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Recommending social activities, such as watching movies or having dinner, is a common function found in

social networks or e-commerce sites. Besides certain websites which manage activity-related locations (e.g.,

foursquare.com), many items on product sale platforms (e.g., groupon.com) can naturally be mapped to social

activities. For example, movie tickets can be thought of as activity items, which can be mapped as a social

activity of “watch a movie.” Traditional recommender systems estimate the degree of interest for a target user

on candidate items (or activities), and accordingly, recommend the top-k activity items to the user. However,

these systems ignore an important social characteristic of recommended activities: people usually tend to

participate in those activities with friends. This article considers this fact for improving the effectiveness of

recommendation in two directions. First, we study the problem of activity-partner recommendation; i.e., for

each recommended activity item, find a suitable partner for the user. This (i) saves the user’s time for finding

activity partners, (ii) increases the likelihood that the activity item will be selected by the user, and (iii)

improves the effectiveness of recommender systems to users overall and enkindles their social enthusiasm.

Our partner recommender is built upon the users’ historical attendance preferences, their social context, and

geographic information. Moreover, we explore how to leverage the partner recommendation to help improve

the effectiveness of recommending activities to users. Assuming that users tend to select the activities for

which they can find suitable partners, we propose a partner-aware activity recommendation model, which

integrates this hypothesis into conventional recommendation approaches. Finally, the recommended items

not only match users’ interests, but also have high chances to be selected by the users, because the users can

find suitable partners to attend the corresponding activities together. We conduct experiments on real data to

evaluate the effectiveness of activity-partner recommendation and partner-aware activity recommendation.

The results verify that (i) suggesting partners greatly improves the likelihood that a recommended activity

item is to be selected by the target user and (ii) considering the existence of suitable partners in the ranking

of recommended items improves the accuracy of recommendation significantly.
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1 INTRODUCTION

In real-world recommendation applications, many items are related to activities that people like to
participate in with their folks. For example, items such as movie tickets and dinner discounts are
related to social activities (watching movies and dining). We call such items (social) activity items.
Activity items are commonly found in real-world e-commerce websites such as Groupon (www.
groupon.com) and Meituan (www.meituan.com), as shown in the examples of Figure 1(1). Previous
work on recommending activity items typically focused on utilizing past attendance behaviors (Ye
et al. 2013; Noulas et al. 2011; Zheng and Xie 2010; Yin et al. 2015), social links between users
(Scellato et al. 2011; Ye et al. 2010, 2012), and geographic information (Li et al. 2008; Levandoski
et al. 2012; Liu et al. 2013) to predict the interests of users. Our work is the first to consider a
special characteristic of social activities: people typically do not like to attend them alone. Indeed,
more often than not, when considering attending a social activity, people seek partners to join
them. Based on this, we extend the functionality of recommender systems in two directions that
improve their effectiveness in suggesting activity items.

First, assuming that a recommendation service (e.g., Groupon) promotes a set of activity items
to a user, we study the problem of also recommending suitable activity partners for the items. As
Figure 1 shows, our suggestion is to combine an activity-item promotion platform with a social
network platform to find activity partners for the items which can increase the likelihood that the
recommended items will be selected by the users. The rationale is that, for items that people like
to participate in with their folks, if the system recommends the items alone, the user may give up
attending the activity (i.e., taking up the item) if s/he cannot immediately think of someone to
invite to attend the activity together. Figure 1(3) illustrates the effectiveness of recommending
activity partners via an example. Consider activity item “tickets of Bruno Mars’ concert,” for
which the corresponding activity is “watching Bruno Mars’ concert.” Imagine that you have some
interest in Bruno Mars’ show; however, when you see the recommendation message, you have
difficulty thinking who could be suitable partners for watching the show together. This could be a
good reason for you to give up attending this activity since you do not feel like watching a concert
alone. On the other hand, if the recommendation also includes suggestions for possible partners,
you can try inviting them and enjoy the show together. In order to evaluate our hypothesis that
users prefer to take activity items if they have partners to join them, we designed a simple ques-
tionnaire to collect feedback from real Web users. The results (shown in Section 4.1) demonstrate
that the great majority of Web users would favor such an approach as opposed to a simple activity
item recommender. In summary, we assert that including partner recommendations not only
improves the quality of recommender systems, but may also increase the positive response rate of
users, therefore improving the revenue of the involved businesses. To the best of our knowledge,
so far there do not exist any previous studies or applications that include this important function.
This motivates us to investigate methods for activity-partner recommendation. We first explore
how historical attendance preferences, social context, and geographic information can be used
to recommend activity partners. Then, we propose a method that analyzes historical records
of users’ preferences on activity partners to predict activity partners for new recommended
activities. This is a reasonable methodology, since the past users’ preferences on activity partners
would be available after setting up an activity-partner recommendation system.
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Fig. 1. Example of activity-partner recommendation.

Besides investigating how to recommend activity partners for any given item, our second di-
rection of study in this article is how to utilize the fact that users like to attend activities with
partners, in order to improve the quality of activity item recommendation. Our study is based on
the assumption that users will prefer activities for which they can find suitable partners over ac-
tivities for which they cannot find good partners. For example, consider a recommender system
which suggests a list of activity items to a user that are expected to be the ones that she would
prefer, based on the user’s historical data. The user may, however, prefer items which she likes less
than those in this list, but for which she could find partners. Based on this observation, we propose
a partner-aware activity recommendation framework. Our framework first estimates the probabil-
ity that a user can find partners for an activity and then uses this partner probability to adjust the
recommendation order of activities. We expect that the list of recommended items (together with
the corresponding partners) suggested by our framework is more useful to users, due to the fact
that users not only are interested in the recommended activities, but also in whether they can find
partners to attend them together.

Our experiments first include the results of a questionnaire which evaluates the needs of users
for activity-partner recommendation. Then, we evaluate our proposed methods for partner recom-
mendation and for partner-aware activity recommendation. We use datasets from location-based
social networks to simulate a social-activity recommendation scenario. We select out the locations
that can be mapped to social activities. The ground truth of activity partners can be extracted from
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users’ check-in records and social links between users (refer to Section 4.2.3 for details). Using
the ground-truth, we evaluate all proposed strategies for recommending activity partners. After
evaluating partner recommendation, we study the effectiveness of partner-aware activity recom-
mendation. Not only do we verify the assumption in our partner-aware framework, we also show
that our framework improves conventional recommenders for activity promotion.

In summary, the contributions of this article are as follows:

—We bring in the idea of recommending suitable activity partners to users for social activities
(or related products). The results of a survey which we have conducted confirms that real
users appreciate the recommendation of activity partners together with the proposed items.
We formulate the problem of activity-partner recommendation, accordingly.

—We study how to derive activity-partner recommendations based on the users’ historical
attendance behaviors, the social context of users, and geographic information of activities.
Since such data are commonly tracked in current recommendation systems, our results can
be used to set up an activity-partner recommender easily.

—We also propose a methodology for recommending activity partners based on past part-
ner knowledge of users. In this direction, we extend conventional collaborative filtering
techniques to make them more suitable for our problem.

—We adapt activity recommendation to consider not only the preference from users to ac-
tivities, but also whether the users can find suitable partners to attend the recommended
activities together. This results in a novel partner-aware activity recommendation model.

—We conduct an experimental evaluation based on real data that evaluates all proposed meth-
ods in terms of their ability to recommend suitable activity partners and improve recom-
mendation effectiveness.

This article is a substantial extension of Tu et al. (2015), which proposes an activity-partner rec-
ommender for social activities. In this article, besides improving the activity-partner recommen-
dation system, we also explore the impact of finding suitable partners to improve the effectiveness
of recommending activities to users. More specifically, our new material compared to Tu et al.
(2015) includes a new partner-aware activity recommendation model (Section 3), which assumes
that users tend to select the activities for which they can find suitable partners. The model is eval-
uated in Section 4.4. We also add a new GCAPR strategy that utilizes geographic information for
achieving activity-partner recommendation in Section 2. GCAPR is included in our performance
evaluation (Section 4.3.2). Finally, we have added additional conventional activity recommenders
for evaluating attendance preferences (Section 4.2.5) while we only used user-based Collaborative
Filtering (CF) in Tu et al. (2015).

The remainder of this article is organized as follows. Section 2 describes our methods for
activity-partner recommendation. Section 3 shows how we utilize the partner factor to improve
conventional recommender systems for social activities. Section 4 includes our experiments. Sec-
tion 5 presents related work. Finally, Section 6 concludes with a discussion about future work.

2 ACTIVITY-PARTNER RECOMMENDATION

In this section, we investigate the problem of recommending activity partners to a target user
ut to attend a given social activity item al together. Here, by social activity items we denote any
real-world items related to activities people like to attend with their friends (e.g., watching an
event, having dinner). We propose several solutions to recommend activity partners, based on
different hypotheses. In Section 4.3, we will compare their performance on real-world datasets. As
discussed in the Introduction, our motivation is to increase the probability that ut will select al ,
assuming that al has been recommended tout . In other words, without partner recommendations,
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Fig. 2. Graphical explanation of activity-partner recommendation.

we assert thatut has a higher probability to rejectal (as indicated by our experiment in Section 4.1).
After formally defining the activity-partner recommendation problem (Section 2.1), in Section 2.2
we show how we can consider various factors (attendance behavior, social context, geographic
information) in defining the suitability of other users to be partners forut in attending al together.
Finally, in Section 2.3 we discuss how historical information about the preferences of users in
participating in activities together can be used toward finding suitable partners.

