. Parameter
β is recommended to be set to 0.2, which means that the
temporal range relevant keywords are given higher weight.
It also can be modified when necessary in real applications.
Constant 1 and Lτ in Lr (Tp) are for normalization purposes.
The smaller the TRL, the more relevant the root (i.e., the
place) is to the vertices that cover the query keywords. Thus,
given a place vertex p as the root, we seek for the TQSP for
the given query keywords, which is the QSP rooted at p with
the smallest TRL.

Example 5 Consider a kSPTr query with keyword q.ψ =
{Spanish, art}, temporal query range q.r = “[1881/01/01,
1881/12/30]”, and query location q2 in Fig. 2, given Lτ = 10
and β = 0.2. Based on the spatiotemporal RDF example
shown in Fig. 1, a QSP is Tp2 = 〈p2, (v1, v3)〉. The TRL of
Tp2 is calculated by 1+0.2×1/10+0.8×1/10 = 1.1, where
d(p2, v1) = d(p2, v3) = 1, v3.δ ∈ q.r , and v1.δ /∈ q.r .

Definition 7 Top-k Spatiotemporal Semantic Place Retrieval
Based on Temporal Range Given a kSPTr query q on
a spatiotemporal RDF graph, the result of q includes k
TQSPs minimizing scoring function f (Lr (Tp), S(q, p)),
where S(q, p) is the spatial distance between the query loca-
tion and the root of the semantic place. Scoring function
f (Lr (Tp), S(q, p)) is defined as

f (Lr (Tp), S(q, p)) = Lr (Tp) × Ŝ(q, p), (4)

where Ŝ(q, p) is the normalized Euclidean distance defined
in Eq. 1.

Recall that each place p has a unique TQSP, and therefore,
it appears at most once in a kSPTr result. The kSPTr query
aims at finding the semantic places that (i) are spatially close
to the query location, (ii) cover the query keywords, and (iii)
have a tree inwhich the querykeywords are closely connected
based on the graph distance and belong to the temporal range
of the query.

In the rest of the paper, to make the presentation and
running examples concise, we ignore the normalization
parameters Lτ , Sτ , Dt

τ in calculations.

3 Algorithms for kSP queries

3.1 Basic method: BSP

The most relevant existing work to our kSP queries are the
top-k keyword queries on graphs [29,42].Given a set of query
keywords, the objective is to retrieve the top-k subtrees of the
RDF graph, such that the vertices of each tree collectively
cover the query keywords, ranked by the looseness of the

123

900 D. Wu et al.

trees. A bottom-up algorithm is used to evaluate top-k key-
word queries. For each query keyword w, the algorithm first
determines the set of vertices whose documents contain w.
From those vertices, it starts to explore the graph and finds
the earliest common vertex that all the query keywords can
reach. This way, candidate trees are found and the result is
finalized by choosing the top-k less-looseness trees. How-
ever, this approach is not appropriate for our kSP queries.
Firstly, we aim for semantic places that take place vertices as
roots; however, the aforementioned algorithm cannot guar-
antee that the discovered trees are rooted at place vertices.
Secondly, the score of a semantic place depends on both its
looseness and its spatial distance to the query location; even if
a keyword query can identify candidate trees rooted at places,
there is no obvious way of determining the top-k semantic
places before getting all candidate trees, since a tree Tp with
high L(Tp) value but small spatial distance S(p, q) to the
query location q may outrank a tree Tp′ with low L(Tp′) but
large spatial distance S(p′, q), and vice versa.

Obviously, a single TQSP computation is much more
expensive compared to a single spatial distance computation.
Therefore, using keyword query (keyword-first) methods to
solve our problem would be inefficient. In view of this, we
design methods that perform spatial search first, in order
to avoid unnecessary TQSP computations. In this section,
we propose a basic method for evaluating kSP queries. This
method requires that we have preprocessed the RDF graph,
extracted the places from it and spatially indexed them using
an R-tree [26]. Like keyword search approaches, we also
assume that the documents of the vertices in RDF graph are
indexed by an inverted index [35]. In addition, instead of
storing and indexing the RDF data in a triples table format,
which would enable efficient SPARQL query evaluation, we
choose to store the RDF graph in memory in its native form
(i.e., using adjacency lists, as in [65]), which enables efficient
graph browsing operations (like BFS).

Algorithm 1 shows the pseudo code of our Basic Seman-
tic Place (BSP) search method for evaluating kSP queries.
Initially, a top-k result queue Hk , which prioritizes identi-
fied semantic places by their scores, is initialized (line 1).
Given a kSP query q, the posting lists of the query key-
words are loaded (lines 2–3). Then, the basic method applies
the best-first search algorithm [31] on the R-tree to retrieve
places in ascending order of their spatial distances to the
query location (line 6). For each retrieved place p from the
R-tree, BSP constructs the TQSP Tp rooted at p using func-
tion getSemanticPlace() (line 9). Then, Tp is inserted into
the result queue Hk (line 13). A threshold θ is set as the score
of the kth semantic place in the result queue (line 14). For
the next retrieved entry e from the R-tree (e may refer to a
place or a node in the R-tree), if its minimum spatial distance
to the query location is not smaller than the threshold, i.e.,

S(q, e) ≥ θ , the top-k result is finalized and the algorithm
terminates (lines 7 and 15).

Correctness of termination For the next retrieved entry e, if
S(q, e) ≥ θ , the spatial distances of all unprocessed places
to the query location are not smaller than the threshold. This
means that the scores of all these places cannot be better than
the current kth candidate, given the fact that since L(Tp) ≥ 1,
we have f (L(Tp), S(q, p)) ≥ S(q, p). Hence, the current k
candidates are correctly returned as the top-k TQSPs for q.
Note that the termination condition is based on Eq. 1; it can
be easily adjusted if f (L(Tp), S(q, p)) is defined differently.

Example 6 Consider a 1SPqueryq located atq.λ = q1 inFig.
2 with query keywords q.ψ = {impressionist, art}, applying
on the RDF graph of Fig. 1. Place p1 is firstly retrieved from
the R-tree and L(Tp1) = 3 after calling function getSe-
manticPlace(). Therefore, the score of Tp1 is f = 0.00042.
Next, Tp1 is added into Hk as the top-1 candidate and θ is
updated to 0.042. Similarly, place p2 is retrieved from the
R-tree with S(q1, p2) = 0.08 > θ . Then, Tp1 is returned as
the top-1 result.

Algorithm 1 BSP(q, R,G, I)
1: MinHeap Hk = ∅, ordered by f (L(Tp), S(q, p))
2: for each keyword wi in q.ψ do
3: Load posting list pli of wi from I

4: Construct Mq.ψ

5: θ = +∞
6: while e=getNext(R, q) do
7: if S(q, e) ≥ θ then break
8: if e refers to a place p then
9: Tp = getSemanticPlace(q.ψ, p,G, Mq.ψ)
10: if L(Tp) == +∞ then continue

11: Compute the score f of Tp
12: if f < θ then
13: Hk .add(Tp, f)
14: Update θ

15: return Hk

Before calling getSemanticPlace(), for the sake of effi-
ciency, the loaded posting lists of the query keywords are
converted into a map structure Mq.ψ where keys are the ver-
tices in these posting lists. For each key (vertex), its value
is the set of query words appeared in the document of the
vertex. Taking query keywords q.ψ = {impressionist, art}
as an example, the content of Mq.ψ is shown in Table 2. Usu-
ally, the number of query keywords is small, and therefore,
Mq.ψ is small and cheap to construct.

Function getSemanticPlace() constructs the TQSP Tp

rooted at a place p w.r.t. query q. According to the definition
of TQSP, Tp contains the shortest path from the root place to
each query keyword. A naive way is to compute the shortest

123

Top-k relevant semantic place retrieval on spatiotemporal RDF data 901

Table 2 Mq.ψ of the example in
Fig. 1 v1: {art}

v2: {impressionist}

v3: {impressionist}

path from p to every vertex in the posting list pli of keyword
wi , and then choose the vertex with the smallest shortest
path distance. For example, in Fig. 1, in order to determine
the shortest path from p1 to keyword ancient, we need to
compute the shortest path for pairs (p1, v3), (p1, v5) and
(p1, v8), and then get 〈p1, v3〉 as the shortest path from p1
to keyword ancient. Apparently, when the RDF data graph is
large, this approach would be expensive as it would require
the computation of numerous and long shortest paths.

Instead, function getSemanticPlace() applies breadth-
first search (BFS) in the RDF graph, starting from the root
place p, and checks whether each encountered vertex v con-
tains any query keyword w using map Mq.ψ . Meanwhile,
a keyword set B is maintained to record the undiscovered
keywords during BFS. Algorithm 2 shows the pseudocode.
TQSP Tp is initialized as empty (line 1), looseness L(Tp) is
set to 1 (line 2), and set B contains all the query keywords
(line 3). BFS search starting from place p incrementally
reports the next encounter vertex v (line 4). The query key-
words v.ψq associated with v can be obtained from Mq.ψ

(line 6). If B and v.ψq share words, this means that the short-
est paths from the root to some keywords in B have been
identified (line 7). Then, Tp and its looseness are updated
(lines 8) and these keywords are removed from B (line 9). If
no more vertices are identified by BFS and B is not empty,
there is no qualified semantic place rooted at p (line 10).
As soon as B is empty (i.e., all query keywords have been
covered), Tp is successfully constructed and returned.

Example 7 Givenquerykeywordsq.ψ = {impressionist, art},
we illustrate function getSemanticPlace() (Algorithm 2)
by constructing the TQSP for place p1 in Fig. 1. BFS firstly
reports p1 that is added to Tp1 . However, B ∩ p1.ψq = ∅,
which means that there is nothing to do for p1. Next, v1
is visited by BFS, we have B ∩ v1.ψq = {art}. Therefore,
L(Tp1) = 1 + d(p, v1) = 2, and art is removed from B.
Next, v2 is visited, we have B ∩ v2.ψq = {impressionist}.
Therefore, L(Tp1) = L(Tp1) + d(p, v2) = 3, and impres-
sionist is removed from B. Now, B becomes empty. Thus,
Tp1 = 〈p1, (v1, v2)〉 and L(Tp1) = 3 are returned.

3.2 Improved pruning: SPP

In the basic method, for each retrieved place p from the R-
tree, function getSemanticPlace() is called to construct
the TQSP Tp rooted at p. The effort of a TQSP construc-
tion is wasted under two circumstances: (i) Tp cannot cover

Algorithm 2 getSemanticPlace(q.ψ, p,G, Mq.ψ)
1: Tp = ∅
2: L(Tp) = 1
3: Set B = q.ψ

4: while v = BFS(G, p) and B �= ∅ do
5: Add v to Tp
6: v.ψq = Mq.ψ .get(v)
7: if B ∩ v.ψq �= ∅ then
8: L(Tp)+ = |B ∩ v.ψq | × d(p, v)

9: B = B \ v.ψq

10: if B �= ∅ then L(Tp) = +∞ and Tp = NULL

11: return L(Tp) and Tp

all the query keywords, i.e., no qualified semantic place
rooted at p can be obtained and (ii) the score of Tp is no
less than threshold θ (the score of the kth candidate). For
case (i), we design a reachability-based pruning rule that dis-
cards the places whose TQSP cannot be constructed. Using
this rule, some places are pruned without calling function
getSemanticPlace(). For case (ii), we derive a dynamic
bound on the looseness of the TQSP under construction. This
bound is used to judge whether the unfinished TQSP has the
potential to belong to the top-k result. This rule helps reduc-
ing the TQSP construction cost for some places that cannot
enter the kSP result. Applying the two pruning techniques,
we design a semantic place retrieval with pruning algorithm
(SPP).

