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Geospatial data constitute a considerable part of Semantic Web data, but at the moment, its sources are in-
sufficiently interlinked with topological relations in the Linked Open Data cloud. Geospatial Interlinking
aims to cover this gap through space tiling techniques, which significantly restrict the search space. Yet, the
state-of-the-art techniques operate exclusively in a batch manner that produces results only after processing
all their geometries. In this work, we address this issue by defining the task of Progressive Geospatial Inter-
linking, which produces results in a pay-as-you-go manner when the available computational or temporal
resources are limited. We propose a static progressive algorithm, which employs a fixed processing order, and
a dynamic one, whose processing order is updated whenever new topological relations are discovered. We
equip both algorithms with a series of weighting schemes and explain how they can be adapted to massive
parallelization with Apache Spark. We conduct a thorough experimental study over six large, real datasets,
demonstrating the superiority of our techniques over the current state-of-the-art. Special care is also taken
to analyze the performance of the various weighting schemes.
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1 INTRODUCTION

The Web abounds in huge datasets of geospatial data, such as OpenStreetMap' and the U.S. Census
Bureau TIGER files.? Alone, Geographica 2.0 [9] has gathered almost half a billion RDF triples from

https://www.openstreetmap.org.
Zhttp://spatialhadoop.cs.umn.edu/datasets.html.
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various open data sources, such as the CORINE Land Cover dataset,® while the spatial knowledge
base LinkedGeoData conveys more than 3 billion geographic entities (geometries in the following)
and 20 billion RDF triples.*

To leverage these voluminous sources of geospatial data, we need to capture all important topo-
logical relations between their geometries, according to the DE-9IM model [3, 4, 7]. These relations
are indispensable for crucial applications like the Icewatch project,’ which integrates observational
data from ships navigating the arctic with geospatial information from satellite images offered by
Earth observation programmes, such as Landsat.® Due to the climate change, this information
needs to be frequently and rapidly updated to ensure safe ship navigation.

Moreover, applications involving reasoning [13, 16], question answering [34] or simply running
GeoSPARQL queries over geospatial data [22] call for increasing the interlinking between the
datasets of the Linked Open Data (LOD) cloud. At the moment, though, the geospatial data is
underrepresented in the LOD Cloud’: even though it corresponds to almost 20% of the LOD cloud
triples, only 7% of the triples linking different datasets pertain to geometries [17].

Such applications can be facilitated by Geospatial Interlinking [26, 27, 30], i.e., the task of au-
tomatically finding topological relations between all input geometries. However, Geospatial In-
terlinking may have to compare every geometry with all others, thus having a quadratic time
complexity with respect to the input geometries. The computational cost of verifying a single
topological relation is also high: each geometry is converted into a labelled topology graph, with
a vertex for each point and an edge for each pair of consecutive points.® The two graphs are then
merged to check a topological relation between the respective geometries in a way that considers
their interior, boundary and exterior. The time complexity is approximately O(N - log N), where
N is the number of edges in the merged graphs [2]. Therefore, existing Geospatial Interlinking
approaches [26, 27, 30] scale to large volumes of data only by avoiding the brute-force approach of
verifying all geometry pairs. The number of required computations is reduced without sacrificing
effectiveness (i.e., the identified links between the input geometries) by operating in two steps:

(1) Filtering drastically reduces the number of candidate geometry pairs, through space tiling,
which imposes a uniform grid over the data space and assigns each geometry to all tiles that
intersect its Minimum Bounding Rectangle (MBR). This is illustrated in Figure 1.

(2) Verification is applied to all pairs of geometries that co-occur in at least one tile to identify
the topological relations they satisfy.

In Reference [19], GIA.nt was presented as the state-of-the-art approach for Geospatial Inter-
linking. Its Filtering step depends exclusively on the source dataset, defining an adaptive Equigrid,
where the granularity of both axis is derived from the corresponding average length of the source
geometries’ MBR. In this way, it avoids loading the target dataset into main memory, unlike other
established methods like RADON [27]. Instead, the target geometries are read and verified one by
one from the disk, thus reducing the memory consumption by more than 50%.

However, the batch functionality of GIA.nt is not suitable in the context of sparsity: in case
a mere fraction of the input data is related, most of the processing time is spent on verifying
pairs of geometries that have intersecting MBRs, but are topologically disjoint. Most importantly,
batch interlinking is not suitable for applications with limited temporal or computational resources.

Shttps://land.copernicus.eu/pan-european.
4http://linkedgeodata.org/About.
Shttps://icewatch.met.no.
Ohttps://www.usgs.gov/core-science-systems/nli/landsat.
7https://lod-cloud.net.
8https://locationtech.github.io/jts/jts-faq.html.
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Fig. 1. The space tiling approach for four geometries, where g; is a LineString that intersects LineString
g2 and touches Polygon g3, which contains Polygon g4. The shaded area corresponds to the intersection of
the MBRs of g1 and g.

These are applications that typically run on the cloud, but have a limited budget for exploiting
utilities like the AWS Lambda functions,” which charge the user whenever they are called.

As a concrete example consider the ice monitoring application presented in Reference [15],
which facilitates the safety of ship navigation in the Arctic through Geospatial Interlinking. Its
input data comprise in situ observations about icebergs (e.g., their location at specific times and
other important properties of sea ice) and satellite images from the EU Copernicus Programme.'°
Its goal is to interlink these large data sources for visualization purposes as well as for performing
analytics. Given, though, that the application runs on the HopsWorks platform,!! which is only
available in specific, limited time slots, it cannot rely on a batch interlinking process.

A similar application is developed in the context of the H2020 Extreme Earth research projec
This time, it monitors the water provided by the seasonal snow melt, which is essential for grow-
ing regions and crop development. By interlinking satellite images from the EU Copernicus Pro-
gramme with in situ observations and agricultural datasets, it analyzes and provides insights for
high precision farming. This application also runs on the HopsWorks platform, thus being incom-
patible with batch interlinking, too.

To facilitate such applications, Progressive GIA.nt [19] goes beyond GIA.nt and all other batch
algorithms by maximizing the throughput of Geospatial Interlinking within the available temporal
or computational resources. These resources are typically determined as a maximum number of
verified pairs of geometries, called budget (BU). To make the most of them, Progressive GIA.nt
interposes a Scheduling step between Filtering and Verification with the goal of weighting all ge-
ometry pairs according to their estimated likelihood that they involve related geometry pairs. The
top-BU weighted ones are placed in a priority queue so that the most promising pair, located at the
tail of the queue, is iteratively verified. Ideally, the related pairs are verified before the non-related
ones. In practice, though, this depends on the effectiveness of the selected weighting scheme, i.e.,
on how higher are the scores it assigns to the related pairs than the scores of the non-related
ones.

t.lZ

“https://aws.amazon.com/lambda.
WOhttps://www.copernicus.eu.
Uhttps://www.hopsworks.ai.
2http://earthanalytics.eu.
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In this work, we extend our work in Reference [19] in the following directions:

e We introduce Dynamic Progressive GIA.nt, which goes beyond the current static approach
by updating the processing order of geometry pairs on-the-fly, based on the topological rela-
tions that are detected. Its goal is to leverage the evidence provided by the latest verifications
to promote pairs that are more likely to be related, too. We also explain in detail how it can
be parallelized on top of Apache Spark.

e We introduce two new weighting schemes for progressive geospatial interlinking. One that
achieves high effectiveness based on the overlap of the MBRs and one that maximizes time
efficiency, based on the complexity of the geometry pairs in terms of the number of points
forming their boundaries. Both schemes apply seamlessly to static and dynamic progressive
GIA.nt.

e We consider composite weighting schemes as a means of addressing ties to minimize the
randomness in the ranking of geometry pairs. They consist of a primary scheme that is
replaced by a secondary one of high distinctiveness in case of ties, thus ensuring a more
deterministic functionality.

e We extend the experimental analysis in the following ways: (i) we report the detailed per-
formance of all serialized and parallel algorithms on top of all six, real-world datasets, (ii)
we examine the relative performance of all weighting schemes based on the characteristics
of their top pairs, and (iii) we elaborate on the relative performance of static and dynamic
Progressive GIA.nt.

The rest of the article is structured as follows: Section 2 discusses the main works in the field,
while Section 3 provides the necessary background knowledge. In Section 4, we present GIA.nt,
the state-of-the-art algorithm for batch geospatial interlinking, while its static and dynamic pro-
gressive counterparts are coined in Section 5, together with the necessary weighting schemes.
Section 6 presents the massive parallelization of all algorithms on top of Apache Spark, Section 7
delves into our experimental analysis, and Section 8 concludes the article along with directions for
future works.

We have publicly released the implementation of all serial algorithms at https://github.com/
giantInterlinking/prGIAnt. The implementation of all parallel algorithms is publicly available at
https://github.com/GiorgosMandi/DS-Jed AL

2 RELATED WORK

The main algorithms for Geospatial Interlinking are Silk-spatial [30], RADON [27], RADONZ [1],
and stLD [24, 25].

For Filtering, Silk-spatial employs a static space tiling approach that defines a fixed EquiGrid on
Earth’s surface, independently of the input data. As a result, its tiles are usually coarse-grained, in
the sense that they involve a large number of geometry pairs. Thus, too many pairs are verified,
incurring a computational cost that is close to that of a brute-force approach [27]. This is partially
ameliorated through massive parallelization on top of Apache Hadoop.!® Its Verification step con-
siders a single topological relation, even though it uses the same Filtering for all relations. This
means that the entire algorithm is repeated from scratch if another relation needs to be examined
over the same data.

RADON improves on Silk-spatial by building dynamic, fine-grained tiles: in each dimension,
the extent of the tiles has a length equal to the average extent of the source and target geometry
MBRs in that dimension. The Filtering step also involves a swapping strategy, which goes through

Bhttps://hadoop.apache.org.
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all source and target geometries to identify the dataset with the smallest Estimated Total Hyper-
volume, in an effort to minimize the size of the Equigrid. As a result, though, RADON needs to
maintain both the source and the target datasets in main memory, resulting in very high space
requirements. Given that every geometry is assigned to all tiles intersecting its MBR, the contents
of the resulting tiles are overlapping and, thus, abound in redundant geometry pairs, i.e., pairs of
geometries with intersecting MBRs that co-occur in multiple tiles. To avoid verifying such pairs
more than once, RADON maintains in main memory a hash-table with all geometry pairs verified
so far. Yet, this renders its massive parallelization non-trivial: special care should be taken to par-
tition the input data among the available workers in a way that avoids all redundant verifications
(broadcasting all geometries to all workers is not an option for large datasets, due to the high mem-
ory requirements). The Verification step operates at the level of individual topological relations,
incorporating specialized filters for some of them. For instance, equals is verified only after en-
suring that the source and target geometries have identical MBRs. Similar to Silk-spatial, though,
the entire algorithm is repeated whenever another relation is examined over the same data.

RADON?2 extends RADON so that it avoids this problem. Using the same Filtering approach, it
alters the Verification step so that it computes simultaneously all topological relations for each
pair of candidate geometries. As explained in Section 3.1, it computes the Intersection Matrix and
extracts all topological relations with simple logical conditions.

stLD is more similar to GIA.nt, because it exploits massive parallelization (on top of Apache
Flink'*) and loads only the source dataset in main memory, while the target geometries are read
one by one on the fly, thus accommodating streaming data. Its Filtering step supports a wide
variety of indices, such as R-Trees. Among grid indices, it supports a static Equigrid, similar to
Silk-spatial, and a hierarchical grid, which combines multiple Equigrids of different granularities.
To reduce the number of candidate pairs, it uses MaskLink, a technique that is suitable when the
tiles of the source geometries involve large empty areas. MaskLink computes the cell mask, i.e.,
the polygon of the empty space left by the source geometries, and compares it with the overlap of
a target geometry with the current tile; if the former contains the latter, then no candidate pair is
verified in this cell. The Verification step supports both proximity and topological relations. Unlike
GIA nt, though, it performs independent computations for every topological relation.

Note that the generic schema matching system AgreementMaker [5] has also been adapted to
Geospatial Interlinking, outperforming Silk-spatial with respect to time efficiency [26]. However,
the thorough experimental study in Reference [26] demonstrates that RADON is significantly
faster than both Silk-spatial and AgreementMaker.

Note also that Geospatial Interlinking is relevant to traditional spatial joins, which mainly look
for intersecting geometry pairs or pairs of nearby points. Geospatial Interlinking examines a va-
riety of topological relations, but any pair of related geometries satisfies at least the intersection
relation, as explained in Section 3. Partition-based spatial join algorithms [11] like PBSM [21] are
mostly appropriate when the geometries are relatively small compared to the tiles, as in the coarse-
grained grid of Silk-spatial. In contrast, in the fine-grained grid of GIA.nt, each geometry typically
participates in many, small tiles (e.g., see Figure 1). In this way, GIA.nt’s Filtering allows for ex-
tracting the co-occurrence patterns that are crucial for the progressive methods and the weighting
schemes that lie at their core. These patterns, though, cannot be extracted from the Filtering step
of most spatial join techniques, including PBSM. Moreover, GIA.nt is more memory efficient than
PBSM and other spatial join techniques, as it does not require loading both input datasets in main
memory. For these reasons, we exclusively compare GIA.nt with RADON, which achieved the
highest time efficiency in Reference [26].

http://flink.apache.org/.
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All these approaches operate in a batch (i.e., budget-agnostic) way that consumes the input
datasets in no particular order. Inevitably, they cannot schedule their processing to fully exploit
high-end platforms with extreme capabilities for massive parallel processing, but limited availabil-
ity, such as Amazon Web Services and HopsWorks.

Instead, we focus on pay-as-you-algorithms that try to optimize the processing order of ge-
ometry pairs within a limited budget of temporal or computational resources. Previous work on
progressive computation of spatial joins focuses on stream processing and is not relevant to our
problem. Coarse object approximations are used in Reference [14] to avoid accessing and buffering
detailed representations as much as possible. A progressive version of PBSM for streaming data is
proposed in Reference [31], using statistics to determine which contents to keep in the memory
buffer and which in disk during evaluation, to maximize the join throughput.

It is worth stressing at this point that a considerable portion of geospatial data on the LOD Cloud
involves noise, such as digitization errors and sliver polygons [12, 23]. This noise, which might
be part of the original data or might be ingested during triplification or knowledge extraction,
inevitably forces Geospatial Interlinking to populate the LOD cloud with incorrect topological
relations. However, the correctness of the input geometries is orthogonal to the functionality of
the batch and progressive algorithms proposed in this work. Error correction techniques like those
discussed in Reference [23] can be used as a pre-processing, data cleaning step that reduces noise
either manually or by leveraging ontologies. Our approaches can be applied after preprocessing,
directly to the refined data.