2.1 Problem Formulation

As illustrated in Figure 2, typically there are two types of objects (i.e., users and items) in recom-
mendation systems. LetU = {u1,u2, . . . ,unu

} be a set of users andA = {a1,a2, . . . ,ana
} be a set of

activity items that can be recommended to users. Two common types of relationships exist among
these entities. First, users have preferences for items, which are either explicit (e.g., users may
rate some of the items) or implicit (preferences are estimated/predicted by a classic recommender
system). Since, in our case, items are related to activities, we call the preference of users to items
attendance preference. For each userut and activity item al , we denote by af (ut → al ) (abbreviated
as rt,l in Figure 2) how much ut prefers al . af (ut → al ) can take value from a range of integers
(e.g., 1–5) or can be a binary number (i.e., af (ut → al ) = 1 means that ut likes al ). Second, users
can be connected to each other in a social network; we use fi, j to represent the friendship status
between users ui and uj , i.e., fi, j = 1 if ui and uj are friends and fi, j = 0 otherwise.

Besides the above two types of relationships (i.e., friendship and attendance preference), we
bring in another relationship, called together preference, which indicates whether or how much
a user prefers to attend a given activity item together with another user. For example, if Tom
clicks the “Invite Jerry” button in the exemplary user interface in Figure 1(3), this indicates that
Tom prefers to attend activity “Bruno Mars’ show” together with Jerry. We use p f ([ut ,al ]→ ux )
(abbreviated as px

t,l
in Figure 2) to indicate how much user ut prefers to attend the activity of al

together with ux . p f ([ut ,al ]→ ux ) can take numerical or binary values, similar to the attendance
preference defined above. For example, we can set the binary value of p f ([Tom, tickets of Bruno
Mars’ concert]→ Jerry) to 1 if Tom clicks the “Invite Jerry” button and to 0 if Tom does not click
the button.

As Figure 2 illustrates, the objective of our work is as follows. For each activity item al rec-
ommended to a user ut by a conventional recommender, predict the users’ together preference to
all partner candidates on the activity item. In order to compute p f ([ut ,al ]→ ux ), for any can-
didate partner ux , we use any known friendship, attendance preference, and together preference
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relationships. Finally, we recommend to ut the top-k partner candidates with the highest together
preferences.

2.2 Utilizing Attendance Behavior, Social Context, and Geographic Information

The together preference p f ([ut ,al ]→ ux ) relates a two-dimensional object [ut ,al ] to a user ux .
Although there is a large amount of work analyzing relationships between users and relationships
between users and items, there is no previous work in recommender systems exploring this type
of relationship.

A typical promotion platform of social activities keeps a record of three kinds of data: users’ his-
torical attendance records (hits), friendship between users, and the geographic information about
the promoted activities. In this section, we will discuss how to utilize these data to implement part-
ner recommendation, since they commonly exist in activity-recommendation platforms (Ye et al.
2013; Noulas et al. 2011; Zheng et al. 2009). This way, an activity-partner recommendation system
can be trained in the case where we have not collected enough past together data from users.

2.2.1 Social Closeness Partner Hypothesis. The majority of web services nowadays allow users
to establish friendship relationships between them. Thus, the most intuitive relationship between
users is their social closeness. Here we use the neighborhood overlap (Adamic and Adar 2003) (com-
monly used owing to its low computational complexity) to model the social closeness SC (ut ,ux )
between two users ut and ux . We argue that this user-user relationship is one factor that may help
to predict together preference (e.g., p f ([ut ,al ]→ ux )). The main assumption is that people prefer
to attend activities with users who are socially close to them. Therefore,

p f ([ut ,al ]→ ux ) ∝ SC (ut ,ux ) =
F t ⋂F x

F t
⋃F x

, (1)

where F t (F x ) is the friends set of ut (ux ). In order to recommend activity partners to a target
user ut , we can rank the activity-partner candidates ux according to their social closeness to ut

and return the top ones as the recommended partners. We call this method Social-Closeness based

Activity-Partner Recommendation (SCAPR).

2.2.2 Similar Interests Partner Hypothesis. The similarity between the interests/preferences of
users (a.k.a. user homophily) is another important factor employed in classic recommender sys-
tems (Anderson et al. 2012). For recommending activity partners based on user homophily, we can
rank the activity-partner candidates according to their similarity to the target user. This approach
assumes that users prefer to participate in activities with people who have similar interests with
them. For example, we can measure the cosine similarity between user-profile vectors. We call this
method Similar Interests based Activity-Partner Recommendation (SIAPR):

p f ([ut ,al ]→ ux ) ∝ SI (ut ,ux ) = cos(rt , rx ) =
rt · rx

| |rt | | | |rx | |
, (2)

where vectors rt and rx capture the interests (set of preferred items) of ut and ux , respectively.

2.2.3 Also-Like Partner Hypothesis. Besides the above hypotheses, assuming that users prefer
to attend an activity together with users who also prefer to attend the activity, we can rank the
activity-partner candidates by their attendance preference to the activity item:

p f ([ut ,al ]→ ux ) ∝ af (ux → al ). (3)

We call this method Also-Like based Activity-Partner Recommendation (ALAPR). The attendance
preference of the activity-partner candidates to the activity item can be estimated by any activity-
item recommendation system. For example, we can use user-based collaborative filtering (Schafer
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et al. 2007) (explained in detail in Section 2.3) to estimate the attendance preference of any user ux

to item al .

2.2.4 Geographic Closeness Partner Hypothesis. Since most of real-life activities are related to
locations, suitable partners forut could be the ones who are the closest to the activity location (Ying
et al. 2012). For a user ux , we can define as the user’s geographic footprint Ax , the set of activity
locations most frequently attended by her (i.e., the set of activities visited the largest number of
times). Then, the distance from ux to an activity al is modeled as

Dist (ux ,al ) =
1

|Ax |
∑

ax ∈Ax

geodist (ax ,al ) , (4)

where geodist (ax ,al ) is the geographical distance between ax ’s location and al ’s location. For a
partner candidate ux , the together preference is proportional to the geographic closeness from
him/her to the activity:

p f ([ut ,al ]→ ux ) ∝ 1 − Dist (ux ,al )

maxux
Dist (ux ,al )

. (5)

2.3 Utilizing Historical Together Preferences

In this section, we propose a method to recommend activity partners in a supervised manner (i.e.,
when historical together preferences are available and can be used for training). Our objective is to
predict a user’s together preference via his/her past together preference records. We first discuss
the possible sources of past together preference data for the target user. Then, we will show how
known together preference data can be used to predict together preference for a new item.

2.3.1 Extracting Historical Together Preference Data. Several methods can be used to retrieve to-
gether preference data. First, some domains own the together preference data already. For example,
consider the case where the activity items are online games. The system that hosts the games can
easily record whether two users have played some game together. Together preferences can also
be derived from users’ behavior at the activity-partner recommendation web service. For example,
if we set up an activity-partner recommendation system with an interface similar to the one in Fig-
ure 1(3), the clicking behavior of users on the invitation button is an indicator of activity-partner
preference. Another source of together-preference data are the check-in records of geo-social net-
works. Assume that we have access to the check-in data of users together with their social con-
nections. If two users who are friends checked in at the same activity venue very close in time,
we can infer that they attended the activity together. For example, two friends who checked in at
the same Chinese restaurant at 8:00 p.m. and 8:15 p.m. on the same day, most probably had dinner
together.

2.3.2 Employing Historical Together-Preference Data. With the availability of past together-
preference data, recommending activity partners seems to be a typical recommendation problem
if we regard the combination of target user and activity (e.g., [ut ,al ]) as a special “user.” Thus, it
seems natural to employ CF for recommending activity partners. However, as we will show next,
there are some problems with the direct use of CF to solve our problem. Let us first review how
user-based CF (Schafer et al. 2007) works. Suppose that we have to estimate p f (ut → al ) of userut

on item al . The first step of user-based CF is to calculate for each other userui the vector similarity
between the rating profiles of ut and ui (denoted as rt and ri ), e.g., use Equation (2) to compute
the similarity between users. The second step is as follows: if the similarity between user ut and
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ui (denoted by Su
t,i ) satisfies some condition (e.g., it is larger than a threshold or in the set of top-k

highest similarities), we regard ui to be in the neighborhood of ut . To predict pA
t,l

, we aggregate the

(known) preference from pA
i,l

of all users ui in the neighborhood of ut , as follows:

af (ut → al ) ∝
∑

ui ∈N t Su
t,iri,l∑

ui ∈N t Su
t,i

, (6)

where N t denotes the users in ut ’s neighborhood.
Now, assume that we try to apply this conventional user-based CF approach to predict the to-

gether preference p f ([ut ,al ]→ ux ). Here, we can regard each [ut ,al ] as a special user unit and
call this “user” unit as ua-pair. First, we should try to find the ua-pair neighborhood of [ut ,al ].
However, since activity items recommended to a user should be the ones he/she has not attended
yet, we do not have any historical together-preference information for ua-pair [ut ,al ]. This means
that all the elements of the profile vector of [ut ,al ] are unknown, thus we are not able to find
neighbor ua-pairs of [ut ,al ] by computing the vector similarity between the row of [ut ,al ] and
those of other ua-pairs. This problem is not unique to user-based CF. It also occurs when we try to
use item-based (Sarwar et al. 2001) or matrix-factorization-based CF (Koren et al. 2009) methods,
since the profile row of [ut ,al ] does not contain any known values.