3.2.1 Unqualified place pruning

A place p retrieved by the getNext function of the basic
algorithmmay not form a qualified semantic place. This hap-
pens if it is not possible to reach vertices covering all query
keywords by BFS from p. For example, consider place p2 in
Fig. 1 and query keywords {French, impressionist}; no quali-
fied semantic place rooted at p2 exists, since p2 never reaches
French. Formally:

Pruning Rule 1 Unqualified Place PruningLet p � w denote
that place p cannot reach keywordw in theRDFgraph.Given
query keywords q.ψ , place p is an unqualified place and can
be pruned if ∃w ∈ q.ψ, p � w.

Testing whether p can reach a keyword w in the graph can
be implemented by reachability queries [17,37,38,57,64] that
have been well studied in the literature. TF-Label [17] is
the state-of-the-art algorithm for reachability queries, using
which we can perform 1M reachability queries in a large
graph within dozens of milliseconds. We use TF-Label as an
independent component in our algorithm.

In the RDF graph, the documents of multiple vertices
may share the same keyword w (as many as the length
of the corresponding inverted list). For instance, in Fig. 1,
the documents of v2 and v3 contain keyword impressionist.

123

902 D. Wu et al.

Thus, in order to determine whether a place p can reach
keyword impressionist, in the worst case three reachability
queries (i.e., to v2 and v3) have to be issued. In a very large
data set, a huge number of reachability queries may have
to be performed, which is inefficient. To reduce the number
of reachability queries, we propose the following method.
Firstly, a vertex vt is constructed for each word w and added
into the RDF graph. Edges are added from the vertices whose
documents containw to vt . This way, for each query keyword
w, it suffices to apply a single reachability query to vt in order
to find out whether any of the vertices whose documents
contain w is reachable from the place vertex. Therefore, the
number of required reachability queries for a place becomes
at most equal to the number of query keywords. Secondly,
based on the observation that infrequent query keywords have
a high chance to make a place unqualified, we prioritize them
when issuing reachability queries.

Pruning Rule 1 is used before calling function
getSemanticPlace() (line 9 in Algorithm 1) to avoid
unnecessary TQSP computations.

3.2.2 Dynamic bound-based pruning

Function getSemanticPlace() constructs the TQSP Tp

rooted at p in a BFS manner: starting from p its neighboring
nodes are incrementally explored. During this process, some
of the query keywords may be found early, while it may take
time to find others. We derive a dynamic bound for the loose-
ness of the TQSP Tp under construction in Lemma 1. This
dynamic bound converges to the real looseness of TQSP as
more keywords are covered.

Lemma 1 Dynamic Bound on Looseness Given query key-
words q.ψ = {w1, . . . , w j , . . . , wm}, without loss of gen-
erality, suppose that we have already discovered the first j
query keywords during the BFS exploration starting from
p. Let v be the next vertex encountered in the BFS process
with graph distance d(p, v). A lower bound of the looseness
L(Tp) is then LB(Tp) = ∑ j

i=1 dg(p, wi)+d(p, v)×(m− j).

Proof Trivial due to the monotonicity of L(Tp) w.r.t. the
shortest paths to the first encounters of keywords. Vertex v is
the next encountered vertex in theBFSprocess.Hence, all the
undiscovered keywords cannot have a shorter graph distance
from p than v does, i.e., dg(p, wn) ≥ d(p, v), j < n ≤
m. Therefore, we can have LB(Tp) = ∑ j

i=1 dg(p, wi) +
d(p, v) × (m − j) ≤ ∑m

i=1 dg(p, wi) = L(Tp). ��
A TQSP Tp has a chance to be in the kSP result only

if its score is less than threshold θ . Definition 8 presents
the looseness threshold for all TQSPs that have not been
computed yet.

Definition 8 Looseness Threshold Let θ be the score of the
kth TQSP found so far. The looseness threshold of any TQSP

Tp is defined as Lw(Tp) = θ/S(q, p). If a TQSP has loose-
ness no smaller than its Lw(Tp), it cannot be in the kSP
result.

Based on Lemma 1 and Definition 8, we introduce the
dynamic bound-based pruning rule in Pruning Rule 2.

Pruning Rule 2 DynamicBound-Based PruningFor place p,
as soon as LB(Tp) ≥ Lw(Tp), the TQSP rooted at place p
cannot be in the kSP result, and thus p can be pruned.

Proof For the TQSP Tp rooted at p, if its best possible
looseness LB(Tp) is no smaller than its looseness thresh-
old Lw(Tp), meaning that the score of Tp must be no smaller
than the current kth candidate, then Tp cannot be in the result.

��
By applying the two pruning rules, we can design algo-

rithm SPP (Semantic Place search with Pruning), which is
an extension of BSP. Algorithm 3 shows an improved ver-
sion of function getSemanticPlace() (Algorithm 2) used
in SPP. Algorithm 3 differs from Algorithm 2 in line 4 that
computes the looseness threshold of the Tp to be constructed,
line 7 that computes the dynamic bound on the looseness of
Tp each time when BFS reports new vertex, and lines 8–9
that apply Pruning Rule 2 to prune places. Having Pruning
Rules 1 and 2, SPP is Algorithm 1with the following change.
The looseness threshold in Definition 8 and Pruning Rule 2
guarantee that any place survived to the point when to be
added to Hk must be ranked at least the kth position. There-
fore, the if clause at line 12 of Algorithm 1 is not needed
anymore.

Algorithm 3 getSemanticPlaceP(q.ψ, p,G, Mq.ψ)
1: Tp = ∅
2: LB(Tp) = 1
3: Set B = q.ψ

4: Compute the looseness threshold Lw(Tp)

5: while v = BFS(G, p) and B �= ∅ do
6: Add v to Tp
7: Compute the dynamic bound LB(Tp)

8: if LB(Tp) ≥ Lw(Tp) then � Pruning Rule 2
9: return +∞ and Tp = NULL

10: v.ψ = Mq.ψ .get(v)
11: if B ∩ v.ψ �= ∅ then
12: B = B \ v.ψ

13: if B �= ∅ then L(Tp) = +∞ and Tp = NULL

14: return LB(Tp) and Tp

Example 8 Consider a kSP query q located at q.λ = q1
in Fig. 2 with keywords q.ψ = {impressionist, art, gal-
leries, museum, Paris}, requesting the top-1 TQSP in the
RDF graph of Fig. 1. Place p1 is firstly retrieved from the R-
tree. After applying Pruning Rule 1, we find that p1 can reach

123

Top-k relevant semantic place retrieval on spatiotemporal RDF data 903

all the query keywords and cannot be pruned. Then TQSP
Tp1 rooted at p1 is constructed and regarded as the top-1 can-
didate with ranking score 6 × 0.014 = 0.084. Threshold θ

is set to 0.084. Next, place p2 is retrieved from the R-tree,
which again cannot be eliminated by Pruning Rule 1. Then,
functiongetSemanticPlaceP() is called to construct TQSP
Tp2 rooted at p2. The looseness threshold for Tp2 is calcu-
lated as Lw(Tp2) = θ/S(q1, p2) = 0.084/0.08 = 1.05. BFS
starts to explore the graph starting from p2; in themeanwhile,
the dynamic bound on the looseness of Tp2 is computed. Ini-
tially, LB(Tp2)=1. After p2 is visited byBFS, d(p2, p2) = 0.
By Lemma 1, LB(Tp2) = 1 + d(p2, p2) × |B| = 1. Since
LB(Tp2) = 1 < Lw(Tp2), p2 cannot be eliminated by
Pruning Rule 2. After v3 is visited by BFS, d(p2, v3) =
1, and therefore, by Lemma 1, LB(Tp2) is increased by
|B| × d(p2, v3) = 5 and becomes 6. According to Prun-
ing Rule 2, LB(Tp2) = 6 > 1.05 = Lw(Tp2) and Tp2 cannot
be the top-1 result. Hence, function getSemanticPlaceP()

returns NULL before finishing the construction of Tp2 and is
more efficient than function getSemanticPlace() in Algo-
rithm 2.

3.3 ˛-Radius-based bounds

The pruning rules proposed in the previous section help
discarding unqualified places and the places whose TQSPs
cannot enter the kSP result. In this section, we propose new
bounds on both the looseness and the scores, for pruning
not only individual places but also sets of places, i.e., R-tree
entries and the corresponding subtrees. We firstly introduce
the α-radius word neighborhood in Definition 9, which is
used for deriving the bounds.

Definition 9 α-Radiusword neighborhood of placeFor place
p, its α-radius word neighborhood WN(p) contains the set
of word–distance pairs {(wi , dg(p, wi))} where the shortest
graph distance from p to each word wi is no larger than α,
i.e., dg(p, wi) ≤ α.

Based on the α-radius word neighborhood of individual
places, we define the α-radius word neighborhoods of a set
of places, i.e., a node in the R-tree, in Definition 10.

Definition 10 α-Radius word neighborhood of node For a set
of places {p j } enclosed in a node N of theR-tree, theα-radius
word neighborhood WN(N) of N contains the set of word–
distance pairs {(wi , dg(N , wi)} where the words in WN(N)

is the union of the words inWN(pj) of all places enclosed in
N , and for each wordwi , dg(N , wi) = minp j∈N dg(p j , wi).
Obviously, dg(N , wi) ≤ α.

Construction of α-radius word neighborhood In a pre-
processing phase, the α-radius word neighborhoods of all
places are computed first. For each place p, we explore

Table 3 Example: 1-radius word neighborhoods

q.ψ Museum … Art French Spanish

dg(p1, wi) 1 … 1 1 –

dg(p2, wi) 1 … 1 – 1

dg(N , wi) 1 … 1 1 1

the RDF graph in a breadth-first manner starting from p.
NeighborhoodWN(p) is initialized as empty. When encoun-
tering a vertex v in the graph, for each word w appearing
in v’s document, if no corresponding pair for w is already
inWN(p), a new pair (w, d(p, v)) is added toWN(p). After
the α-radius word neighborhoods of all places have been
constructed, the α-radius word neighborhoods of the nodes
in the R-tree are computed in a bottom-up fashion from the
leaf level to the root level. For each node N , let {ei } be the
set of entries enclosed, where ei refers to either a place
or a node. Neighborhood WN(N) is initialized as empty.
For each pair (w, dg(ei , w)) in each WN(ei), if no corre-
sponding pair for w is inWN(N), (w, dg(ei , w)) is added to
WN(N) as (w, dg(N , w)); otherwise, dg(N , w) is updated
as min{dg(N , w), dg(ei , w)}.
Example 9 For α = 1, part of the α-radius word neighbor-
hoods of places p1 and p2 in Fig. 1 are displayed in the first
two rows of Table 3. ‘–’ indicates that the place cannot reach
the keyword within α-radius. Assuming that an R-tree node
N contains p1 and p2, the α-radius WN(N) is shown in the
last row of the table.