Finally, a problem related to this work is Progressive Entity Resolution [20, 29, 33], where a pay-
as-you-go approach is used to detect matches, i.e., entity profiles describing the same real-world
object. For example, Progressive Sorted Neighborhood [33] orders the input entities in alphabeti-
cal order of their associated blocking keys. Then, a window of size w = 1 slides over the sorted
list of entities, A, to compare those in consecutive positions. After processing the entire list, the
window size is incremented (w = 2) and the processing starts from the top of the list and so on
and so forth. A schema-agnostic version of this approach is presented in Reference [29]: every
entity is associated with multiple blocking keys and, thus, with multiple positions in the sorted
list. Weighting schemes are defined to order the distinct pairs of entities according to their co-
occurrence frequency in the current sliding window. Both approaches are static, defining a fixed
processing order, independently of the detected matches. A dynamic approach adjusts the process-
ing order on-the-fly [20]: if position A(i, j) corresponds to a match, then the positions A(i + 1, j)
and A(i, j + 1) are examined next.

3 PRELIMINARIES

In this work, we are interested in geometries that consist of interior, boundary and exterior (i.e.,
all points that are not part of the interior or the boundary). They are distinguished into two main
types [26]:
(1) LineStrings constitute one-dimensional geometries formed by a sequence of points and the
line segments that connect consecutive points (e.g., g and g, in Figure 1).
(2) Polygons constitute, in the simplest case, two-dimensional geometries formed by a sequence
of points where the first one coincides with the last one (e.g., g5 and g4 in Figure 1).

For two geometries of these types, s and t, the Dimensionally Extended nine-Intersection
Model (DE-9IM) [3, 4, 7] defines 10 main topological relations (see Figure 1 for examples):

(1) Intersects(s,t) suggests that s and t share at least one point in their interior or boundary.
(2) Contains(s,t) means that t lies inside s such that only their interiors intersect.

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 16. Publication date: April 2022.
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(3) Within(s,t) means that ¢t Contains s.

(4) Covers(s,t) indicates that s lies inside ¢ such that their interiors or their boundaries intersect.

(5) Covered_by(s,t) means that t Covers s.

(6) Equals(s,t) means that the interiors of s and ¢ intersect, but no point of s intersects the
exterior of t and vice versa.

(7) Touches(s,t) indicates that the two geometries share at least one point, but their interiors do
not intersect.

(8) Crosses(s,t) indicates that the two geometries share some but not all interior points and that
the dimension of their intersection is smaller than that of at least one of them (see Section 3.1
for the definition of dimension).

(9) Overlap(s,t) differs from Crosses(s,t) in that the two geometries have the same dimension,
and so does their intersection.

(10) Disjoint(s,t) designates that s and ¢ share no interior or boundary point.

From the above definitions, it follows that if Contains(s,t) then Covers(s,t), too. Similarly, if
Within(s,t) then Covered_by(s,t). Also, it follows that the set of relations Covers, Covered_by,
Equals, Touches, Crosses, Overlap, and Disjoint are jointly exclusive and pairwise disjoint. Fi-
nally, whenever a relation other than Disjoint holds between a pair of geometries, the relation
Intersects holds between them as well.

In the following, we disregard the Disjoint relation, because it scales quadratically, as the vast
majority of pairs typically pertains to unrelated geometries (see Table 4). This means that trillions
of Disjoint links need to be generated, when the input comprises few million geometries. In
contrast, all other topological relations scale linearly with the size of the input data (see Table 4).
Disjoint is also uninteresting, because it provides no practical linking between entities. It can be
inferred, though, from Intersects [27]: geometries that are not associated with the latter relation
are disjoint.

Overall, we restrict Geospatial Interlinking to identifying the topological relations 1 to 9, which
we call non-trivial.

3.1 Problem Definition

Every topological relation r is a predicate evaluating to true or false. Thus, Geospatial Interlinking
is defined as [26, 27]:

Definition 1 (Geospatial Interlinking). Given a source dataset S, a target dataset T and a topolog-
ical relation r, discover the set of links L, = {(s,r,t)|s € SAt € T Ar(s,t)}.

In the context of Linked Data, the goal is to estimate all topological relations (excluding
Disjoint) between the source and the target datasets. These can be derived with simple logical
conditions from the Intersection Matrix [26], which is defined as

dim(I(s) N I(t))  dim(I(s) N B(t)) dim(I(s) N E(t))
IM(s,t) = |dim(B(s) N 1(t)) dim(B(s) N B(¢)) dim(B(s) NE(t)) |,
dim(E(s) N I(t)) dim(E(s) N B(t)) dim(E(s) N E(t))

where dim denotes the dimension of the intersection N of the interior I, boundary B, and exterior
E of the geometries s and ¢. For empty intersections, dim is —1 or F (False), while for non-empty
ones, dim is equal to 0 in the case of a point, 1 for a line segment and 2 for an area. The values
{0,1,2} are collectively represented by T (True).

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 16. Publication date: April 2022.
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In this context, every topological relation can be defined as a logical condition on the values
of the intersection matrix.!> For example Within is defined as IM(0,0) = T A IM(0,2) =
F A IM(1,2) = F or equivalently as: **F] We should avoid, though, to compute redundant
relations. For example, if Contains(s,t) holds then Within(z,s) is always true [26] and only the
former should be added to the LOD cloud. The same applies to Covers(s,t) and CoveredBy(t,s).

On this basis, we can minimize the cost of Geospatial Interlinking by redefining it as follows:

Definition 2 (Holistic Geospatial Interlinking). Given a source dataset S, a target one T, and the
set of non-trivial topological relations R, derive the set of links Lg = {(s,r,t)[s€ SAt € TAr €
R A r(s,t)} from the Intersection Matrix of geometry pairs.

As explained above, this problem is typically addressed in two steps [27, 30]:

(1) Filtering applies space tiling to reduce the computational cost to geometries with MBRs co-
occurring in one or more tiles.

(2) Verification computes the Intersection Matrix of the candidate matches produced by
Filtering.

Among them, Verification is the bottleneck, due to its high computational cost, i.e., O(N - log N),
where N is the total number of edges in the corresponding topological graphs [2].

3.2 Progressive Geospatial Interlinking

In this work, we also examine methods that solve the task of Holistic Geospatial Interlinking in a
progressive, i.e., pay-as-you-go, manner, when we have limited time or computational resources.
Without loss of generality, we assume that the available resources for Progressive Geospatial In-
terlinking are defined in terms of the number of geometry pairs that are actually verified. We call
this number BU. With minor modifications, our definitions and algorithms can be adapted to a
temporal limit that specifies the available running time.

Assuming that a batch approach verifies V pairs, progressive methods must satisfy two require-
ments [33] (cf. Figure 2):

e Same Eventual Quality. The results produced after V verifications by a progressive and a
batch approach should be identical, i.e., the progressive approach should eventually produce
the same set of links as the batch approach.

e Improved Early Quality. If a progressive and a batch approach were applied to the same
datasets, S and T, and terminate after V' = BU < V verifications, then the former should
detect significantly more qualifying geometry pairs, i.e., geometry pairs that satisfy at
least one topological relation r € R.

The second requirement suggests that we can assess the relative performance of progressive
methods by the rate of producing results as more pairs are verified. We actually define Progressive
Geometry Recall (PGR) as the rate of detecting qualifying geometry pairs and quantify it by the
area under the curve that is formed by the corresponding lines in Figure 2. The larger this area is,
the earlier the interlinked pairs are detected or more relations are computed, and the more effective
is the progressive method. We formalize this measure as

|P|
porm = 373
i=1

15See https://en.wikipedia.org/wiki/DE-9IM#Spatial_predicates for more details.
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Fig. 2. Evolution of the number of topologically related pairs (vertical axis) as more pairs are verified (hori-
zontal axis) using a progressive and a batch approach.

where P C SXT is the set of candidate pairs, i.e., the distinct geometry pairs that pass the Filtering
step, |P| is its size (i.e., the total number of candidate pairs), PSU C P is the largest possible set of

qualifying geometry pairs within the given budget BU, and piQ is the total number of qualifying
geometry pairs that have already been detected when processing the ith candidate pair. PGR takes
values in [0, 1], with higher values indicating higher effectiveness.

In this context, we formally define pay-as-you-go interlinking as:

Definition 3 (Progressive, Holistic Geospatial Interlinking). Given a source dataset S, a target one
T, the set of non-trivial topological relations R and a limited budget of resources, maximize PGR(R),
given the available resources.

To address this task, the progressive methods aim at optimizing the processing order of geometry
pairs so that the qualifying ones are verified before the non-related ones. Depending on the way
they define the processing order, these methods are distinguished into two categories:

(1) The Static Progressive Methods a-priori define an immutable processing order that relies ex-
clusively on the likelihood of every pair to satisfy at least one topological relation. Weighting
schemes based on heuristics are used to assess this likelihood (see Section 5.1).

(2) The Dynamic Progressive Methods start with a processing order that is determined by the
same weighting schemes as the static methods. Yet, they update the initial order on-the-fly,
based on the latest outcomes of Verification to continuously promote the pairs that are more
likely to satisfy a relation in view of the new links.

4 BATCH ALGORITHM

Before studying progressiveness, we introduce Geospatial Interlinking At large (GIA.nt), a
novel batch algorithm, whose functionality appears in Algorithm 1. Lines 1-12 apply Filtering
to index the source dataset, which is the smallest one to minimize the memory footprint. In Line
2, the longitude and latitude granularity of tiles are defined as A, = means;esMBR(s).width and
A, = means;csMBR(s).length, respectively, by adapting RADON’s approach so that it considers
only the source dataset. For each source geometry s (Line 3), GIA.nt estimates the diagonal corners
of its MBR (Line 4)—the lower-left point (x1(s),y1(s)) and the upper-right point (x2(s), y2(s)).
Using them along with Ay and A, it determines the tiles that intersect MBR(s) and should
contain s (Lines 5-11).

To clarify how this space tiling approach works, assume that the longitude and latitude granular-
ity are Ay = 3and A, = 2, respectively. For POLYGON ((19 60, 19 61, 14 61, 14 60, 19 60)), the diag-
onal corners of its MBR are defined by the lower left point (14, 60) and the upper right point (19, 61).
As a result, this geometry will be placed in the tiles defined by [14/A,] = 4 < i <7 = [19/A,]
and [60/A, | =30 < j < 31 = [61/A,].
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ALGORITHM 1: GIA.nt
input :the source dataset S, a reader for the target one rd(T) and the set of non-trivial topological
relations R
output:the links L = {(s,r,t)[s€ SAt € TAr € RAr(s,t)}
1 I« {}; // Filtering step — I: Equigrid index structure
2 (Ax,Ay) < definelndexGranularity(S);

3 foreach geometrys € S do
1 (x1(5), y1(s), x2(s), y2(s)) « getDiagCorners(s);

5 for i « [x1(s)/Ax] to [x2(s)/Ax] do

6 for j « y1(s)/Ay] to [y2(s)/Ay] do

7 I.addToIndex(i, j, s);

8 jej+1;

9 end

10 i—i+1;

1 end

12 end

13 L« {}; // Verification step — L: The set of detected links
14 while rd(T).hasNext() do

15 t < rd(T).next(); // The current target geometry
16 Cs « {}; // The set of candidate source geometries

17 (21 (), y1(2), x2(2), y2(t)) « getDiagCorners(t);
18 for i « [x1(t)/Ax] to [x2(t)/Ax] do

19 for j « I_yl(t)/AyJ to ryZ(t)/Ay-| do
20 Cs « Cs U LgetTileContents(i, j);
21 jej+1;

22 end

23 i—i+1;

24 end

25 foreach geometry s € Cs do

26 if intersectingMBRs(s, t) then

27 IM « verify(s, t);

28 L « LU IM.getRelations();

29 end

30 end

31 end

32 return L;

GIA.nt’s Verification is applied in Lines 13-31. The next target geometry ¢ € T is read from the
disk (Lines 14 and 15) and the tiles that contain its MBR are estimated (Lines 17-24). For each tile,
GIA.nt retrieves the contained source geometries and places them in the local set of candidates
Cs (Line 20). As a result, every source geometry that is likely to be related to ¢ appears in Cs
just once. Next, GIA.nt iterates over the geometries of Cs (Line 25) and those with an intersecting
MBR (Line 26) are verified, by computing the corresponding intersection matrix IM (Line 27). The
topological relations that are extracted from IM are added to the list of detected links L (Line 28),
which is returned as output (Line 32).

That complexity of Algorithm 1 appears in Table 1, along with that of the main relevant
approaches.

GIA.nt’s space complexity amounts to O(|S| + |L|). This is at least 50% lower than RADON and
RADONZ, i.e., O(|S| + |T| + |L| + |V]), where V stands for the set of verified pairs. The reason is
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Table 1. Space and Time Complexity of the Main Approaches for Batch Geospatial Interlinking

Time Complexity Space
! Filtering ‘ Verification Complexity
GIA.nt o(|S]) O(l(s, t) : MBR(S) N MBR(T) # {}I) O(IS|+ IL])
RADON [27] | O(IS| + IT1) O(IR] - |(s, t) : MBR(S) N MBR(T) # {}|) O(IS|+ T+ IL| + [V]) or O(|S| - |TI))
RADON2 [1] | O(|S| + |T]) O(l(s, t) : MBR(S) N MBR(T) # {}I) O(IS|+ T+ IL| + [V]) or O(|S| - ITI))
stLD [24, 25] O(|I]) O(I| - |T|+ |R| - |(s, t) : MBR(S) N MBR(T) # {}I) O(|S| + |L| + |I]) or O(|S]| - |T|))

that GIA.nt indexes and maintains in main memory only the source dataset, which is the small-
est by definition (i.e., |S| < |T[). In contrast, RADON and RADON? store both input datasets in
memory. Given that GIA.nt reads (and verifies) the target geometries one by one from the disk,
its tiles, which are kept in memory, contain only source geometries—no target ones. GIA.nt also
avoids all redundant pairs inherently, due to its geometry-centric Verification: for every target ge-
ometry, it aggregates the distinct source geometries in the tiles intersecting its MBR. In contrast,
the tile-centric Verification of RADON/RADON?2 avoids the redundant candidate pairs by storing
all verified ones in memory, increasing the space complexity by O(|V]).

The difference between GIA.nt and stLD is much smaller, as the latter also stores in main mem-
ory and places in the tiles of its index only the source geometries. However, stLD has a higher
memory footprint, because it maintains a mask for every tile, i.e., a (possibly complex) polygon
that captures the empty space inside every tile. The corresponding space complexity is denoted
by O(|I]), where |I| stands for the size of the Equigrid, i.e., the number of its tiles. For fine-grained
indices, such as those reported in Table 6, O(|I]) is much higher than O(|S| + |L|). Note also the
memory requirements of stLD might be even higher, depending on the method that discards re-
dundant candidate pairs—the tiles of its index have overlapping contents, as every geometry is
placed into multiple tiles.