To solve the problem discussed above, we employ an alternative method for defining the neigh-
bors of [ut ,al ] and their similarity. We just consider all [ut ,am] (m � l ) as candidate neighbor ua-
pairs of [ut ,al ]. In other words, we only take the ua-pairs for which the user element is the same as
the target user ut as candidates of neighbor ua-pairs, since we found that the together-preference
patterns of different users are very different (this will be demonstrated in the Experiments section).
Then, we regard the similarity between [ut ,al ] and [ut ,am] as the similarity between al and am

(m � l ). For example, we can use the similarity between the profile vectors of al and am (i.e., item
similarity) to model the similarity between [ut ,al ] and [ut ,am].1 After calculating the similarity
between [ut ,al ] and all [ut ,a∗], we select the most similar [ut ,a∗] as the neighbors of [ut ,al ] (i.e.,
those with similarity larger than a threshold or those with the highest similarities). Finally, we can
predict p f ([ut ,al ]→ ux ) (i.e., px

t,l
) by aggregating all together preferences p f ([ut ,am]→ ux ) (i.e.,

px
t,m) of [ut ,am] (m � l ) on ux as

p f ([ut ,am]→ ux ) ∝
∑

[ut ,am ]∈N t,l Sa
l,m

px
t,m∑

[ut ,am ]∈N t,l Sa
l,m

, (7)

where N t,l denotes the neighbor ua-pairs of [ut ,al ]. We denote the above extended CF method
by CFAPR.

From the above equation, we can see that CFAPR actually assumes that people have similar
preferences for patterns on similar activities, which is a reasonable assumption. For example, John
likes to watch football matches and play football with his sports buddies, but prefers to watch
romantic movies and have dinner in a restaurant with his girlfriend. Algorithm 1 summarizes the
whole process of CFAPR.

3 PARTNER-AWARE ACTIVITY RECOMMENDATION

In Section 2, we have introduced our methods for activity-partner recommendation. Although our
activity-partner recommendation model tries to find suitable partners for a user ut to attend an

1Note that the similarity between the target activity and other activities can be calculated by content or geographical-

based methods (Zhang and Wang 2015; Yin et al. 2013; Wang et al. 2015) if the target social activity is a one-time event and

cold-start item.
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ALGORITHM 1: CFAPR

Input: (i) Ct,l : the candidate set of partners recommended to user ut when recommended activity-related

item is al ; (ii) Sa (al ,am ): similarity function between two activity items (i.e., al and am );

(iii) neighbor_condition: a threshold or a value k for defining the number of neighbor ua-pairs.

Output: K partners recommended for ut to attend al together

Initial N t,l = ∅; At = the activity items previously preferred by ut ;

for all am ∈ At do Sim([ut ,al ], [ut ,am]) = Sa (al ,am )
for all al ∈ At

if Sim([ut ,al ], [ui ,am]) satisfies neighbor_condition

then Add [ut ,am] into N t,l

for all ux ∈ Ct,l do Compute p f ([ut ,al ]→ ux ) using Equation (7)

Return K users in Ct,l having the highest K pf ([ut ,al ]→ u∗) values.

activity together, it is possible that for none of the activity items al recommended to ut we can
find partners ux of high together preference. In this case, we can infer that it is hard for ux to find
a suitable partner to attend any of the activities recommended to her, which increases the likeli-
hood of the activities to be rejected. In general, when people are interested in different activities,
they prefer attending the activities for which they can find suitable partners. Therefore, it makes
sense to consider the likelihood to find suitable partners when recommending activities to users.
In this section, we present partner-aware activity recommendation and discuss how conventional
recommendation approaches can be adapted and improved to suggest items not only based on the
interests of users, but also whether the user can find activity partners.

3.1 Partner-Aware Interest Probability

The objective of partner-aware activity recommendation is to recommend activities that not only
arouse the target user’s interests, but for which the user can find partners to attend them together.
Let us call the probability that a user u is interested in an activity an interest probability (denoted
by P (A) in this section) from u to a, and the probability that a user u can find partners for at-
tending activity a partner probability (denoted by P (B)) from u to a. Then, the probability that u
is interested in a and can find partners for a should be the joint probability P (AB). We call this
probability partner-aware interest probability. To estimate interest probability, we could use previ-
ous activity recommendation approaches that predict users’ interests to activities based on their
historical interests in the activities (i.e., P (A) ∝ af (u → a)). For instance, some methods assume
that users like to attend the activities similar with the ones they attended before, or assume that
they will attend the activities not far from the place they live. Our question is now how to estimate
whether the target user ut can find a suitable partner to attend some activity together (i.e., partner

probability P (B)). Recall that the together preference p f ([ut ,a]→ uc ) measures how much userut

likes to attend activity a together withuc . Assuming that for each item a, we compute the together
preferences from userut to all partner candidates, the maximum of these together preferences can
be used to estimate pp (ut → a). The rationale is that if the top recommended partner to ut for
a has a high together preference, we know that there is at least one suitable partner candidate.
Thus, we have partner probability P (B) ∝ maxuc

p f ([u,a]→ uc ), where uc is any partner candi-
date for u to attend a together. Notice that since previous recommenders calculate users’ interests
to activities without considering whether they can find partners for them, the P (A)’s they obtain
satisfy P (A|B) = P (A|�B). Thus, we have P (AB) = P (A) · P (B). Specifically, for partner-aware in-

terest probability, we have P (AB) ∝ (af (u → a) ×maxuc
p f ([u,a]→ uc )). Finally, we could use

partner-aware interest probability to rank activities and extract those that u is interested in and
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Fig. 3. Illustration of partner-aware recommendation.

could find partners for at the same time (i.e., with high partner-aware interest probabilities). Figure 3
shows an example. Suppose the conventional activity recommender sorts activities as am ,an ,ao .
We observe that the highest together preference from ut to partner candidates for am is much
lower than that for an . Our strategy will change the orders of am and an since the partner-aware

interest probability from ut to an will be higher than that from ut to am . This ensures that the top
recommended item is an activity for which the target user can find partners to attend it together.

3.2 Partner-Aware Activity Recommendation System

The algorithm we propose to implement the above idea is summarized as Algorithm 2. First, for
a target user ut , we use the conventional recommender to predict ut ’s interest probabilities to all
activity-item candidates as af (ut → al ),al ∈ Ct

A . Then, activity-item candidates are ranked ac-
cording to the corresponding interest probability (i.e., af (ut → al )). Recall that, after this step, the
conventional recommender returns the activity items with the highest k af (ut → al ) values as the
recommended activity items, where k is the size of the recommendation list. In our method, before
generating the recommendation list, we extract the activity-item candidates with top ρ ∗ k (ρ > 1)
interest probabilities values as a reduced candidate set, denoted as Rt

A . Then, for each activity-item

candidate ac ′ ∈ Rt
A , we calculate the corresponding partner probabilities (denoted as pp (ut → ac ′ )

in the algorithm) to measure whetherut can find a partner to attend ac ′ together. Finally, we obtain
the partner-aware interest probability as the product of interest probability and partner probability

(i.e., (af (ut → ac ′ ) × pp (ut → ac ′ )), which is used to eventually rank the recommendations. Note
that we set the minimum value of a partner probability to a very small value δ = 1.0e − 5. In other
words, if a partner probability from the target user to all activity candidates for an item ac ′ is zero,
we adjust it to δ in order for the rank of the item to simply correspond to its attendance prefer-
ence by the target user. Thus, ac ′ is ranked w.r.t. δ · af (ut → ac ′ ), which would be proportional
to af (ut → ac ′ ), i.e., the relative ranking of ac ′ compared to other items without suitable part-
ners remains the same. Otherwise, note that our algorithm uses the partner factor to adjust the
orders of only the activity candidates with the highest ρ ∗ k attendance preferences rather than all
activity candidates. This guarantees that all recommended activities do not have low interest prob-

ability, considering that interest probability is the primary factor in determining whether the user
will attend the activity. Moreover, this will decrease computational burden since only the partner
probabilities for the top ρ ∗ k activities need to be calculated (this parameter is further discussed
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in Section 4.4.2). Finally, we generate the recommendation list for ut as the activities in Rt
A with

the highest k partner-aware interest probabilities.

ALGORITHM 2: Partner-Aware Activity Recommendation

Require:

ut : target user set

Ct
A : the candidate set of activity-related items recommended to ut

Ct,l
P : the candidate set of partners recommended for ut to attend activity al together

af (ut → al ): attendance preference estimator (e.g., Equation (6))

p f ([ut ,al ]→ up ): together preference estimator (e.g., Equation (7))

k and ρ: parameters

Ensure:

Recommendation list with k activities for the target user ut

1: for all ac ∈ Ct
A do

2: calculate attendance preference af (ut → ac )
3: end for

4: Rt
A = elements in Ct

A with highest ρ ∗ k attendance preferences.