Based on the α-radius word neighborhoods of places, we
derive bounds of the looseness and the scores of TQSPs based
on Lemmas 2 and 3. Lemmas 4 and 5 extend these bounds
for sets of places rooted under R-tree nodes.

Lemma 2 α-Bound on the looseness of a place Let WN(p)
be the α-radius word neighborhood of place p. Given query
keywords q.ψ = {w1, . . . , w j , . . . , wm}, without loss of gen-
erality, assume that the first j keywords have corresponding
pairs in WN(p). The α-bound of the looseness of TQSP Tp

rooted at p is Lα
B(Tp) = ∑ j

i=1 dg(p, wi)+(α+1)×(m− j)
and Lα

B(Tp) ≤ L(Tp).

Lemma 3 α-Bound on the score for places Let Lα
B(Tp) be the

α-bound on the looseness of the TQSP Tp rooted at p. Given
a kSP query q, the α-bound on the score of Tp is f α

B (p) =
Lα
B(Tp) × S(q, p) and f α

B (p) ≤ f (L(Tp), S(q, p)).

Lemma 4 α-Bound on the looseness for nodes Let WN(N)

be the α-radius word neighborhood of node N. Given query
keywords q.ψ = {w1, . . . , w j , . . . , wm}, without loss of
generality, assume that the first j keywords have correspond-
ing pairs in WN(N). The α-bound on the looseness of all

123

904 D. Wu et al.

the TQSPs Tp rooted at p enclosed in N is Lα
B(TN) =

∑ j
i=1 dg(N , wi)+(α+1)×(m− j)and∀pi ∈ N , Lα

B(TN) ≤
L(Tpi).

Lemma 5 α-Bound on the score for nodes Let Lα
B(TN) be

the α-bound on the looseness of the TQSPs Tp rooted at
places p enclosed in N. Given a kSP query q, the α-bound
on the score of all the Tp rooted at p enclosed in N is
f α
B (N) = Lα

B(TN) × S(q, N), where S(q, N) is the mini-
mum spatial distance between q and N. ∀pi ∈ N , f α

B (N) ≤
f (L(Tpi), S(q, pi)).

The proofs of Lemmas 2, 3, 4, and 5 are omitted for the
interest of space. We proceed to introduce a pruning rule for
places using Lemma 3 and a pruning rule for nodes using
Lemma 5.

Pruning Rule 3 Place pruning Given a kSP query q, let θ

be the score of the kth candidate TQSP and f α
B (p) be the α-

bound on the score of the TQSP Tp rooted at p. If f α
B (p) ≥ θ ,

Tp cannot be the kSP result and p is pruned.

Pruning Rule 4 R-tree node pruning Given a kSP query q,
let θ be the score of the kth candidate TQSP and f α

B (N) be
the α-bound on the score of the TQSPs Tp rooted at places p
enclosed in N. If f α

B (N) ≥ θ , the TQSP rooted at any place
enclosed in N cannot be the result and N is pruned.

Example 10 Consider an R-tree node N formed by places
p1 and p2 in Fig. 1. For query keywords q.ψ = {French,
art, museum}, based on Table 3 and Lemma 4, Lα

B(TN) =
1+ 1+ 1+ 1 = 4. Assuming the minimum spatial distance
from N to a query locationq.λ is 2, byLemma5, f α

B (N) = 8.
If θ = 5, according to Pruning Rule 4, f α

B (N) > θ which
means all the places under N , i.e., p1 and p2 in this example,
can be pruned.

Storage The α-radius word neighborhoods of places and
nodes can be modeled as vectors. They are indexed by an
inverted file. For a kSP query, part of the neighborhoods rel-
evant to the query keywords, i.e., the posting lists of the query
keywords, are loaded in the beginning query processing, to
facilitate the computation of α-based bounds and the appli-
cation of Pruning Rules 3 and 4.

Algorithm By integrating the α-radius-based bounds with
the SPP algorithm,we design a Semantic Place retrieval algo-
rithm (SP) for the processing of kSP queries, as described by
Algorithm 4. SP has the following differences compared to
SPP: (i) entries (referring to places and nodes) in the R-tree
are processed in ascending order of their α-bounds on the
score rather than their spatial distance to the query location
(lines 8 and 23), (ii) Pruning Rules 3 and 4 are used to dis-
card places having no potential to be the result (line 22), and

(iii) the termination condition is based on the α-bound on the
score rather than the spatial distance, which can be satisfied
earlier (line 9).

Algorithm 4 SP(q, R,G, I , I α)
1: MinHeap Hk = ∅, ordered by f (L(Tp), S(q, p))
2: for each keyword wi in q.ψ do
3: Load posting list pli of wi from I
4: Load posting list of wi from I α

5: Construct Mq.ψ

6: θ = +∞
7: Queue Q = (root)
8: while e=getNext(Q, R, q) do
9: if f α

B (e) ≥ θ then break

10: if e refers to a place p then
11: if e is Unqualified then � Pruning Rule 1
12: continue
13: Tp = getSemanticPlaceP(q.ψ, p,G, Mq.ψ)
14: if L(Tp) == +∞ then continue

15: Compute the score f of Tp
16: Hk .add(Tp, f)
17: Update θ

18: else � e refers to a node N
19: for each entry e in N do
20: Compute α-bound on the looseness Lα

B(Te)
21: Compute α-bound on the score f α

B (e) for e
22: if f α

B (e) < θ then � Pruning Rules 3 and 4
23: Add (e, f α

B (e)) to Q

24: return Hk

4 Algorithms for kSPT queries

This section presents the algorithms for the processing of
kSPTd and kSPTr queries.

4.1 Processing kSPTd queries

Section 4.1.1 explains how to store the temporal information
in the inverted index, which helps to quickly find relevant
vertices in the RDF graph, w.r.t., the query keywords and
the query timestamps. Section 4.1.2 derives dynamic bounds
on the temporal difference-based looseness (TDL). Sec-
tion 4.1.3 presents α-radius temporal word neighborhoods
and derives the α-bound on TDL. Section 4.1 introduces
algorithm SPTD for the processing of kSPTd queries. Four
optimizations are proposed to improve the performance of
SPTD in Sect. 4.1.5.

4.1.1 Temporal Inverted Index

The temporal inverted index I t is the traditional inverted
index with a temporal extension. The posting list of each
term/word w is a list of pairs (v, v.δ), where v refers to a

123

Top-k relevant semantic place retrieval on spatiotemporal RDF data 905

vertex whose document contains w and v.δ is the timestamp
associated with vertex v. The pairs in the posting lists are
sorted in ascending order using the timestamp.

Let dtm(q.δ, w) be the minimum temporal difference
between the query timestamp and the timestamps of the ver-
tices whose documents contain term w, i.e.,

dtm(q.δ, w) = min
v∈V∧w∈v.ψ

{dt (q.δ, v.δ)}.

This can be used to derive a lower bound on the temporal
difference-based looseness (TDL). The way of computing
dtm(q.δ, w) is as follows. Given a kSPTd query q, for each
term w in q.ψ , its posting list is retrieved from the temporal
inverted index I t . Since the list is sorted, dtm(q.δ, w) can be
quickly determined by one binary search operation and a few
calculations.

4.1.2 Dynamic bound-based pruning

Lemma 6 Dynamic Bound on TDL Given query keywords
q.ψ = {w1, ..., w j , .., wm}, without loss of generality,
suppose that we have already discovered the first j query
keywords during the BFS exploration starting from p. Let
v be the next vertex encountered in the BFS process with
graph distance d(p, v). Let V (wi) be the set of discovered
vertices containingwi andddg (p, V (wi)) = minv j∈V (wi)(1+
d(p, v j)) · (1+dt (q.δ, v j .δ)). A lower bound Ld

B(Tp) of the
TDL is defined as

⎛

⎝
j∑

i=1

min{ddg (p, V (wi)), d
d
g (p, v, wi)}

+
m∑

i= j+1

ddg (p, v, wi)

⎞

⎠ /|q.ψ |, (5)

where ddg (p, v, wi) = (1 + d(p, v)) × (1 + dtm(q.δ, wi)).

Proof The lower bound Ld
B(Tp) consists of two parts. One

part is for the query keywords that have not been discovered,
i.e.,

∑m
i= j+1(1 + d(p, v)) × (1 + dtm(q.δ, wi)). Obviously,

the graph distance of any of these keywords must be no
less than d(p, v), since vertex v is the next vertex encoun-
tered in the BFS process. Also, dtm(q.δ, wi) is the minimum
temporal difference between the query timestamp and the
timestamps of the verticeswhose documents contain termwi .
Thus, for any keyword wi in {w j+1, . . . , wm}, ddg (p, wi) ≥
(1+d(p, v))×(1+dtm(q.δ, wi)). The other part is for the dis-

covered query keywords, i.e.,
∑ j

i=1 min{ddg (p, V (wi)), (1+
d(p, v)) × (1 + dtm(q.δ, wi)} . ddg (p, V (wi)) is the mini-
mum temporally weighted length of the path from p to the
discovered vertices that contain wi . However, beyond the

discovered vertices, it is possible to have another vertex v′
containingwi with small temporal difference, so that the tem-
porally weighted length of the path from p to v′ is smaller
than ddg (p, V (wi)). But (1 + d(p, v)) × (1 + dtm(q.δ, wi)

provides a lower bound on the temporally weighted length
of the path from p to the undiscovered vertices containing
wi (the reason behind is similar to what is explained before).
Hence, for any keyword wi in {w1, . . . , w j }, ddg (p, wi) ≥
min{ddg (p, V (wi)), (1 + d(p, v)) × (1 + dtm(q.δ, wi)}. ��
Pruning Rule 5 Dynamic Bound-Based Pruning using the
TDL According to Definition 8, Lw(Tp) is the looseness
threshold. For place p, as soon as Ld

B(Tp) ≥ Lw(Tp), the
TQSP rooted at place p cannot be in the kSPTd result, and
thus p can be pruned.

The proof is similar to that of Pruning Rule 2 and thus
omitted.

4.1.3 ˛-Radius-based bounds

Definition 11 α-Radius temporal word neighborhood of
place For place p, its α-radius temporal word neighborhood
WNt(p) contains the set of word–distance–timestamp triples
{(wi , d(p, v), v.δ)} where v is a vertex containing word wi

(i.e., wi ∈ v.ψ) and the shortest graph distance from p to v

is no larger than α, i.e., d(p, v) ≤ α.