It should be stressed at this point that unlike GIA.nt, the other three algorithms compute the
relation disjoint, too. In this case, their space complexity rises to O(|S| - |T|), as the vast majority
of source geometries are typically unrelated to any target geometry. For instance, this applies to
all datasets in Table 4. GIA.nt ignores disjoint, based on the closed-world assumption: any pair
of geometries that are not linked with any positive topological relation are disjoint.

The time complexity of Algorithm 1 for Filtering amounts to O(]S]), since it iterates once over
the source geometries. Compared to RADON and RADON?2, it is at least 50% faster, because both
go through all input geometries, i.e., O(|S| + |T|), to index them and to compute heuristics for
switching inputs. stLD employs a static Equigrid, which is defined manually, on the basis of do-
main knowledge, without processing the input geometries. However, after indexing the source
geometries, stLD creates the mask of every tile. The corresponding computational cost is O(|1]),
which might be higher than O(|S]) for fine-grained indices.

Regarding Verification, GIA.nt’s time complexity is the same as RADONZ2, which is dominated
by the number of candidate pairs, i.e., geometries with intersecting MBRs: O(|(s,t) : MBR(S) N
MBR(T) # {}]). For RADON and stLD, the Verification cost amounts to O(|R]| - |(s, t) : MBR(S) N
MBR(T)|), where R denotes the set of topological relations. The reason is that they repeat the same
process for every topological relation in R, instead of simultaneously computing all of them. stLD
also involves the cost of computing the overlap relation between the mask of every tile b and the
overlap of every target geometry with b. In the worst case, this cost amounts to O(|I| - |T]), which
might be higher than O(|(s, t) : MBR(S) N MBR(T) # {}|) for fine-grained indices.

Finally, it is worth stressing that unlike RADON and RADON2, GIA.nt is easily adapted to mas-
sive parallelization according to the MapReduce paradigm, as explained in Section 6. The reason
is that every target geometry can be processed locally in a cluster node, without the need to store
in main memory all target geometries and all verified pairs.
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5 PROGRESSIVE ALGORITHMS

The progressive methods extend the batch ones with one more step, operating as follows:

(1) Filtering is first applied to reduce the computational cost to geometries with MBR(s) located
in the same tile(s).

(2) Scheduling then defines the processing order of the candidate pairs produced by Filtering to
maximize Progressive Geometry Recall. It does not verify any pair, as it exclusively relies on
heuristics.

(3) Verification eventually examines the candidate pairs. For static methods, this order is speci-
fied by Scheduling, while for dynamic ones, this order depends both on Scheduling and on
the outcomes of the pairs verified so far.

Note that the second step conveys a delay in the production of results, whose duration we call
scheduling time, t.

Below, we first examine the weighting schemes that lie at the core of Scheduling and then
present our static and dynamic progressive approaches.

5.1 Weighting Schemes

To schedule the verification of geometry pairs in a way that maximizes Progressive Geometry
Recall, the progressive methods assign a weight to every pair that is analogous to its likelihood
to satisfy a non-trivial topological relation. To this end, they employ functions, called weighting
schemes, which receive as input a pair of source and target geometries, s and ¢, and produce a score
as output. The higher the score, the higher is the likelihood that s and t are a qualifying pair and
the earlier they should be processed.

In this context, we consider two types of weighting schemes:

(1) The hit probability schemes consider exclusively the tiles shared by s and t. They assume that
the more tiles s and ¢ have in common, the more likely they are to be topologically related
and, thus, the higher should be their weight.

(2) The complexity schemes consider the main characteristics of s and ¢ that affect their verifica-
tion time, namely, their area and their size. The lower the complexity of these characteristics,
the higher the resulting score.

Below, we examine the weighting schemes of every category in detail.
Hit Probability Schemes. The following schemes belong to this category:

(1) Inspired from Term-Frequency in Information Retrieval, Co-occurrence Frequency (CF)
simply counts the tiles shared by s and t, i.e., CF(s,t) = |Bs N B;|, where By stands for the
set of tiles/blocks intersecting the MBR of geometry k.

(2) Jaccard Similarity (JS) normalizes the overlap similarity defined by CF, ie., JS(s,t) =
[BsNB|

[Bs |+[B¢|-[BsNB; |

geometries is proportional to the likelihood that they satisfy a positive topological relation.

(3) Pearson’s y*? test, which is inspired from the Entity Resolution approach BLAST [28], ex-
tends CF by assessing whether two geometries s and ¢ appear independently in the set of
tiles. To infer their dependency, it estimates whether the distribution of tiles intersecting s
in B is the same as the distribution if we exclude the tiles that intersect ¢. In more detail, it
uses the contingency table (see Table 2), where n; ; stands for the number of tiles shared by
the two geometries, n; , for the number of tiles intersecting s but not ¢, n, ; for the number
of tiles intersecting ¢ but not s, and n; , for the number of tiles intersecting neither geometry.
These are the observed values, whereas the expected value for each cell of the contingency

In this way, it captures the idea that the portion of tiles shared by two
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Table 2. Contingency Table
for Geometries s and t

t -t
S niy1 | N2 | N+

TS | Nop | Moo | N2+

Nyt | Ny2 | Ny +

table is m; ; = % In this context, each pair of geometries s and t is weighted according

to the following formula: w; ; = 3 ;c(1,2) 2je(1,2) ni’jn__r'?i’j.
, . y

Complexity Schemes. The following schemes belong to this category:

(1) Minimum Bounding Rectangle Overlap (MBRO) estimates the portion of the area that

is shared by the MBRs of s and t, assuming that the larger this portion is, the more likely
are s and t to correspond to a qualifying pair. More formally: MBRO(s,t) = % =
MBR(sNt) ,
NTBR(S)*MBR(D)—MBRGAT)® where MBR(g) stands for g’s MBR.
(2) Inverse Sum of Points (ISP) promotes pairs with simple geometries, which are thus faster
to verify. It actually assumes that the fewer the points in the boundary of a geometry, the sim-

pler it is. More formally: ISP(s, t) = where p(g) denotes the function that returns

1
p()+p(1)’
the points in the boundary of geometry g.
Note that for MBRO, we considered four additional definitions, namely, MBR(s N t), MBR(s N
t)/min(MBR(s), MBR(t)), MBR(sNt)/max(MBR(s), MBR(t)) and MBR(sNt)(MBR(s)+MBR(t)). Pre-
liminary experiments, though, revealed that these variants underperform the selected definition.

Discussion. CF, MBRO, and ISP rely on local information, i.e., information that pertains exclu-
sively to the pair of geometries at hand. For this information, it suffices to index the source dataset
so that we know the source geometries in the tiles that intersect the MBR of a particular target
geometry. In contrast, JS and y? require the number of common tiles as well as the total number
of valid tiles per geometry—a tile is valid if it intersects at least one geometry from each input
dataset; that is, a tile containing only source or target geometries should be ignored during the
computation of JS and y? weights. This global information can be computed only by indexing
both datasets, which increases the run-time and complicates the weight estimation in the context
of the MapReduce framework (to compute the valid tiles in the MapReduce context, it would re-
quire an extra MapReduce job that discovers and aggregates all the valid tiles and then broadcasts
this information to all nodes). To overcome this drawback, we skip the ideal case of computing JS
and y? accurately for each candidate pair of geometries. Instead, we consider their approximations,
which replace the actual number of valid tiles per geometry with the maximum one: they count the
tiles intersecting the MBR of a target (source) geometry, independently of the existence of source
(target) geometries. For instance, assume that S = {g1,¢2,94} and T = {g3} in Figure 1: the MBR
of g5 intersects nine tiles, but only six of them are valid, intersecting the MBR of a source geom-
etry; the tiles/blocks bos, b3, and by3 intersect no source geometry and, thus, are disregarded by
the original definitions of JS and y?. They are considered, though, by their approximations, which
produce more noisy weights, but save the time and space required to index the target dataset.

A crucial aspect for the performance of weighting schemes is the distinctiveness of their
scores. The more distinctive they are, the lower is the portion of ties, thus yielding a more
deterministic approach. In other words, a weighting scheme that assigns the same probability
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to different unlabeled comparisons yields a random ordering that depends on the order of
appearance of geometry pairs or other non-controllable parameters.

Most weighting schemes suffer from poor distinctiveness (see Section 7.2.4). To address it, we
consider two approaches:

(1) The composite schemes combine two of the aforementioned, atomic schemes in the following
way: the primary one is used for scheduling all pairs, while the secondary one is used for
resolving the ties of the main one.

(2) The hybrid schemes combine a hit probability scheme with a complexity one through division
or multiplication in an effort to leverage both types of evidence.

We assess the relative performance of both approaches in Section 7.2.6.

5.2 Static Progressive GIA.nt

This algorithm turns GIA.nt into a progressive approach by gathering in a min-max priority queue
the BU most promising pairs of input geometries. To populate this queue, it begins with indexing
only the source dataset. Then, it reads the target geometries from the disk one by one and for each
of them, it gathers all distinct source geometries in the tiles that intersect its MBR. Every pair of
geometries (s, t) is weighted according to the selected weighting scheme. If its weight is higher
than the current minimum weight of the queue, then (s, t) is added to the queue. Whenever the
size of the queue exceeds BU, the pair with the lowest weight is evicted. In the end, the queue
contains the BU top weighted pairs of the entire input datasets. Thus, Static Progressive GIA.nt
produces a global ordering of pairs.

The details of its functionality are outlined in Algorithm 2. Lines 1-12 apply Filtering, which
indexes the source dataset in the same way as GIA.nt. Next, Scheduling creates three data struc-
tures:

(1) the min-max priority queue T¢ (Line 13) stores the top-BU weighted pairs in decreasing
order of weight. Its head, retrieved by pop(), always contains the pair with the minimum
weight, while its tail, retrieved by popLast(), contains the pair with maximum weight.

(2) the int array flags (Line 14) designates the id of the target geometry that was last associated
with a specific source geometry.

(3) the int array frequency (Line 14) counts the frequency of a specific source geometry in the
tiles associated with the current target geometry. In essence, it measures the number of tiles
shared by the two geometries.

These two arrays facilitate the computations of the hit probability schemes. For example,
frequency[1] = 5 and flags[1] = 2 mean that the second source geometry (id = 1) shares five
tiles with the third target geometry (id = 2).

The three data structures are populated by the loop in Lines 15-45. Note that the arrays flags
and frequency are only required if a hit probability weighting scheme is selected. In case of MBRO
and ISP, they can be omitted, along with the corresponding operations in Lines 23, 24, and 27. Lines
19-21 identify the tiles that should intersect the MBR of the current target geometry t,,, where
m denotes its id. For each source geometry in these tiles s,, where n denotes its id, we check
whether it has already appeared in another tile of t,,. If not (Line 22), then the arrays flags and
frequency are updated accordingly (Lines 23 and 24) and s, is added in the set of candidate related
geometries Cs (Line 25). Next, the co-occurrence frequency with ¢, is incremented (Line 27). The
distinct candidate geometries are then weighted (Line 35) as long as their MBRs intersect that of
tm (Line 34). The weighted pairs are then added to the priority queue T¢ (Line 37), if their weight
exceeds the minimum one (Line 36). If T contains more pairs than the input budget, then its
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ALGORITHM 2: Static Progressive GIA.nt

input :the source dataset S, a reader for the target one rd(T), the set of non-trivial topological
relations R, the budget BU and the weighting scheme W
output:the links L = {(s,r,t)[s€e SAt € TAr € RAr(s,t)}
1 I {}; // Filtering step — I: Equigrid index structure
2 (Ax,Ay) < defineIndexGranularity(S);

3 ... /* Index S as in Algorithm 1, Lines 1-12 x/
13 minWeight = 0.0 ; Tc « {}; // Scheduling step — Tc: Priority queue
a flags[] < {; frequency[] « {};

5 while rd(T).hasNext() do

-

o

16 tm < rd(T).next(); // The current target geometry
17 Cs «{}; // The set of candidate source geometries
18 (x1(tm), y1(tm), x2(tm), y2(tm)) < getDiagC(t,);
19 for i « [x1(tm)/Ax] to [x2(tm)/Ax] do

20 for j « Lyl(tm)/AyJ to ryZ(tm)/Ay-| do

21 foreach s, € I.getTileContents(i, j) do

22 if flags[n] # m then

23 flags[n] = m;

24 frequency[n] = 0;

25 Cg « Cs U sp;

26 end

27 frequency[n]++;

28 end

29 jej+1

30 end

31 ie—i+1;

32 end

33 foreach geometry s, € Cs do

34 if intersectingMBRs(s, t) then

35 ws, ¢ < weight(frequency[n], sp, tm);

36 if minWeight < ws ; then

37 Te.add({s, t}, ws, ¢);

38 if BU < T¢.size() then

39 head = Tc.pop();

40 minWeight = head.getWeight();
41 end

42 end

43 end

4 end

45 end

a6 L—{}; // Verification step — L: The set of detected links

47 while T¢ # {} do

48 tail = Tc.popLast();

19 IM « verify(tail s, tail.t);
50 L « LU IM.getRelations();
51 end

52 return L;
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head is removed and the minimum weight threshold is updated accordingly (Lines 38-41). Finally,
Verification examines the pairs in the priority queue in decreasing order of weight, iteratively
retrieving its tail (Lines 47 and 48). The relations that are extracted from the intersection matrix
IM are added to the list of links L, which is returned as output (Lines 49 and 50).

The complexity of Algorithm 2 is discussed in Section 5.3.

It is worth noting at this point that another static progressive method, called Progressive
RADON, is presented in Reference [19]. As its name suggests, it adapts RADON to a pay-as-you-go
functionality through a local, tile-based operation. Its Scheduling orders the tiles in decreasing or
increasing size and Verification sorts the candidate pairs inside every tile in decreasing weight. We
omit the details of this approach, due to its poor performance [19].

5.3 Dynamic Progressive GIA.nt

The core idea of this approach is that whenever a new pair of geometries (s, t) is detected as
qualifying, we boost the weight of all candidate pairs that are associated with s and ¢ and are still
located in the priority queue so that they are verified earlier. This is useful for example in cases
where the source dataset involves long LineString geometries like roads, whereas the target dataset
involves Polygon geometries buildings: the more buildings a road touched so far, the higher should
be the weight of the rest of the candidate buildings, as it is likely a main road.