5: for all ac ′ ∈ Rt
A do

6: pp (ut → ac ′ ) = δ

7: for all up ∈ Ct,c ′

P do

8: calculate together preference p f ([ut ,ac ′]→ up )
9: if p f ([ut ,ac ′]→ up ) > pp (ut → ac ′ ) then

10: pp (ut → ac ′ ) = p f ([ut ,ac ′]→ up )
11: end if

12: end for

13: calculate partner-aware interest probability

paf (ut → ac ′ ) = af (ut → ac ) × pp (ut → ac ′ )
14: end for

15: Recommended list = items in Rt
A having the highest k paf (ut → ac ′ ) values.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of our work in recommending activity partners and
improving activity recommendation. Section 4.1 demonstrates the meaningfulness of activity-
partner recommendation via feedback collected from real Web users. Section 4.2 introduces the
datasets we used and the setup of our experiments. Section 4.3 evaluates the performance of several
strategies on recommending activity partners. Section 4.4 compares the performance of traditional
recommendation methodologies and our partner-aware strategy.

4.1 Users’ Favor of Activity-Partner Recommendation

To confirm the practical value of our work, we conducted an electronic survey (Root and Draper
1983) that involved real-world Web users. The objective is to find out whether users to whom
activity items are recommended are also interested in activity-partner recommendation for these
items. The designed questionnaire asks people whether they prefer to receive activity-partner
recommendations together with the corresponding activity items and was released to public Chi-
nese Web users since November 21, 2014. Until the submission of this work, 197 Web users (from
various provinces of China) returned their answers to us. Although we did not get much feedback
(there were very few Web users willing to fill in the online questionnaire without a reward), we

ACM Transactions on the Web, Vol. 12, No. 1, Article 4. Publication date: September 2017.



4:12 W. Tu et al.

Fig. 4. Typical LBSN datasets (screenshot from the Gowalla website).

believe that the sample is big enough to reflect the opinion of typical Web users. Finally, about

93.4% of participating users expressed their preference to activity-partner recommenda-

tion, compared to recommending activity items alone. This indicates that our study has good
potential in improving the quality of current recommender systems.

4.2 Datasets and Experimental Setup

In our effectiveness evaluation, we used data from location-based social networks to simulate a
real-world scenario (i.e., social-activity-based platform) for our work. We first give a brief intro-
duction of the datasets we used. Then, we discuss how we use them to simulate a social-activity-
based platform and how to obtain ground truth for the activity partners. Finally, we present our
experimental setup.

4.2.1 Datasets. Figure 4 shows screenshots of Gowalla, which is a typical location-based so-
cial network (LBSN) that collects check-in records. A check-in record (ut , li , t ) states that user
ut checked in at location li at time t . For example, the screenshot shows several users’ check-in
records at Halcyon, which is a place in the Coffee, Bar & Lounge category. In our experiments,
we used data from two public LBSNs: Foursquare (Gao et al. 2012) and Gowalla (Cho et al. 2011).
The Foursquare dataset includes 1,385,223 check-in records from 11,326 users to 182,968 locations
from January 1, 2011 to July 31, 2011. The Gowalla dataset includes 6,442,892 check-in records
from 107,092 users to 1,280,969 locations, from February 4, 2009 to October 23 2010. Both datasets
have check-in timestamps and social links between users. Since the experiments involve a training
period and a test period, we split each of the two LBSN datasets into a training set and test set in
the same manner as in Gao et al. (2012) and Cho et al. (2011). For Foursquare data, we use the
check-in data ranging from January 1 to June 30 as the training set to learn our model parameters,
and construct the testing set from the check-in data in July. For Gowalla data, we put 80% of the
check-ins in the training set and the remaining 20% in the test set.

4.2.2 Social-Activity-Related Locations. We regard locations in LSBN datasets as social-activity
items (i.e., li = ai ). This is reasonable, since many activity items (e.g., tickets, dinner vouchers) refer
to particular locations at particular time periods or moments. In order for our experiments to focus
on locations that can be mapped to social activities, we use the categories of locations to character-
ize the social-activity locations. However, the public versions of Foursquare (Gao et al. 2012) and
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Fig. 5. Words appearing frequently in location categories.

Table 1. Social-Activity Keywords Used in Our Experiments

Social-activity keywords

gym, restaurant, food, cafe, bar, BBQ, club, spot, coffee, entertainment, fitness, art, museum,
opera, steakhouse, plaza, bookstore, motel, hotel, beer, football, basketball, music, mall, bike,
theater, movie, nightlife, park, yoga, burger, sandwich, sport, sushi

Table 2. Examples of Location Categories

Examples of location categories related to
social activities

Examples of location categories not related
to social activities

xinjiang restaurant, water park, gaming cafe,
wine bar, college gym, steakhouse, art
museum, sports club, movie theater,
basketball court, gay bar, turkish restaurant,
juice bar, theme park ride attraction, beer
garden

airport tram, light rail, tunnel, train station,
paper office supplies store, financial or legal
service, bus stop, costume shop, monastery,
track, middle school, doctor’s office, factory,
real estate office

Gowalla (Cho et al. 2011) datasets only contain check-in records and friend links between users,
but no category information about the places. Thus, we crawled the category information of all lo-
cations (in both Foursquare and Gowalla data) using Foursquare API (developer.foursquare.com).
The API outputs the category of a location if we give its longitude and latitude as input. Since both
Foursquare and Gowalla datasets contain the longitudes and latitudes of locations, we successfully
obtained category information of all locations in them. Figure 5 shows the most frequent words
appearing in the location categories of the two datasets. As we can see, the most frequent word in
the location categories of Foursquare and Gowalla datasets is restaurant. The restaurant locations
can be easily mapped to social activity “having dinner at a restaurant” and activity-related items
like “discount coupon for dinner.” However, note that there are some categories (e.g., store and
station) which are hard to map to social activities. Thus, to make the experiments focus on the
locations related to social activities, we filter out the locations in the raw datasets that are hard to
relate to any social activity. Specifically, we only keep the records related to the locations of which
the categories contain social-activity-related keywords (e.g., restaurant, bar, gym). The whole list
of social-activity-related keywords we used is shown in Table 1. Several examples of location cate-
gories related to (and not related to) social activities are given in Table 2 to verify the effectiveness
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of the keywords in finding social-activity-related locations. Using location categories related to
social activities, about one-half of locations are mapped to social activities. Specifically, 90,803
from 182,968 Foursquare locations and 625,632 Gowalla locations are mapped to social activities.
Then, activity-partner recommendation and activity recommendation are performed based on the
check-in records related to social activities. There are 598,345 and 2,976,367 check-in records re-
lated to social-activity locations in Foursquare and Gowalla datasets, respectively.

4.2.3 Ground Truth of Activity Partners. Besides the fact that the locations can be mapped to
social activities, another reason for which we used LBSN datasets in our experiments is that we can
simulate the ground truth of activity partners from them. In an LBSN, we know the timestamps
of check-ins and the friendship links between users; based on these, we can infer the ground
truth about activity partners. Here we employed the method used in Purushotham et al. (2014)
for extracting group members to obtain the ground truth about activity partners. Specifically,
as discussed in Section 2.3, if two users ux and uy are friends and check in at a same location
(activity) ai at close timestamps (i.e., the time difference between their check-in timestamps is
less than a threshold T ), we regard that the two users attended the corresponding activity item
(location) together (denoted as ([ux ,ai ],uy ) and thus they are activity partners of each other with
respect to the activity item ai . In other words, we have ([ux ,ai ],uy ) if there exist (ux ,ai , t1) and
(uy ,ai , t2) in the LBSN data, |t1 − t2 | is less than T , and fx,y = 1. In our experiments, we set T as
3 hours since most of real-world activities mapped to activity-related locations last about 3 hours.
For example, the typical duration of a movie is between 2 and 3 hours, therefore the activity
“watching a movie” typically lasts 2 to 3 hours; i.e., if two friends watch a movie together, the
difference between their check-in time stamps could be from zero to 3 hours. We have analyzed
the influence of this threshold on constructing ground truth of activity partners. There are no
significant differences among the sets of activity partners corresponding to setting the threshold
as 1, 2, 3 hours since most of the check-in time differences between activity partners are less than
1 hour. Thus, the influence of this threshold on the experimental results is limited.

4.2.4 Recommendation Problems and Evaluation Metrics. Given each pair of user ut and activ-
ity al , the activity-partner recommendation problem is to suggest to ut a list of users, with the
expectation that the recommended users u1,u2, . . . ,uK contain real activity partners for [ut ,al ].
Note that according to the rule of extracting ground truth of activity partners, a real partner must
be linked with the target user in the social network. Thus, the partner candidates in our activity-
partner recommendation experiments are set as all users who are socially linked with target users.
In order to evaluate the performance of recommending activity partners, we use the classic preci-
sion and recall metrics (Gunawardana and Shani 2009; Bao et al. 2015):

Precision =

∑
[ut ,al ]∈V |Par ec ([ut ,al ])

⋂
Par eal ([ut ,al ]) |

∑
([ut ,al ])∈V |Par ec (ut ,al ]) | , (8)

Recall =

∑
[ut ,al ]∈V |Par ec ([ut ,al ])

⋂
Par eal ([ut ,al ]) |

∑
([ut ,al ])∈V |Par eal ([ut ,al ]]) |

. (9)

The test user-activity pair set V contains all [ut ,al ] pairs for which there is at least one activity
partner in our ground-truth data. Par eal ([ut ,al ]) includes the actual activity partners of [ut ,al ]
and Par ec ([ut ,al ]) is the set of recommended partners generated by an evaluated activity-partner
recommender. Similarly, when we evaluate our partner-aware activity recommender against
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baselines, we also employ precision and recall as evaluation metrics:

Precision =

∑
ut ∈U |Atr ec (ut )

⋂
Atr eal (ut ) |∑

(ut )∈U |Atr ec (ut ) | , (10)

Recall =

∑
ut ∈U |Atr ec (ut )

⋂
Atr eal (ut ) |

∑
(ut )∈U |Atr eal (ut ) |

. (11)

Here,U is the set of test users, Atr eal (ut ) consists of the activities attended by ut , and Atr ec (ut )
is the recommended activity list generated by some activity recommender.