Based on the α-radius temporal word neighborhood of
individual places, we define the α-radius temporal word
neighborhoods of a set of places, i.e., a node in the R-tree, in
Definition 12.

Definition 12 α-Radius temporal word neighborhood of
node For a set of places {p j } enclosed in a node N of the
R-tree, the α-radius temporal word neighborhood WNt(N)

of N contains the set of word–distance–timestamp triples
{wi , d(p j , v), v.δ} which is the union of the triples in
WNt(pj) of all places enclosed in N . Obviously, d(p j , v) ≤
α.

The construction ofα-radius temporalword neighborhood
is similar to the construction of α-radius word neighborhood
described in Sect. 3.3.

Based on the α-radius temporal word neighborhoods of
places, we derive bounds of the TDL and the scores of TQSPs
based on Lemmas 7 and 8. Lemmas 9 and 10 extend these
bounds for sets of places rooted under R-tree nodes.

Lemma 7 α-Bound on the TDL of a place Let WNt(p) be
the α-radius temporal word neighborhood of place p. Given
query keywords q.ψ = {w1, . . . , w j , . . . , wm}, without loss
of generality, assume that the first j keywords have corre-
sponding triples in WNt(p). Let V (wi) be the set of vertices
that appear in WNt(p) and contain wi . The α-bound of the

123

906 D. Wu et al.

temporal difference-based looseness Lαt
B (Tp) of TQSP Tp

rooted at p is

⎛

⎝
j∑

i=1

min
{
ddg (p, V (wi)), (2 + α) × (1 + dtm(q.δ, wi))

}

+
m∑

i= j+1

(2 + α) × (1 + dtm(q.δ, wi))

⎞

⎠ /|q.ψ |. (6)

Lemma 8 α-Bound on the score for places Let Lαt
B (Tp) be

the α-bound on the temporal difference-based looseness of
the TQSP Tp rooted at p. Given a kSPTd query q, the α-
bound on the score of Tp is f αt

B (p) = Lαt
B (Tp) × S(q, p)

and f αt
B (p) ≤ f (Ld(Tp), S(q, p)).

Lemma 9 α-Bound on the temporal difference-based loose-
ness for nodes Let WNt(N) be the α-radius temporal word
neighborhood of node N. Given query keywords q.ψ =
{w1, . . . , w j , . . . , wm}, without loss of generality, assume
that the first j keywords have corresponding triples in
WNt(N). Let V (wi) be the set of vertices that appear in
WNt(N) and contain wi . The α-bound on the temporal
difference-based looseness Lαt

B (TN) of all the TQSPs Tp

rooted at p enclosed in N is

Lαt
B (TN) = min

p∈N

⎛

⎝
j∑

i=1

min
{
ddg (p, V (wi)), (2 + α) × (1+

× dtm(q.δ, wi)
) }

+
m∑

i= j+1

(2+α) × (1+dtm(q.δ, wi))

⎞

⎠ /|q.ψ |.

(7)

Lemma 10 α-Bound on the score for nodes Let Lαt
B (TN) be

the α-bound on the temporal difference-based looseness of
the TQSPs Tp rooted at places p enclosed in N. Given a
kSPTd query q, the α-bound on the score of all the Tp rooted
at p enclosed in N is f αt

B (N) = Lαt
B (TN) × S(q, N), where

S(q, N) is the minimum spatial distance between q and N.
∀pi ∈ N , f αt

B (N) ≤ f (Ld(Tpi), S(q, pi)).

The proofs of Lemmas 7, 8, 9, and 10 are omitted for the
interest of space. We proceed to introduce a pruning rule for
places using Lemma 8 and a pruning rule for nodes using
Lemma 10.

Pruning Rule 6 Place pruning Given a kSPTd query q, let
θ be the score of the kth candidate TQSP and f αt

B (p) be
the α-bound on the score of the TQSP Tp rooted at p. If
f αt
B (p) ≥ θ , Tp cannot be the kSPTd result and p is pruned.

Pruning Rule 7 R-tree node pruningGiven a kSPTd query q,
let θ be the score of the kth candidate TQSP and f αt

B (N) be
the α-bound on the score of the TQSPs Tp rooted at places p
enclosed in N. If f αt

B (N) ≥ θ , the TQSP rooted at any place
enclosed in N cannot be the result and N is pruned.

4.1.4 SPTD algorithm

SPTD algorithm for the processing of kSPTd queries is an
extension of algorithm SP. It adopts the main routine of algo-
rithm SP, but with the following modifications.

– The vertices having both documents and timestamps are
indexed using the temporal inverted index I t and the ver-
tices with only documents are indexed using the inverted
index I .

– The α-bound on the ranking score f α
B (e) is updated to

f αt
B (e), where e could be either a place or a node.

– Pruning Rules 2, 3, and 4 are replaced by Pruning
Rules 5, 6, and 7, respectively.

4.1.5 Optimizations

O1 In algorithm SPTD, dtm(q.δ, w) is the minimum tem-
poral difference between the query timestamp and the
timestamps of the vertices whose documents contain term
w. The dynamic bound (Lemma 6) and the α-bounds (Lem-
mas 7 and 9) use dtm(q.δ, w) as the best possible temporal
difference of either a place or a node in the R-tree. However,
the vertex whose timestamp is used to compute dtm(q.δ, w)

may not be reachable from the place and the node. Hence,
the bounds derived based on dtm(q.δ, w) are not tight. We
therefore consider the reachability to improve those bounds.
Given a place p, let dtm(q.δ, w, p) be the minimum temporal
difference between the query timestamp and the timestamps
of the vertices whose documents contain term w and that are
reachable from p, i.e.,

dtm(q.δ, w, p) = min
v∈V∧w∈v.ψ∧p∼v

{dt (q.δ, v.δ)}.

Similarly, given a node N in the R-tree, we have

dtm(q.δ, w, N) = min
v∈V∧w∈v.ψ∧N∼v

{dt (q.δ, v.δ)}.

Then, dtm(q.δ, w) in Lemmas 6 and 7 is replaced by
dtm(q.δ, w, p). Similarly, dtm(q.δ, w) in Lemma 9 is replaced
by dtm(q.δ, w, N). dtm(q.δ, w, p) is computed using the fol-
lowing steps.

1. Retrieve the posting list of w from the temporal inverted
index.

123

Top-k relevant semantic place retrieval on spatiotemporal RDF data 907

2. Since the list is sorted, the closest timestamp of q.δ can
be found by a binary search operation.

3. Check whether in the RDF graph, p reaches the vertex
which has the closest timestamp using the TF-Label [17].

4. If it is unreachable, get the next closest timestamp and
repeat step 3, until find a vertex v that is reachable from
p.

5. dtm(q.δ, w, p) = dt (q.δ, v.δ).

Regarding dtm(q.δ, w, N), where N encloses several
places, the above method will issue too many reachability
queries that are time-consuming. However, the number of
nodes in the R-tree is small compared to the whole data set.
Thus, we materialize the reachable vertices of each node and
keep them in main memory. Given a node N , a vertex v is
reachable from N if v is reachable from at least one place in
N . On our experimental datasets, only megabytes are needed
to store this data. Having the reachable vertices of each node,
the abovemethod can be used to compute dtm(q.δ, w, N) effi-
ciently by replacing the TF-Label algorithm in step 3 with
a simple check of whether the vertex who has the closest
timestamp is in the reachable list of node N .

O2 Pruning Rule 1 used in algorithm SPTD has two draw-
backs. Firstly, when determining whether a place can reach a
word, in order to reduce the number of reachability queries,
a vertex vw is created for the word w and is added to the
RDF graph. Edges between vw and the vertices whose docu-
ments containw are added. In this way, only one reachability
query is enough.However, the cost of the reachability queries
involving frequent words that connect many vertices is much
higher than the cost of the reachability queries involving
infrequent words. In order to improve the performance of
algorithm SPTD, we store the reachable vertices for the
words whose frequencies are larger than τ in main mem-
ory, denoted by R. Given a reachability query, if it involves
a word whose frequency is larger than τ , the result will be
immediately retrieved from R. Otherwise, TF-Label algo-
rithm is called to compute the result. Large τ needs more
computational time but less memory space, while small τ

needs less computational time but more memory space. In
the experiments, we have tuned parameter τ to achieve the
best performance.

O3 The size of the α-radius temporal word neighborhood is
larger than the size of the α-radius word neighborhood. This
is because in the α-radius word neighborhood, only the min-
imum length of the shortest path from places/nodes to words
are stored, while in the α-radius temporal word neighbor-
hood, all the lengths of the shortest paths from places/nodes
to words within the α-radius are stored, together with the
corresponding timestamps. Due to the large size of the α-
radius temporal word neighborhood, loading posting lists

from index I α is expensive, especially for high frequency
words. Hence, we introduce a threshold l for the length of
the posting lists stored in index I α . During the construction
of theα-radius temporalword neighborhood, the posting lists
whose length is no greater than l are indexed in I α . In the
experiments, parameter l has been tuned to produce a good
performance.

O4 In algorithm SPTD, Pruning Rule 1 only prunes unqual-
ified places. We introduce Pruning Rule 8 that can prune
unqualified nodes in the R-tree.

Pruning Rule 8 UnqualifiedNode PruningLet p � w denote
that place p cannot reach keywordw in theRDFgraph.Given
query keywords q.ψ , node N is an unqualified node and can
be pruned if ∀p ∈ N∃w ∈ q.ψ, p � w.

The four optimizations improve the performance of algo-
rithm SPTD, as shown in the experiments. Algorithm SPTD
with the four optimizations is denoted by SPTD∗.

4.2 Processing kSPTr queries

This section derives dynamic bounds and α-bounds on
the temporal range-based looseness (TRL). To evaluate
kSPTr queries, algorithmSPTRextendsSPTDand algorithm
SPTR* applies three of SPTD*’s optimizations.

Lemma 11 Dynamic Bound on TRL Given query keywords
q.ψ = q.ψr ∪q.ψ r̄ , without loss of generality, suppose that
we have already discovered a subset of keywords in q.ψr ,
denoted as q.ψr

0 and a subset of keywords in q.ψ r̄ , denoted
as q.ψ r̄

0 during the BFS exploration starting from p. Let
|q.ψr | − |q.ψr

0 | = m and |q.ψ r̄ | − |q.ψ r̄
0 | = n. Let v be

the next vertex encountered in the BFS process with graph
distance d(p, v). A lower bound of the TRL is defined as

Lr
B(Tp) = 1 + β · min(L(Tp, q.ψr

0) + d(p, v) · m, Lτ)

Lτ

+ (1−β) · min(L(Tp, q.ψ r̄
0)+d(p, v) · n, Lτ)

Lτ

,

Lemma 12 α-Bound on the temporal range-based looseness
of a place Let WNt(p) be the α-radius temporal word neigh-
borhood of place p. Given a kSPTr query q with query
keywords q.ψ = q.ψr ∪ q.ψ r̄ , let WNt(p, q.r) be a sub-
set of WNt(p), such that

∀(wi , dg(p, v), v.δ) ∈ WNt(p, q.r), v.δ ∈ q.r .