In this context, Dynamic Progressive GIA.nt implements the same approach as its static coun-
terpart for the Filtering and Scheduling steps. It only modifies the Verification step, as shown
in Algorithm 3. More specifically, before verifying any pair of geometries, it populates two hash
maps with the candidate pairs for every source and target geometry in the priority queue (Lines
46-54). The keys of the first hash map (Hg) correspond to the ids of the source geometries, with
every value for key k encompassing all geometry pairs in the priority queue with k as their source
geometry id (Lines 48-50). The second hash map (Hr) does the same for the target geometries
(Lines 51-53). As a result, these two data structures associate every geometry with all its pairs in
the priority queue, allowing for quickly updating their weights, whenever a new qualifying pair is
detected.

This is efficiently implemented by the subsequent loop (Lines 56-79). First, the next top-
weighted pair of geometries, i.e., the tail of the priority queue, is verified in Lines 57-59. If this
pair yields at least one topological relation (Line 60), then the set of detected links is updated ac-
cordingly (Line 61). Next, the weights of candidate pairs c; associated with the verified source
geometry (tail.s) are updated in Lines 62-69. Every candidate pair p is removed from the priority
queue (Line 64), with an operation that returns true if p was contained in the queue and false
otherwise. In the latter case, no action is required, as p has already been verified. In the former
case, the weight of p is incremented as follows (Line 66): w = w,-(1 + ¢), where w, stands for the
original weight, as determined by the selected weighted scheme, and q for the number of times
its source and its target geometries, p.s and p.t, respectively, have been involved in an already
detected qualifying pair. In each turn, the maximum value for q is 1, as either p.s or p.t participate
in the latest qualifying pair p’ (if both geometries participated in p’, then p = p’, meaning that the
priority queue contains duplicates, which is not the case). The updated pair is then added again
to the priority queue (Line 67). The same processing is then applied to the candidate pairs of the
target geometry, tail.t (Lines 70-77).

It is worth noting at this point that we need to minimize the cost of the operations on the priority
queue to ensure a low overhead on the overall verification time, t,,. To this end, a tree set is used
for the implementation of the priority queue, as the time complexity of both add and remove is
O(logn). In contrast, Static Progressive GIA.nt employs a min-max priority queue, whose time
complexity for the operation remove is linear, O(n).
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ALGORITHM 3: Dynamic Progressive GIA.nt
input :the source dataset S, a reader for the target one rd(T), the set of non-trivial topological
relations R, the budget BU and the weighting scheme W
output:the links L = {(s,r,t)[s€e SAt € TAr e RAr(s,t)}
1 ... /* Filtering and Scheduling steps as in Alg. 2, Lines 1-45 %/
46 Hg « {}; Hr < {}; // Verification step — Hs, Hp: Hash tables with the candidate pairs
per geometry
47 foreach geometry pair p € Tc do
48 Hg « Hg.get(p.s); // Update candidates of source geometry
49 Hg <« Hs U p;
50 Hg.put(p.s, Hs);

51 Hr < Hr.get(p.t); // Update candidates of target geometry
52 Hr <« Ht U p;
53 Hr.put(p.t, Hr);

54 end

55 L {}; // The set of detected links
s6¢ while To # {} do

57 tail = Tc.popLast();

58 IM « verify(tail s, tail.t);

59 I « IM.getRelations();

60 if [ # {} then

61 L—LUI

62 Hg « Hg.get(tail.s); // Get candidates of source geometry
63 foreach geometry pairp € Hg do

64 exists < Tc.remove(p);

65 if exists then

66 p.incrementWeight();

67 Tc.add(p);

68 end

69 end

70 H; « Hr.get(tail.t); // Get candidates of target geometry
71 foreach geometry pairp € H; do

72 exists < Tc.remove(p);

73 if exists then

74 p.incrementWeight();

75 Tc.add(p);

76 end

77 end

78 end

79 end

80 return L;

The complexity of Algorithm 3 is qualitatively compared with that of Algorithm 2 in Table 3. For
both algorithms, the time complexity for Filtering amounts to O(|S|), as they simply iterate once
over all source geometries. The time complexity of their Scheduling amounts to O(|C| - log |BU]),
where |C| denotes the total number of candidate pairs with intersecting MBRs and log |BU| is the
worst-case cost of inserting every one of these pairs in the priority queue. During Verification,

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 16. Publication date: April 2022.



16:18 G. Papadakis et al.

Table 3. Space and Time Complexity of Static and Dynamic Progressive GIA.nt

Time Complexity Space
Filtering [ Scheduling [ Verification Complexity
Static Progressive GIA.nt (Algorithm 2) O([S]) | O(IC]| - log |[BUY) O(lBUD j O(|S|+ |L| + |BUJ)
Dynamic Progressive GIA.nt (Algorithm 3) | O(|S]) | O(|C| -log |[BU|) | O(|IBU| - (1 + fs + f:)]) | O(IS| + |L| + |BU|)
Filtering

Broadcast
Scheduling Verification
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Reference »| 0.7 | (POLYGON (...), POLYGON(...) 0.7 TromweeTse
Point 0.6 |(POLYGON (..., POLYGON(...) 0.6 TrpwerTsx

Reduce

i ........

Ge?@?Spark N

Jsuoniued reneds

0.9 |(POLYGON (...), POLYGON(...)) 0.9] =ET*Ere*
Reference) 0.8 [rowoon ), rorvon s 0.8] FFrTEm
Point 0.7 |(POLYGON (...), POLYGON(...)) 0.7 | *TE**Fre*

Fig. 3. Parallel (Progressive) GIA.nt on top of Apache Spark. Both datasets are loaded in HDFS and spatially
partitioned using GeoSpark’s Quad-Tree. Map assigns each partition to an Executor, which applies Filtering
to find the candidate pairs and the reference point technique to discard the redundant ones. For Progressive
GIA.nt, Scheduling orders locally (i.e., partition-wise) the candidate pairs according to the selected weighting
scheme. Verification computes the Intersection Matrices of the selected pairs and Reduce aggregates the
qualifying pairs detected by all Executors.

Algorithm 2 merely goes through the selected top-weighted pairs, having a time complexity of
O(|BUJ). Algorithm 3 adds to this computational cost the overhead of weight updating, which
amounts to O(|BU|(f; + f;)), where f; (f;) stands for the average frequency of a source (target)
geometry in the top-BU weighted candidate pairs. That is, f; and f; indicate the average number of
candidate pairs that are updated in Lines 63-69 and 71-77 of Algorithm 3, respectively. Regarding
the space complexity, it amounts to O(|S|+|L|+|BU]|) for Algorithm 2, which maintains in memory
the smallest input dataset along with the set of detected links and the top-BU weighted candidate
pairs. In theory, Algorithm 3 has the same time complexity, but in practice, its memory footprint is
slightly higher, due to the hash tables Hs and Hr, whose sizes are equal to the budget, i.e., O(|BU|).
Given, though, that they merely store geometry ids (rather than the geometries themselves), their
impact on memory requirements is kept to the minimum.

6 MASSIVE PARALLELIZATION

We now explain how to parallelize (Progressive) GIA.nt according to the MapReduce framework.

Our approach is outlined in Figure 3. Initially, it loads both datasets as RDDs that are spatially
partitioned across the available workers, based on GeoSpark’s Quad-Tree [35]. This Quad-Tree
is built based on a sample of the source geometries. The source and target RDDs are partitioned
using the same partitioner, such that the topologically close geometries belong to partitions with
the same partition id. In case a geometry crosses the border between two partitions, it is repli-
cated and placed into both partitions. The RDDs with the same partition id are then merged such
that each partition contains all geometries from both datasets that lie within its area. This way,
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we ensure that all geometries that are likely to satisfy a topological relation coexist in the same
partitions.

Before joining the RDDs of source and target geometries in each partition, the granularity of
space tiling is estimated. We use the same tile dimensions as in serial GIA.nt. This requires the
computation of Ay = meanscsMBR(s).width and A, = meansesMBR(s).length, which is carried
out through a single MapReduce job: each Executor sums the extends of its local source geometries
during the Map phase, while the Reduce phase aggregates the results and computes the tile dimen-
sions. The Driver then broadcasts A, and A, to the Executors. This process triggers the evaluation
of the execution plan of the source RDD (i.e., loading, partitioning, and other transformations); to
avoid re-calculating it for each subsequent action, we cache it locally, in the main memory of each
Executor.'®

In this context, GIA.nt starts by sending to each Executor a partition of the input data during
the Map phase. It indexes the source geometries and for each target geometry t, it estimates the
tiles that intersect its MBR. Using the index, it retrieves the distinct candidate source geometries
in these tiles and verifies their topological relations with ¢. To avoid duplicate verifications, given
that every geometry intersects multiple tiles, GIA.nt employs the reference point technique [6]
to ensure that each candidate pair is verified only in the partition and tile that contains the top
left corner of the corresponding MBR intersection. All qualifying pairs are aggregated during the
Reduce phase.

For Static Progressive GIA.nt, during the Map phase, every Executor receives as input a parti-
tion of both input datasets and applies Filtering to index the source geometries. Then, it applies
Scheduling, processing the target geometries one by one to estimate their weights with the inter-
secting source geometries. Each partition stores its top-k weighted pairs in a min-max priority
queue, where k is the local budget that is derived by dividing the global budget BU among the
data partitions in proportion to the source geometries they contain—the target geometries are not
taken into account, as they are not bulk loaded beforehand, but are read on-the-fly, one by one,
similar to the serial implementation of (Progressive) GIA.nt. After all target geometries have been
processed, the Verification phase merely computes the intersection matrix for the top-k weighted
candidate pairs in the local priority queue. The qualifying pairs of each Executor are aggregated
by the Reduce phase.

The implementation of Dynamic Progressive GIA.nt is similar. During the Map phase, it applies
the same Filtering and Scheduling steps to discover the locally top-k weighted pairs in each parti-
tion. Then, it populates the local hash tables, Hs and Hr, based on the discovered top-k candidate
pairs. These hash tables allow for quickly updating all the candidate pairs that are associated with
the latest qualifying pair. Subsequently, the Verification step is initiated. Whenever a new qualify-
ing pair is detected, Hs and Hr are queried for the related candidate pairs that have not be verified
so far. These pairs are removed from the local priority queue and reinserted with a boosted weight.
Finally, the qualifying pairs detected by each Executor are aggregated by the Reduce phase.

Note that no data shuffling is required during Scheduling for the weight estimations, since all
necessary information is locally available: every Executor estimates all tiles that should contain
every geometry. Thus, each Executor operates independently of the others. Note also that the
global ordering of the serial implementation is approximated by the local ones in each Executor
to promote concurrency, making the most of massive parallelization.

16In Apache Spark, an execution plan is composed of a series of transformations (i.e., mapping, filtering, partitioning, etc.)
and an action (i.e., count, sum, reduce, etc.). The transformations are lazy in the sense that they are not executed until an
action invokes them and their results are dumped, by default. Users can maintain the results of a specific transformation
in the memory or on the disk by caching it.
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Finally, it is worth noting that spatial partitioning yields uneven partitions, which are skewed
with respect to the volume of data and the corresponding computational cost. That is, some parti-
tions are overloaded and require significant time, while others complete their jobs instantaneously,
leaving the corresponding nodes idle. To tackle this issue, both algorithms distinguish the parti-
tions into overloaded and well-balanced ones. The former are defined as those with a number of
source geometries significantly higher than the average one across all partitions. To detect them,
we use the Z-score,!” which measures how many standard deviations a value is away from the
mean value. In this context, a partition is considered to be overloaded if its Z-score exceeds a
predefined threshold, set to 2.5. The rest of the partitions are marked as well-balanced and are
processed as described above. After completing their processing, the entities of the overloaded
partitions are indexed and re-partitioned using a HashPartitioner that is based on tiles id. In this
way, geometries indexed in the same tiles will be placed in same partitions, without missing any
candidate pairs. Redundant pairs are again discarded with the reference point technique. Overall,
this is an effective and efficient load balancing strategy as long as it applies to a small portion of
the input data, and not to the entire dataset, given that it requires the replication of each entity as
many times as the numbers its tiles.

7 EXPERIMENTAL ANALYSIS

We now present the experiments that assess the effectiveness, time efficiency, and memory foot-
print of our approaches. Section 7.1 presents the setup of our experimental study, while Section 7.2
focuses on the experiments of the serial processing. In more detail, we compare our batch algo-
rithm, GIA.nt, with RADON/RADON?2 in Section 7.2.1, verifying the superiority of the former in
all respects. In Section 7.2.2, we compare Static Progressive GIA.nt with Optimal and Random
Scheduling, demonstrating that MBRO excels in effectiveness and ISP in time efficiency. We fur-
ther delve into the performance of Static Progressive GIA.nt in Sections 7.2.3 and 7.2.4; the former
investigates the recall of each weighting scheme per topological relation, while the latter exam-
ines every weighting scheme with respect to its distinctiveness, the diversity of its top-weighted
geometries as well as their area and number of boundary points. Section 7.2.5 demonstrates the
superiority of Dynamic Progressive GIA.nt over its static counterpart, while Section 7.2.6 verifies
the superiority of composite weighting schemes, which use MBRO as a secondary scheme. The
massive parallelization of our approaches is examined in Section 7.3: We show that Parallel (batch)
GIA nt significantly outperforms GeoSpark in Section 7.3.1, we report the performance of all paral-
lel approaches over the largest dataset pair in Section 7.3.2, and we conclude with their scalability
analysis in Section 7.3.3. Finally, we discuss the main findings in Section 7.4.

7.1 Experimental Setup

All serial methods and experiments were implemented in Java 8. The experiments were ran on
a server with Intel Xeon E5-4603 v2 @ 2.2 GHz, 128 GB RAM, running Ubuntu 14.04.5 LTS. For
RADON’s implementation, we used LIMES version 1.7.1.*% For all time measurements, we used a
single physical core and performed three repetitions, reporting the average. For the verification of
geometry pairs, we used the JTS Topology Suite, version 1.16."

