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ABSTRACT
Geospatial data constitute a considerable part of SemanticWeb data,

but at the moment, its sources are not sufficiently interlinked with

topological relations in the Linked Open Data cloud. Geospatial

Interlinking aims to cover this gap through space tiling techniques,

which significantly restrict the search space. Yet, the state-of-the-

art techniques operate exclusively in a batch manner that produces

results only after processing the entire input datasets. In each run,

they are also restricted to searching for an individual topological

relation, even though most operations are common for the 10 main

relations. In this work, we address both issues: we introduce a batch

algorithm that simultaneously computes all topological relations

and define the task of Progressive Geospatial Interlinking, which

produces results in a pay-as-you-go manner when the available

computational or temporal resources are limited. We propose two

progressive algorithms and explain how they can be adapted to

massive parallelization with Apache Spark. We conduct a thorough

experimental study over a six large, real datasets, demonstrating

the superiority of our techniques over the current state-of-the-art.
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1 INTRODUCTION
The Web abounds in huge datasets of geospatial data, such as Open-

StreetMap
1
and the US Census Bureau TIGER files

2
. Alone, Ge-

ographica 2.0 [8] has gathered almost half a billion RDF triples

from various open data sources, such as the CORINE Land Cover

dataset
3
, while the spatial knowledge base LinkedGeoData conveys

more than 3 billion geographic entities (geometries in the following)

and 20 billion RDF triples
4
.

To leverage these voluminous sources of geospatial data, we

need to capture all important topological relations between their

geometries, according to the DE-9IM model [2, 3, 6]. These rela-

tions are indispensable for crucial applications like the Icewatch

project
5
, which gathers in-situ observational data about icebergs

1
https://www.openstreetmap.org

2
http://spatialhadoop.cs.umn.edu/datasets.html

3
https://land.copernicus.eu/pan-european

4
http://linkedgeodata.org/About

5
https://icewatch.met.no
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from ships navigating the arctic and associates them with geospa-

tial information extracted from satellite images offered by Earth

observation programmes, such as the US Landsat program
6
and the

EU Copernicus Programme
7
. Due to the effects of climate change,

this information needs to be frequently updated in order to ensure

safe ship navigation.

Moreover, applications involving reasoning [11, 13], question an-

swering [27] or simply running GeoSPARQL queries over geospatial

data [17] call for increasing the interlinking between the datasets

of the Linked Open Data (LOD) cloud. At the moment, though, the

geospatial data is underrepresented in the LODCloud
8
: even though

it corresponds to almost 20% of the LOD cloud triples, only 7% of

the triples linking different datasets pertain to geometries [14].

Such applications can be facilitated byGeospatial Interlinking [19,
20, 23], i.e., the task of automatically finding topological relations

between all input geometries. However, Geospatial Interlinking

may have to compare every geometry with all others, thus having

a quadratic time complexity with respect to the input geometries.

The computational cost of verifying a single topological relation

is also high: each geometry is converted into a labelled topology

graph, with a vertex for each point and an edge for each pair of

consecutive points
9
. The two graphs are then merged in order to

check a topological relation between the respective geometries in a

way that considers their interior, boundary and exterior. The time

complexity is approximately 𝑂 (𝑁 · log𝑁 ), where 𝑁 is the number

of edges in the merged graphs [1]. Therefore, existing Geospatial

Interlinking approaches [19, 20, 23] scale to large volumes of data

by avoiding the brute-force approach of verifying all geometry

pairs. The number of required computations is reduced without

sacrificing effectiveness (i.e., the identified links between the input

geometries) by operating in two steps:

1) Filtering drastically reduces the number of candidate geometry

pairs, through space tiling, which imposes a uniform grid over the

data space and assigns each geometry to all tiles that intersect its

Minimum Bounding Rectangle (MBR). This is illustrated in Figure 1.
2) Verification is applied to all pairs of geometries, which co-occur

in at least one tile, to confirm their topological relation.

Current state-of-the-art. Silk-spatial [23] employs a static space
tiling approach that defines a fixed EquiGrid on Earth’s surface,

independently of the input data. As a result, its tiles are usually

coarse-grained, which means that the number of geometry pairs

that are verified is too large, incurring a computational cost that is

close to that of a brute-force approach [20]. This is partially amelio-

rated through massive parallelization on top of Apache Hadoop
10
.

6
https://www.usgs.gov/core-science-systems/nli/landsat

7
https://www.copernicus.eu/en

8
https://lod-cloud.net

9
https://locationtech.github.io/jts/jts-faq.html

10
https://hadoop.apache.org

https://doi.org/10.1145/3442381.3449850
https://www.openstreetmap.org
http://spatialhadoop.cs.umn.edu/datasets.html
http://linkedgeodata.org/About
https://icewatch.met.no
https://doi.org/10.1145/3442381.3449850
https://www.usgs.gov/core-science-systems/nli/landsat
https://www.copernicus.eu/en
https://lod-cloud.net
https://locationtech.github.io/jts/jts-faq.html
https://hadoop.apache.org


WWW ’21, April 19–23, 2021, Ljubljana, Slovenia George Papadakis1 , Georgios Mandilaras1 , Nikos Mamoulis2 , Manolis Koubarakis1

b00 b01 b02 b03

b10 b12 b13

b20 b21 b22 b23

b30 b32 b33

g1

b31

g2

g4
g3

reference point

b11

Figure 1: The space tiling approach for four geometries, where 𝑔1

is a LineString that intersects LineString 𝑔2 and touches Polygon
𝑔3, which contains Polygon 𝑔4. The shaded area corresponds to the
intersection of the MBRs of 𝑔1 and 𝑔2. Its top left corner is used as a
reference point to avoid verifying the same pair more than once.

RADON [20] improves on Silk-spatial by building dynamic, fine-
grained tiles: in each dimension, the extent of the tiles has a length

equal to the average extent of the geometry MBRs in that dimen-

sion. Given that every geometry is assigned to all tiles intersecting

its MBR, the contents of the resulting tiles are overlapping and,

thus, abound in redundant geometry pairs, i.e., pairs of intersecting

geometries that co-occur in multiple tiles. RADON maintains in

main memory a hash-table with all geometry pairs verified so far,

which is used to avoid verifying redundant pairs more than once. Its

tile-centric approach also maintains all input data in main memory,

thus yielding very high space requirements.

Regarding Verification, both approaches limit it to a single topo-

logical relation, even though the same grid is used for all relations.

This means that if another relation needs to be examined over the

same data, the entire algorithm is repeated from scratch.

Note also that both approaches operate in a batch (i.e., budget-

agnostic) way that consumes the input datasets in no particular

order. Thus, they cannot schedule their processing to fully exploit

high-end platforms with extreme capabilities for massive parallel

processing, but limited availability, such as AmazonWeb Services
11
.

Contributions. In this work, we go beyond the current state-

of-the-art in a number of ways:

1) In Section 3, we define Holistic Geospatial Interlinking as the

task of simultaneously computing all non-trivial topological re-

lations. We also define Progressive Holistic Geospatial Interlinking
as the task of computing all non-trivial topological relations in a

pay-as-you-go manner that prioritizes the verification of geometry

pairs based on heuristics.

2) In Section 4, we introduceGIA.nt, a batch algorithm forHolistic

Geospatial Interlinking that reduces RADON’s space requirements

by at least 50% and its run-time almost by an order of magnitude.

3) In Section 5, we introduce several weighting schemes that can

be used to define the optimal order of geometry pairs for Progressive

Holistic Geospatial Interlinking.

4) In Section 6, we explain how RADON and GIA.nt can be

adapted to address Progressive Holistic Geospatial Interlinking.

Compared to batch RADON, the current state of the art, Progressive

11
https://aws.amazon.com

GIA.nt is able to reduce the time required to detect the vast majority

of topological relations by a whole order of magnitude.

5) In Section 7, we parallelize (Progressive) GIA.nt on top of

Apache Spark (http://spark.apache.org) so as to scale sublinearly to

voluminous data, interlinking 190M geometries within minutes.

7) In Section 8, we evaluate all approaches through a thorough

experimental analysis that involves six real, large-scale datasets.

2 RELATEDWORK
As already discussed, Silk-spatial and RADON are the main algo-

rithms for Geospatial Interlinking. The generic schema matching

system AgreementMaker [4] has also been adapted to this prob-

lem, outperforming Silk-spatial in terms of time efficiency [19].

However, the thorough experimental evaluation in [19] demon-

strates that RADON is significantly faster than both Silk-spatial

and AgreementMaker, constituting the state-of-the-art approach.

This verifies the experimental results of the “Spatial” track of the

OM-2019 workshop (http://om2019.ontologymatching.org).

Note that Geospatial Interlinking differs from traditional spatial

joins, whichmainly look for geometry pairs that intersect or pairs of

nearby points. Instead, Geospatial Interlinking examines a variety of

topological relations, as explained in Section 3. Partitioning-based

spatial join algorithms [10] like PBSM [16] are mostly appropriate

when the geometries are relatively small compared to the tiles (as

in the coarse-grained grid of Silk-spatial). On the other hand, when

using a fine-grained grid (as in RADON), each geometry typically

participates in many, small tiles (e.g., in the example of Figure 1).

Another important task is the preprocessing of input geometries

in order to correct digitization errors and sliver polygons, either

manually or by leveraging ontologies [18]. This data cleaning is

orthogonal to Geospatial Interlinking, as it can be applied after

preprocessing, directly to the refined data.

More importantly, we focus on pay-as-you-algorithms that try

to optimize the processing order of geometry pairs within a limited

budget (in terms of computational resources). Previous work on pro-

gressive computation of spatial joins focuses on stream processing

and is not relevant to our problem. Coarse object approximations

are used in [12] to avoid accessing and buffering detailed repre-

sentations as much as possible. A progressive version of PBSM for

streaming data is proposed in [24], using statistics to determine

which contents to keep in the memory buffer and which in disk

during evaluation, in order to maximize the join throughput.