4.2.5 Conventional Activity Recommenders. In our experiments, we employed several general-
purpose recommendation approaches as modules of our method and for comparison purposes.
First, we use them to calculate af (u → a) for ALAPR (see Equation (15)). Second, they are em-
ployed for attendance preference estimation in our partner-aware activity recommendation frame-
work (see Algorithm 2). When each of the activity recommenders is used in the partner-aware
framework, we obtain its corresponding partner-aware version. Thus, we will compare the per-
formances between each pair of conventional activity recommender and its partner-aware version
to demonstrate the effectiveness of our partner-aware activity recommendation framework. In our
work, we select six conventional activity recommenders commonly used in previous work on two
experimental datasets.

B1: User-based CF (UCF). The most popular approach in recommender systems is User-based
Collaborative Filtering (used in Chow et al. (2010), Ye et al. (2010), Ye et al. (2011), and Horozov
et al. (2006)), where recommendations are created based on the past behavior of a user. UCF as-
sumes that similar users have similar preferences over items. As we introduced in Section 2.3,
the attendance preference af (ut → al ) is computed by the average of other user ratings on al ,
weighted by the similarity of these users to ut :

af (ut → al ) ∝
∑

ui ∈N t Su
t,iri,l∑

ui ∈N t Su
t,i

, (12)

where Su
t,i is the similarity between usersut andui , most commonly defined as the cosine similarity

between the preference profiles of the users, i.e., Su
t,i = cos (rt , rc ) and N t denotes the users in ut ’s

neighborhood.
B2: Item-based CF (ICF). Item-based Collaborative Filtering (used in Wang et al. (2013)) comes

from the assumption that people like similar items. To estimate the preference of userut on activity
al , instead of comparing the user vectors as in UCF, we compare the profile (i.e., vector) of al to
the profiles of other items. The attendance preference af (ut → al ) in ICF is

af (ut → al ) ∝
∑

am ∈Au Sa
l,m

rt,m
∑

am ∈Au Sa
l,m

, (13)

where Au consists of the activities rated by ut before and Sa
l,m

measures the similarity between al

and am . Similar to UCF, Sa
l,m

could be the cosine similarity cos(ra
l
,ra

m ), where ra
l

and ra
m are the

vectors formed by the preferences of all users to al and am , respectively.
B3: Friend-based CF (FCF). Friend-based CF (used in Ye et al. (2010), Ye et al. (2011), Wang

et al. (2013), and Scellato et al. (2011)) considers only friends when applying collaborative filtering
for a target user. FCF assumes that people listen to their friends and follow their friends’ recom-
mendations only. As such, FCF only needs to compute the similarities between the given user and
her friends only, instead of all users. Since non-friends are not considered, noise by users who are
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not expected to influence the target user is reduced, which is expected to improve the precision of
the recommendations. FCF calculates af (ut → al ) as

af (ut → al ) ∝
∑

ui ∈F t Su
t,iri,l∑

ui ∈F t Su
t,i

, (14)

where F t is the set of ut ’s friends.
B4: Social-network-based CF (SCF). Similar to FCF, social-based CF (used in Ye et al. (2010),

Ye et al. (2011), and Wang et al. (2013)) utilizes friendship information for recommending items.
Different from FCF which considers only ut ’s direct friends F t as the set of similar users to ut ,
SCF calculates similarity between users by the set of their common friends:

af (ut → al ) ∝
∑

ui ∈N t Su
t,iri,l∑

ui ∈N t Su
t,i

, (15)

where user similarity Su
t,i = Jaccard

(
F u ,F i

)
, and Jaccard (·, ·) is the Jaccard index.

B5: Geo-distance-based CF (GCF). The rationale of Geo-distance-based CF (used in Horozov
et al. (2006), Ying et al. (2012), and Ye et al. (2011)) is that nearby friends are more influential than
faraway ones. Let us denote the locations that user u and v most frequently attended as Lu and
Lv , respectively. Then, the distance between u and v (denoted as Dist (u,v )) is estimated as the
average value of the distances between location pairs (lu , lv ) for all lu ∈ Lu , lv ∈ Lv . Finally, the
similarity between user ut and ui is calculated as

Su
t,i = 1 − Dist (ut ,ui )

maxuj
Dist
(
ut ,uj

) . (16)

B6: Category-based CF (CCF). Category-based CF (used in Bao et al. (2012) and Xiao
et al. (2010)) considers users as keywords and location categories as documents; between user
u and category C there can be a relevance score, rel(u,C ) (e.g., TF-IDF). To measure the similar-
ity between two users u and i , the sum of minimum relevance scores over all categories, i.e.,
sim(u,v ) =

∑
C min{rel(u,C ), rel(v,C )} is used. This value is then penalized by the difference be-

tween users’ randomness in preferences, thus the weight Su
t,i is

Su
t,i =

sim(u, I )

1 + |ent(u) − ent(i ) | , (17)

where ent(·) is the entropy of a user’s preference over categories.

4.3 Effectiveness of Activity-Partner Recommenders

In this section, we will compare the performance of the activity-partner recommendation ap-
proaches introduced in Section 2.

4.3.1 Competitors. Recall that for the activity-partner recommendation problem, which is stud-
ied in this article for the first time, we have introduced several hypotheses about the preferences of
users on potential activity partner. SCAPR, SIAPR, ALAPR, and GCAPR are proposed in Section 2.2
for performing activity-partner recommendation, by considering the users’ social context, atten-
dance behaviors, and geo-information. Moreover, we adapted the traditional collaborative filtering
model into a CFAPR model in Section 2.3, in order to recommend activity partners in a CF man-
ner. Here, for the sake of experimental evaluation, we include a competitor to CFAPR, which also
applies training using historical together preferences: Popular-Partner-based APR (PPAPR) models
the popularity of an activity partner candidate by the times s/he is preferred as an activity partner
by the target user. In other words, PPAPR is based on a partner consistency hypothesis while for

ACM Transactions on the Web, Vol. 12, No. 1, Article 4. Publication date: September 2017.



Activity Recommendation with Partners 4:17

Table 3. A Summary of Evaluated Methods

Method Principle

CFAPR Assuming that users prefer to attend activities with those who are activity
partners on similar activities, CFAPR ranks the activity-partner candidates by p̂c

t,l

calculated by Equation (7), where c corresponds to a partner candidate uc .
PPAPR Assuming that users prefer to attend activities with those who they usually attend

other activities with, PPAPR ranks the activity-partner candidates by Pop (ut ,uc )
calculated by Equation (18), where c corresponds to a partner candidate uc .

SIAPR Assuming that users prefer to attend activities with those who have similar
interests with them, SIAPR ranks the activity-partner candidates by Su

t,c , calculated
by Equation (2), where c corresponds to a partner candidate uc .

SCAPR Assuming that users prefer to attend activities with those who are socially close to
them, SCAPR ranks the activity-partner candidates by SC (ut ,uc ), calculated by
Equation (3), where c corresponds to a partner candidate uc .

ALAPR Assuming that users prefer to attend activities with those who also prefer the
activity item, ALAPR ranks the activity-partner candidates by estimated interest
from the partner candidate to the activity af (uc → a) (see Equation (15)), where c
corresponds to a partner candidate uc .

GCAPR Assuming that users prefer to attend activities with those who usually attend the
activities near the target activity, GCAPR ranks the activity-partner candidates by
the distance between the location of the target activity and the partner candidate’s
most frequently visited location, calculated by Equation (5), where c corresponds
to a partner candidate uc .

the CFAPR model of Section 2.3 the choice of a partner mostly depends on the activities. In PPARP,
the popularity of a partner candidate for a target user is defined as

p f ([ut ,al ]→ uc ) ∝ Pop (ut ,uc ) = |Vt
c |, (18)

whereVt
c is the set of valid user-activity pairs of user ut whose activity partners include uc . The

evaluated methods are summarized in Table 3.
Note that prior knowledge of together preferences is a requirement for methods PPAPR and

CFAPR. Thus, for both these methods, we split the test users into two sets. One contains the users
having past together behaviors in the training set, and the other consists of the remaining users.
We call the first set warm users and the latter cold users.

4.3.2 Results and Analysis. Considering that in real-world applications, the size of recommen-
dation window shown to users is limited, it is impossible to recommend many partner candidates
for each of the promoted activities if we like to recommend several activities to the target user si-
multaneously. Moreover, the number of partners that a user may select for an activity is typically
small (see Figure 6 for details). Therefore, the list of recommended partners to a user should not be
large. Considering all the above, in our experiments, we set the number of recommender activity
items K to range in {1, 2, 3, 4, 5}. Figure 7 shows the results of all APR methods for recommending
activity partners to warm users.

Note that since we have six conventional activity recommenders for calculating af (u → a), we
have five versions of ALAPR: AL1, AL2, AL3, AL4, AL5, and AL6 indicates ALAPR with UCF, ICF,
FCF, SCF, GCF, and CCF, respectively. When comparing the performance of different methods, we
can observe that
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Fig. 6. The distribution of partner size in Foursquare (left) and Gowalla (right) datasets.