All parallel methods and experiments were implemented in Scala 2.12 using Spark 2.4.4. Most
of the experiments were performed on a Hadoop cluster consisting of a single node with 32 cores

Thttps://en.wikipedia.org/wiki/Standard_score.
Bhttps://github.com/dice-group/LIMES.
Phttps://github.com/locationtech/jts.
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Table 4. Technical Characteristics of the Real Pairs of Datasets for Geospatial Interlinking

I D, | D | Dy [ Ds [ Ds | Ds |
Source Dataset AREAWATER | AREAWATER Lakes Parks ROADS Roads
Target Dataset LINEARWATER ROADS Parks Roads EDGES | Buildings
#Source Geometries 2,292,766 2,292,766 | 8,326,942 | 9,831,432 | 19,592,688 | 72,339,926
#Target Geometries 5,838,339 19,592,688 | 9,831,432 | 72,339,926 | 70,380,191 | 114,796,567
Cartesian Product 1.34-10%3 449101 | 8.19-101% | 7.11-10M | 1.38-10Y | 8.30-101
Candidate Pairs 6,310,640 15,729,319 | 19,595,036 | 67,336,808 | 430,597,631 | 257,075,645
#Qualifying Pairs 2,401,396 199,122 | 3,841,922 | 12,145,630 | 163,982,138 1,041,562
#Contains 806,158 3,792 267,457 | 5,147,704 | 53,758,453 274,953
#CoveredBy 0 0| 1,944,207 47,253 | 12,218,868 82,828
#Covers 832,843 4,692 267,713 | 5,284,672 | 53,758,453 274,966
#Crosses 40,489 106,823 217,198 | 5,700,257 6,769 313,566
#Equals 0 0 61,712 2,047 | 12,218,868 18,909
#Intersects 2,401,396 199,122 | 3,841,922 | 12,145,630 | 163,982,138 1,037,153
#0verlaps 0 0 488,814 42,331 73 54,810
#Touches 1,554,749 88,507 986,522 1,210,230 | 110,216,843 331,166
#Within 0 0] 1,943,643 47,155 | 12,218,868 81,567
Total Topological Relations 5,635,635 402,936 | 10,019,188 | 29,627,279 | 418,379,333 2,481,027

Intel Xeon CPU E5-4603 v2 @ 2.20 GHz”* and 128 GB DDR3 RAM, 1.6 Tb mechanical disk. The
experiment presented in Figure 12 (left) was performed on a small cluster that runs the Hopsworks
data platform [10]. The main module of Hopsworks is Hops,?! which is a next generation distribu-
tion of Apache Hadoop, using a novel implementation of HDFS, called HopsFS [18]. This cluster
consists of a two workers with 32 Intel Xeon CPU E5-2650 v3 at 2.30 GHz and 86 GB DDR3 RAM
each. Unless stated otherwise, the experiments performed on the single node used 16 Executors
with two cores each and 7 GB of memory, and the experiments performed on the two nodes, used
15 Executors with four cores each and 10 GB of memory.

Datasets. The technical characteristics of the real datasets we use in our experiments are re-
ported in Table 4. All of them have been widely used in the literature [8, 32] and are publicly
available.?? They contain public data about area hydrography (AREAWATER), linear hydrography
(LINEARWATER), roads (ROADS), and all edges (EDGES) in USA. They also contain the bound-
aries of all lakes (Lakes), parks or green areas (Parks), roads and streets (Roads) as well as of all
buildings (Buildings) around the world. Each column of Table 4 shows statistics for a pair (D;-Ds)
of interlinked datasets. Note that for D3 and Dy, the number of relations is lower than those re-
ported in Reference [19], as we now exclude the entities that correspond to geometry collections,
because their verification is not supported by the JTS library. Note also that in Dy, D,, and Dy, the
source geometries are Polygons and the target ones LineStrings, and vice versa for Dg. In contrast,
D5 and D5 are homogeneous, as they exclusively pertain to Polygons and LineStrings, respectively.

In the following, Section 7.2 elaborates on the serial experiments that were carried out over the
five smallest pairs of datasets, D; to Ds. The largest dataset pair, Dy, does not fit into the main
memory of our stand-alone server. It is used only in the parallel experiments that are presented in
Section 7.3.

7.2 Serial Processing

7.2.1 Batch Geospatial Interlinking. Table 5 compares the performance of GIA.nt and RADON
with respect to filtering time (t7), verification time (Z,), and memory footprint (m). Note that

20The system uses hyper-threading hence it has 16 physical cores.
Zhttps://github.com/hopshadoop/hops.
Zhttp://spatialhadoop.cs.umn.edu/datasets.html.
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Table 5. The Filtering Time (tf), the Verification Time (t), and the Memory Footprint (m)
of RADON and GIA.nt

Dy Dy D3 Dy D5
tf ty m tf 9] m tf ty m tf to m tf ty m
(s) | (min) | (GB) | (s) | (min) | (GB) | (s) | (h) [(GB) |(s)| (h) [(GB)|(s)| (h) | (GB)
RADON | 56 78.1 64 | 240 | 174.5 78 —| = —| = — —| = —
GIA.nt 42 76.7 22| 42| 1664 221257 195 80 | 53| 29.3 68 | 36 | 18.1 85

For GIA.nt, t, includes the time required for reading the target dataset from the disk, which amounts to 4.9, 6.4,
5.9, 18.3, and 20.1 min for Dy, Dy, D3, Dy, and Ds, respectively.

Table 6. Technical Characteristics of the Equigrid Indices Constructed by RADON’s and GlA.nt’s Filtering

RADON GIA.nt
D, \ D, D, \ D,
#Dimensionality (X X Y)[68,493 x 20,999]105,656 x 32,580 [ 138,325 X 43,559 138,325 X 43,559
#Total Tiles 1.44-10° 3.44-10° 6.03-10° 6.03-10°
#Populated Tiles 4.72-107 1.51-108 5.34-107 4.76-107
#Pairs in Tiles 9.69-107 2.40-10% 1.49-108 3.05-10%
#Unique Pairs 2.34-107 3.35-107 1.23-107 2.80-107

RADON can only process D; and D, with the available memory resources (128 GB), while GIA.nt
is able to process all datasets except the largest one, Ds.

We observe that for both algorithms, Verification is the bottleneck, with Filtering accounting
for a negligible portion of the overall run-time. Yet, Filtering reduces the tens of trillions pairs
considered by the brute-force approach to tens of millions candidate pairs, as shown in Table 6.
This renders it an indispensable step in Geospatial Interlinking.

We also observe that GIA.nt outperforms RADON with respect to t; by >50%, on average, be-
cause its Filtering indexes only the source dataset—unlike RADON, which indexes both input
datasets. Table 6 indicates that GIA.nt yields a space tiling of higher granularity than RADON,
since it defines many more tiles on each axis (#Dimensionality) and overall (#Total Tiles). These
tiles involve significantly more geometry pairs than RADON, but the number of non-redundant
pairs is much lower. This means that GIA.nt’s Filtering reduces the candidate pairs, while increas-
ing the co-occurrence patterns of the qualifying pairs, thus boosting the performance of weighting
schemes and progressive methods.

During Verification, both algorithms examine the same number of pairs with intersecting MBRs
and use the same Verification algorithm, which is implemented by the JTS library. Note that
RADON? is not implemented in LIMES, but we approximate its holistic geospatial interlink-
ing through the topological relation intersects. We observe that GIA.nt is slightly faster than
RADON, by 2.66% on average, even though its verification time includes the time required for re-
trieving the target geometries from the disk, unlike RADON. This overhead accounts for 6.39% and
3.85% of GIA.nt’s t,, over Dy and D,, respectively. Two are the reasons for the high time efficiency
of GIA.nt: (i) it handles every geometry through its id—rather than its URI, as in RADON, and
(ii) it uses data structures that operate on top of primitive data types rather than objects (e.g., int
instead of Integer), based on the GNU Trove library.?®

These implementation optimizations also reduce GIA.nt’s memory footprint to a significant
extent. In combination with the fact that the target dataset is not loaded in main memory, GIA.nt
consistently occupies at least 66% less main memory than RADON in Table 5.

Bhttp://trovedj.sourceforge.net/html/overview.html.
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Fig. 4. The evolution of GIA.nt’s filtering and verification time (¢ on the left and and t,, on the right, respec-
tively) over D1 as we multiply the average width and length of its tiles with m.

Finally, Table 5 suggests that as the input size increases from 8 to 90 million geometries, GIA.nt’s
run-time increases linearly, from ~1.5 to ~18 h, respectively. Of course, the run-time fluctuates
significantly among the dataset pairs, depending on the complexity of their geometries: the more
complex they are, the more time-consuming is their Verification. We also observe that GIA.nt’s
memory footprint scales sublinearly, from 22 GB for D, to 85 GB for Ds, even if we exclusively
consider the increase in the size of the source dataset (from 2.3 to 19.6 million geometries). Conse-
quently, GIA.nt’s serial execution scales well to very large datasets.

Overall, we can conclude that GIA.nt improves RADON in all respects. For a slightly lower running
time, the memory footprint is significantly improved, while Filtering yields stronger co-occurrence
patterns between qualifying pairs, thus facilitating progressive methods. GIA.nt is also amenable to
massive parallelization, unlike RADON.

Index Granularity. It is interesting to examine at this point the impact of index granularity on the
time efficiency of GIA.nt. To this end, we multiplied the average length and width, which determine
the dimensions of the Equigrid tiles, with a parameter m € (0, 2). We actually considered all values
of m in [0.50, 1.75] with a step of 0.25. The corresponding filtering and verification times of GIA.nt
over D; appear in Figure 4.

We observe that the filtering time decreases as we increase m. The reason is that the smaller
m gets, the smaller are the resulting tiles and, most importantly, the higher is their number. In
fact, m = 0.50 and m = 0.75 yield an extremely large, fine-grained index, which places every source
geometry into too many tiles (note that for m = 0.25, the index got so large that did not fit within
the available memory). The opposite is true for the remaining values of m, especially for m = 1.5
and m = 1.75, which yield a rather coarse-grained index.

However, the impact of m on the verification time is negligible: as m increases from 0.5 to 1.75,
t, increases by just 2.1%, from 78.1 to 79.7 min. Three are the reasons for this: (i) ¢, includes the
time required for reading the target geometries from the disk, which is independent of the index
granularity, (ii) ¢, is dominated by the time required to compute the Intersection Matrix between all
candidate pairs with intersecting MBRs. Their number is also independent of the index granularity.
(iii) The index granularity affects only the number of candidate pairs whose MBRs are checked for
intersection. The more coarse-grained the index is (i.e., the larger m is), the higher is their number
and the more time is spent on checking MBR intersection. This explains the 1.6 min increase in t,,
between m = 0.5 and m = 1.75.

Overall, we can conclude that the index granularity plays a minor role in the overall run-time of
GIA.nt, since it solely affects ty, which accounts for less than 1% of the overall run-time (only form = 0.5
and m = 0.75, this raises up to ~4.5%). The verification time, the bottleneck of Geospatial Interlinking,
is affected to an insignificant extent, mainly because the number of verified pairs is determined by the
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Table 7. Performance of Static Progressive GIA.nt for All Weighting Schemes in Comparison
to the Optimal (Opt.) and the Random (Rnd.) Approach for Budgets of 5M and 10M Verifications
Across All Datasets

BU = 5M BU = 10M
Progressive GIA.nt Rnd Progressive GIA.nt

CF | JS | x* | MBRO | ISP | ¢F | JS | x* | MBRO| ISP

PGR 0.760 | 0.396 | 0.299 | 0.655 | 0.648 0.498 | 0.623 || 0.880 | 0.500 | 0.415 | 0.722 | 0.716 0.565 | 0.694

Recall 1.000 | 0.792 | 0.726 | 0.949 | 0.946 0.751 | 0.921 || 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000

D; | Precis. 0.480 | 0.380 | 0.349 | 0.456 | 0.454 0.361 | 0.442 || 0.381 | 0.381 | 0.381 | 0.381 | 0.381 0.381 | 0.381

Opt. Opt.

Rnd. ‘

ts (min) - - 5.9 5.5 6.2 4.9 4.7 - - 4.0 4.7 4.5 4.6 4.4
t,, (h) — — 1.1 0.3 0.3 0.5 0.1 — — 1.3 1.3 1.3 1.3 13
PGR 0.980 | 0.159 | 0.481 | 0.541 | 0.507 0.598 | 0.234 || 0.990 | 0.318 | 0.609 | 0.715 | 0.689 0.733 | 0.371

Recall 1.000 | 0.318 | 0.647 | 0.804 | 0.777 0.803 | 0.369 || 1.000 | 0.636 | 0.822 | 0.946 | 0.936 0.913 | 0.679
D; | Precis. 0.040 | 0.013 | 0.026 | 0.032 | 0.031 0.032 | 0.015 | 0.020 | 0.013 | 0.016 | 0.019 | 0.019 0.018 | 0.014

ts (min) - - 5.8 5.9 6.8 6.7 6.3 - - 5.9 5.9 6.2 6.7 6.0
t,, (h) — — 1.1 0.3 0.3 0.5 0.1 — — 2.0 1.0 1.0 1.4 0.5
PGR 0.616 | 0.128 | 0.122 | 0.264 | 0.264 0.274 | 0.237 || 0.808 | 0.255 | 0.242 | 0.460 | 0.461 0.449 | 0.417

Recall 1.000 | 0.255 | 0.239 | 0.453 | 0.454 0.467 | 0.428 || 1.000 | 0.510 | 0.496 | 0.830 | 0.833 0.761 | 0.761
Ds | Precis. 0.768 | 0.196 | 0.184 | 0.348 | 0.349 0.359 | 0.329 | 0.384 | 0.196 | 0.191 | 0.319 | 0.320 0.292 | 0.292

ts (min) - - 9.3 8.8 9.4 9.0 9.5 - 9.1 9.6 9.4 10.4 9.5
t,, (h) — — 3.2 0.2 0.2 0.4 0.1 — — 5.4 0.8 0.9 1.7 0.6
PGR 0.500 | 0.037 | 0.192 | 0.079 | 0.070 0.153 | 0.054 || 0.500 | 0.074 | 0.172 | 0.078 | 0.074 0.136 | 0.055

Recall 1.000 | 0.074 | 0.361 | 0.165 | 0.151 0.285 | 0.109 || 1.000 | 0.148 | 0.309 | 0.151 | 0.152 0.246 | 0.113
Dy | Precis. 1.000 | 0.074 | 0.361 | 0.165 | 0.151 0.285 | 0.109 || 1.000 | 0.148 | 0.309 | 0.151 | 0.152 0.246 | 0.113

ts (min) — - 25.4 263 | 274 264 | 27.0 - - 26.3 26.8 28.0 319 | 287
t,, (h) — — 1.2 0.04 0.4 0.1 0.03 — — 2.9 0.1 0.4 0.2 0.1
PGR 0.500 | 0.058 | 0.121 | 0.462 | 0.462 0.500 | 0.485 || 0.500 | 0.116 | 0.124 | 0.462 | 0.461 0.500 | 0.483

Recall 1.000 | 0.116 | 0.247 | 0.923 | 0.923 1.000 | 0.971 || 1.000 | 0.232 | 0.260 | 0.925 | 0.925 1.000 | 0.956
Ds | Precis. 1.000 | 0.116 | 0.247 | 0.923 | 0.923 1.000 | 0.971 || 1.000 | 0.232 | 0.260 | 0.925 | 0.925 1.000 | 0.956
ts (min) - - 26.3 239 | 267 27.2| 25.6 - - 26.4 26.1 27.0 279 | 248
t,, (min) — — 31.2 2.4 2.4 3.4 0.8 — — 55.2 4.9 4.9 7.2 1.8

intersecting MBRs. We also observe that the default configuration of GIA.nt’s index (m = 1.0) yields a
good trade-off between ty and t,,, minimizing the overall run-time.