Finally, a problem related to this work is Progressive Entity Res-
olution [22, 26], where the goal is to detect matches, i.e., entity

profiles describing the same real-world object, in a pay-as-you-go

manner. For example, Progressive Sorted Neighborhood [26] orders

the input entities in alphabetical order of their associated blocking

keys. Then, a window of size 𝑤 = 1 slides over the sorted list of

entities to compare those in consecutive positions. After processing

the entire list, the window size is incremented (𝑤 = 2) and the

processing starts from the top of the list and so on and so forth.

A schema-agnostic version of this approach is presented in [22]:

every entity is associated with multiple blocking keys and, thus,

with multiple positions in the sorted list. Weighting schemes are

defined to order the distinct pairs of entities according to their

co-occurrence frequency in the sliding window of the current size.

https://aws.amazon.com
http://spark.apache.org
http://om2019.ontologymatching.org
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3 PRELIMINARIES
In this work, we are interested in geometries that consist of interior,

boundary and exterior (i.e., all points that are not part of the inte-

rior or the boundary). They are distinguished into two main types

[19]: (i) LineStrings, which constitute one-dimensional geometries

formed by a sequence of points and the line segments that connect

consecutive points (e.g., 𝑔1 and 𝑔2 in Figure 1), and (ii) Polygons,
which in the simple case are two-dimensional geometries formed

by a sequence of points where the first one coincides with the last

one (e.g., 𝑔3 and 𝑔4 in Figure 1).

For two geometries of these types, 𝑠 and 𝑡 , the Dimensionally
Extended nine-Intersection Model (DE-9IM) [2, 3, 6] defines 10 main

topological relations:

1) Intersects(𝑠 ,𝑡 ) suggests that 𝑠 and 𝑡 share at least one point
in their interior or boundary.

2) Contains(𝑠 ,𝑡 ) means that 𝑠 lies inside 𝑡 such that only their

interiors intersect.

3) Within(𝑠 ,𝑡 ) means that 𝑡 Contains 𝑠 .
4) Covers(𝑠 ,𝑡 ) indicates that 𝑠 lies inside 𝑡 such that their interiors

or their boundaries intersect.

5) Covered_by(𝑠 ,𝑡 ) means that 𝑡 Covers 𝑠 .
6) Equals(𝑠 ,𝑡 ) means that the interiors of 𝑠 and 𝑡 intersect, but

no point of 𝑠 intersects the exterior of 𝑡 and vice versa.

7) Touches(𝑠 ,𝑡 ) indicates that the two geometries share at least

one point, but their interiors do not intersect.

8) Crosses(𝑠 ,𝑡 ) indicates that the two geometries share some but

not all interior points and that the dimension of their intersection

is smaller than that of at least one of them (see Section 3.1 for the

definition of dimension).

9) Overlap(𝑠 ,𝑡 ) differs from Crosses(𝑠 ,𝑡 ) in that the two geome-

tries have the same dimension, and so does their intersection.

10) Disjoint(𝑠 ,𝑡 ) designates that 𝑠 and 𝑡 share no interior or

boundary point.

See Figure 1 for examples of these topological relations. Note

that in the following, we disregard the Disjoint relation; unlike all
other topological relations, which scale linearly with the size of the

input data, Disjoint scales quadratically, because the vast majority

of pairs typically pertains to unrelated geometries (see Table 2).

When the input comprises few million geometries, it is impossible

to generate trillions of Disjoint links. Besides, Disjoint is not

interesting, because it provides no practical linking between entities.

It can be inferred, though, from Intersects [20]: geometries that

are not associated with the latter relation are disjoint.

3.1 Problem Definition
Given that each topological relation 𝑟 is a predicate evaluating to

true or false, Geospatial Interlinking is defined as [19, 20, 23]:

Definition 1 (Geospatial Interlinking). Given a source dataset
𝑆 , a target dataset 𝑇 and a topological relation 𝑟 , discover the set of
links 𝐿𝑟 = {(𝑠, 𝑟, 𝑡) |𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 (𝑠, 𝑡)}.

In the context of Linked Data, the goal is to estimate all topo-

logical relations (excluding Disjoint) between the source and the

target datasets. Yet, as already discussed, previous Geospatial Inter-

linking approaches look for a single topological relation in each run

[19, 20, 23]. This is counter-intuitive, since the same Filtering step

is applied for all topological relations in 𝑅. Most importantly, all
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Figure 2: Evolution of the number of topologically related
pairs (vertical axis) as more pairs are verified (horizontal
axis) using a progressive and a batch approach.

topological relations can be derived with simple logical conditions

from the Intersection Matrix [19], which is defined as:

𝐼𝑀 (𝑠, 𝑡 ) =

𝑑𝑖𝑚 (𝐼 (𝑠) ∩ 𝐼 (𝑡 )) 𝑑𝑖𝑚 (𝐼 (𝑠) ∩ 𝐵 (𝑡 )) 𝑑𝑖𝑚 (𝐼 (𝑠) ∩ 𝐸 (𝑡 ))
𝑑𝑖𝑚 (𝐵 (𝑠) ∩ 𝐼 (𝑡 )) 𝑑𝑖𝑚 (𝐵 (𝑠) ∩ 𝐵 (𝑡 )) 𝑑𝑖𝑚 (𝐵 (𝑠) ∩ 𝐸 (𝑡 ))
𝑑𝑖𝑚 (𝐸 (𝑠) ∩ 𝐼 (𝑡 )) 𝑑𝑖𝑚 (𝐸 (𝑠) ∩ 𝐵 (𝑡 )) 𝑑𝑖𝑚 (𝐸 (𝑠) ∩ 𝐸 (𝑡 ))

 ,
where 𝑑𝑖𝑚 denotes dimension of the intersection ∩ of the interior

𝐼 , boundary 𝐵, and exterior 𝐸 of the geometries 𝑠 and 𝑡 . In case of

an empty intersection, 𝑑𝑖𝑚 is -1 or 𝐹 (False), while for a non-empty

intersection, 𝑑𝑖𝑚 is equal to 0 if the intersection is a point, 1 if it is a

line segment and 2 if it is an area. The values {0,1,2} are collectively

represented by 𝑇 (True).

In this context, every topological relation can be defined as a log-

ical condition on the values of the intersection matrix. For example,

Within is defined as 𝐼𝑀 (0, 0) = 𝑇 ∧ 𝐼𝑀 (0, 2) = 𝐹 ∧ 𝐼𝑀 (1, 2) = 𝐹

or equivalently as

[
𝑇 ∗ 𝐹
∗ ∗ 𝐹
∗ ∗ ∗

]
. Note, though, that we should avoid com-

puting redundant relations. For example, if Contains(𝑠 ,𝑡 ) holds,
then Within(𝑡 ,𝑠) is always true [19]. Thus, it suffices to add only

the former as an explicit statement to the LOD cloud. The same

applies to Covers(𝑠 ,𝑡 ) and CoveredBy(𝑡 ,𝑠).
Overall, Geospatial Interlinking can be restricted to identifying

the above topological relations 1 to 9, which we call non-trivial. On
this basis, we can minimize its cost by redefining it as follows:

Definition 2 (Holistic Geospatial Interlinking). Given a
source dataset 𝑆 , a target one 𝑇 , and the set of non-trivial topological
relations 𝑅, derive the set of links 𝐿𝑅 = {(𝑠, 𝑟, 𝑡) |𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ∈
𝑅 ∧ 𝑟 (𝑠, 𝑡)} from the Intersection Matrix of geometry pairs.

As explained above, this problem is addressed in two steps: first,

Filtering applies space tiling to reduce the computational cost to

geometries with MBRs co-occurring in one or more tiles. Then,

Verification computes the Intersection Matrix of the candidate pairs

produced by Filtering. Among them, Verification is the bottleneck,

due to its high computational cost, i.e.,𝑂 (𝑁 · log𝑁 ), where 𝑁 is the

total number of edges in the corresponding topological graphs [1].

Progressive Geospatial Interlinking. In this work, we also

examine methods that solve the Geospatial Interlinking task in a

progressive, i.e., pay-as-you-go, manner, when we have limited time

or computational resources. Without loss of generality, we assume

that the available resources for Progressive Geospatial Interlinking

are defined in terms of the number of geometry pairs that are
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actually verified. We call this number budget (𝐵𝑈 ). With minor

modifications, our definitions and algorithms can be adapted to a

temporal limit that specifies the available running time.

Assuming that a batch approach verifies 𝑉 pairs, progressive

methods must satisfy two requirements [26], as shown in Figure 2:

1) Same Eventual Quality. The results produced after 𝑉 verifica-

tions, by a progressive and a batch approach should be identical,

i.e., the progressive approach should eventually produce the same

set of links as the batch approach.

2) Improved Early Quality. If a progressive and a batch approach

were applied to the same datasets, 𝑆 and 𝑇 , and terminate after

𝑉 ′ = 𝐵𝑈 ≪ 𝑉 verifications, the former should detect significantly

more qualifying geometry pairs, which satisfy at least one of the

topological relations in 𝑅.

The second requirement suggests that we can assess the relative

performance of progressivemethods by the rate of producing results

as more pairs are verified. We actually define Progressive Geometry
Recall (PGR) as the rate of detecting qualifying geometry pairs

and quantify it by the area under the curve that is formed by the

corresponding lines in Figure 2. The larger this area is, the earlier

the interlinked pairs are detected or more relations are computed,

and the more effective is the progressive method. We formalize this

measure as 𝑃𝐺𝑅(𝑅) = ∑ |𝑃 |
𝑖=1

𝑝𝑖
𝑄
/|𝑃𝐵𝑈

𝑄
|, where 𝑃 ⊆ 𝑆 ×𝑇 is the set

of candidate geometry pairs, which pass the Filtering step, |𝑃 | is its
size (i.e., the total number of candidate pairs), 𝑃𝐵𝑈

𝑄
⊆ 𝑃 is the set

of qualifying geometry pairs within the given budget 𝐵𝑈 , and 𝑝𝑖
𝑄

is the total number of qualifying geometry pairs that have already

been detected when processing the 𝑖𝑡ℎ candidate pair. PGR takes

values in [0, 1], with higher values indicating higher effectiveness.