Fig. 7. Performance comparison of methods CFAPR, PPFAPR, SCAPR, SIAPR, GCAPR, and ALAPR for warm

users.
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—CFAPR outperforms all other methods. This indicates the suitability of CFAPR for activity-
partner recommendation with training together-preference knowledge.

—CFPAR outperforms PPARP. Both CFAPR and PPARP make use of past together preferences.
The difference is that CFAPR assumes that the together preferences of a user on similar
activity items are similar. The fact that CFAPR outperforms PPARP confirms the validity of
this assumption.

—CPRAPR and PPARP outperform SIAPR, SCAPR, ALAPR. In general, the methods which use
past together preferences (i.e., CFAPR and PPARP) of the target user perform better than
methods which ignore this parameter (i.e., SIAPR, SCAPR, ALAPR). This fact shows that
past together preferences play an important role in predicting activity partners.

—SIAPR outperforms SCAPR, ALAPR. SIAPR, ALAPR, and SCAPR are three methods which
use information commonly seen in e-commerce or LBSN websites. Exploring their perfor-
mance can pave the way toward constructing an initial activity-partner recommender for
the case where there is no past partner knowledge about the target user. As the results show,
SIAPR performs best among these three simple methods. Therefore, when there is no train-
ing together-preference knowledge, SIAPR is a good choice to start up an activity-partner
recommendation system.

Note that results in Figure 7 are on warm users; for those users with no prior knowledge of together
preferences (i.e., cold users), we show the recommendation results in Figure 8. From the results,
we see that SIAPR performs poorly while SCAPR and GCAPR perform well. This may be because
cold users have no past together preference. We find that these users’ attendance history is not as
rich as the warm users’ attendance history (since a user who has rich attendance history tends to
have together preference records). Therefore, SCAPR and GCAPR which use social and geographic
information could alleviate the problem of data sparsity and perform relatively well (Chen et al.
2012). Summing up, for activity-partner recommendation, CFAPR is a good choice for

the users having prior knowledge of together preference, while GCAPR and SCAPR are

appropriate for users without past together preferences.

4.4 Effectiveness of Partner-Aware Activity Recommendation

In the next set of experiments, we verify the effectiveness of the partner-aware framework for rec-
ommending activities to users. The partner-aware recommendation framework improves conven-
tional recommendation methods, by using the attendance preferences and taking partner probabil-
ity into consideration. By employing each of the baseline approaches introduced in Section 4.2.5,
we obtain their partner-aware versions: Partner-Aware User-based CF (PAUCF), Partner-Aware
Item-based CF (PAICF), Partner-Aware Friend-based CF (PAFCF), Partner-Aware Social-network-
based CF (PASCF), Partner-Aware Geo-distance-based CF, and Partner-Aware Category-based CF
(PACCF).

4.4.1 Assumption Verification. Before we present the results of recommending activities, we use
the experimental datasets to verify the assumption of our partner-aware activity recommendation:
among the activities for which a user has similar attendance preferences, the user tends to select the

ones for which she can find partners (i.e., high partner probability).

For this purpose, we first simulate the following scenario: a user (e.g., u) has approximately
the same attendance preference to a set of activities. We such an activity set as u’s Close At-

tendance Preference (CAP) activity set. Specifically, if an activity set A = {a1, . . . ,an } is a CAP

activity set of u, we should have af (u → a1) ≈ af (u → a2) ≈ · · · ≈ af (u → an ). In order to
identify CAP activity sets, we employ the experimental datasets introduced in Section 4.2.1,
and conventional activity recommenders (for estimating attendance preferences) introduced in
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Fig. 8. Performance comparison of methods SCAPR, SIAPR, GCAPR, and ALAPR for cold users.

Section 4.2.5. For each user u in the test set, we use the trained activity recommender to
calculate attendance preferences from u to all activities. After that, we rounded the atten-
dance preferences by only keeping the two most significant digits. Then, the attendance pref-
erences are regarded as being approximately the same, if their smoothed values are the same.
For example, suppose the attendance preferences from user u to five activities a1,a2,a3,a4,a5

are 0.024983759843275, 0.02489789798, 0.027765765, 0.00198798798, 0.00198375843. We will have
af (u → a1) ≈ af (u → a2) and af (u → a4) ≈ af (u → a5). Thus, we obtain two CAP activity sets,
each consisting of activities with similar attendance preference. In our example, we will have CAP

activity sets A1 = {a1,a2} and A2 = {a4,a5}. Assume that, after using all test users’ data, we have
N CAP activities sets, denoted as A1,A2, . . . ,AN .

The next step is that, in each A in {A1,A2, . . . ,AN }, we extract activities with relatively higher
partner probabilities to generate a subsetAh and the ones with lower partner probabilities to form
the subset Al . Specifically, we calculate pp (u → a) for all a ∈ A. Then we take the activities having
topm% (e.g.,m = 30) pp (u → a) values to generate Ah and the ones with bottomm% (e.g.,m = 30)
to form the set Al .

Now, we have N CAP activity sets A1,A2, . . . ,AN for user u. In each of these sets
A = {a1, . . . ,an }, we have af (u → a1) ≈ af (u → a2) ≈ · · · ≈ af (u → an ). Meanwhile, each
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A is divided into two disjoint subsets Ah and Al , as described in the previous paragraph. If our
assumption is true, useru should tend to attend the activities inAh , compared with activities inAl .
To verify this assumption, we compare the percentage of activities inAh and inAl thatu indeed at-
tended. We expect the first number (denoted as P (u → a |a ∈ Ah )) to be significantly larger than the
second (denoted as P (u → a |a ∈ Al )). Specifically, when we have a CAP activity setA, we compare

P (u → a |a ∈ Ah ) =
|u → ai ,ai ∈ Ah |i
|ai ∈ Ah |i

=
|Ah

u |
|Ah |
, (19)

P (u → a |a ∈ Al ) =
|u → aj ,aj ∈ Al |j
|aj ∈ Al |j

=
|Al

u |
|Al |
, (20)

where |Ai
u |( |A

j
u |) is the number of the activities in Ah (Al ) which were attended by u.

Note that we have N CAP activity sets. We calculate the average P (u → a |a ∈ Ah ) (denoted as

Ph ), average P (u → a |a ∈ Al ) (denoted as P l ), and the percentage of the cases satisfy P (u → a |a ∈
Ah ) > P (u → a |a ∈ Al ) (denoted as Ph>l ) as

Ph =
1

N

N∑

i=1

P (u → a |a ∈ Ah
i ), P l =

1

N

N∑

i=1

P (u → a |a ∈ Al
i ),

Ph>l =
1

N

N∑

i=1

(P (u → a |a ∈ Ah
i ) > P (u → a |a ∈ Al

i )).

(21)

Moreover, to explicitly show the results are under the scenario “the activities in Ah and Al have
close attendance preferences but different partner probabilities,” we also use measurements to
evaluate the differences among attendance preferences in Al and Ah (denoted as Dhl

af
), as well as

the differences among partner probabilities in Al and Ah (denoted as Dhl
pp ):

Dhl
af =

1

N

N∑

i=1

|af (Ah
i ) − af (Al

i ) |
|af (Ah

i ) | + |af (Al
i ) |
, Dhl

pp =
1

N

N∑

i=1

|pp (Ah
i ) − pp (Al

i ) |
|pp (Ah

i ) | + |pp (Al
i ) |
, (22)

where

af (Ah
i ) =

1

|Ah
i |

∑

a∈Ah
i

af (u → a), af (Al
i ) =

1

|Al
i |

∑

a∈Al
i

af (u → a),

pp (Ah
i ) =

1

|Ah
i |

∑

a∈Ah
i

pp (u → a), pp (Al
i ) =

1

|Al
i |

∑

a∈Al
i

pp (u → a).
(23)

Recall that we have six attendance-preference estimators. We will show the results of using
each of them to predict af (u → a). According to the experimental results in Section 4.3, CFAPR
is the best method to evaluate p f ([u,a]→ uc ). Therefore, we employ it to calculate together
preferences and obtain partner probabilities. Moreover, recall that when we generate Ah and Al ,
we use a parameter m. Here m varies from 10 to 50.