7.2.2  Static Progressive Geospatial Interlinking. To evaluate the effectiveness of progressive
methods, we consider the following three measures:

(1) Progressive Geometry Recall (PGR—see Section 3.1),
(2) Recall = PIQ)’BU/PSU, and

(3) Precision = PS’BU/BU,

where Pg’BU and PBY

stand for the number of detected qualifying pairs and the maximum pos-
sible number of qualifying pairs in the given budget BU (i.e., maximum number of permitted ver-
ifications), respectively. All measures are defined in [0, 1], with higher values indicating higher
effectiveness.

To evaluate the time efficiency of progressive methods, we consider the scheduling and the ver-
ification time, t; and t,, respectively, disregarding the filtering time, ¢, which is already reported
in Table 5.

As baseline methods, we consider Optimal Scheduling, which verifies all qualifying pairs be-
fore the non-qualifying candidate ones, and Random Scheduling, which corresponds to a batch
approach that does not specify a deterministic processing order for the input data (it lacks the
Scheduling step). Instead, its output rate is random, depending on the order of appearance of the
candidate pairs. For this reason, we assess its effectiveness through the average value for PGR,
Recall and Precision over 100 random permutations of the candidate pairs.

Table 7 reports the performance of all methods over D;-Ds for two different budgets: 5 and 10
million verifications, i.e., BU = 5M and BU = 10M, respectively. Note that for D;, the number of
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candidate pairs is ~6.3 million, thus being lower than BU = 10M. For this reason, all approaches
in Table 7(b) achieve perfect recall and precision over Dy, while there are significant variations in
PGR, due to the different processing order that is defined by each method.

Regarding effectiveness, we observe that MBRO achieves the most effective scheduling in
most datasets, particularly for D,, D3, and Ds, for both budgets. Its PGR is 18.4% (12.3%) higher
than the second best one (JS) for BU = 5M (BU = 10M), on average, across all datasets, even
when considering D;, where MBRO underperforms JS by <20%, due to the prevalence of the
relation touches. Excluding D;, MBRO also achieves the highest average Precision and Recall
for both budgets. JS lies consistently at the second place, with its average Recall and Precision
being lower by 9.0% (2.4%) and 14.2% (10.2%) than that of MBRO for BU = 5M (BU = 10M),
respectively.

There are several exceptions, though:

(1) In Dy, JS is the top performing weighting scheme, while MBRO’s performance is consistently
low. The reason is that the MBRs of ~500,000 qualifying pairs share very small areas, yielding
a weight lower than 107>, This is expected given that the relation Touches is the prevalent
one in this dataset.

(2) In D3, x? is the top performing scheme for BU = 10M, with MBRO following in close
distance. This is because MBRO identifies more pairs than y? for the relations covered-by
and within when BU = 5M, but this is reversed for BU = 10M. Given that Ds is the only
dataset pair that exclusively interlinks Polygons, we can conclude that the co-occurrence
patterns captured by y? are more crucial than the overlap of MBRs for capturing all
qualifying pairs of this type.

(3) In D4, CF is the top performing weighting scheme, with MBRO being the second best
scheme. This should be attributed to the very large number of Crosses relations in this
dataset pair, unlike all others. Apparently, the number of common tiles plays the most
decisive role in identifying this topological relation.

Comparing Progressive GIA.nt with the two baselines, we observe that MBRO is the only
weighting scheme that matches the effectiveness of Optimal Scheduling, yet only in Ds. In all
other cases, there is significant room for improving the performance of Progressive GIA.nt. MBRO
is also the only weighting scheme that consistently outperforms Random Scheduling. CF underper-
forms Random Scheduling in D; and Ds, regardless of the budget, while the rest of the weighting
schemes do so in D4 for BU = 10M.

The relative effectiveness of Static Progressive GIA.nt and the two baseline methods is visualized
in the diagrams of Figure 5, which show the evolution of qualifying pairs with respect to the
candidate ones over all datasets for BU = 10M. We observe that the area under the curve of Random
Scheduling is consistently lower than that of Static Progressive GIA.nt, except for very few cases,
such as CF in D;. We also observe that the lower the portion of qualifying pairs to the candidate ones
in a dataset pair (see Table 4), the larger is the difference between the area under the curve of Optimal
scheduling and the best configurations for Static Progressive GIA.nt.

Regarding time efficiency, we observe that the scheduling time is relatively stable across all weight-
ing schemes for each dataset. The reason is that ts is dominated by the time required to read the target
dataset from the disk (see Table 5 for the actual reading times). Hence, only a small portion of fg
pertains to the cost of weight estimation. Given that each scheme computes weights for all candi-
date pairs, only the insertions in the priority queue differ between them (e.g., due to ties with the
minimum weight), thus yielding minor fluctuations. In fact, the effect of ties can be observed in
ts for Dy, where the second budget is larger than the number of candidate pairs. As a result, there
are no ties for BU = 10M, thus yielding a lower ¢; than BU = 5M. In all other datasets, t; remains

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 16. Publication date: April 2022.



16:26 G. Papadakis et al.

~— ‘X2 — - MBRO — -ISP

100%
20%
80%
70%

— 60%

T
$ 50%
= 20%
30%
20%
10%
0%
" 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% " 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
(i) Verifications (ii) Verifications
100% 100%
90% 90%
80% e 80%
70% . —r‘ -= = 70%
R o
= 60% = — 60%
$ 50% LT e 3 50%
< 40% _,_,.';"3 T e £ 40%
30% T e 30%
0% T e 20%
10% —— 10% —=== e mmmmmme R R TT I TT I
= T T mmmmmarTTESCT TR
Pl
0% 0%
10% 20% 30% 40% 50% 60% 70% 80% 90% 100% . 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
(iii) Verifications (iv) Verifications

100%
90%
80%
70%

— 60%

3 50%
= 40%
30%
20%
10%
0%
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
(v) Verifications

Fig. 5. The evolution of Recall (on the vertical axis) with respect to the number of verifications (on the hori-
zontal axis) for the Optimal approach, the random one as well as for Static Progressive GIA.nt in combination
with all weighting schemes. In all cases, BU = 10M. All dataset pairs are considered: (i) D1, (ii) D2, (iii) D3,
(iv) D4, and (v) Ds.

relatively independent of the budget, as the larger number/cost of insertions counterbalances the
lower number/cost of ties.

However, the bottleneck in Progressive GIA.nt is the Verification step. We observe that ISP
consistently achieves the lowest t,, across all datasets, regardless of the budget. This is expected as it
selects the simplest geometry pairs. In most cases, though, JS follows in close distance, with y? in
the third place.

Most importantly, Static Progressive GIA.nt offers a significantly better trade-off between effective-
ness and time efficiency than RADON2. The overall run-times of the three top-performing weighting
schemes for BU = 5M are significantly lower than that of RADON2 over D;: JS and y? are faster
by 53%, while ISP is faster by 67%. Yet, they all achieve a recall well above 90%. A similar pattern
is observed for BU = 10M over D,: MBRO requires half of RADONZ2’s run-time to detect 91.3% of
all topological relations, while JS and y? detect >93.5% of all relations, while being faster by 61%.

7.2.3  Recall Per Topological Relation. In this section, we examine the recall of the five weighting
schemes in combination with Static Progressive GIA.nt with respect to each topological relation
for both budgets we have considered (5M and 10M pairs). In this way, we can detect whether a
particular scheme is ideal for a specific relation.

We can define recall per topological relation by modifying the definition of recall in Section 7.2.2
to account only for pairs satisfying the topological relation in question.
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Fig. 6. Recall per weighting scheme and topological relation across all dataset pairs: (i) contains,
(i) covered-by, (iii) covers, (iv) crosses, and (v) equals. The left column corresponds to BU = 5M and
the right one to BU = 10M.

The recall per topological relation of Static Progressive GIA.nt for (a) BU = 5M pairs and
(b) BU = 10M pairs in combination with every weighting scheme is presented in Figures 6 and
7, in the left and right columns, respectively. We now examine the rate of detecting a particular
positive relation of the DE-9IM model in comparison with the overall recall. The latter, which is
presented in Table 7, actually corresponds to the recall of intersects, which is the cornerstone
relation for every qualifying pair of geometries as we explained in Section 3—any other positive
relation is satisfied iff intersects is satisfied, too. For this reason, the number of intersects
relations per dataset in Table 4 is higher than all other topological relations and equals the number
of qualifying pairs.

In this context, the relative recall between intersects and a topological relation r does not
pertain to the absolute number of detected links, but to their rate of detection. For a specific budget
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Fig. 7. Recall per weighting scheme and topological relation across all dataset pairs: (i) intersects,
(ii) overlaps, (iii) touches, and (iv) within. The left column corresponds to BU = 5M and the right one to
BU = 10M.

BU and a specific weighting scheme w, if the recall of relation r is higher than that of intersects,
a higher proportion of the existing r links has been detected after BU verifications, because the w
is apt to detect the relation r. For example, Table 4 reports that D5 involves 3.8M intersects and
1.9M covered-by relations; for BU = 5M, if the recall of a weighting scheme is 80% for the former
and 90% for the latter, it means that after 5M verifications, it has detected 3.1M intersects and
1.8M covered-by links, respectively. Yet, the rate of detecting covered-by within BU is higher
than that of intersects.

Regarding CF, we observe that its recall for all relations is typically much lower than that of
intersects. The only exception is the relation crosses, whose relative recall is consistently
higher. In the case of D3, it is actually 176% (70%) higher for BU = 5M (BU = 10M), as shown in
Figure 6(iv). For D5, CF’s recall for crosses is less than 0.5%, since there are just ~6,800 relations
among the ~164 million qualifying pairs (see Table 4). Another exception is the overlap relation
in D3, whose relative recall is 67% (35%) higher than intersects for BU = 5M (BU = 10M). This
does not apply to the other datasets, as the portion of overlap links among the qualifying pairs
tends to zero. We can conclude that CF is ideal for the relations crosses and overlap, provided
that there is a sufficient portion of such links in the input datasets.

The rest of the weighting schemes exhibit correlated performance that depends on the dataset
at hand and the type of geometries it involves. For D3, which interlinks Polygons (Lakes) with
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Polygons (Parks), all weighting schemes except CF, exhibit much higher recall than intersects
for the relations overlaps, touches and equals. On the contrary, their recall is much lower for the
relations covered-by and within. For Ds, which interlinks LineStrings (ROADS) with LineStrings
(EDGES), the recall of all relations is much lower than intersects for all weighting schemes
except MBRO. This scheme maintains almost perfect recall for all relations except crosses,
overlaps and touches. Finally, for D4, which interlinks Polygons (Parks) with LineStrings
(Roads), the four weighting schemes achieve significantly higher recall than intersects for the
relations covered-by, equals and within. Contrariwise, their recall is significantly lower for the
relations contains and covers. The latter patterns are verified in D,, too, which also interlinks
Polygons (AREAWATER) with LineStrings (ROADS). All other cases do not allow for drawing
safe conclusions, as there are inconsistent patterns among the two different budgets or there is
complete lack of some relations (in D; and D) or the largest budget is larger than the number of
qualifying pairs (in Dy).

Overall, we can conclude that the effectiveness of each weighting scheme in detecting a particular
topological relation depends largely on the type of geometries (LineStrings or Polygons) in the source
and target datasets.

7.2.4  Weighting Scheme Characteristics. To explain the relative performance of the five weight-
ing schemes in combination with Static Progressive GIA.nt, we investigate the main features that
account for their effectiveness and efficiency.

In Figure 8(i), we observe the distinctiveness of the scores produced by each weighting
scheme across all dataset pairs for both budgets—BU = 5M on the left and BU = 10M on the
right. Higher values indicate more distinctive weights, thus yielding a lower portion of ties, with
100% suggesting that a different score is assigned to every pair. Therefore, higher distinctiveness
corresponds to a more deterministic approach. This behavior corresponds only to MBRO, which
consistently exceeds 80%. It is followed by y? in a large distance, which fluctuates between 1% and
10%. All other weighting schemes exhibit low distinctiveness, yielding a random ordering of the
top-weighted pairs that might depend on the order of appearance or the data structure lying at the
core of the approach. The situation is worse for CF and ISP, whose distinctiveness is consistently
close to zero. For JS, distinctiveness is zero only over Ds, where every selected pair is assigned the
same (maximum) score. This applies to all other weighting schemes, though, for this particular
dataset. These patterns call for composite weighting schemes with MBRO as the secondary approach.

Figures 8(ii) and 8(iii) report the source and target diversity, respectively, per weighting
scheme and dataset, with BU = 5M corresponding to the left column and BU = 10M to the right
one. In other words, these diagrams measure the portion of different source and target geometries
in the selected top-weighted pair for each budget. The higher this portion is, the larger is the scope
of a weighting scheme in the sense that its search space includes a larger part of the input data.
This is especially helpful in datasets with a large number of qualifying pairs, such as Ds. For this
dataset, MBRO achieves the maximum diversity, much higher than those of the other weighting
schemes, for both source and target geometries across both budgets. This accounts for its perfect
effectiveness (PGR = 0.5), which is also much higher than the rest of the weighting schemes (see
Table 7). In most other cases, the source and target diversity of all weighting schemes are quite
similar, with CF constituting the only consistent exception. Its source diversity is consistently the
lowest by far across all datasets (except for D; and BU = 10M, where all schemes verify all can-
didate pairs). Its target diversity is also rather low in most cases. This probably accounts for its
consistently low effectiveness, as its search space is restricted to the largest geometries, which are
not necessarily involved in qualifying pairs. The only exception is D4, where CF achieves the top
performance among all weighting schemes.

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 16. Publication date: April 2022.



16:30 G. Papadakis et al.

& CF mls =x2  MBRO misp
100% 7 . 100%
Z 2 7 , % , %
80% é é Z é 80% 2 % 2 4
7 Z Z 7 7 Z 7 Z
60% Z % Z Z 60% 7 7Z v 7
! % Z 7 2 ) 7 7 % 7
(i-a) Z Z Z Z (i-b) Z Z 7 %
7 % 7 % Z 7 7 7
40% Z 7 Z 7 40% 7 Z 7 Z
7 7 7 7 7 7 Z Z
- 7 I
20% Z 2 % Z 20% Z 7 2 7
Z Z Z = Z Z Z Z
0% - = 7 = 0% _E—Zg = _—é é
D1 D2 D3 D4 D5 D1 D2 D3 D4 D5
100% % 100% %
7 Z
80% é 80% Z
% %
60% 2 é 60% é
(ii-a) Z 7 ii-b 7
Z % (ii-b) , Z
40% / 40% 2 7
20% 20% g
o% - E1 E1
D1 D2 D3 D4 D5 D1 D2 D3 D4 D5
100% 100%

80% 80%

N\

60%
(iii-a)
40%

60%
(iii-b)
40%

20% 20%

0% 0%

D1 D2 D3 D4 D5 D1 D2 D3 D4 D5
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(ii) source and (iii) target geometries selected by each scheme. The left column corresponds to BU = 5M and
the right one to BU = 10M.