In this context, we formalize pay-as-you-go interlinking as:

Definition 3 (Progressive, Holistic Geospatial Interlink-

ing). Given a source dataset 𝑆 , a target one 𝑇 , the set of non-trivial
topological relations 𝑅 and a limited budget of computational re-
sources, maximize 𝑃𝐺𝑅(𝑅), given the available resources.

4 BATCH ALGORITHM
We now introduce Geospatial Interlinking At large (GIA.nt), a novel
batch algorithm that significantly improves RADON in terms of

time and space requirements. Instead of indexing both source and

target datasets, GIA.nt indexes only the source dataset. Moreover, in-

stead of a tile-centric Verification, GIA.nt introduces the geometry-

centric Verification: for every target geometry, GIA.nt aggregates

the distinct source geometries in the tiles intersecting its MBR and

processes them one by one, by computing their intersection matrix.

GIA.nt’s functionality appears in Algorithm 1. Lines 1-12 apply

Filtering to index the source dataset, which is set as the small-

est one so as to minimize the memory footprint. In Line 2, the

longitude and latitude granularity of tiles are defined as Δ𝑥 =

𝑚𝑒𝑎𝑛𝑠∈𝑆𝑀𝐵𝑅(𝑠) .𝑤𝑖𝑑𝑡ℎ and Δ𝑦 = 𝑚𝑒𝑎𝑛𝑠∈𝑆𝑀𝐵𝑅(𝑠).𝑙𝑒𝑛𝑔𝑡ℎ, resp.,
by adapting RADON’s approach so that it considers only the source

dataset (see Section 6.1 for more details). For each source geometry

𝑠 (Line 3), GIA.nt estimates the diagonal corners of its MBR (Line

4) - the lower left point (𝑥1 (𝑠), 𝑦1 (𝑠)) and the upper right point

(𝑥2 (𝑠), 𝑦2 (𝑠)). Using them along with Δ𝑥 and Δ𝑦 , it determines the

tiles that intersect𝑀𝐵𝑅(𝑠) and should contain 𝑠 (Lines 5-11).

Algorithm 1: GIA.nt
input : the source dataset 𝑆 , a reader for the target one 𝑟𝑑 (𝑇 ) &

the set of non-trivial topological relations 𝑅

output : the links 𝐿 = {(𝑠, 𝑟, 𝑡 ) |𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ∈ 𝑅 ∧ 𝑟 (𝑠, 𝑡 ) }
/* Filtering step */

1 𝐼 ← {} ; // Equigrid index structure

2 (Δ𝑥 ,Δ𝑦) ← defineIndexGranularity(𝑆);

3 foreach geometry 𝑠 ∈ 𝑆 do
4 (𝑥1 (𝑠), 𝑦1 (𝑠), 𝑥2 (𝑠), 𝑦2 (𝑠)) ← getDiagCorners(s);

5 for 𝑖 ← ⌊𝑥1 (𝑠) · Δ𝑥 ⌋ to ⌈𝑥2 (𝑠) · Δ𝑥 ⌉ do
6 for 𝑗 ← ⌊𝑦1 (𝑠) · Δ𝑦⌋ to ⌈𝑦2 (𝑠) · Δ𝑦⌉ do
7 𝐼 .addToIndex(𝑖 , 𝑗 , 𝑠);

8 𝑗 ← 𝑗 + 1;

9 end
10 𝑖 ← 𝑖 + 1;

11 end
12 end

/* Verification step */

13 𝐿← {} ; // The set of detected links

14 while 𝑟𝑑 (𝑇 ).hasNext() do
15 𝑡 ← 𝑟𝑑 (𝑇 ).next() ; // The current target geometry

16 𝐶𝑆 ← {} ; // The set of candidate source geom.

17 (𝑥1 (𝑡), 𝑦1 (𝑡), 𝑥2 (𝑡), 𝑦2 (𝑡)) ← getDiagCorners(t);

18 for 𝑖 ← ⌊𝑥1 (𝑡) · Δ𝑥 ⌋ to ⌈𝑥2 (𝑡) · Δ𝑥 ⌉ do
19 for 𝑗 ← ⌊𝑦1 (𝑡) · Δ𝑦⌋ to ⌈𝑦2 (𝑡) · Δ𝑦⌉ do
20 𝐶𝑆 ← 𝐶𝑆 ∪ 𝐼 .getTileContents(𝑖 , 𝑗 );

21 𝑗 ← 𝑗 + 1;

22 end
23 𝑖 ← 𝑖 + 1;

24 end
25 foreach geometry 𝑠 ∈ 𝐶𝑆 do
26 if intersectingMBRs(𝑠 , 𝑡 ) then
27 𝐼𝑀 ← verify(𝑠 , 𝑡 );

28 𝐿← 𝐿 ∪ 𝐼𝑀 .getRelations();

29 end
30 end
31 end
32 return 𝐿;

To clarify how this space tiling approach works, assume that

the longitude and latitude granularity are Δ𝑥 = 3 and Δ𝑦 = 2,

respectively. For 𝑃𝑂𝐿𝑌𝐺𝑂𝑁 ((19 60, 19 61, 14 61, 14 60, 19 60)), the
diagonal corners of its MBR are defined by the lower left point (14,

60) and the upper right point (19, 61). As a result, this geometry will

be placed in the tiles defined by ⌊14/Δ𝑥 ⌋ = 4 ≤ 𝑖 ≤ 5 = ⌈14/Δ𝑥 ⌉
and ⌊60/Δ𝑦⌋ = 30 ≤ 𝑗 ≤ 31 =

⌈
60/Δ𝑦

⌉
.

GIA.nt’s Verification is applied in Lines 13-31. The next target

geometry 𝑡 ∈ 𝑇 is read from the disk (Lines 14-15) and the tiles that

would contain it are estimated, based on its MBR (Lines 17-24). For

each tile, GIA.nt retrieves the source geometries it contains and

places them in the local set of candidates 𝐶𝑆 (Line 20). As a result,

every source geometry that is likely to be related to 𝑡 appears in

𝐶𝑆 just once. Next, GIA.nt iterates over the geometries of 𝐶𝑆 (Line
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25) and those with an intersecting MBR (Line 26) are verified, by

computing the corresponding intersection matrix 𝐼𝑀 (Line 27). The

topological relations that are extracted from 𝐼𝑀 are added to the list

of detected links 𝐿 (Line 28), which is returned as output (Line 32).

GIA.nt’s space complexity amounts to 𝑂 ( |𝑆 | + |𝐿 |), which is at

least 50% lower than RADON’s 𝑂 ( |𝑆 | + |𝑇 | + |𝐿 | + |𝑉 |), where 𝑉
stands for the set of verified pairs. The reason is that GIA.nt does

not maintain in memory both input datasets, but only the source

one, which is the smallest by definition (i.e., |𝑆 | ≤ |𝑇 |). The target
geometries are read one by one from the disk; hence, the tiles,

which are kept in memory, contain only source geometries – no

target ones. GIA.nt also avoids all redundant pairs inherently, by

maintaining a set with the distinct source geometries in the tiles

of every target geometry. In contrast, RADON avoids redundant

verifications by storing all verified pairs in memory, increasing its

space complexity by 𝑂 ( |𝑉 |).
GIA.nt is also much faster than RADON. For Filtering, its time

complexity is 𝑂 ( |𝑆 |), as it iterates once over the source geometries.

Thus, it is at least 50% faster than RADON’s𝑂 ( |𝑆 | + |𝑇 |), which goes
through all input geometries to index them and to compute heuris-

tics for switching inputs. For Verification, GIA.nt’s time complexity

is dominated by the number of candidate pairs, i.e., geometries

with intersecting MBRs:𝑂 ( | (𝑠, 𝑡) : 𝑀𝐵𝑅(𝑆) ∩𝑀𝐵𝑅(𝑇 ) |). RADON’s
Verification cost amounts to 𝑂 ( |𝑅 | · | (𝑠, 𝑡) : 𝑀𝐵𝑅(𝑆) ∩𝑀𝐵𝑅(𝑇 ) |),
since it repeats the same process for every topological relation,

instead of simultaneously computing all of them, as GIA.nt does.

Note also that unlike RADON, GIA.nt’s Verification can be easily

adapted to massive parallelization according to the MapReduce

paradigm, since every target geometry can be processed locally in

a cluster node, without the need to store in main memory all target

geometries and all verified pairs.

5 WEIGHTING SCHEMES
The gist of progressive methods is to schedule the verification of

geometry pairs in a way that maximizes the Progressive Geometry

Recall (see Definition 3). To this end, they assign a weight to every

pair that is analogous to its probability to satisfy a non-trivial

relation: the higher the weight, the earlier the corresponding pair

should be processed. Assuming that all geometry pairs bear the

same computational cost, we consider hit probability weighting
schemes, which produce a numerical estimate of how likely two

geometries 𝑠 and 𝑡 are to satisfy a non-trivial topological relation,

judging exclusively from the tiles that contain them. The more tiles

they share, the higher is the weight that is assigned to them and

the more likely they are to be topologically related.

The following schemes are defined:

1) Co-occurrence Frequency (CF) simply counts the tiles shared

by 𝑠 and 𝑡 , i.e., 𝐶𝐹 (𝑠, 𝑡) = |𝐵𝑠 ∩ 𝐵𝑡 |, where 𝐵𝑘 stands for the set of

tiles/blocks containing geometry 𝑘 .