Table 4 represents the final values of Dhl
af

, Dhl
pp , Ph , P l and Ph>l based on the above experi-

mental setup. From the results, we can see that

—Dhl
af

is very small while Dhl
pp is much larger. This confirms that the experiment is consistent

with the scenario that “the activities in Ah and Al have approximately the same attendance
preferences but different partner probabilities.” Since Ah consists of the activities with
top m% partner probabilities and Al is formed by the activities with bottom m% partner
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Table 4. Results for Assumption Verification

m%

UCF predicts af (u → a) ICF predicts af (u → a)

On Foursquare On Gowalla On Foursquare On Gowalla

Dhl
af

Dhl
pp P h P l P h>l Dhl

af
Dhl

pp P h P l P h>l Dhl
af

Dhl
pp P h P l P h>l Dhl

af
Dhl

pp P h P l P h>l

10% 0.004 0.84 0.23 0.09 0.77 0.008 0.79 0.22 0.06 0.74 0.008 0.83 0.19 0.06 0.75 0.010 0.83 0.15 0.05 0.71

20% 0.004 0.80 0.19 0.09 0.72 0.009 0.77 0.21 0.07 0.71 0.008 0.84 0.16 0.06 0.74 0.009 0.12 0.83 0.05 0.70

30% 0.004 0.77 0.17 0.09 0.69 0.009 0.75 0.20 0.07 0.69 0.007 0.78 0.14 0.05 0.72 0.009 0.82 0.11 0.04 0.69

40% 0.004 0.74 0.15 0.09 0.66 0.008 0.72 0.19 0.07 0.67 0.007 0.78 0.12 0.05 0.70 0.009 0.81 0.10 0.04 0.67

50% 0.003 0.70 0.14 0.10 0.64 0.008 0.70 0.19 0.08 0.65 0.006 0.73 0.11 0.05 0.68 0.008 0.80 0.09 0.04 0.66

m%

FCF predicts af (u → a) SCF predicts af (u → a)

On Foursquare On Gowalla On Foursquare On Gowalla

Dhl
af

Dhl
pp P h P l P h>l Dhl

af
Dhl

pp P h P l P h>l Dhl
af

Dhl
pp P h P l P h>l Dhl

af
Dhl

pp P h P l P h>l

10% 0.003 0.98 0.13 0.02 0.94 0.003 0.98 0.08 0.02 0.85 0.025 0.89 0.20 0.03 0.90 0.008 0.67 0.17 0.07 0.71

20% 0.002 0.97 0.12 0.03 0.91 0.002 0.98 0.07 0.03 0.83 0.024 0.86 0.18 0.04 0.87 0.007 0.64 0.16 0.06 0.70

30% 0.001 0.97 0.11 0.03 0.89 0.003 0.97 0.07 0.03 0.81 0.022 0.84 0.17 0.05 0.85 0.007 0.62 0.15 0.06 0.69

40% 0.001 0.95 0.11 0.04 0.87 0.002 0.96 0.07 0.03 0.79 0.021 0.82 0.16 0.05 0.83 0.006 0.60 0.14 0.06 0.68

50% 0.001 0.93 0.10 0.04 0.85 0.001 0.95 0.07 0.04 0.77 0.019 0.79 0.16 0.07 0.80 0.006 0.58 0.14 0.06 0.67

m%

GCF predicts af (u → a) CCF predicts af (u → a)

On Foursquare On Gowalla On Foursquare On Gowalla

Dhl
af

Dhl
pp P h P l P h>l Dhl

af
Dhl

pp P h P l P h>l Dhl
af

Dhl
pp P h P l P h>l Dhl

af
Dhl

pp P h P l P h>l

10% 0.011 0.91 0.21 0.04 0.87 0.002 0.73 0.16 0.09 0.65 0.002 0.90 0.14 0.03 0.89 0.002 0.85 0.23 0.004 0.88

20% 0.010 0.88 0.19 0.05 0.84 0.002 0.72 0.16 0.08 0.65 0.002 0.86 0.13 0.03 0.86 0.004 0.84 0.20 0.003 0.80

30% 0.010 0.86 0.18 0.06 0.83 0.002 0.71 0.14 0.08 0.63 0.001 0.84 0.12 0.04 0.83 0.003 0.80 0.18 0.003 0.74

40% 0.009 0.84 0.17 0.06 0.80 0.002 0.70 0.13 0.08 0.62 0.001 0.81 0.11 0.04 0.81 0.003 0.77 0.13 0.004 0.66

50% 0.008 0.81 0.17 0.07 0.77 0.001 0.67 0.13 0.09 0.61 0.001 0.78 0.11 0.05 0.79 0.003 0.75 0.09 0.004 0.60

probabilities, a large Dhl
pp indicates that the users have higher partner probabilities to

activities in Ah (than in Al ).

—Under the above scenario, we can see that Ph is much higher than P l , which supports that
users tend to attend activities inAh (i.e., those having higher partner probabilities). To mea-
sure the significance of the difference between Ph and P l , we use the t-test (setting the sig-
nificance level α to 0.05) for testing paired difference hypothesis. The null hypothesis is “the
difference between Ph and P l samples is not significant.” After testing, we found that that
the null hypothesis is rejected under all cases, which indicates that the differences between

Ph and P l are statistically significant. Moreover, we observe that Ph>l is much larger than
0.5 in all cases, which indicates the Ph is always larger than P l .

All the above results verify that, when users have similar attendance preferences to some activities,
they tend to attend the ones that give them higher partner probabilities.

4.4.2 Comparison Results on Recommending Activities. We now verify the effectiveness
of our partner-aware activity recommendation strategies on improving conventional recom-
menders at the task of recommending social activities. We compare the activity recommendation
performances of conventional recommenders to their partner-aware counterparts (i.e., UCF vs.
PAUCF, ICF vs. PAICF, FCF vs. PAFCF, SCF vs. PASCF, GCF vs. PAGCF, and CCF vs. PACCF). The
number k of recommended items varies from 1 to 10 and the parameter ρ in our algorithm ranges
from 2 to ∞. Here ρ = ∞ indicates that we use the partner probability to adjust the order of the
whole list of activities.
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Table 5.

k (%)

On Foursquare On Gowalla On Foursquare On Gowalla

UCF
PAUCF

UCF
PAUCF

ICF
PAICF

ICF
PAICF

ρ=2 10 ∞ ρ=2 10 ∞ ρ=2 10 ∞ ρ=2 10 ∞

1
Precision 4.88 5.17 5.36 5.65 5.37 5.98 6.58 5.81 1.78 1.98 2.67 3.21 3.11 3.11 3.65 4.87

Recall 2.07 2.19 2.28 2.40 1.10 1.23 1.35 1.19 0.59 0.66 0.89 1.08 0.46 0.46 0.54 0.72

2
Precision 4.45 4.83 5.22 5.07 4.79 5.44 6.12 5.10 1.64 2.15 2.53 2.77 2.82 3.14 3.38 4.56

Recall 3.78 4.11 4.43 4.31 1.97 2.24 2.52 2.10 1.10 1.44 1.70 1.86 0.83 0.93 1.00 1.35

5
Precision 3.79 4.21 4.11 4.02 3.78 4.76 4.72 4.34 1.36 1.76 2.02 2.24 2.51 2.74 2.83 3.66

Recall 8.06 8.96 8.75 8.55 3.90 4.91 4.87 4.48 2.29 2.96 3.40 3.77 1.86 2.03 2.09 2.71

10
Precision 3.00 3.44 3.28 3.24 3.22 4.30 3.93 3.63 1.21 1.44 1.78 1.79 2.15 2.46 2.45 2.90

Recall 12.7 14.6 13.9 13.8 6.63 8.86 8.11 7.48 4.06 4.85 6.0 6.02 3.18 3.64 3.63 4.29

k (%)

On Foursquare On Gowalla On Foursquare On Gowalla

FCF
PAFCF

FCF
PAFCF

SCF
PASCF

SCF
PASCF

ρ=2 10 ∞ ρ=2 10 ∞ ρ=2 10 ∞ ρ=2 10 ∞

1
Precision 6.60 6.60 7.34 7.78 8.04 8.65 8.51 8.12 4.74 5.41 5.60 5.50 6.91 7.63 7.41 7.21

Recall 4.33 4.33 4.82 5.11 2.43 2.61 2.57 2.45 2.19 2.5 2.58 2.54 1.42 1.57 1.52 1.48

2
Precision 5.43 6.31 6.09 6.46 7.06 7.60 7.41 7.41 4.13 4.74 4.98 5.08 5.94 6.59 6.79 6.35

Recall 7.13 8.29 8.00 8.48 4.27 4.60 4.48 4.48 3.81 4.38 4.60 4.69 2.44 2.71 2.79 2.61

5
Precision 3.81 4.22 4.43 4.75 5.43 5.92 6.12 5.99 3.43 3.57 3.74 3.68 4.52 5.67 5.56 5.31

Recall 12.5 13.8 14.5 15.6 8.20 8.94 9.24 9.05 7.93 8.24 8.64 8.50 4.65 5.83 5.72 5.46

10
Precision 2.86 3.32 3.95 3.96 4.35 4.77 5.04 5.06 2.67 2.84 2.91 2.87 4.06 4.83 4.56 4.43

Recall 18.8 21.7 25.9 26.0 13.1 14.3 15.1 15.2 12.3 13.1 13.4 13.2 8.34 9.92 9.37 9.09

k (%)

On Foursquare On Gowalla On Foursquare On Gowalla

GCF
PAGCF

GCF
PAGCF

CCF
PACCF

CCF
PACCF

ρ=2 10 ∞ ρ=2 10 ∞ ρ=2 10 ∞ ρ=2 10 ∞

1
Precision 3.89 4.29 4.37 4.69 5.01 5.37 5.89 5.64 3.62 3.84 3.62 4.06 4.64 4.82 5.54 5.73

Recall 1.74 1.92 1.96 2.10 1.05 1.12 1.23 1.18 1.48 1.57 1.48 1.65 0.90 0.93 1.07 1.11

2
Precision 3.42 3.46 3.77 3.81 4.27 5.24 5.40 5.16 3.59 3.84 3.84 4.24 3.97 4.82 5.04 5.16

Recall 3.06 3.10 3.38 3.42 1.79 2.20 2.26 2.16 2.93 3.14 3.14 3.46 1.54 1.87 1.95 2.00