Without loss of generality, assume that a subset of keywords
in q.ψr , denoted as q.ψr

1 and a subset of keywords in q.ψ r̄ ,
denoted as q.ψ r̄

1 have corresponding triples in WNt(p, q.r).
Let |q.ψr | − |q.ψr

1 | = m and |q.ψ r̄ | − |q.ψ r̄
1 | = n. The

123

908 D. Wu et al.

α-bound of the temporal range-based looseness of TQSP Tp

rooted at p is

Lαr
B (Tp) = 1 + β · min(L(Tp, q.ψr

1) + d(p, v) · m, Lτ)

Lτ

+ (1−β) · min(L(Tp, q.ψ r̄
1)+d(p, v) · n, Lτ)

Lτ

.

Lemma 13 α-Bound on the temporal range-based looseness
for nodes Let WNt(N) be the α-radius temporal word neigh-
borhood of node N. Given a kSPTr query q with query
keywords q.ψ = q.ψr ∪ q.ψ r̄ , let WNt(N , q.r) be a subset
of WNt(N), such that

∀(wi , dg(p, v), v.δ) ∈ WNt(N , q.r), v.δ ∈ q.r .

Without loss of generality, assume that a subset of keywords
in q.ψr , denoted as q.ψr

2 and a subset of keywords in q.ψ r̄ ,
denoted as q.ψ r̄

2 have corresponding triples inWNt(N , q.δ).
The α-bound of the temporal range-based looseness of TQSP
Tp rooted at p enclosed in N is

Lαr
B (TN) = min

p∈N(1+β · min(L(Tp, q.ψr
2)+d(p, v) · m, Lτ)

Lτ

+ (1−β) · min(L(Tp, q.ψ r̄
2)+d(p, v) · n, Lτ)

Lτ

).

Algorithm SPTR for processing kSPTr queries extends
algorithm SPTD with the following modifications:

– TRL is used instead of TDL.
– The α-bound on the ranking score f αt

B (e) is calculated
based on Lαr

B (Te) instead of Lαt
B (Te), where e could be

either a place or a node.
– The dynamic bound on TDL Ld

B(Tp) used in Pruning
Rule 5 is replaced by the dynamic bound onTRL Lr

B(Tp).

Algorithm SPTR* further improves algorithm SPTR by
adopting the following optimizations.

– Optimizations O2 and O3 introduced in Sect. 4.1.5 are
applied.

– Pruning Rule 1 and Optimization O4 are extended by
considering whether the reachable vertices fall within the
query temporal range.

5 Experiments

This section evaluates the performance of the proposed algo-
rithms, including (1) BSP (Sect. 3.1), SPP (Sect. 3.2), and
SP (Sect. 3.3) for processing kSP queries, (2) SPTD and
SPTD* (Sect. 4.1) for kSPTd queries, and (3) SPTR and

SPTR* (Sect. 4.2) for kSPTr queries. We have conducted an
empirical study using real datasets under various parameter
settings.

5.1 Settings

Datasets We extracted the data used in our experiments
fromwell-known real RDF knowledge bases, namely DBpe-
dia and Yago (version 2.5). In DBpedia, there are 8,099,955
vertices and 72,193,833 edges in the directed RDF graph,
with a dictionary of 2,927,026 unique words. The docu-
ments of all vertices are organized by an inverted index.
The average posting list length is 56.46, which means on
average, a word appears in the documents of 56.46 vertices
in the graph. Among all vertices, 883,665 are places with
coordinates and 1,138,751 vertices have timestamps. The
number of distinct words in the documents of the vertices
having timestamps is 955,904. In Yago, there are 8,091,179
vertices and 50,415,307 edges in the directed RDF graph,
with a dictionary of 3,778,457 distinct words. The docu-
ments of all vertices are organized by an inverted index
with average posting list length 7.83. Among all the vertices,
4,774,796 vertices are places with coordinates and 812,532
vertices have timestamps. The number of distinct words in
the documents of the vertices having timestamps is 518,314.
The original DBpedia and Yago data graphs are highly con-
nected, with many edges representing “sameAs” “linksTo”
and “redirectTo” relationships, which introduce semantically
meaningless paths. In the datasets we use, such edges are
removed. As a result, DBpedia consists of a huge weak con-
nected component (WCC) with 8,099,624 vertices and 145
tiny WCCs with less than 10 vertices each. Similarly, the
resulting Yago graph has a huge WCC with 8,091,094 ver-
tices and 4 tiny WCCs with average size around 20.

Queries Generating kSP query locations and keywords
totally at random reduces the probability of obtaining any
results. Therefore, we tried to generate meaningful kSP
queries, by following the spatial and keyword distribution of
the datasets. For each generated query, we randomly select a
place p in the RDF graph and then randomly select the query
location from a large range around this place. From p, we
explore the RDF graph in BFS manner and randomly select
at least |q.ψ |/2 and at most |q.ψ | × factor vertices that are
reachable from p (factor ≥ 1). If there are less than |q.ψ |/2
vertices reachable from p, p is discarded to avoid the case that
the subgraph around the query location is too limited. In this
case, we randomly select another place and repeat the whole
process. Among the selected [|q.ψ |/2, |q.ψ | · factor] ver-
tices, we randomly choose at most |q.ψ | vertices, and |q.ψ |
keywords are randomly extracted from the distinct words in
the documents of these vertices as the query keywords. We
set factor = 2 which gives flexibility with respect to |q.ψ |

123

Top-k relevant semantic place retrieval on spatiotemporal RDF data 909

Table 4 Parameter settings

Parameter Values

k 1, 3, 5, 8, 10, 15, 20

|q.ψ | 1, 3, 5, 8, 10

α 1, 2, 3, 5

|q.r | 2, 6, 14, 30, 60, 100, 200, 300

and is large enough to obtain many connected vertices from
p, but not too large to obtain faraway vertices, which are less
semantically relevant to p. To generate kSPTd and kSPTr

queries, we reuse the query locations and the keywords in the
kSP queries. The query timestamps in the kSPTd queries are
randomly selected from the timestamps of those chosen |q.ψ |
vertices. The query temporal ranges in the kSPTr queries are
generated by taking the selected query timestamps as centers
and expanding a small range.

Parameter settings Performance is evaluated by varying the
number of requested results k, the number of query keywords
|q.ψ |, α of the α-radius-based bounds, the size of the query
temporal range |q.r |, and also the data size for scalability
evaluation. We vary one parameter while fixing the others.
Table 4 lists the values of the parameters. The values in bold
are the default values for the parameters. For each setting, we
run 100 queries and measure the average runtime, number of
TQSP computations, and number of R-tree nodes accessed.

Platform All methods were implemented in Java and evalu-
ated on a 3.4 GHz quad-core machine running Ubuntu 12.04
with 16GBytesmemory. For the two datasets, the sizes of the
R-trees, theRDFgraphs, the inverted indexes, and the tempo-
ral inverted indexes are shown in Table 5. The R-tree and the
RDF graph are assumed to be memory-resident. Although
the inverted indexes used can also fit the main memory, we
choose to follow the setting of commercial search engines,
where the inverted index is disk-resident. The reason is that
for each query, only a small portion of the inverted index is
relevant and needs be kept in main memory. Besides, such
a design is scalable when more textual data added to the
RDF knowledge base. The temporal inverted index contains
the documents with timestamps, which refer to the vertices
having both documents and timestamps in the RDF graph.
Note that some of the vertices with documents do not have
timestamps. Hence the size of the temporal inverted index is
smaller than the size of the inverted index.

5.2 Efficiency evaluation of kSP queries

BSP takes too long to finish for some queries because (i)
the termination condition (line 7 of Algorithm 1) only uses

spatial distance as a (very loose) lower bound, (ii) function
getSemanticPlace wastes computational cost for places
that are not qualified semantic places, and (iii) function
getSemanticPlace wastes time on the construction of the
TQSPs that cannot be part of the kSP result. Hence, in our
experiments, we set the maximum runtime for the queries
using BSP to 120 seconds and abort those that take longer
time.

Varying k Figures 3 and 4 show the cost of all methods
on dataset DBpedia and Yago, respectively. As expected, the
runtime, the number of TQSP computations, and the number
of R-tree nodes accessed all increase as k increases, since a
larger number of requested semantic places requires explor-
ing a larger search space.

On dataset DBpedia (Fig. 3), SP is 240–1865 times faster
than BSP and 2–5 times faster than SPP for all k. The perfor-
mance gap is maintained as k increases. The runtime of SP
stays under 500ms for all values of k. For all the methods, the
cost of constructing TQSPs dominates the runtime (shown
as the “semantic time” in Fig. 3a). SPP includes other costs
(i.e., “other time” in Fig. 3a), which are mainly due to the
reachability queries used in Pruning Rule 1. SP is the most
efficient method in terms of both semantic time and other
time, confirming the effectiveness of the proposed α-radius-
based bounds and Pruning Rules 3 and 4. SPP outperforms
BSP because of Pruning Rules 1 and 2. As Fig. 3b shows,
SP only needs to compute the TQSPs for around 2–30 candi-
date places and accesses around 6 R-tree nodes on average,
while SPP needs to compute tens of thousands TQSPs and
access hundreds of R-tree nodes. Note that the numbers of
TQSP computations and R-tree node accesses by BSP are
smaller than the corresponding numbers by SPP, due to the
120 second time limit on BSP that that forcesmany queries to
be terminated before finishing; this means that fewer places
are processed in BSP compared to SPP, however, BSP may
fail to return an answer, while SPP always computes the cor-
rect result. Furthermore, the runtime of SPP is much lower
than that of BSP, which indicates that SPP takes less time to
process more places than BSP does.

The results are similar on dataset Yago (Fig. 4). Com-
pared to DBpedia, the runtime gap between SPP and BSP
decreases. However, the “semantic time” of SPP is 75–314
times less than the “semantic time” of BSP, which indicates
that the pruning techniques in Sect. 3.2 reduce the cost for
TQSP computations significantly, but at the expense of per-
forming reachability queries (i.e., the “other time” in Fig. 4a).
Yago contains more than 4.77M places, while DBpedia has
887K places. Therefore, more reachability queries are issued
on Yago compared to DBpedia, which leads to only a minor
improvement of SPP over BSP on Yago. On the other hand,
SP is robust in pruning a lot of places and nodes and achieves
excellent performance on this large spatial RDF dataset.