2) Jaccard Similarity (JS) normalizes the overlap similarity de-

fined by CF, i.e., 𝐽𝑆 (𝑠, 𝑡) = |𝐵𝑠∩𝐵𝑡 |
|𝐵𝑠 |+ |𝐵𝑡 |− |𝐵𝑠∩𝐵𝑡 | , capturing the idea

that the portion of tiles shared by two geometries is proportional

to the likelihood that they satisfy a positive topological relation.

3) Pearson’s 𝜒2 test, which is inspired from the Entity Resolu-

tion approach BLAST [21], extends CF by assessing whether two

t ¬t
s 𝑛1,1 𝑛1,2 𝑛1,+
¬s 𝑛2,1 𝑛2,2 𝑛2,+

𝑛+,1 𝑛+,2 𝑛+,+
Table 1: Contingency table for geometries 𝑠 and 𝑡 .

geometries 𝑠 and 𝑡 appear independently in the set of tiles. To in-

fer their dependency, it estimates whether the distribution of tiles

containing 𝑠 in 𝐵 is the same as the distribution if we exclude the

tiles that contain 𝑡 . In more detail, it uses the contingency table
(see Table 1), where 𝑛1,1 stands for the number of tiles shared by

the two geometries, 𝑛1,2 for the number of tiles containing 𝑠 but

not 𝑡 , 𝑛2,1 for the number of tiles containing 𝑡 but not 𝑠 , and 𝑛2,2

for the number of tiles containing neither geometry. These are the

observed values, whereas the expected value for each cell of the

contingency table is𝑚𝑖, 𝑗 =
𝑛𝑖,+ ·𝑛+, 𝑗
𝑛+,+

. In this context, each pair of

geometries 𝑠 and 𝑡 is weighted according to the following formula:

𝑤𝑖, 𝑗 =
∑
𝑖∈{1,2}

∑
𝑗 ∈{1,2}

𝑛𝑖,𝑗−𝑚𝑖,𝑗

𝑚𝑖,𝑗
.

Note that CF is the only weighting scheme that relies on local
information, i.e., information that pertains exclusively to the pair

of geometries at hand. For this information, it suffices to index the

source dataset so that we know the source geometries in the tiles

that contain a particular target geometry. In contrast, JS and 𝜒2

require the total number of tiles as well as the number of tiles per

geometry. This global information can only be computed by index-

ing both datasets, which increases the run-time and complicates

the weight estimation in the context of the MapReduce framework.

To overcome this drawback, we consider their approximations,

which replace the actual number of tiles per geometry with the

maximum one: they count the tiles intersecting the MBR of a tar-

get (source) geometry, independently of the existence of source

(target) geometries. For instance, assume that 𝑆 = {𝑔1, 𝑔2, 𝑔4} and
𝑇 = {𝑔3} in Figure 1: the MBR of 𝑔3 intersects 9 tiles, but only 6

of them contain a source geometry; the tiles/blocks 𝑏03, 𝑏13 and

𝑏23 contain no source geometry and, thus, are disregarded by the

original definitions of JS and 𝜒2
. They are considered, though, by

their approximations, which produce more noisy weights, but save

the time and space required to index the target dataset.

6 PROGRESSIVE ALGORITHMS
The following progressive methods operate in three steps: (i) Filter-

ing is applied to reduce the computational cost to geometries with

MBR(s) located in the same tile(s); (ii) Scheduling defines the pro-

cessing order of the candidate pairs produced by Filtering, without

verifying any of them. It tries to maximizes Progressive Geometry

Recall, based on heuristics; (iii) Verification examines the candidate

pairs in the order specified by Scheduling.

6.1 Progressive RADON
This approach uses RADON to index both input datasets, yielding

a large set of fine-grained tiles. Then, it processes these tiles in

decreasing or increasing size, i.e., total number of geometries. As we

explain in Section 8.2, the best ordering depends on the data at hand.

Inside every tile, all pairs of geometries are sorted in decreasing

weight, as it is defined by one of the above weighting schemes.

Thus, the pairs that are most likely to have a non-trivial topological
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Algorithm 2: Progressive RADON
input : the source & target datasets, 𝑆 and𝑇 , resp., the set of

non-trivial topological relations 𝑅, the budget 𝐵𝑈 , the

pair weighting scheme𝑊 and the tile ordering scheme𝑂

output : the links 𝐿 = {(𝑠, 𝑟, 𝑡 ) |𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ∈ 𝑅 ∧ 𝑟 (𝑠, 𝑡 ) }
/* Filtering step */

1 𝐼 ← {} ; // Equigrid index structure

2 (Δ𝑥 ,Δ𝑦) ← defineIndexGranularity(𝑆 , 𝑇 );

3 ... ; /* Index 𝑆 as in Alg. 1, Lines 1-12 */

/* Index target dataset */

13 foreach geometry 𝑡 ∈ 𝑇 do
14 (𝑥1 (𝑡), 𝑦1 (𝑡), 𝑥2 (𝑡), 𝑦2 (𝑡)) ← getDiagCorners(t);

15 for 𝑖 ← ⌊𝑥1 (𝑡) · Δ𝑥 ⌋ to ⌈𝑥2 (𝑡) · Δ𝑥 ⌉ do
16 for 𝑗 ← ⌊𝑦1 (𝑡) · Δ𝑦⌋ to ⌈𝑦2 (𝑡) · Δ𝑦⌉ do
17 𝐼 .addToIndex(𝑖 , 𝑗 , 𝑡 );

18 𝑗 ← 𝑗 + 1;

19 end
20 𝑖 ← 𝑖 + 1;

21 end
22 end

/* Scheduling step */

23 𝐿← {}; 𝑣𝑒𝑟𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 = 0;

24 𝐵← 𝐼 .getTiles();

25 𝐵′← 𝑂 .orderBySize(𝐵);

26 𝐸← getGeometryIndex(𝐵′);
/* Verification step */

27 foreach tile 𝑏𝑖 ∈ 𝐵′ do
28 𝐶 ← {} ; // The set of candidate pairs

29 foreach pair < 𝑠, 𝑡 >∈ 𝑏𝑖 do
30 if intersectingMBRs(𝑠 , 𝑡 ) & refPoint(𝑏𝑖 , 𝑠 , 𝑡 ) then
31 𝑤𝑠,𝑡 ←𝑊 .getWeight(𝐸, 𝑠 , 𝑡 );

32 𝐶 ← 𝐶 ∪ {{𝑠, 𝑡},𝑤𝑠,𝑡 };
33 end
34 end
35 𝐶 ′← orderInDecreasingWeight(𝐶);

36 foreach pair < 𝑠, 𝑡 >∈ 𝐶 ′ do
37 𝑣𝑒𝑟𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ← 𝑣𝑒𝑟𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 +1;

38 if 𝑣𝑒𝑟𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 == 𝐵𝑈 then
39 return 𝐿;

40 end
41 𝐼𝑀 ← verify(𝑠 , 𝑡 );

42 𝐿← 𝐿 ∪ 𝐼𝑀 .getRelations();

43 end
44 end
45 return 𝐿;

relation are processed first inside every tile. A geometry index is

created to associate every geometry id with the ids of the tiles

that contain it (see Figure 3). This is necessary for estimating the

weights of the hit probability schemes inside every tile.

To avoid redundant verifications across different tiles, we replace

RADON’s hashmap with the reference point technique [5]: for each
pair of candidates, the verification is carried out only in the tile that

g1
g2
g3
g4

b00 b01 b10 b11 b20 b21 b30 b31

b21 b22 b31 b32

b01 b02 b03 b11 b12 b13

b01 b02 b11 b12

b21 b22 b23

Figure 3: The geometry index of the geometries in Figure 1.

contains the top-left corner of the intersection of their MBRs. As

an example, see Figure 1, where the geometries 𝑔1 and 𝑔2 are only

verified in tile 𝑏21, which contains the top-left corner of their inter-

section. The entire processing terminates as soon as the number of

verified pairs exceeds the predetermined budget 𝐵𝑈 .

This method is outlined in Algorithm 2. Lines 1-12 add the

source geometries to the EquiGrid index, just as the Lines 1-12

of Algorithm 1, except that its dimensions are defined by consid-

ering both input datasets: Δ𝑥 = 1/2 · (𝑚𝑒𝑎𝑛𝑠∈𝑆𝑀𝐵𝑅(𝑠) .𝑤𝑖𝑑𝑡ℎ +
𝑚𝑒𝑎𝑛𝑡 ∈𝑇𝑀𝐵𝑅(𝑡) .𝑤𝑖𝑑𝑡ℎ) and Δ𝑦 = 1/2 · (𝑚𝑒𝑎𝑛𝑠∈𝑆𝑀𝐵𝑅(𝑠).𝑙𝑒𝑛𝑔𝑡ℎ+
𝑚𝑒𝑎𝑛𝑡 ∈𝑇𝑀𝐵𝑅(𝑡) .𝑙𝑒𝑛𝑔𝑡ℎ). The target geometries are indexed in

Lines 13-22. So far, there is no difference from RADON’s batch

functionality, i.e., we apply the same Filtering approach. The pro-

gressive processing starts from the Scheduling step in Line 23: the

set of tiles/blocks 𝐵 is retrieved from the EquiGrid index (Line 24)

and is sorted by (decreasing or increasing) size (Line 25). In Line 26,

the geometry index 𝐸 is created, associating every geometry id with

the ids of the tiles that contain it. Subsequently, the Verification

step processes every tile 𝑏𝑖 as follows (Lines 27-44): each pair of

geometries with intersecting MBRs and their reference point in 𝑏𝑖
(Line 30) is weighted according to the given scheme𝑊 (Line 31)

and added to the local set of candidates (Line 32). Next, all candidate

pairs in the current tile are sorted and verified in decreasing weight,

until the total number of verifications reaches 𝐵𝑈 (Lines 35-43).