The outlying behavior for CF is verified by the diagrams in Figure 9, which analyze the com-
plexity statistics of the top-weighted geometry pairs. In Figure 9(i), we observe the average area of
the selected source geometries takes very high values for CF for both budgets. For Ds, the average
area is actually much higher than the maximum value of the vertical axis: 14.7 for BU = 5M on the
left and 13.0 for BU = 10M on the right. The second largest areas, with a large difference though,
correspond to MBRO, with the remaining weighting schemes selecting geometries of rather small
areas. Similar patterns appear in Figure 9(ii), which presents the average area of target geometries.
The only difference is that ISP selects the second largest geometries in D, and D5 for BU = 5M
and the largest ones for the same datasets for BU = 10M. These target geometries correspond to
parks, whose borders are defined by very few boundary points, but their area is quite large. This is
verified in Figures 9(iii) and 9(iv), which report the average number of boundary points per source
and target geometry for all weighting schemes, datasets and budgets. As expected, ISP yields the
geometries with the simplest borders for all datasets, with the only exception corresponding to D,,
where the selected target geometries are the (second) most complex ones for BU = 10M (BU = 5M).
This is counterbalanced, though, by the very low number of points in the borders of the source
geometries for the same dataset. Among the other weighting schemes, there is clear pattern: CF
consistently selects the most complex ones across all datasets and budgets, with MBRO following
in the second place, while JS and y? lie between MBRO and ISP. The only exception is Dj, as
mentioned above. These complexity characteristics account for the relative Verification times of
the five weighting schemes in Table 7.
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Fig. 9. Complexity statistics of the geometry pairs that are selected by each weighting scheme: the average
area per (i) source and (ii) target geometry as well as the average number of boundary points per (iii) source
and (iv) target geometry. The left column corresponds to BU = 5M and the right one to BU = 10M.

7.2.5  Dynamic Progressive Geospatial Interlinking. By default, the recall and precision of this
algorithm remain the same as that of Static Progressive GIA.nt, as they both operate on the same
top-BU weighted candidate pairs. The effectiveness of the two algorithms differs only with respect
to PGR. The change in PGR is reported in Figure 10(i), with the left diagram corresponding to BU
= 5M and the right one to BU = 10M. We observe that in most cases, there is a significant increase
that depends on the dataset at hand, rising up to 12%, 11%, and 20% for D,, D3, and Dy, respectively.
For Dy, though, the increase is negligible, up to 2.5% for JS and y2. This should be attributed to the
high proportion of qualifying pairs over the candidate ones, which yields an already high PGR for
Static Progressive GIA.nt. The same applies to Ds, where PGR is very close to the optimal one for
most weighting schemes (see Table 7).

A major role is also played by the geometry pairs selected by each weighting scheme. We observe
that for CF, PGR is consistently reduced among all datasets. On average, it drops by 9.4% for BU
= 5M and by 8.2% for BU = 10M. This should be attributed to its low diversity of source and target
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Fig. 10. Performance of Dynamic Progressive GIA.nt with respect to: (i) its impact on the PGR of its static
counterpart, (ii) its overhead time to Verification, and (iii) the number of weight update operations. The left
column is for BU = 5M and the right one for BU = 10M.

geometries across all datasets and budgets, as indicated in Figures 8(ii) and 8(iii). The lower these
diversities are, the larger is the impact of Dynamic Progressive GIA.nt on its PGR. In contrast, there is
a significant increase in PGR for JS, y? and ISP, which on average, across all dataset pairs, amounts
to 4.6% (7.4%), 4.5% (5.4%), and 6.9% (8.1%), respectively, for BU = 5M (BU = 10M). For MBRO, this
increase is lower, 1.4% for BU = 5M and 5.4% for BU = 10M, due to its poor performance over D,
(for reasons explained above) and its perfect performance (PGR = 0.5) for Ds.

Regarding the time efficiency of Dynamic Progressive GIA.nt, its indexing and scheduling time
is identical with that of its static counterpart. There is an increase only in its verification time,
due to the overhead time (t,) required for updating the weights of the geometry pairs in the
priority queue. This time is reported in Figure 10(ii). We observe that it consistently amounts to
few minutes, thus being negligible when compared to the overall verification time in each case. We
actually observe that the more time consuming the verification time of a weighting scheme is, the
higher is the overhead time. Indeed, in most cases, the highest ¢, corresponds to CF, which also
exhibits the highest v;. The actual size of ¢, depends on the number of weight updates, which is
reported in Figure 10(iii), as well as on the source and target diversities, which are reported in
Figures 8(ii) and 8(iii), respectively.

7.2.6  Composite and Hybrid Weighting Schemes. We now examine the effect of composite
weighting schemes on the performance of Dynamic Progressive GIA.nt. Due to the high distinc-
tiveness of the scores produced by MBRO, we use it as secondary for all other schemes. We also
exclude it from this analysis, as there is no point in combining it with another scheme, due to the
very low portion of ties.
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Fig. 11. Performance of composite weighting schemes with respect to: (i) the PGR of Dynamic Progressive
GlA.nt and (ii) the PGR of Static Progressive GlA.nt. The left column corresponds to BU = 5M and the right
one to BU = 10M.

The impact of composite schemes on Progressive Geometry Recall is reported in Figure 11(i),
with BU = 5M corresponding to the left and BU = 10M to the right diagram. (MBRO is absent
from both diagrams, as there is no change in its performance.) We observe that there is no case
of negative impact—in the worst case, PGR remains the same. This applies particularly to datasets
like D, and D3, where the composite scheme produces a similar processing order with its primary
one. The only exception is CF, which consistently exhibits significant increase, as it suffers from
the highest portion of ties. On average, across all datasets, its PGR raises by 4.1% for BU = 5M and
by 2.9% for BU = 10M. It is followed in close distance by JS, whose PGR raises by 4.4% and 2.8% for
BU = 5M and BU = 10M, respectively, on average. For y?, the average increase is reduced to 1.7%
and 1.9%, respectively, while the increase in the case of ISP is negligible, 0.4% on average for both
budgets, because most of the pairs it selects are non-qualifying.

It is worth examining at this point the overall increase in PGR in comparison with Static Pro-
gressive GIA.nt, which is reported in Figure 11(ii). On average, across all datasets for BU = 5M, JS
improves by 9.3%, x? by 6.2%, MBRO by 1.4%, and ISP by 7.3%. For BU = 10M, the average improve-
ments are 10.3% for JS, 7.3% for )(2, 5.4% for MBRO, and 8.5% for ISP. The only exception remains
CF, whose PGR drops by 5.9% and 5.6%, on average, across all datasets, for BU = 5M and BU = 10M,
respectively. Compared to Figure 10(i), i.e., the improvements conveyed by Dynamic Progressive
GIA.nt in combination with the original weighting schemes, PGR has significantly increased for
all weighting schemes, except MBRO, which remains the same, as it cannot be enhanced through
a composite scheme, due to its already high distinctiveness.

Given that the composite schemes alter all aspects of Progressive GIA.nt, Table 8 reports the
resulting performance with respect to all effectiveness and time efficiency measures. Comparing
it with the performance of Static Progressive GIA.nt in Table 7, we observe the following patterns:

(1) For CF, recall and precision increase by 2.6% on average, across all datasets and budgets, even
though its PGR decreases by 5.8%, on average. In other words, CF’s combination with MBRO
as a secondary weighting scheme is able to select more qualifying pairs, but CF cannot make
the most of dynamic processing, due to its low source and target diversity, which means that
it continuously updates the weights of the same candidate pairs.
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Table 8. Performance of Dynamic Progressive GIA.nt with Composite Weighting Schemes
Based on MBRO in Comparison to the Optimal (Opt.) and the Random (Rnd.) Approach for
Budgets of 5M and 10M Verifications Across All Datasets

BU = 5M BU = 10M
Progressive GIA.nt Opt. | Rnd Progressive GIA.nt
CF | JS | x* | MBRO|1sp || P | ¢F | JS | x* | MBRO | ISP

Opt.

Rnd. ‘

PGR 0.760 | 0.396 | 0300 | 0.671 | 0.664 |  0.489 | 0.624 || 0.880 | 0.500 | 0.393 | 0.741 | 0.734 | _ 0.560 | 0.695
Recall | 1.000 | 0.792 | 0.761 | 0.949 | 0.946 | 0.751 | 0.921 || 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  1.000 | 1.000

Dy | Precis. | 0.480 | 0380 | 0365 | 0.456 | 0.454 | 0361 | 0442 || 0.381 | 0381 | 0381 | 0381 [ 0381 | 0381 | 0.381

ts(min) | —| —| 54| 52| 49 49| 46 —| | 53| 49| 4o 50| 49
to (h) | | 10| o5] o5 09| 03 | -] 13| 13] 13 13 13
PGR 0.980 | 0.159 | 0.424 | 0.602 | 0.568 | 0.626 | 0.256 || 0.990 | 0.318 | 0.534 | 0.762 | 0.737 | _ 0.755 | 0.413
Recall | 1.000 | 0.318 | 0.657 | 0.804 | 0.777 | 0803 | 0.369 || 1.000 | 0.636 | 0.838 | 0.946 | 0.936 |  0.913 | 0.679
Dy | Precis. | 0.040 | 0.013 | 0.026 | 0.032 | 0.031 |  0.032 | 0.015 || 0.020 | 0.013 | 0.017 | 0.019 | 0019 | 0018 | 0.014
tsmin) | —| —| 68| 67| o4 70| 67 —| | 67| 66| 65 71| 66
to (h) | | 11| o3| o3 05| o1 | =] 21] 10| 10 15 05
PGR 0.616 ] 0.128 | 0.117 [ 0.262 | 0.261 |  0.260 | 0.251 || 0.808 | 0.255 | 0.251 | 0.505 | 0502 | _ 0.499 | 0.458
Recall | 1.000 | 0.255 | 0.240 | 0.453 | 0454 | 0454 | 0.428 || 1.000 | 0.510 | 0.496 | 0.830 | 0.833 | 0761 | 0.761
D | Precis. | 0.768 | 0.196 | 0.185 | 0.348 | 0.349 |  0.349 | 0329 || 0.384 | 0.196 | 0.191 | 0319 | 0320 |  0.292 | 0.293
ts(min) | —| —| 106]| 110 90 96| 9.2 —| - 13| 109] 113 103 | 114
to (h) | | 32| 02| o2 02| o1 | =] 53] 09| o9 19| o038
PGR 0.500 | 0.037 | 0.201 | 0.099 | 0.076 | _ 0.167 | 0.063 || 0.500 | 0.074 | 0.183 | 0.097 | 0.081 | _ 0.155 | 0.066
Recall | 1.000 | 0.074 | 0.364 | 0.174 | 0.155 |  0.285 | 0.109 || 1.000 | 0.148 | 0.309 | 0.151 | 0.152 |  0.246 | 0.114
Dy | Precis. | 1.000 | 0.074 | 0.364 | 0174 | 0.155 |  0.285 | 0.109 || 1.000 | 0.148 | 0309 | 0.151 | 0.152 |  0.246 | 0.114
ts(min) | —| —| 281| 202| 265 259 | 281 —| | 24| 25| 304 316 | 288
to (h) —| | 09| 004| o4 0.09 | 0.03 | =] 17] 009| o4 0.2 007
PGR 0.500 | 0.058 | 0.098 | 0.500 | 0.500 | 0.500 | 0.496 || 0.500 | 0.116 | 0.098 | 0.500 | 0.500 | 0.500 | 0.489
Recall | 1.000 | 0.116 | 0.258 | 1.000 | 1.000 |  1.000 | 0.965 || 1.000 | 0.232 | 0.200 | 1.000 | 1.000 | ~ 1.000 | 0.952
Ds | Precis. | 1.000 | 0.116 | 0.258 | 1.000 | 1.000 |  1.000 | 0.965 || 1.000 | 0.232 | 0.290 | 1.000 | 1.000 | ~ 1.000 | 0.952
ts(min) | —| —| 263| 267| 253 256 | 241 —| = 271 278| 279 271 | 27.0
tpmin) | —| —| 05| 006] 006 0.07 | 0.02 | =] 09| 013] o012 0.13 | 0.04

(2) All effectiveness measures of JS and y? increase by more than 8% over Ds, since their combi-
nation with MBRO as a secondary weighting scheme allows them to select only qualifying
pairs, thus matching the performance of the optimal method.

(3) Regarding the scheduling time, there are mixed patterns in the case of BU = 5M, but for BU
= 10M, there is a significant increase for all composite weighting schemes. The more ties
there are for the primary scheme, the higher the increase is: on average, across all datasets,
ts raises by 17.2% for CF, by 10.2% for ISP, by 8.5% for y?, and by 8.5% for JS. This should be
attributed to a higher number of insertions in the priority queue, as ties are now resolved
with the help of the secondary scheme.

(4) The verification time of most schemes increases significantly over Ds. On average, for both

budgets, it raises by 49.5% for JS, by 47% for y?, 14.8% for MBRO, and 22.8% for ISP. The
reason is that these datasets involve very simple geometries, whose verification time was
already very low, taking few minutes, as shown in Table 7. In this context, the overhead time
that is required for updating the processing order of the candidate pairs is comparable to the
verification time, amounting to few minutes. The only exception is CF, whose verification
was much larger than all other weighting schemes and has actually improved by 8.4%, as the
secondary scheme breaks the ties by selecting simpler geometries.

All other patterns are insignificant.

Note that we also considered hybrid schemes by dividing CF, JS, y?, and ISP with the most
effective weighting scheme, namely, MBRO. However, no significant improvement was observed
in the respective experiments. Most importantly, hybrid schemes may deteriorate the performance
of individual schemes, unlike composite ones. In D,, the PGR of all hybrid schemes is reduced by ~
80% to less than 0.100 for both Dynamic and Static Progressive GIA.nt. In Ds, there is a >35% (>54%)
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Fig. 12. The overall run-time of Parallel Batch GIA.nt in comparison with GeoSpark (on the left) and the
speedup of Parallel Progressive GIA.nt as the number of cores increases over Dy, i.e., strong scalability (on
the right).

decrease in PGR for all hybrid schemes in combination with Dynamic (Static) Progressive GIA.nt.
In the best case, the performance of every hybrid scheme lies in the middle of its components: in
D4 and Ds, the PGR of all hybrid schemes approaches that of MBRO, without surpassing it. We
omit the corresponding diagrams for brevity.