123

910 D. Wu et al.

Table 5 Storage cost Data R-tree (MB) RDF graph
(MB)

Inverted Index
(MB)

Temporal Inverted
Index (MB)

DBpedia 50.54 607.95 1307.98 118

Yago 273.17 454.81 231.91 22

(a) runtime (b) number of TQSP computations (c) number of R-tree nodes accessed

Fig. 3 Varying k on DBpedia (kSP)

(a) runtime (b) number of TQSP computations (c) number of R-tree nodes accessed

Fig. 4 Varying k on Yago (kSP)

(a) (b)

Fig. 5 Varying |q.ψ | (kSP)

Varying |q.ψ | Figure 5 compares the runtimes of all meth-
ods on DBpedia and Yago. In this and the subsequent
experiments, we do not show the number of TQSP com-
putations and the number of R-tree nodes accessed by the
methods for the interest of space and because they do not give
different insights compared to the previous experiment. Gen-
erally, the runtimes of all methods increase with the number
of query keywords |q.ψ |, since more vertices in RDF graph
need to be explored to discover TQSPs covering all the query
keywords in |q.ψ |. Again, SP is significantly faster than the
other methods and the performance gap widens with |q.ψ |.
Due to the larger number of places in Yago, which require

Table 6 α-Radius word neighborhood size

α 1 2 3 5

DBpedia (GB) 3.56 24.33 32.53 204.70

Yago (GB) 1.07 3.61 12.37 30.63

more reachability queries processed in SPP, the runtime gap
between SPP and BSP on Yago is smaller than that on DBpe-
dia.However, recall that BSP is terminated after 2minutes, so
it fails to produce results for a number of queries, while SPP
is always correct. SPP has much lower “semantic time” than
BSP; however, it performs numerous reachability queries,
which eventually dominate its runtime cost.

Tuning α In the next experiment, we evaluate the effect of
parameter α in SP. Table 6 displays the total space that the α-
radius word neighborhoods occupy, for the two datasets and
different values of α. As expected, the space increases with
α. On both datasets, the space is moderate when α = 1, 2, 3,
but increases rapidly to 204.70 GB on DBpedia and 30.63
GB on Yago when α = 5.

123

Top-k relevant semantic place retrieval on spatiotemporal RDF data 911

(a) (b)

Fig. 6 Varying α (kSP)

Weevaluate the performanceofSPwith k = 1, 3, 5, 8, 10,
15, 20when varyingα from1 to 5 onDBpedia andYago (Fig.
6). The number of query keywords is fixed to |q.ψ | = 5.
Note that with a larger α, the exploring direction of SP is
more biased to TQSP looseness than spatial distance (Lem-
mas 2 and 4). On DBpedia data, when changing α from 1 to
5, the runtime of SP decreases, since large α values enable
tighter bound derivations and facilitate the pruning of more
pruned places and nodes. We also observed that the num-
ber of TQSP computations and the number of R-tree nodes
accessed significantly decrease when changing α from 1 to
3, but remain stable when changing α from 3 to 5.

Yago has keyword frequency 7.83, which is much smaller
than that of DBpedia (56.46), meaning that it is generally
more difficult to find a query keyword that can be reached
from a place candidate to construct TQSPs. Recall that TQSP
computation takes too much time and the exploration direc-
tion is biased to it; thus, a larger α may increase rather than
decrease the runtime of kSP queries. This is confirmed by
the findings shown in Fig. 6b. When changing α from 1 to 3,
the runtime of SP decreases significantly; the larger α value
enables tighter bound derivations and more pruned places.
However, the runtime increases when changing α from 3 to
5.Overall, based on the evaluation of differentα values on the
two datasets, we conclude that α = 3 is a good choice w.r.t.,
both performance gains and the α-radius word neighborhood
size (i.e., index size).

Scalability In this section, we evaluate the performance of
the three methods on datasets of different sizes. We adopt
the random jump sampling method [43] with probability c =
0.15 on the Yago dataset to generate RDF graphs of different
sizes (described in Table 7). The associated documents of the
selected vertices are also included in each generated dataset.
Figure 7 shows the performance of all methods as a function
of the graph size. To be consistent, we generate queries using
the smallest dataset and apply the generated queries on all
datasets. The runtime ofBSP and SPP generally increases but
not dramatically with the graph size. On the other hand, the
runtime of SP slightly decreases as the graph becomes larger.
The reason behind this behavior, as we found out by analyz-
ing the results, is that with more edges (larger graph), the
connectivity is better, which can make it easier to find good

Table 7 Datasets extracted from Yago

of vertices # of edges # of places

2,000,000 11,659,509 1,144,705

4,000,000 24,174,226 2,317,671

6,000,000 36,966,773 3,507,942

8,091,179 50,415,307 4,774,796

(a) (b)

Fig. 7 Varying graph size by sampling (Yago)

TQSPs without exploring too many places. This is especially
true for SP, which takes advantage of the pruning rules and
the α-radius bounds to prune places that are not associated
with the keywords early.

Comparisonwith top- k aggregationBSP and its optimized
versions (SPP and SP) examine places in increasing spatial
distance from the query location and compute their looseness
as necessary, until the top-k places are confirmed. It is also
possible to evaluate kSP queries by a hybrid approach that
combines two ranked lists of places: one that has qualified
semantic places in increasing order of their looseness and one
that has places in increasing order of their spatial distance to
the query location. The first list can be incrementally gen-
erated by the extending the bottom-up RDF keyword search
approach [42] (described in the Introduction) and the sec-
ond by spatial nearest neighbor search. The two lists can be
combined fast using the classic threshold algorithm (TA) of
[22]: Each time the next place is found by keyword search,
its spatial distance is computed on-the-fly to complete its
score; each time the next spatially nearest place is accessed,
whether it is a qualifying semantic place (and its looseness)
is computed by calling Algorithm 2. The algorithm termi-
nates if the top-k TQSPs found so far cannot be outranked
by the best possible place not found yet, according to the last
incrementally computed spatial distance and looseness; i.e.,
the termination threshold of TA can obtained by applying f
on these two values.

We implemented TA and compared it with our meth-
ods in Fig. 8 for queries with various numbers of keywords
|q.ψ |. On DBpedia, only when |q.ψ | = 1 TA performs bet-
ter than BSP while being eight times slower than SP. When
|q.ψ | ≥ 3, the runtime of TA increases significantly and TA
becomes even slower than BSP. When |q.ψ | ≥ 3, in order

123

912 D. Wu et al.

(a) (b)

Fig. 8 Comparison with top-k aggregation (TA)

(a) (b)

Fig. 9 Optimization evaluation on Yago

to find the semantic places in increasing looseness order, TA
needs to start exploration from all the vertices containing any
of the keywords and maintains |q.ψ | queues to decide which
vertex to explore next. TA also book-keeps for each vertex all
the query keywords that have reached it (if a place has been
reached by all query keywords, it becomes a semantic place
and its looseness is calculated). These operations dominate
the cost of TA, which spends a long time to rank the places
by looseness. The results on Yago are similar to the DBpe-
dia results. In addition, note that TA is slower than BSP for
|q.ψ | ≥ 3 for any value of k.

In summary, while it is extremely cheap to compute spa-
tial distances and conduct spatial nearest neighbor search,
it is expensive to conduct graph browsing and incremental
ranking of places by looseness. This imbalance between the
costs of computing spatial distance and looseness motivated
the design of our algorithms, which prioritize the examina-
tion of places based on their spatial distances in order to
minimize graph traversal operations.

5.3 Efficiency evaluation of kSPT queries

Optimization evaluation The proposed optimization tech-
niques are evaluated separately in this experiment. Optimiza-
tions O1, O2, O3, and O4 are applied for kSPTd queries and
optimizations O2, O3, and O4 are applied for kSPTr queries.
Figure 9 shows the runtime after applying each of the opti-
mizations to the kSPTd and kSPTr queries. The result shows
that the runtime is progressively reduced by each optimiza-
tion in algorithms SPTD and SPTR, which justifies their
value. In the rest of the experiments, we show the perfor-
mance of algorithms SPTD* and SPTR* that include all
optimizations.

Varying k Figures 10 and 11 show the cost of algorithms
SPTD, SPTD*, SPTR, and SPTR* on datasets DBpedia and
Yago, respectively. As k increases, the runtime, the num-
ber of TQSP computations, and the number of accessed
R-tree nodes of all the algorithms increase,which is expected.
Because all the algorithms find results in the search space in
an incremental fashion. The more results are requested, the
more the computational effort to explore the search space is.
AlgorithmsSPTD*andSPTR*outperformalgorithmsSPTD
and SPTR, respectively. This is because the optimizations
proposed in Sect. 4.1.5 take effect in reducing the computa-
tional cost.
Varying |q.ψ | Figure 12 compares the runtimes of algo-
rithms SPTD, SPTD*, SPTR, and SPTR* on datasets DBpe-
dia and Yago. The results show that algorithms SPTD* and
SPTR*aremore efficiently than algorithmsSPTDandSPTR.
The runtimes of the algorithms slightly increase as the num-
ber of keywords increases on DBpedia. The reason is that
more vertices in the RDF graph will be explored to discover
TQSPs covering all the query keywords in |q.ψ |. On Yago,
the runtimes of the algorithms are not sensitive to the number
of query keywords. The reason is that Yago is smaller in size
than DBpedia, so that computing a single TQSP on Yago is
faster. Thus, the time spent on exploring the vertices tomatch
more query keywords is not much. Then the overall runtime
is almost stable as |q.ψ | increases.

(a) (b) (c)

Fig. 10 Varying k on DBpedia (kSPT)

123

Top-k relevant semantic place retrieval on spatiotemporal RDF data 913

(a) (b) (c)

Fig. 11 Varying k on Yago (kSPT)

(a) (b)

Fig. 12 Varying |q.ψ | (kSPT)

(a) (b)

Fig. 13 Varying |q.r | (kSPT)

Varying |q.r | Figure 13 shows the runtimes of algorithms
SPTR and SPTR* when varying the temporal range |q.r | in
kSPTr queries. On dataset DBpedia, the runtime decreases as
|q.r | increases, while on dataset Yago, the runtime is almost
stable. This is because onDBpedia computing a single TQSP
is expensive and more TQSPs are calculated when |q.r | is
small, compared with the case when |q.r | is large. However,
on Yago, although the number of TQSP computations is also
larger when |q.r | is small, computing a single TQSP is fast,
so that the overall runtime does not change significantly with
|q.r |. This experiment again shows that SPTR* outperforms
SPTR.

Tuning α and the length of the posting lists l In this
experiment, we evaluate the effect of parameter α and l
in algorithms SPTD* and SPTR*. Table 8 displays the
total space that the α-radius temporal word neighborhoods
occupy, for the two datasets and different values of α and l.
As expected, the space increases with both α and l.

Figures 14 and 15 show the performance of algorithms
SPTD* and SPTR* when varying α from 1 to 3 and vary-

ing l (parameter in optimization O3) from 104 to +∞ on
DBpedia and Yago. We observe the following effects of the
two parameters. Firstly, large α values enable tighter bound
derivations and facilitate the pruning of more pruned places
and nodes, so that the computational cost can be reduced.
However, large α will produce a big index, so that the time
needed for loading data from disk increases. When the com-
putational cost saved by large α does not compensate the
cost incurred by loading data, the overall runtime increases.
Thus, there is a tradeoff between the saving for computation
and cost for transferring data brought by α. Secondly, when
fixing α, a small l will not incur high cost of data loading,
but make the bounds loose so that the computational cost is
high. On the contrary, large l values may help to derive tight
bounds to reduce computational cost, but incur high cost for
data loading. Overall, based on the empirical evaluation of
different α and l values on the two datasets, we recommend
α = 3, l = 107 for both Yago and DBpedia w.r.t., both
performance gains and the α-radius temporal word neigh-
borhood size (i.e., index size).