The space complexity of this approach is𝑂 ( |𝑆 | + |𝑇 | + |𝐵 |), where
the last term represents the memory required for maintaining in

memory both the set of tiles and the geometry index. The time

complexity for the Filtering step is𝑂 ( |𝑆 | + |𝑇 |), as it considers both
input datasets, while for the Scheduling step it is 𝑂 ( |𝐵 | · log |𝐵 |),
which corresponds to the sorting of all tiles. Finally, the Verification

step is dominated by the examination of |𝐵𝑈 | pairs, i.e., 𝑂 ( |𝐵𝑈 |).

6.2 Progressive GIA.nt
To turn GIA.nt into a progressive approach, we maintain a min-max

priority queue with the 𝐵𝑈 most promising pairs of geometries

from the entire input datasets. To populate this queue, progressive

GIA.nt begins with indexing only the source dataset. Then, it reads

the target geometries from the disk one by one and for each of them,

it gathers all distinct source geometries in the tiles that intersect its

MBR. Every pair of geometries < 𝑠, 𝑡 > is weighted according to the

selected weighting scheme. If its weight is higher than the current

minimum weight of the queue, < 𝑠, 𝑡 > is added to the queue.

Whenever the size of the queue exceeds 𝐵𝑈 , the pair with the

lowest weight is evicted. In the end, the queue contains the 𝐵𝑈 top

weighted pairs of the entire input datasets. Thus, Progressive GIA.nt

produces a global ordering of pairs, which should outperform the

local, tile-level ordering that lies at the core of Progressive RADON.

The details of Progressive GIA.nt are outlined in Algorithm 3.

Lines 1-12 applies Filtering, which indexes the source dataset in
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Algorithm 3: Progressive GIA.nt
input : the source dataset 𝑆 , a reader for the target one 𝑟𝑑 (𝑇 ) ,

the set of non-trivial topological relations 𝑅, the budget

𝐵𝑈 & the weighting scheme𝑊

output : the links 𝐿 = {(𝑠, 𝑟, 𝑡 ) |𝑠 ∈ 𝑆 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ∈ 𝑅 ∧ 𝑟 (𝑠, 𝑡 ) }
/* Filtering step */

1 𝐼 ← {} ; // Equigrid index structure

2 (Δ𝑥 ,Δ𝑦 ) ← defineIndexGranularity(𝑆);

3 ... ; /* Index 𝑆 as in Alg. 1, Lines 1-12 */

/* Scheduling step */

13 𝑚𝑖𝑛𝑊𝑒𝑖𝑔ℎ𝑡 = 0.0 ;𝑇𝐶 ← {} ; // Priority queue

14 𝑓 𝑙𝑎𝑔𝑠 [] ← {}; 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 [] ← {};

15 while 𝑟𝑑 (𝑇 ) .hasNext() do
16 𝑡𝑚 ← 𝑟𝑑 (𝑇 ) .next() ; // The current target geom.

17 𝐶𝑆 ← {} ; // The set of candidate source geom.

18 (𝑥1 (𝑡𝑚), 𝑦1 (𝑡𝑚), 𝑥2 (𝑡𝑚), 𝑦2 (𝑡𝑚)) ← getDiagC(𝑡𝑚 );

19 for 𝑖 ← ⌊𝑥1 (𝑡𝑚) · Δ𝑥 ⌋ to ⌈𝑥2 (𝑡𝑚) · Δ𝑥 ⌉ do
20 for 𝑗 ← ⌊𝑦1 (𝑡𝑚) · Δ𝑦 ⌋ to ⌈𝑦2 (𝑡𝑚) · Δ𝑦 ⌉ do
21 foreach 𝑠𝑛 ∈ 𝐼 .getTileContents(𝑖 , 𝑗 ) do
22 if 𝑓 𝑙𝑎𝑔𝑠 [𝑛] ≠𝑚 then
23 𝑓 𝑙𝑎𝑔𝑠 [𝑛] =𝑚 ;

24 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 [𝑛] = 0;

25 𝐶𝑆 ←𝐶𝑆 ∪ 𝑠𝑛 ;
26 end
27 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 [𝑛]++;
28 end
29 𝑗 ← 𝑗 + 1;

30 end
31 𝑖 ← 𝑖 + 1;

32 end
33 foreach geometry 𝑠𝑛 ∈ 𝐶𝑆 do
34 if intersectingMBRs(𝑠 , 𝑡 ) then
35 𝑤𝑠,𝑡 ← weight(𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 [𝑛], 𝑠𝑛 , 𝑡𝑚 );

36 if𝑚𝑖𝑛𝑊𝑒𝑖𝑔ℎ𝑡 < 𝑤𝑠,𝑡 then
37 𝑇𝐶 .add({𝑠, 𝑡 }, 𝑤𝑠,𝑡 );

38 if 𝐵𝑈 < 𝑇𝐶 .size() then
39 ℎ𝑒𝑎𝑑 =𝑇𝐶 .pop();

40 𝑚𝑖𝑛𝑊𝑒𝑖𝑔ℎ𝑡 = ℎ𝑒𝑎𝑑 .getWeight();

41 end
42 end
43 end
44 end
45 end

/* Verification step */

46 𝐿← {} ; // The set of detected links

47 while𝑇𝑚 ≠ {} do
48 𝑡𝑎𝑖𝑙 =𝑇𝑚 .popLast();

49 𝐼𝑀 ← verify(𝑡𝑎𝑖𝑙 .𝑠 , 𝑡𝑎𝑖𝑙 .𝑡 );

50 𝐿← 𝐿 ∪ 𝐼𝑀 .getRelations();

51 end
52 return 𝐿;

the same way as GIA.nt. Next, the Scheduling step creates three

data structures: (i) 𝑇𝐶 (Line 13) is a min-max priority queue that

stores the top-𝐵𝑈 weighted pairs in decreasing order of weight.

As a result, its head, which is retrieved by 𝑝𝑜𝑝 (), always contains
the pair with the minimum weight, while the pair with maximum

weight is located at its tail, which is retrieved by 𝑝𝑜𝑝𝐿𝑎𝑠𝑡 (). (ii) the
int array 𝑓 𝑙𝑎𝑔𝑠 (Line 14) designates the id of the target geometry

that was last associated with a specific source geometry. (iii) the

int array 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (Line 14) counts the number of occurrences of

a specific source geometry in the tiles associated with the current

target geometry. In essence, it measures the number of tiles shared

by the two geometries. E.g., 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 [1] = 5 and 𝑓 𝑙𝑎𝑔𝑠 [1] = 2

mean that the 2
𝑛𝑑

source geometry (id=1) shares 5 tiles with the

3
𝑟𝑑

target geometry (id=2). Thus, these two arrays facilitate the

computations of the hit probability schemes.

The three data structures are populated by the loop in Lines 15-45.

Lines 19-21 identify the tiles that should contain the current target

geometry 𝑡𝑚 , where𝑚 denotes its id. For each source geometry

in these tiles 𝑠𝑛 , where 𝑛 denotes its id, we check whether it has

already appeared in another tile of 𝑡𝑚 . If not (Line 22), the arrays

𝑓 𝑙𝑎𝑔𝑠 and 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 are updated accordingly (Lines 23-24) and 𝑠𝑛
is added in the set of candidate related geometries𝐶𝑆 (Line 25). Next,

its frequency of tile co-occurrence with 𝑡𝑚 is incremented (Line

27). The distinct candidate geometries are then weighted based on

their tile co-occurrence frequency (Line 35) as long as their MBRs

intersect that of 𝑡𝑚 (Line 34). The weighted pairs are then added to

the priority queue𝑇𝐶 (Line 37) if their weight exceeds the minimum

one (Line 36). If 𝑇𝐶 contains more pairs than the input budget, its

head is removed and the minimum weight threshold is updated

accordingly (Lines 38-41). Finally, the Verification step examines the

pairs in the priority queue in decreasing order of weight, iteratively

retrieving its tail (Lines 47-48). In each case, the relations that are

extracted from the intersection matrix 𝐼𝑀 are added to the list of

links 𝐿, which is returned as output (Lines 49-50).

The space complexity of Progressive GIA.nt is 𝑂 ( |𝑆 | + |𝐵𝑈 |),
because it suffices to maintain in memory the smallest input dataset,

while its tiles involve only source geometries. Its time complexity

amounts to 𝑂 ( |𝑆 |) for the Filtering and to 𝑂 ( |𝑇 | · |𝐶𝑆 | ¤log|𝐵𝑈 |) for
the Scheduling step, where |𝐶𝑆 | is the average number of candidate

source geometries per target geometry and log |𝐵𝑈 | is the worst-
case cost of inserting a candidate pair in the priority queue. For

the Verification step, its time complexity is 𝑂 ( |𝐵𝑈 |). We should

stress, though, that Progressive GIA.nt is more time efficient than

Progressive RADON with respect to weight estimations: the co-

occurrence frequency that lies at the core of our weighting schemes

can be efficiently estimated by Progressive GIA.nt while gathering

the distinct co-occurring source geometries per target geometry.

Instead, Progressive RADON weights every pair by comparing the

tile ids associated with every geometry in the Geometry Index,

which is a time consuming process.

7 MASSIVE PARALLELIZATION
We now explain how to parallelize (Progressive) GIA.nt according

to the MapReduce framework. Our approach, which is outlined in

Figure 4, loads both datasets as RDDs that are spatially partitioned,

based on GeoSpark’s Quad-Tree [28]. The source and target RDDs

are partitioned using the same partitioner and thus, the topologi-

cally close geometries belong to partitions with the same partition

id. The RDDs with the same partition id are then merged such that

each partition contains all geometries from both datasets that lie

within its area. This way, we ensure that all geometries that are

likely to satisfy a topological relation coexist in the same partitions.