5
Precision 2.56 2.92 3.16 3.03 3.56 4.30 4.31 4.02 2.83 2.96 3.30 3.28 3.42 3.82 4.05 4.19

Recall 5.74 6.56 7.09 6.81 3.73 4.51 4.52 4.22 5.77 6.04 6.75 6.69 3.31 3.70 3.92 4.07

10
Precision 2.22 2.59 2.64 2.64 3.13 3.64 3.5 3.37 2.10 2.40 2.63 2.53 2.88 3.13 3.19 3.39

Recall 9.98 11.6 11.8 11.8 6.56 7.64 7.33 7.07 8.59 9.83 10.7 10.3 5.58 6.07 6.20 6.58

The precisions and recalls of all tested methods for different values of k and ρ are listed in
Table 5. Figure 9 summarizes the results in a more comprehensive way, by grouping the experi-
mental instances by baseline method, used dataset, ρ and k . The figure also explicitly shows the
improvement that our partner-aware strategy achieves in each case. The F-score is defined as

F -score =
2 × (Precision × Recall )

Precision + Recall
. (24)

From the results, we can see that the partner-aware methods significantly outperform conven-
tional methods. Specifically, from Figure 9(a) we can see that the improvement is different when
a different baseline method is used. The partner-aware strategy offers the largest improvement
(34%) to ICF. Among the baseline approaches, FCF performs best, while PAFCF offers clear
improvement (14%) to it. Figure 9(b) and 9(c) show that partner-aware recommendation offers a
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Fig. 9. Performance comparison for recommending activities.

stable improvement regardless the data used and the value of k . Finally, Figure 9(d) suggests the
choice of ρ when applying partner-aware activity recommendation. Naturally, the improvement
increases with ρ, since more items are considered as candidates. There is a jump in the im-
provement from ρ = 2 to ρ = 10, indicating that including more candidates in the partner-aware
ranking module improves the quality of the selected results. On the other hand, the improvement
from ρ = 10 to ρ = ∞ is negligible. The reason is that the bottom-ranked activity candidates by
the baseline recommenders have very low attendance preferences; although the partner factor
may increase their final scores, they cannot reach the top k list. In summary, a very large value
for ρ does not bring a big improvement in the quality of the recommended results. On the other
hand, if ρ is very large, it brings a large computation burden to the recommender, because it
proportionally increases the number of partner probabilities to be computed. Each calculation of
partner probability requires computing together preferences to all partner candidates. Thus, we
suggest using a medium value for ρ (e.g., ρ = 10) in practice.

5 RELATED WORK

5.1 Recommender Systems

Previous research on recommender systems can be classified into two categories. Research in the
first class focuses on the design of models that improve the accuracy of general-purpose (i.e.,
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classic) recommendation tasks (e.g., recommendation of books or movies). Another category,
which has gained popularity in recent years, includes efforts that discover interesting applica-
tions of recommender systems and extend base recommenders to domain-specific tasks (He et al.
2010; Wu et al. 2013). Our work is in both of these directions. We study a new recommendation
problem: recommend partners for the activity items suggested to a user. Moreover, we also im-
prove activity recommendation by taking the probability that the user can find activity partners
into consideration.

5.2 Friend Recommendation

Social networking services (e.g., MySpace, Facebook) enable people to become friends with each
other. The effectiveness of these services depends on the quality of the social connections between
their members. As a result, friend recommendation (Hannon et al. 2010) became a popular research
topic, assisting social networks to improve their service. For example, Facebook has launched the
tool “People You May Know” to recommend friends based on social proximity. This tool recom-
mends “friends of friends”: if A knows B and B knows C, then Facebook tells A “You May Know C.”

Commonly to friend recommendation, the recommended object in our problem is also a user.
However, the tasks of friend recommendation and activity-partner recommendation are very dif-
ferent. Friend recommendation systems predict user-user relationships (i.e., friendships) (Chen
et al. 2009; Zheng et al. 2011), while our work explores (user, item)-user relationship, i.e., together
preference from a (user, activity item) to an activity partner. Friend recommendation estimates the
likelihood that two non-friends will become friends in the future. On the other hand, in a real-world
application of activity-partner recommendation, the candidates of activity partners are limited to
users who are already the target user’s friends. Actually, the SCAPR method, which employs the
social closeness between users to recommend activity partners, uses the idea of transferring social
connections in friend recommendation research into our partner recommendation problem.

5.3 Group Recommendation

Group recommendation (Gorla et al. 2013; Yuan et al. 2014) explores the preference of a group of
users to individual items. Currently, many services (e.g., Movielens) allow the creation of groups
that consist of several users. Then a typical objective of group recommendation is to aggregate the
preferences of group members to find relevant items for groups. The problem of activity-partner
recommendation is different from the problem of group recommendation. Most works in group
recommendation aim at selecting items for fixed groups (Gorla et al. 2013; Yuan et al. 2014; Jameson
and Smyth 2007; Amer-Yahia et al. 2009; Senot et al. 2010), while activity-partner recommendation
strives to find users as activity partners having as fixed variables a target user and an activity item
(recommended by any activity-item recommendation system).

However, we can still adapt group recommendation approaches to achieve activity-partner rec-
ommendation. An idea is to regard the target user and each activity-partner candidate as a sim-
ulated group. Then, we can select the candidates that participate in the groups with the highest
group preference to the given activity item. Actually, since in the problem of recommending ac-
tivity partners the target user is fixed, the preference from the target user to the activity item is
also fixed. Therefore, the above idea is the same as recommending the partner candidates by their
preferences to the activity item (i.e., our ALAPR method).

Some works in group-recommendation research generate simulated user groups for their exper-
iments if they lack ground truth of groups. For this purpose, they employ similarity in preferences
(Purushotham et al. 2014; Ntoutsi et al. 2012), or social-demographic information (Yu et al. 2006;
Lieberman et al. 1999; Crossen et al. 2002). Note that these works always generate groups be-
fore recommending items. Therefore, they focus on user-user relationships, while our together
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preference is (user, item)-user relationship. Actually, our SIAPR and SCAPR can be regarded as
employing group generation strategies with interest similarity and social links for recommending
activity partners.

5.4 Location Recommendation on LBSN

A LBSN adds locations to an existing social network so that people in the network can share
location-embedded information. Location recommendation is an important feature of social net-
work applications and location-based services (Yin et al. 2014; Wang et al. 2016). While classic CF
algorithms can be adjusted to the problem of recommending new locations to users (Zheng et al.
2009; Bao et al. 2015), by taking into account previous user check-ins, significant information like
the distance of the proposed location to the user neighborhood or the social interaction between
the users are ignored. Recent methods exploit geographical and social information for generating
recommendations (Ye et al. 2011; Scellato et al. 2011; Chen et al. 2012; Ye et al. 2012; Liu et al. 2013).

Our work is designed for social-activity items, which have differences compared to locations.
In other words, we consider items such as movie tickets and restaurant discount coupons related
to activities in which people like to participate with their folks. As we analyzed in the experi-
ments, many locations (selected by social-related keywords) can be naturally regarded as social
activities. Therefore, our work can be used for improving recommendations for activity-related
locations. The first part of our work (activity-partner recommendation) focuses on recommend-
ing peer partners, while LBSN websites recommend activity-related locations to single users. The
second part (partner-aware activity recommendation) considers the partner factor when recom-
mending activity-related locations. Our experiments were conducted on LBSN datasets and verify
the assumption that people tend to go to activity-related locations for which they can find suitable
partners. Our results also show that our work improves upon several commonly used methods for
recommending activity-related locations.

6 CONCLUSION AND FUTURE WORK

In this article, we first propose and study the problem of recommending activity partners to Web
users for activity items suggested to them. We explore how to take advantage of different types
of data and relationships, including the attendance preference by users to activities, the social
context of users, and the past together preference knowledge in order to solve our activity-partner
recommendation problem.

Secondly, we study the use of partner factor for improving activity recommendation. We use the
together preference estimator of our activity-partner recommenders to predict partner probability,
which indicates whether a user can find partners for attending an activity together. Then, by inte-
grating partner factor into conventional activity recommenders that consider users’ interests on
activities, we propose partner-aware activity recommendation. We expect that users not only are
interested in the recommended activities but also prefer to find partners to attend them together.

In our experiments, based on a questionnaire, we verify that real users have great interest in
activity-partner recommendation. Then, we utilize datasets from location-based social networks
to simulate an activity recommendation scenario by identifying locations related to social activities
and extracting ground truth of activity partners. We perform experiments to analyze the strengths
and weaknesses of recommending activity partners. We also compare the performance of activity
recommenders with and without considering the partner factor. The results verify the effectiveness
of our partner-aware framework for improving the quality of recommended social activity items.

The most important subject in our future work is to realize activity-partner recommendation
in real-world systems. We expect that social-network-based companies (e.g., Facebook, Tencent
QQ) and activity-related product websites (e.g., Groupon) would have great interest in employing
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the idea of recommending products and partners together. Then, this new recommendation prob-
lem can attract attention and be studied further. We anticipate that implementing activity-partner
recommendation will bring people’s friendship from the virtual world into their real lives. Social
networks enable users to communicate with each other on the Web. However, a user may have
people in her list of friends who live in the same city, but with whom she barely socializes in her
real life. Our activity-partner recommender can help such users to get in real contact with such
friends. This way, we hope to increase the opportunities for people to meet their virtual friends by
participating in real-life activities with them.
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