Tuning τ Figure 16 shows the runtimes of algorithms
SPTD* and SPTR* when varying τ (parameter in optimiza-
tion O2) on DBpedia and Yago. Table 9 shows the size of the
α-radius temporal word neighborhood index I α for different
values of τ . As expected, as τ increases, more data will be
stored in the index so that more storage is needed. The run-
timeof algorithmsSPTD*andSPTR*onYagofirstly slightly
increases and then increases significantly as τ increases.
Algorithm SPTR* exhibits an increasing trend on DBpedia.
This result shows that optimization O2 does improve the per-
formance. However, algorithm SPTD* is not sensitive to τ

on DBpedia. By taking both the runtime and the storage into
account, we recommend τ = 104 for DBpedia and τ = 103

for Yago.

Scalability This experiment evaluates the performance of
algorithms SPTD, SPTD*, SPTR, and SPTR* on datasets of
different sizes. We reuse the four datasets generated for kSP
queries. Figure 17 shows the performance of the four algo-

123

914 D. Wu et al.

Table 8 α-Radius temporal
word neighborhood size

DBpedia Yago

α = 1 α = 2 α = 3 α = 1 α = 2 α = 3

l = 104 45 MB 81 MB 118 MB 15 MB 20 MB 20 MB

l = 106 321 MB 1.1 MB 2.8 GB 140 MB 856 MB 1.8 GB

l = 107 1.1 GB 3.1 GB 7.8 GB 170 MB 1.3 GB 4.9 GB

l = ∞ 1.1 GB 3.9 GB 15 GB 170 MB 1.4 GB 5.6 GB

(a) (b)

Fig. 14 Tuning α and l for kSPTd Queries

(a) (b)

Fig. 15 Tuning α and l for kSPTr Queries

(a) (b)

Fig. 16 Varying τ (kSPT)

rithms as a function of the graph size. To be consistent, we
generate queries using the smallest dataset and apply the gen-
erated queries on all datasets. Algorithms SPTD* and SPTR*
outperform algorithms SPTD and SPTR and the runtimes of
all four algorithms increase in a linear fashion.

6 Related work

Keyword search on graph data Due to its user-friendly
query interface, keyword search is not only the de facto infor-
mation retrieval method for WWW data but also a popular
querying mechanism for XML documents [18,25], relational
databases [12,34], and graph data [19,29,39]. Traditional
graph search algorithms convert queries into search over fea-
ture spaces, such as paths [54], frequent-patterns [63], and
sequences [36], which focus more on the structure of the
graph rather than the semantic content of the graph.Neverthe-
less, keyword search over graph data [12,18,19,25,29,34,39]
determines a group of densely linked nodes in the graph by
making use of both the content and the linkage structure.
The overall quality of the results can be improved thanks
to the reinforcement between these two sources of informa-
tion. Moreover, unexpected and interesting answers that are
often difficult to be obtained via rigidly-formatted structured
queries may be discovered by the keyword search. A recent
survey about keyword search on schema graphs (e.g., rela-
tional data and XML documents) and schema-free graphs
can be found in [61]. Liu et al. [48] study the keyword-based
search on temporal graphs with optional predicates and rank-
ing functions related to timestamps. Zhong et al. [66] search
for a both locally and globally diverse set of most relevant
results for a given keyword query on graphs.

Keyword search on RDF data RDF data are a special type
of graph data, traditionally queried using structured query
languages, like SPARQL. There has been increasing inter-
est in keyword queries over RDF data. SPARQL queries are
augmented with keywords for ranked retrieval of RDF data
[21]. A keyword-based retrieval model over RDF graphs [20]

Table 9 Size of α-radius
temporal word neighborhood
index I α

τ 50 100 250 500 103 104 105 106

Yago

Storage 6.1G 4.0G 2.0G 942M 455M 32M 3.2M 332K

τ – 100 250 500 103 104 105 106

DBpedia

Storage – 58G 31G 19G 12G 1.7G 53M 332K

123

Top-k relevant semantic place retrieval on spatiotemporal RDF data 915

(a) (b)

Fig. 17 Varying graph size by sampling

identifies a set of maximal subgraphs whose vertices contain
the query keywords. These subgraphs are ranked based on
statistical language models (LMs) [52]. Top-k exploration
of query candidates over RDF [56] first constructs a set of
k query subgraphs based on the query keywords, and then
let users choose the appropriate query graph. Query evalua-
tion is performed using the underlying database engine. For
the scalable and efficient processing of keyword queries on
large RDF graphs, a summarization algorithm with pruning
mechanisms on exploratory keyword search and its results is
proposed [42]. Both [42,56] follow the definition of BLINKS
[29] for the result subgraphs. k-nearest keyword (k-NK)
search on RDF graphs [45] finds the k closest pairs of ver-
tices, (vi , ui) that contain two given keywords q and w,
respectively. SemDIS [27] demonstrates a system, where
semantic associations are discovered in a large semantic
metabase represented in RDF. Keyword query interpreta-
tion [23] personalizes the interpretation of a new query on
RDF databases by a sequence of structured queries that cor-
respond to the interpretations of keyword queries in the query
history. Personalized keyword search on RDF [24] can per-
sonalize ranks based on the ranking SVM approach that
trains ranking functions with RDF-specific training features
and utilizes historical user feedback. Diversified keyword
search on RDF graphs [14] diversifies results by considering
both the content and the structure of the results, as well as
the RDF schema. A path-oriented RDF index for keyword
search query [16] captures associations across RDF paths
for improving the query execution performance. Recently,
a query graph assembly approach [28] converts keyword
queries into graph queries. SPARQL and keyword search
has been integrated to find SPARQLmatches that are closest
to all keywords in RDF graphs [51]. A type-based summary
which summarizes all the inter-entity relationships fromRDF
data is used for keywords-to-SPARQL translation [47].

Spatial RDF stores Recently, there are many efforts toward
the efficient storage and indexing of spatial RDF data. Par-
liament [7] is an implementation of GeoSPARQL. Strabon
[41] employs a column-store approach to manage the RDF
data in PostGIS, implementing two SO and OS indices for
each property table, and uses spatial indexes on top of them.
Brodt et al. [15] adopts a two-stage algorithm that either

processes the non-spatial query components first and then
verifies the spatial ones or the other way around to sup-
port spatial querying on RDF data. Geo-Store [58] uses a
Hilbert space-filling curve to index the space and supports
spatial range queries and NN search. S-Store [59] primarily
indexes spatial RDF data based on their structure and uses
their spatial locations to prune triples during search. In addi-
tion, several commercial systems, such as Oracle, Virtuoso
[10], and OWLIM-SE [6], support spatial RDF data man-
agement, however, details about their internal design are not
available. A spatial encoding scheme for RDF stores that
supports efficient spatial data management was proposed in
Liagouris et al. [44]. To our knowledge, no previous work on
spatial RDF data management supports queries that combine
spatial and keyword search.

Discussion Our work differs significantly from existing
work. Firstly, the kSP and kSPT queries studied are schema-
free; thus, query processing and optimization techniques in
traditional RDF stores are inapplicable. Secondly, although
keyword search on RDF data (i.e., one aspect of a kSP query)
has been investigated in the literature, there is no direct way
of extending the existing algorithms to process kSP and
kSPT queries. In fact, extensions are expected to be highly
inefficient because they do not guide search based on the
spatial and the temporal arguments in the query. Thirdly,
kSP and kSPT queries enable users to search nearby places
that semantically and temporally match their preferences
(expressed by keywords and temporal arguments). Such a
functionality finds important and useful applications as dis-
cussed in Sect. 1, and cannot be achieved by other forms of
queries in the literature. Fourthly, the query evaluation algo-
rithms proposed in this paper are orthogonal to indexing and
storage techniques for graph data, which can be applied to
further improve the performance of kSP and kSPT search on
very large RDF data.

7 Conclusion

In this paper, we proposed a top-k relevant semantic place
retrieval (kSP) query and a top-k spatiotemporal semantic
place retrieval (kSPT) query. The kSP query takes as input
a query location q.λ and a set of query keywords q.ψ , and
returns the top-k tightest qualified semantic places ranked by
their spatial distance to q.λ and their semantic looseness to
q.ψ over the RDF graph. The kSPT query extends the kSP
query by incorporating the temporal dimension. Both the two
types of queries do not require the use of any structured query
languages, and thus they are user-friendly and do not rely on
the knowledge of the RDF schema. Compared to existing
keyword search, kSP queries are spatial-aware and support
spatial-personalized search.After suggesting a baseline algo-

123

916 D. Wu et al.

rithm (BSP), we propose two pruning techniques that reduce
the cost of computing the semantic relevance of each place
to the query keywords; namely (i) an unqualified place prun-
ing approach that discards places which do not cover the
query keywords without computing their TQSPs, and (ii) a
dynamicbound-basedpruning approach that early terminates
the TQSP computation of a place if the place cannot enter
the kSP result. To further boost efficiency, in Sect. 3.3, we
introduce the concept of α-radius word neighborhood and
propose α-radius bounds on both the looseness and the rank-
ing scores that can be applied to prune not only individual
places but also sets of places (i.e., R-tree nodes). The pro-
posed algorithms for kSP queries have been extended and
improved for evaluating kSPT queries. The proposed tech-
niques are evaluated on two large real RDF data sets, i.e.,
DBpedia and Yago. The results show that applying all tech-
niques enables processing kSP and kSPT queries efficiently
and outperforms the basic method by orders of magnitude.

In this paper, the RDF graph data assumed to be memory-
resident. In the future, we plan to integrate and extend
existing indexing and storage techniques for disk-resident
graph data to develop a scalable solution. Our problem defi-
nition follows directly from previous work of RDF keyword
search [23,29,42,56], where only incoming paths from key-
words to the root node of a result subgraph are considered. In
the future,we also plan to qualitatively evaluate an alternative
definition of semantic places, where the keywords in outgo-
ing paths from them are also considered (i.e., edge directions
are disregarded).