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia George Papadakis1 , Georgios Mandilaras1 , Nikos Mamoulis2 , Manolis Koubarakis1

Source

Target

S
patial P

artitioner

0.8

0.75

0.68 

0.9

0.82

0.77

(POLYGON (( .. )),  POLYGON ((... ))

(POLYGON (( .. )),  POLYGON ((... ))

(POLYGON (( .. )),  POLYGON ((... ))

(POLYGON (( .. )),  POLYGON ((... ))

(POLYGON (( .. )),  POLYGON ((... ))

(POLYGON (( .. )),  POLYGON ((... ))

0.8

0.75

0.68 

FT*******

T*****T**

T*T***T**

0.9

0.82

0.77

**F*TF***

**FT*F***

........

HDFS

Refer. Point

*TF**F***

Map

Filtering

Scheduling Verification

Reduce

........

Refer. Point

Broadcast

Figure 4: Parallel (Progressive) GIA.nt on top of Apache Spark. Both datasets are loaded in HDFS and spatially partitioned using GeoSpark’s
Quad-Tree. Map assigns each partition to an Executor, which applies Filtering to find the candidate pairs and the reference point technique to
discard the redundant ones. For Progressive GIA.nt, Scheduling orders locally the candidate pairs according to the selected weighting scheme.
Verification computes the Intersection Matrices of the selected pairs and Reduce aggregates the qualifying pairs detected by all Executors.

For GIA.nt, each Executor receives one of these partitions as

input, during the Map phase. It indexes the source geometries and

for each target geometry 𝑡 , it estimates the tiles that intersect its

MBR. Using the index, it retrieves the distinct source geometries

in these tiles and verifies their topological relations with 𝑡 . All

qualifying pairs are aggregated during the Reduce phase.

The granularity of space tiling is the same as in serial GIA.nt,

hence requiring the computation of Δ𝑥 =𝑚𝑒𝑎𝑛𝑠∈𝑆𝑀𝐵𝑅(𝑠) .𝑤𝑖𝑑𝑡ℎ
and Δ𝑦 =𝑚𝑒𝑎𝑛𝑠∈𝑆𝑀𝐵𝑅(𝑠).𝑙𝑒𝑛𝑔𝑡ℎ by the Driver, which broadcasts

them to the Executors. By caching the source RDD after loading it,

we avoid the re-execution of the execution plan so that there is no

impact on the performance of the algorithm.

For Progressive GIA.nt, every Executor receives as input a par-

tition of both input datasets, during the Map phase, and applies

Filtering to index the source geometries. Then, it processes the

target geometries one by one, estimating their weights with the in-

tersecting source geometries. Next, the Executor verifies the top-𝑘

weighted pairs, where 𝑘 is the local budget that is derived by divid-

ing the global budget 𝐵𝑈 among the data partitions in proportion

to the source geometries they contain – the target geometries are

not taken into account, as they are not bulk loaded beforehand, but

are read on-the-fly, one by one, similar to the serial implementation

of (Progressive) GIA.nt. The qualifying pairs of each Executor are

aggregated by the Reduce phase.

Note that no data shuffling is required during Scheduling for

the weight estimations, since all necessary information is locally

available: every Executor estimates all tiles that should contain

every geometry. Thus, each Executor operates independently of the

others. Note also that the global ordering of the serial implementa-

tion is approximated by the local ones in each Executor in order to

promote concurrency, making the most of massive parallelization.

We should also stress that both algorithms employ the reference

point technique [5] to avoid redundant pairs. This is because every

geometry that crosses the borders between two partitions is added

to both of them during spatial partitioning. To avoid the resulting

redundancy, both algorithms ensure that every pair is verified only

in the partition that contains the top left corner of their intersection.

Finally, it is worth noting that spatial partitioning yields uneven

partitions, which are skewed with respect to the volume of data

and the corresponding computational cost. That is, some partitions

are overloaded and require significant time, while others complete

their jobs instantaneously, leaving the corresponding nodes idle. To

tackle this issue, both algorithms take special care of the overloaded

partitions, whose size exceeds significantly the average size of all

partitions. After completing the processing of the well-balanced

partitions, the entities of the overloaded partitions are indexed and

re-partitioned using a HashPartitioner that is based on tiles id. In

this way, geometries indexed in the same tiles will be placed in

same partitions, thus missing no candidate pairs. Redundant pairs

are again discarded with the reference point technique. This is an

effective and efficient strategy as long as it applies to a small portion

of the input data, because it requires the duplication of each entity

as many times as the numbers its tiles.

8 EXPERIMENTAL ANALYSIS
We now present the experiments we performed in order to compare

our algorithms to RADON, the current state-of-the-art [19, 20], in

terms of effectiveness, time efficiency and memory footprint.

Experimental Setup. All serial methods and experiments were

implemented in Java 8. The experiments were ran on a server with

Intel Xeon E5-4603 v2 @ 2.2GHz, 128 GB RAM, running Ubuntu

14.04.5 LTS. For RADON’s implementation, we used LIMES version

1.7.1
12
. For all time measurements, we used a single physical core

and performed three repetitions, reporting the average.

All parallel methods and experiments were implemented in Scala

2.12 using Spark 2.4.4. The experiments were performed on a clus-

ter that runs the Hopsworks data platform [9]. The main module

of Hopsworks is Hops
13
, which is a next generation distribution

of Apache Hadoop, using a new implementation of HDFS called

HopsFS [15]. For the experiments we used 30 Executors with 2

cores each, and 10GB of memory.

Our code is available at: https://github.com/giantInterlinking/prGIAnt.

Datasets. The technical characteristics of the real datasets we
use in our experiments are reported in Table 2. All of them have

12
https://github.com/dice-group/LIMES

13
https://github.com/hopshadoop/hops

https://github.com/giantInterlinking/prGIAnt
https://github.com/dice-group/LIMES
https://github.com/hopshadoop/hops
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D1 D2 D3 D4 D5 D6

Source Dataset AREAWATER AREAWATER Lakes Parks ROADS Roads

Target Dataset LINEARWATER ROADS Parks Roads EDGES Buildings

#Source Geometries 2,292,766 2,292,766 8,419,320 9,961,891 19,592,688 72,339,926

#Target Geometries 5,838,339 19,592,688 9,961,891 72,339,926 70,380,191 114,796,567

Cartesian Product 1.34 · 1013
4.49 · 1013

8.39 · 1013
7.21 · 1014

1.38 · 1015
8.30 · 1015

#Qualifying Pairs 2,401,396 199,122 5,551,014 14,163,325 163,982,135 1,041,562

#Contains 806,158 3,792 947,788 6,323,433 12,218,867 276,010

#CoveredBy 0 0 3,031,403 48,922 53,758,452 83,936

#Covers 832,843 4,692 948,086 6,470,655 12,218,867 276,023

#Crosses 40,489 106,823 270,248 6,490,937 6,769 314,708

#Equals 0 0 557,465 3,147 12,218,867 18,972

#Intersects 2,401,396 199,122 5,551,014 14,163,325 163,982,135 1,041,562

#Overlaps 0 0 822,241 45,116 73 54,899

#Touches 1,554,749 88,507 1,037,412 1,258,163 110,216,841 332,249

#Within 0 0 3,030,790 48,823 53,758,452 82,668

Total Topological Relations 5,635,635 402,936 16,196,447 34,852,521 418,379,323 2,481,027

Table 2: Technical characteristics of the real datasets for Geospatial Interlinking.

been widely used in the literature [7, 25] and are publicly avail-

able (http://spatialhadoop.cs.umn.edu/datasets.html) They contain

public data about area hydrography (AREAWATER), linear hydrog-

raphy (LINEARWATER), roads (ROADS) and all edges (EDGES) in

USA. The also contain the boundaries of all lakes (Lakes), parks

or green areas (Parks), roads and streets (Roads) as well as of all

buildings (Buildings) around the world. Each column of Table 2

shows statistics for a pair (𝐷1–𝐷6) of interlinked datasets.

8.1 Batch Geospatial Interlinking
Table 3 compares the performance of GIA.nt and RADON with

respect to filtering time (𝑡𝑓 ), verification time (𝑡𝑣 ) and memory

footprint (𝑚) over 𝐷1 and 𝐷2, which are the only dataset pairs

that RADON can process with the available memory resources.

For brevity, we omit GIA.nt’s performance on 𝐷3, 𝐷4 and 𝐷6, and

present its performance only on 𝐷5, which is representative of a

voluminous dataset pair.

We observe that for both algorithms, Verification is the bot-

tleneck, with Filtering accounting for a negligible portion of the

overall run-time. Nevertheless, Filtering manages to reduce the tens

of trillions pairs considered by the brute-force approach to tens of

millions candidate pairs, as shown in Table 4. Hence, Filtering is an

indispensable step in Geospatial Interlinking.

We also observe that GIA.nt outperforms RADON with respect

to 𝑡𝑓 by >50%, on average, because its Filtering indexes only the

source dataset – unlike RADON, which indexes both input datasets.

As shown in Table 4, GIA.nt yields a space tiling of higher dimen-

sionality than RADON, since it defines many more tiles on each

axis (#Dimensionality) and overall (#Total Tiles). These tiles involve

significantly more geometry pairs than RADON, but the number

of non-redundant pairs is much lower. This means that GIA.nt’s

Filtering reduces the set of candidate pairs, while increasing the

co-occurrence patterns of the qualifying pairs, thus boosting the

performance of weighting schemes and progressive methods.

During Verification, both algorithms examine the same num-

ber of pairs with intersecting MBRs. Yet, GIA.nt’s 𝑡𝑣 is lower than

RADON by > 80%, on average, as the latter approach repeats the

D1 D2 D5
𝑡𝑓 𝑡𝑣 𝑚 𝑡𝑓 𝑡𝑣 𝑚 𝑡𝑓 𝑡𝑣 𝑚

(sec) (min) (GB) (sec) (min) (GB) (sec) (hrs) (GB)

RADON 56 445.8 64 240 967.0 78 - - -

GIA.nt 42 76.7 22 42 166.4 22 98 18.1 85

Table 3: The filtering time (𝑡𝑓 ), the verification time (𝑡𝑣) and
thememory footprint (𝑚) of RADONandGIA.nt. For GIA.nt,
𝑡𝑣 includes the time required for reading the target dataset
from the disk (4.9, 6.4 and 20.1 min for 𝐷1, 𝐷2 and 𝐷5, resp.).

entire processing for each topological relation independently of the

others – even though most operations, are common. Instead, GIA.nt

computes the Intersection Matrix once for each pair of candidates,

extracting all their topological relations, as dictated by Definition

1. Seemingly, this improvement is trivial, but in practice RADON

cannot be adapted to Definition 1 in a straightforward way, as it in-

volves different filters for each topological relation. Moreover, there

are scientific competitions that measure the run-time of Geospa-

tial Interlinking approaches with respect to individual topological

relations, such as the Ontology Alignment Evaluation Initiative
14
.

Typically, though, real applications do not focus on a specific topo-

logical relation, but require all of them in order to produce results

of higher quality. For this reason, it is crucial to redefine Geospatial

Interlinking as in Definition 1.

Looking into RADON’s run-time per relation in Table 5, we

observe that some individual relations are faster than GIA.nt, while

others are slower. For the former, RADON involves specialized

filters that reduce significantly the number of verified pairs. E.g.,

for Equals, RADON requires the two geometries to have identical

MBRs. Given that no geometry pair in our datasets satisfies Equals
in 𝐷1 and 𝐷2 (see Table 2), there are no identical MBRs among the

candidates that are produced by space tiling. As a result, RADON’s

run-time is extremely low, measuring only the cost of space tiling

and the comparison of MBRs among the resulting candidates. In

contrast, GIA.nt applies a single, generic filter for all relations: it

14
https://project-hobbit.eu/challenges/om2020

http://spatialhadoop.cs.umn.edu/datasets.html
https://project-hobbit.eu/challenges/om2020
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D1 D2
#Dimensionality (𝑋 × 𝑌 ) 68,493 × 20,999 105,656 × 32,580

#Total Tiles 1.44 · 109
3.44 · 109

#Populated Tiles 4.72 · 107
1.51 · 108

#Pairs in Tiles 9.69 · 107
2.40 · 108

#Unique Pairs 2.34 · 107
3.35 · 107

(a) RADON

#Dimensionality (𝑋 × 𝑌 ) 138,325 × 43,559 138,325 × 43,559

#Total Tiles 6.03 · 109
6.03 · 109

#Populated Tiles 5.34 · 107
4.76 · 107

#Pairs in Tiles 1.49 · 108
3.05 · 108

#Unique Pairs 1.23 · 107
2.80 · 107

(b) GIA.nt

Table 4: Technical characteristics of the Equigrid indices
constructed by RADON’s and GIA.nt’s Filtering.

D1 (min) D2 (min)

Contains 62.7 139.1

CoveredBy 2.0 4.2

Covers 61.8 136.7

Crosses 81.3 168.5

Equals 1.1 3.9

Intersects 78.1 174.5

Overlaps 78.8 168.8

Touches 78.7 168.6

Within 1.2 2.7

Table 5: RADON’s verification time per topological relation.

merely ensures that the MBRs of the candidates are intersecting,

which is a core requirement for all non-trivial topological relations.

The second category of relations includes Crosses, Intersects,
Overlaps and Touches. For these relations, RADON is slower than

GIA.nt, because it merely uses the generic filter of intersecting

MBRs, too. GIA.nt is faster by 2.66%, on average, even though its

verification time includes the time required for retrieving the target

geometries from the disk, unlike RADON. This overhead accounts

for 6.39% and 3.85% of GIA.nt’s 𝑡𝑣 over 𝐷1 and 𝐷2, respectively.

Regarding the memory footprint, we observe that GIA.nt con-

sistently occupies at least 66% less main memory than RADON.

This should be attributed not only to the fact that GIA.nt avoids

loading the target datasets in main memory, but also to implemen-

tation improvements: GIA.nt handles every geometry through its

id (rather than its URI, as in RADON), while using data structures

that operate on top of primitive data types rather than objects (e.g.,

int instead of Integer), based on the GNU Trove library
15
.

Finally, Table 3 suggests that as the input size increases from 8 to

22 and 90 million geometries, GIA.nt’s run-time increases linearly:

from ∼1.5 to ∼3 and ∼18 hours, respectively. It’s memory footprint,

though, scales sublinearly, from 22GB for 𝐷1 and 𝐷2 to 85GB for

𝐷5, even if we exclusively consider the increase in the size of the

source dataset (from 2.3 to 19.6 million geometries). Consequently,

GIA.nt’s serial execution scales well to very large datasets.

This is verified in Figure 5, which depicts the total run-time

for GIA.nt’s parallel implementation across all dataset pairs. We

observe that GIA.nt processes the largest pair in less than half an

hour (26 minutes), while exhibiting a sublinear scalability trend, as

15
http://trove4j.sourceforge.net/html/overview.html
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Figure 5: Parallel GIA.nt’s run-time across all dataset pairs.

indicated by the fitted linear regression line. The only outlier is 𝐷4,

which requires double time than the expected one (53 minutes), be-

cause it contains complex geometry collections instead of individual

geometries, thus requiring a time-consuming verification.

Discussion. We can conclude that GIA.nt improves RADON in

all respects. The verification time and memory footprint are sig-

nificantly improved, while Filtering yields stronger co-occurrence

patterns between qualifying pairs, thus facilitating progressive

methods. GIA.nt is also amenable to massive parallelization, un-

like RADON. However, Parallel GIA.nt assumes that every pair of

geometries involves more or less the same verification cost. This

assumption holds in all datasets but 𝐷4, which involves geometry

collections. These entities comprise multiple individual geometries,

thus raising the verification time of a pair significantly; the larger

the geometry collection, the higher the verification cost, leading to

poor utilization of resources and higher wall-clock running times.

8.2 Progressive Geospatial Interlinking
To evaluate the progressivemethods, wemeasure their effectiveness

in terms of Progressive Geometry Recall (𝑃𝐺𝑅 - see Section 3.1),

Recall=𝑃𝐷
𝑄
/𝑃𝐵𝑈
𝑄

and Precision=𝑃𝐷
𝑄
/𝐵𝑈 , where 𝑃𝐷

𝑄
stands for the

number of detected qualifying pairs and 𝑃𝐵𝑈
𝑄

for the number of

qualifying pairs in the given budget 𝐵𝑈 (i.e., maximum number of

permitted verifications). For all measures, higher values indicate

higher effectiveness. For time efficiency, we consider the scheduling

and the verification time, 𝑡𝑠 and 𝑡𝑣 , respectively, disregarding the

filtering time, 𝑡𝑓 , which is already reported in Section 8.1.

As baseline methods we consider the Optimal approach, which

verifies all qualifying pairs before the non-qualifying candidate

ones, and the batch algorithms RADON and GIA.nt. For RADON,

we exclusively consider its performance with respect to the most

generic relation, namely intersects. Note that neither RADON
nor GIA.nt specify a deterministic processing order for the input

data. Instead, their output rate is random, depending on the order

the input data. For this reason, we assess their effectiveness within

a specific budget by using 100 random permutations of their results

and considering the average value for 𝑃𝐺𝑅, Recall and Precision.

Figure 6 reports the performance of all methods over 𝐷1, 𝐷2 and

𝐷5 for two different budgets: 5 and 10 million verifications. Note

that RADON and Progressive RADON cannot process 𝐷5, due to

their high space requirements. Note also that for 𝐷1, the number

of candidate pairs is ∼6.3 million, thus being lower than 𝐵𝑈=10M.

For this reason, all approaches in Table 6(b) achieve perfect recall

and precision over 𝐷1.

For Progressive GIA.nt, we observe that it consistently achieves

its best performance in combination with the Jaccard weighting

http://trove4j.sourceforge.net/html/overview.html
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Optimal RADON* GIA.nt

Pr. RADON (𝐷𝑒𝑐) Pr. RADON (𝐼𝑛𝑐) Progressive GIA.nt

𝐶𝐹 𝐽 𝑆 𝜒2 𝐶𝐹 𝐽 𝑆 𝜒2 𝐶𝐹 𝐽 𝑆 𝜒2

𝐷1

PGR 0.760 0.396 0.396 0.403 0.403 0.403 0.392 0.392 0.392 0.299 0.647 0.641

Recall 1.000 0.792 0.792 0.799 0.799 0.799 0.796 0.796 0.796 0.726 0.949 0.946

Precision 0.480 0.381 0.381 0.384 0.384 0.384 0.382 0.382 0.382 0.348 0.456 0.454

𝑡𝑠 (min) - - - 0.6 0.5 0.6 0.6 0.6 0.6 5.7 5.5 5.3

𝑡𝑣 (min) - 61.8 60.6 60.9 57.0 56.2 70.0 69.7 68.3 67.5 28.4 28.7

𝐷2

PGR 0.980 0.159 0.159 0.151 0.151 0.151 0.193 0.193 0.193 0.494 0.544 0.507

Recall 1.000 0.318 0.318 0.297 0.297 0.297 0.366 0.366 0.366 0.646 0.804 0.777

Precision 0.040 0.013 0.013 0.012 0.012 0.012 0.015 0.015 0.015 0.026 0.032 0.031

𝑡𝑠 (min) - - - 1.1 1.1 1.0 1.0 1.0 1.1 7.8 7.5 7.6

𝑡𝑣 (min) - 53.9 51.6 52.5 52.0 52.3 53.8 53.7 53.7 65.0 16.2 16.6

𝐷5

PGR 0.500 - 0.179 - - - - - - 0.121 0.460 0.076

Recall 1.000 - 0.324 - - - - - - 0.245 0.926 0.219

Precision 1.000 - 0.324 - - - - - - 0.245 0.926 0.219

𝑡𝑠 (min) - - - - - - - - - 23.1 22.9 23.5

𝑡𝑣 (min) - - 13.7 - - - - - - 29.3 2.5 19.8

(a) 𝐵𝑈 =5,000,000 verifications

𝐷1

PGR 0.810 0.499 0.500 0.504 0.504 0.504 0.499 0.499 0.499 0.412 0.694 0.689

Recall 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Precision 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381 0.381