References

1. Alternative fueling station locator. http://www.afdc.energy.gov/
locator/stations/

2. Crime in chicagoland. http://crime.chicagotribune.com/
3. Data.gov. http://www.data.gov
4. Dbpedia. http://wiki.dbpedia.org
5. Hospital compare. http://health.data.gov/def/cqld
6. Owlim-se. http://owlim.ontotext.com/display/OWLIMv43/

OWLIM-SE
7. Parliament. http://parliament.semwebcentral.org
8. Patients like me. www.patientslikeme.com
9. Spot crime. http://www.spotcrime.com/

10. Virtuoso. http://virtuoso.openlinksw.com
11. Yago. http://www.mpi-inf.mpg.de/departments/databases-and-

information-systems/research/yago-naga/yago/
12. Agrawal, S., Chaudhuri, S., Das, G.: Dbxplorer: a system for

keyword-based search over relational databases. In: ICDE, pp. 5–
16 (2002)

13. Battle, R., Kolas, D.: Enabling the geospatial semantic web with
parliament and geosparql. Semant. Web 3(4), 355–370 (2012)

14. Bikakis, N., Giannopoulos, G., Liagouris, J., Skoutas, D., Dala-
magas, T., Sellis, T.: Rdivf: diversifying keyword search on RDF
graphs. In: TPDL, pp. 413–416 (2013)

15. Brodt, A., Nicklas, D., Mitschang, B.: Deep integration of spatial
query processing into native RDF triple stores. In: SIGSPATIAL,
pp. 33–42 (2010)

16. Cappellari, P., Virgilio, R.D., Maccioni, A., Roantree, M.: A path-
oriented RDF index for keyword search query processing. In:
DEXA, pp. 366–380 (2011)

17. Cheng, J., Huang, S., Wu, H., Fu, A.W.: Tf-label: a topological-
folding labeling scheme for reachability querying in a large graph.
In: SIGMOD, pp. 193–204 (2013)

18. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: Xsearch: a semantic
search engine for XML. In: VLDB, pp. 45–56 (2003)

19. Dalvi, B.B., Kshirsagar, M., Sudarshan, S.: Keyword search on
external memory data graphs. PVLDB 1(1), 1189–1204 (2008)

20. Elbassuoni, S., Blanco, R.: Keyword search over RDF graphs. In:
CIKM, pp. 237–242 (2011)

21. Elbassuoni, S., Ramanath, M., Schenkel, R., Weikum, G.: Search-
ing RDF graphs with SPARQL and keywords. IEEE Data Eng.
Bull. 33(1), 16–24 (2010)

22. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms
for middleware. In: PODS (2001)

23. Fu, H., Anyanwu, K.: Effectively interpreting keyword queries on
RDF databases with a rear view. In: ISWC, pp. 193–208 (2011)

24. Giannopoulos, G., Biliri, E., Sellis, T.: Personalizing keyword
search on RDF data. In: TPDL, pp. 272–278 (2013)

25. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK:
ranked keyword search over XML documents. In: SIGMOD, pp.
16–27 (2003)

26. Guttman, A.: R-trees: A dynamic index structure for spatial search-
ing. In: SIGMOD, pp. 47–57 (1984)

27. Halaschek-Wiener, C., Aleman-Meza, B., Arpinar, I.B., Sheth,
A.P.: Discovering and ranking semantic associations over a large
RDF metabase. In: VLDB, pp. 1317–1320 (2004)

28. Han, S., Zou, L., Yu, J.X., Zhao, D.: Keyword search on RDF
graphs: a query graph assembly approach. In: CIKM, pp. 227–236
(2017)

29. He, H., Wang, H., Yang, J., Yu, P.S.: BLINKS: ranked keyword
searches on graphs. In: SIGMOD, pp. 305–316 (2007)

30. Hendler, J.A., Holm, J., Musialek, C., Thomas, G.: US government
linked open data: semantic.data.gov. IEEE Intell. Syst. 27(3), 25–
31 (2012)

31. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases.
ACM Trans. Database Syst. 24(2), 265–318 (1999)

32. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2:
a spatially and temporally enhanced knowledge base from
Wikipedia. Artif. Intell. 194, 28–61 (2013)

33. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient IR-style
keyword search over relational databases. In: VLDB, pp. 850–861
(2003)

34. Hristidis, V., Papakonstantinou, Y.: DISCOVER: keyword search
in relational databases. In: VLDB, pp. 670–681 (2002)

35. Inglis, J.: Inverted indexes and multi-list structures. Comput. J.
17(1), 59–63 (1974)

36. Jiang, H., Wang, H., Yu, P.S., Zhou, S.: Gstring: a novel approach
for efficient search in graph databases. In: ICDE, pp. 566–575
(2007)

37. Jin, R., Ruan, N., Dey, S., Yu, J.X.: SCARAB: scaling reachability
computation on large graphs. In: SIGMOD, pp. 169–180 (2012)

38. Jin, R., Ruan, N., Xiang, Y.,Wang, H.: Path-tree: an efficient reach-
ability indexing scheme for large directed graphs. ACM Trans.
Database Syst. 36(1), 7 (2011)

39. Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R.,
Karambelkar, H.: Bidirectional expansion for keyword search on
graph databases. In: VLDB, pp. 505–516 (2005)

40. Koubarakis,M.,Kyzirakos,K.:Modeling and queryingmetadata in
the semantic sensor web: the model stRDF and the query language
stSPARQL. In: ESWC, pp. 425–439 (2010)

41. Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: a
semantic geospatial DBMS. In: ISWC, pp. 295–311 (2012)

123

http://www.afdc.energy.gov/locator/stations/
http://www.afdc.energy.gov/locator/stations/
http://crime.chicagotribune.com/
http://www.data.gov
http://wiki.dbpedia.org
http://health.data.gov/def/cqld
http://owlim.ontotext.com/display/OWLIMv43/OWLIM-SE
http://owlim.ontotext.com/display/OWLIMv43/OWLIM-SE
http://parliament.semwebcentral.org
www.patientslikeme.com
http://www.spotcrime.com/
http://virtuoso.openlinksw.com
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/

Top-k relevant semantic place retrieval on spatiotemporal RDF data 917

42. Le, W., Li, F., Kementsietsidis, A., Duan, S.: Scalable keyword
search on large RDF data. TKDE 26(11), 2774–2788 (2014)

43. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: KDD,
pp. 631–636 (2006)

44. Liagouris, J.,Mamoulis, N., Bouros, P., Terrovitis,M.: An effective
encoding scheme for spatial RDF data. PVLDB 7(12), 1271–1282
(2014)

45. Lian, X., Hoyos, E.D., Chebotko, A., Fu, B., Reilly, C.: K-nearest
keyword search in RDF graphs. J. Web Sem. 22, 40–56 (2013)

46. Libkin, L., Reutter, J.L., Soto, A., Vrgoc, D.: Trial: a navigational
algebra for RDF triplestores. ACM Trans. Database Syst. 43(1),
5:1–5:46 (2018)

47. Lin, X., Ma, Z., Yan, L.: RDF keyword search using a type-based
summary. J. Inf. Sci. Eng. 34(2), 489–504 (2018)

48. Liu, Z., Wang, C., Chen, Y.: Keyword search on temporal graphs.
In: ICDE, pp. 1807–1808 (2018)

49. Neumann, T., Weikum, G.: RDF-3X: a risc-style engine for RDF.
PVLDB 1(1), 647–659 (2008)

50. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing
in spatial network databases. In: VLDB, pp. 802–813 (2003)

51. Peng, P., Zou, L., Qin, Z.: Answering top-k query combined key-
words and structural queries on RDF graphs. Inf. Syst. 67, 19–35
(2017)

52. Ponte, J.M., Croft, W.B.: A language modeling approach to infor-
mation retrieval. In: SIGIR, pp. 275–281 (1998)

53. Prud’Hommeaux, E., Seaborne, A., et al.: Sparql query lan-
guage for rdf. W3C Recomm. 15 (2008). https://www.w3.org/TR/
rdfsparql-query

54. Shasha, D., Wang, J.T.L., Giugno, R.: Algorithmics and applica-
tions of tree and graph searching. In: PODS, pp. 39–52 (2002)

55. Shi, J., Wu, D., Mamoulis, N.: Top-k relevant semantic place
retrieval on spatial RDF data. In: SIGMOD, pp. 1977–1990 (2016)

56. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration
of query candidates for efficient keyword search on graph-shaped
(RDF) data. In: ICDE, pp. 405–416 (2009)

57. van Schaik, S.J., de Moor, O.: A memory efficient reachability
data structure through bit vector compression. In: SIGMOD, pp.
913–924 (2011)

58. Wang, C., Ku, W., Chen, H.: Geo-store: a spatially-augmented
SPARQL query evaluation system. In: SIGSPATIAL, pp. 562–565
(2012)

59. Wang, D., Zou, L., Feng, Y., Shen, X., Tian, J., Zhao, D.: S-store:
an engine for large RDF graph integrating spatial information. In:
DASFAA, pp. 31–47 (2013)

60. Wang, D., Zou, L., Zhao, D.: GST-store: an engine for large RDF
graph integrating spatiotemporal information. In: EDBT, pp. 652–
655 (2014)

61. Wang, H., Aggarwal, C.C.: A survey of algorithms for keyword
search on graph data. In: Managing and Mining Graph Data, pp.
249–273 (2010)

62. Wylot, M., Hauswirth, M., Cudré-Mauroux, P., Sakr, S.: RDF data
storage and query processing schemes: a survey. ACM Comput.
Surv. 51(4), 84:1–84:36 (2018)

63. Yan, X., Yu, P.S., Han, J.: Substructure similarity search in graph
databases. In: SIGMOD, pp. 766–777 (2005)

64. Yildirim, H., Chaoji, V., Zaki, M.J.: GRAIL: scalable reachability
index for large graphs. PVLDB 3(1), 276–284 (2010)

65. Zeng, K., Yang, J., Wang, H., Shao, B., Wang, Z.: A distributed
graph engine for web scale RDF data. PVLDB 6(4), 265–276
(2013)

66. Zhong, M., Wang, Y., Zhu, Y.: Coverage-oriented diversification
of keyword search results on graphs. In: DASFAA, pp. 166–183
(2018)

67. Zou, L., Mo, J., Chen, L., Özsu, M.T., Zhao, D.: gStore: answering
SPARQL queries via subgraph matching. PVLDB 4(8), 482–493
(2011)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://www.w3.org/TR/rdfsparql-query
https://www.w3.org/TR/rdfsparql-query

	Top-k relevant semantic place retrieval on spatiotemporal RDF data
	Abstract
	1 Introduction
	2 Problem definition
	2.1 kSP query
	2.2 kSPT query
	2.2.1 kSPTd query
	2.2.2 kSPTr query

	3 Algorithms for kSP queries
	3.1 Basic method: BSP
	3.2 Improved pruning: SPP
	3.2.1 Unqualified place pruning
	3.2.2 Dynamic bound-based pruning

	3.3 α-Radius-based bounds

	4 Algorithms for kSPT queries
	4.1 Processing kSPTd queries
	4.1.1 Temporal Inverted Index
	4.1.2 Dynamic bound-based pruning
	4.1.3 α-Radius-based bounds
	4.1.4 SPTD algorithm
	4.1.5 Optimizations

	4.2 Processing kSPTr queries

	5 Experiments
	5.1 Settings
	5.2 Efficiency evaluation of kSP queries
	5.3 Efficiency evaluation of kSPT queries

	6 Related work
	7 Conclusion
	References