𝑡𝑠 (min) - - - 0.6 0.5 0.6 0.6 0.6 0.6 5.7 5.5 5.3

𝑡𝑣 (min) - 78.1 76.4 78.4 78.2 78.8 78.8 78.9 78.7 76.6 76.4 76.5

𝐷2

PGR 0.990 0.318 0.318 0.298 0.298 0.298 0.360 0.360 0.360 0.576 0.686 0.665

Recall 1.000 0.636 0.636 0.589 0.589 0.589 0.664 0.664 0.664 0.821 0.946 0.936

Precision 0.020 0.013 0.013 0.012 0.012 0.012 0.013 0.013 0.013 0.016 0.019 0.019

𝑡𝑠 (min) - - - 1.0 1.0 1.1 1.0 1.1 1.1 7.8 7.5 7.6

𝑡𝑣 (min) - 105.2 100.9 108.3 107.3 105.5 109.2 108.5 110.1 115.6 59.9 60.3

𝐷5

PGR 0.500 - 0.166 - - - - - - 0.121 0.460 0.133

Recall 1.000 - 0.319 - - - - - - 0.252 0.929 0.363

Precision 1.000 - 0.319 - - - - - - 0.252 0.929 0.36

𝑡𝑠 (min) - - - - - - - - - 23.1 22.9 23.5

𝑡𝑣 (min) - - 25.3 - - - - - - 52.8 4.8 30.1

(b) 𝐵𝑈 =10,000,000 verifications

Figure 6: Performance of Progressive RADON and GIA.nt for all weighting
schemes in comparison to their batch counterparts and the optimal approach for
budgets of 5M and 10M verifications. For RADON, we consider only the relation
intersects.
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Figure 8: Parallel Progressive GIA.nt over
𝐷4 for 12M, 24M and 36M verifications.

scheme (𝐽𝑆). This applies to all effectiveness measures and 𝑡𝑣 ,

suggesting that pairs with high ratio of common tiles are much

more similar and, thus, much faster to verify. In contrast, the Co-

occurrence Frequency weighting scheme (𝐶𝐹 ) exhibits by far the

worst performance in most cases, both with respect to effectiveness

and 𝑡𝑣 . This means that pairs with many common tiles involve a

more time-consuming verification, probably because they corre-

spond to large, complex geometries. The Pearson’s 𝜒2
test lies in

the middle of 𝐽𝑆 and 𝐶𝐹 with respect to all measures, except 𝑡𝑠 .

In fact, the scheduling time is relatively stable across all weight-

ing schemes for each dataset. The reason is that 𝑡𝑠 is dominated by

the time required to read the target dataset from the disk (see Table

3 for the actual reading times). Hence, only a small portion of 𝑡𝑠
pertains to the cost of weight estimation. Given that each scheme

computes weights for all candidate pairs, only the insertions in

the priority queue differ between them (e.g., due to ties with the

minimum weight), thus yielding minor fluctuations. For the same

reasons, 𝑡𝑠 is relatively independent of the given budget.

For Progressive RADON, we observe that there is practically

no difference in the performance of the three weighting schemes

with respect to any effectiveness and time efficiency measure. This

should be attributed to two reasons: (i) RADON’s filtering yields

weak co-occurrence patterns among the qualifying pairs, as ex-

plained above, and (ii) its scheduling is dominated by the ordering

of tiles. That is, there are significant differences only between the

decreasing and the increasing ordering of tiles. Yet, there is no

clear winner among them. In 𝐷1, the decreasing ordering is much

faster for 𝐵𝑈=5M and achieves slightly higher effectiveness, while

for 𝐵𝑈=10M, it achieves higher 𝑃𝐺𝑅, even though all other mea-

sures are identical, due to the larger budget. For 𝐷2, though, the

increasing order exhibits significantly higher effectiveness than the

decreasing one at the cost of slower verification. This should be

expected, as Progressive RADON’s 𝑡𝑣 includes the weighting of

candidate pairs and larger tiles involve more pairs to be weighted.

Regardless of its configuration, Progressive RADON significantly

underperforms Progressive GIA.nt in terms of effectiveness, except

for 𝐶𝐹 weighting over 𝐷1. Regarding time efficiency, 𝑡𝑠 is signifi-

cantly higher for the latter. The reason is that Progressive GIA.nt’s

Scheduling reads the target dataset from the disk and weights all

candidate pairs, unlike Progressive RADON’s Scheduling, which

merely orders the set of tiles according to their size and differs pair

weighting to Verification. The verification time, though, is consis-

tently lower for Progressive GIA.nt in combination with 𝐽𝑆 and

𝑥2
, even by >60%, as both promote pairs with low cost. Regarding

memory footprint, the relation of the two methods is similar to that

of their batch counterparts, with Progressive GIA.nt processing 𝐷5

with the available memory resources, unlike Progressive RADON.

To compare the progressive algorithms with the batch ones, the

latter iteratively select at random the pair to be processed next.

Their probability of selecting a qualifying pair is equal to the pro-

portion of qualifying pairs in the candidate ones - if this is high, the

batch algorithms achieve high PGR. For these reasons, the two batch

methods exhibit practically equivalent performance and are quite

competitive over 𝐷1, which involves a high proportion of qualifying
to candidate pairs. Regardless of the budget, the difference between
RADON and Progressive RADON is practically insignificant, while

GIA.nt outperforms Progressive GIA.nt in conjunction with the

𝐶𝐹 weighting schemes. The latter applies to 𝐷5 even for the 𝜒2

weighting scheme, as both budgets are much smaller than the num-

ber of existing qualifying pairs. In case of 𝐷2, though, the ratio
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of qualifying to candidate pairs is very low; thus, the progressive
approaches outperform the batch ones to a significant extent. On

average, across both budgets, Progressive RADON with increasing

tile sizes achieves >17% higher PGR and ∼10% higher recall than

RADON; Progressive GIA.nt outperforms GIA.nt with respect to

PGR, Recall and Precision by 1.62 times, ∼88% and 83%, respec-

tively, on average, across all budgets and weighting schemes. Note

also that Progressive GIA.nt with 𝐽𝑆 weights is consistently very

close to the optimal algorithm; the higher the ratio of qualifying to

candidate pairs is, the closer are the two approaches, and vice versa.

The relative effectiveness of these methods is illustrated in Figure

7, which shows the evolution of qualifying pairs with respect to the

candidate ones. We observe that RADON and GIA.nt lie across the

diagonal, as implied by their PGR for 𝐵𝑈=10M. Progressive RADON

is negligibly higher than the two algorithms, but Progressive GIA.nt

encloses a significantly larger area under its curve and is located

near to the optimal approach. The difference between progressive

and batch methods is more prominent in the case of 𝐷2, due to the

lower proportion of qualifying pair in the candidate ones. Due to

space shortage, we omit the corresponding diagram.

Finally, we should stress that Progressive GIA.nt with 𝐽𝑆 weights

is consistently faster across all budgets and datasets among all con-

sidered approaches. Its overall running time (𝑡𝑓 +𝑡𝑠+𝑡𝑣 ) over 𝐷1 and

𝐷2 is 50% lower than that of RADON and GIA.nt, on average, for

𝐵𝑈=5M and ∼33% faster over 𝐷2 for 𝐵𝑈=10M (for 𝐵𝑈=10M over

𝐷1, its run-time is higher than the batch approaches, because all

methods verify all candidate pairs, but Progressive GIA.nt addition-

ally involves 𝑡𝑠 ). Compared to the total time required by RADON’s

original implementation to compute all topological relations, the

improvement is larger than a whole order of magnitude.

We should also stress that high time efficiency is achieved by

Parallel Progressive GIA.nt in combination with 𝐽𝑆 weights. Its

performance over the most time-consuming dataset pair, 𝐷4, is

presented in Figure 8 with respect to 𝑃𝐺𝑅, Recall, Precision and Rel-

ative Run-time (i.e., the overall run-time of the progressive approach

normalized by the run-time of the batch approach). We observe that

Precision starts from a very high level (23% for 𝐵𝑈=12M) and de-

creases gradually but steadily (20% for for 𝐵𝑈=36M), converging to

the Precision of batch GIA.nt (14M qualifying pairs/75M candidate

pairs ≈ 18%). Recall and PGR increase linearly with the size of the

budget, and so does the Relative Run-time. Despite weighting 75M

geometry pairs, Parallel GIA.nt manages to detect a large portion

of the existing qualifying pairs with just 2/3 of the overall run-time

(<36 wall-clock minutes). Similarly high performance is achieved

over all dataset pairs, but we omit the details, due to lack of space.

9 CONCLUSIONS
In this paper, we defined Holistic Geospatial Interlinking as the

task of simultaneously computing all DE-9IM topological relations

between the input geometries. To solve it, we proposed GIA.nt,

which significantly reduces the overall run-time and the space re-

quirements of RADON. We also proposed Progressive Geospatial

Interlinking as the task of computing as many topological relations

as possible within a limited budget in terms of pair verifications. We

adapted RADON and GIA.nt to address this new task by producing

results in a pay-as-you-go manner. Our experiments demonstrate

that both algorithms outperform their batch counterparts, with

Progressive GIA.nt being much closer to the optimal processing

order. Progressive GIA.nt actually detects almost all qualifying pairs

among the input data by reducing RADON’s run-time by at least an

order ofmagnitude, whilemaintaining a very lowmemory footprint.

We also adapted (Progressive) GIA.nt to the MapReduce paralleliza-

tion, verifying their high scalability to voluminous datasets.

In the future, we will adapt our approaches to detecting approxi-

mate and metrically-refined topological relations as in [18].
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