7.3 Parallel Processing

7.3.1  Batch Geospatial Interlinking. Given that RADON has not been adapted to MapReduce
parallelization (only to multi-core parallelization), we compare our parallelization of batch GIA.nt
with GeoSpark [35], based on the examples provided by its developers.?* For GeoSpark, we exam-
ine only the intersects relation between the geometries of the datasets, because its Spark SQL
API does not support the computation of the DE-9IM model. In all experiments, both systems dis-
tribute the input using the same numbers of partitions and the same Quad-Tree spatial partitioner.
Figure 12 (left) reports the wall-clock time of both systems across all dataset pairs. Note that we
timed out the execution of GeoSpark after 4 h of execution.

We observe that Parallel GIA.nt consistently outperforms GeoSpark to a significant extent. Even
in the case of the dataset pair with the most complex geometries (i.e., D4 ), Parallel GIA.nt is
able to complete all calculations in approximately 1.5 h, while GeoSpark is still running after 4 h.
Regarding D; and D,, which are processed by GeoSpark within the time limit, Parallel GIA.nt
requires approximately 15% of the time needed by GeoSpark. The reason is that GeoSpark uses
spatial partitioning, but does not employ any tiling technique to avoid some of the redundant
verifications. As a result, it verifies all the geometry pairs that coexist in the same partition.

Finally, it is worth juxtaposing Parallel GIA.nt with its serial counterpart. Comparing their over-
all (Wall-clock) run-time in Figure 12 (left) and Table 5, we observe that the former is consistently
faster than the latter by a whole order of magnitude. Another advantage of Parallel GIA.nt is that it
scales well to the largest dataset pair, Dg.

7.3.2  Progressive Geospatial Interlinking. Table 9 reports the performance of all methods over
D for two different budgets, BU = 5M and BU = 10M, using the parallel implementation of Static
and Dynamic Progressive GIA.nt. In addition to the scheduling (t;) and verification (,) time, we
report the overhead time, t,, which is the aggregate time needed for all other computations, such
as the initialization of Spark context, the spatial partitioning and the computation of the granu-
larity of the tiles. The overall wall-clock run-time (ty,) corresponds to the sum of these three time
measurements.

Notice that both scheduling and verification are lower than the overhead time, mostly because
of spatial partitioning. Spatial partitioning collects a random sample of the source geometries to

24See https://github.com/apache/incubator-sedona/tree/master/example for more details.
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Table 9. Performance of (a) Static and (b) Dynamic Progressive GIA.nt Over D¢ for All Weighting
Schemes in Comparison to the Optimal (Opt.) and the Random (Rnd.) Approach for Budgets
of 5M and 10M Verifications

BU = 5M BU = 10M
Progressive GIA.nt Rnd Progressive GIA.nt

CF | JS | x* | MBRO | ISP | ¢F | JS | x* | MBRO | ISP

PGR 0.890 | 0.039 | 0.025 | 0.065 | 0.064 0.159 | 0.014 || 0.948 | 0.068 | 0.040 | 0.110 | 0.112 0.224 | 0.028

Recall 1.000 | 0.072 | 0.049 | 0.144 | 0.141 0.246 | 0.028 || 1.000 | 0.115 | 0.076 | 0.227 | 0.228 0.338 | 0.060

Precis. 0.207 | 0.015 | 0.010 | 0.030 | 0.029 0.051 | 0.006 || 0.103 | 0.012 | 0.008 | 0.024 | 0.024 0.035 | 0.006

Opt. Opt.

Rnd. ‘

Dg | t, (min) - — | 234 23.6 233 234 | 234 - — | 234 225 235 232 | 233
ts (min) - — 17.6 19.0 18.8 17.7 17.7 - - 18.5 17.1 18.1 18.0 | 17.6
t, (min) - - 2.3 4.3 1.4 2.5 2.0 - - 3.5 4.0 3.8 3.0 3.4
t,y (min) — — | 433 | 46.9 43.5 43.6 | 43.2 — — | 454 | 43,6 | 454 442 | 443
(a) Static Parallel Progressive GIA.nt
PGR 0.890 | 0.039 | 0.146 | 0.158 | 0.241 0.211 | 0.111 || 0.948 | 0.068 | 0.167 | 0.182 | 0.270 0.295 | 0.127

Recall 1.000 | 0.072 | 0.182 | 0.183 | 0.277 0.323 | 0.133 || 1.000 | 0.115 | 0.195 | 0.231 | 0.324 0.423 | 0.159
Precis. 0.207 | 0.015 | 0.038 | 0.038 | 0.057 0.067 | 0.028 || 0.103 | 0.012 | 0.020 | 0.024 | 0.034 0.044 | 0.016

Dg | t, (min) — — | 234 236 23.4 234 | 234 - — | 233 225 235 23.2| 238
ts (min) - — | 17.6 | 18.6 17.8 18.1| 18.2 - — | 175 | 194 | 184 175 | 17.8
t,, (min) - — 3.5 15 2.2 3.0 3.1 - — 4.2 2.5 3.1 4.2 3.4
t,y (min) — — | 445 | 437 43.4 44.5 | 44.7 — — | 45.0 | 44.8 | 450 449 | 45.0

(b) Dynamic Parallel Progressive GIA.nt

build the spatial partitioner and then redistributes all the geometries, invoking data shuffling. This
procedure remains the same regardless the size of the budget and adds significant overhead to the
overall execution. Moreover, the Verification step is faster than the Scheduling step, as most of the
geometries in Dy are small and simple, thus allowing for the quick computation of the intersection
matrix. On the contrary, the Scheduling step needs to examine all the candidate pairs that passed
the Filtering step, which comprises of millions of geometry pairs.

However, none of the algorithms manages to detect most of the qualifying pairs that exist within
the budget, resulting to low PGR, Recall, and Precision. Still, Dynamic Progressive GIA.nt consis-
tently outperforms its static counterpart, producing results twice as good in certain cases. MBRO
also proves to be the most suitable weighting scheme for this dataset pair, too.

Note that there are differences in Recall and Precision between the static and dynamic
algorithms, unlike their serial implementation. This is caused by the different pairs that the two
algorithms verify. To compute PGR and the other metrics in the parallel implementation, we
need to serialize the order of the discovery of the qualifying pairs. To this end, we perform the
verifications in parallel and then serialize their results to get the global processing order among
all partitions. Given that each partition is allocated a local budget based on the number of its
source entities, the overall sum of the local budgets is a mere approximation that is typically
larger than the initial budget. Yet, PGR is derived from the top BU pairs, which means that not all
the pairs inside the priority queues of the partitions are taken into account. Due to its adaptive
scheduling, Dynamic Progressive GIA.nt manages to prioritize different pairs that are more likely
to be qualifying than those selected by Static Progressive GIA.nt, thus leading to better results
not only in terms of PGR but also of Recall and Precision.

7.3.3  Scalability Analysis. Figure 12 (right) displays the strong scaling experiments of the par-
allel implementation of the progressive algorithms. In strong scaling, we examine how the overall
computational time of the job scales as we increase the number of available processing units. In this
experiment, the job is defined by the performance of progressive algorithms in combination with
MBRO weights and BU = 20M, over the most time-consuming dataset pair, Dy. We observe that
both algorithms scale sub-linearly and close to the ideal speedup, and we can only notice a small
deceleration in the case of 16 processing units. This is because both algorithms invoke data shuf-
fling in certain points to redistribute the geometries (i.e., spatial partitioning) and to compute the
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Fig. 13. Scalability of Static (left) and Dynamic (right) Parallel Progressive GIA.nt over Dy.

granularity of the tiles. By increasing the number of the processing units, more extensive data shuf-
fling is performed, adding the extra overhead to the execution that leads to a sub-linear speedup.
Overall, the total wall-clock time of Static (Dynamic) Parallel Progressive GIA.nt is reduced from
335.2 (337.5) min for 2 cores to 51.6 (52.3) min for 16 cores.

In Figure 13, we report the scalability of Static and Dynamic Parallel Progressive GIA.nt by
keeping the same number of the processing units, while increasing the size of the job, i.e., by
gradually increasing their budgets: BU € {5M, 10M, 20M, 30M}. Every algorithm is combined with
MBRO weights and applied to D,. The overall wall-clock time is divided into the scheduling (),
the verification (t,,) and the overhead (¢,) time. We observe that both #; and ¢, remain constant,
while t,, increases in proportion of the size of the budget. This is because the computations included
in t, are irrelevant to the budget size, and budgets of such sizes are not enough to significantly
affect the performance of the Scheduling step. For Dy, both algorithms use around 2,000 partitions
with small local budgets and, hence, with small local priority queues. As a result, the time needed
to push/pop elements from these queues is negligible and does not have a significant impact to the
overall performance of the Scheduling step. On the contrary, the size of the budget is decisive for
the duration of the Verification step. It is worth noting that both algorithms perform quite similarly,
especially with respect to ¢, and t;, but we can notice that the Verification step of the Dynamic
Progressive GIA.nt is slightly slower, especially in BU = 30M, due to the continuous update of the
processing order.

7.4 Discussion

We now summarize the main findings of the experiments presented above.

Starting with the batch algorithm, we observe that the main improvement of GIA.nt over
RADON/RADON? is that the memory footprint is significantly reduced by more than 66%. The
larger the difference in the size of the two input datasets is, the more memory is saved by GIA.nt.
This improvement, which enables GIA.nt to process much larger datasets than RADON, is achieved
through implementation optimizations and by reading the target dataset from the disk, instead of
loading it into main memory. The latter change, though, has no impact on the run-time, as GIA.nt
remains slightly faster than RADON. Most importantly, GIA.nt has two qualitative advantages
over RADON: (i) as shown in Table 6, its Filtering reduces the number of candidate pairs, while
increasing their co-occurrence patterns, which are crucial for progressive methods, and (ii) it is
amenable to massive parallelization, unlike RADON. Another advantage of GIA.nt is that its over-
all run-time is quite robust with respect to the index granularity, as shown in Figure 4.

Regarding the progressive methods, we should stress that they rely on the heuristics of weight-
ing schemes, thus providing no performance guarantees. Instead, they depend on two factors:
(i) the characteristics of the input data (e.g., the higher the proportion of qualifying pairs over the
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candidate ones, the better the performance), and (ii) the size of the budget. Regarding the latter,
there is a clear trade-off between recall and precision in Tables 7, 8 and 9: larger budgets increase
recall at the cost of lower precision and vice versa, for smaller budgets.

To assess the performance of progressive methods, we compared them two baseline methods:
the Optimal Scheduling, which places all qualifying pairs before the non-qualifying ones, and
the Random Scheduling, which produces an arbitrary ordering of all candidate pairs. The closer
the progressive methods are to the former baseline method, the better. Our experimental results
demonstrate that even though there is still room for improving their performance, they signifi-
cantly outperform the latter baseline. In fact, MBRO consistently outperforms Random Scheduling
in combination with Static Progressive GIA.nt, as shown in Table 7.

The same applies to the rest of the weighting schemes when they are combined with Dynamic
Progressive GIA.nt, especially when they form composite schemes with MBRO as the secondary
one. In Tables 8 and 9(b), we observe that Random Scheduling outperforms only ISP in D, for
BU = 10M as well as CF in D; for BU = 5M and in D5 for both budgets. In some other cases, the
differences seem negligible, but when considering the performance of Optimal Scheduling, they
become significant. For instance, in D, the precision of Random Scheduling is 0.013 and of ISP
just 0.014 for BU = 10M; considering, though, that the precision of Optimal Scheduling is 0.020,
the difference between the two approaches can be characterized as significant.

Regarding time efficiency, we observe in Table 5 that the filtering time, ¢7, accounts for a negli-
gible portion of the overall run-time, which is dominated by the verification time, t,,. In Tables 7,
8, and 9, we notice that the scheduling time, ;, is much higher than tr, albeit significantly lower
than f,, in most cases. In general, the scheduling time is significant with respect to t,, if (i) the
budget is very low, yielding very low t,, (ii) the selected geometries are very small and simple,
as in the case of Ds, or (iii) the number of candidate pairs with intersecting MBRs is very high.
The more candidate pairs have intersecting MBRs, the more time consuming is Scheduling, because
its time complexity depends linearly on their number, as shown in Table 3. Note that ¢, is not af-
fected by the tiles instersecting the MBR of each target geometry, because their contents, i.e., the
source geometry ids they contain, are efficiently added to the current set of candidate pairs and
those with disjoint MBRs are later discarded. Most importantly, though, ts involves the time re-
quired to read the target geometries from the disk, unlike ¢,, since progressive verification merely
processes the top-weighted target geometries, which have already been stored in main memory
during Scheduling.

In any case, though, the cost of Scheduling should be assessed with respect to the batch verifi-
cation time. Comparing ts in Table 7 with ¢, in Table 5, we observe that the former consistently
amounts to less than 5% of the latter. Even in the case of Ds, ts+t, actually corresponds to 2.5% of
batch t,,, which means that Static Progressive GIA.nt in combination with MBRO spends less than
2.5% of the batch verification time to detect 10M/164M = 6.1% of the qualifying pairs. The same
applies to JS, y? and ISP, which also achieve very high recall for BU = 10M over Ds. In the other
datasets, this trade-off is even better. E.g., in D3 for BU = 10M, JS and y? detect 83% of all qualify-
ing pairs within 10% of the batch verification time, while y? and ISP detect 76% of all qualifying
pairs for the same portion of the batch verification time.

In the case of Dynamic Progressive GIA.nt, the overhead time ¢,, which is required for weight
updating, is rather low when comparing its value in Figure 10(ii) to the corresponding verification
time in Table 8 (seconds or minutes in comparison to hours). The reason is that Algorithm 3 reranks
only those pairs among the top-BU weighted that have not been verified so far. In fact, very few
pairs are re-weighted whenever a new qualifying pair is detected.

Regarding the relative run-time of the five weighting schemes, we observe that CF consistently
yields the highest verification time, followed by MBRO. All other schemes are much faster, yielding
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similar verification times, with ISP being consistently the fastest one. This is explained by the
diagrams of Figure 9, which report the complexity of the top-weighted candidate pairs in terms
of their area as well as the number of their boundary points. The smaller both measures are for
both source and target geometries, the faster is the corresponding progressive verification time.
Regarding the scheduling time, though, it remains relatively stable across all weighting schemes,
as it is dominated by the time required to read the target geometries from the disk.

Considering the relative effectiveness of the weighting schemes, we observe that CF exhibits
the lowest performance in most cases. This outlier behavior is explained in Figure 8, which reveals
that CF typically produces scores of very low distinctiveness and has a limited scope, as its search
space is reduced to geometries with large MBRs. For this reason, its combination with Dynamic
Progressive GIA.nt yields a lower performance, as shown in Figure 10, unlike all other weighting
schemes. In fact, the characteristics of the other weighting schemes are highly correlated, yielding
similarly high source and target diversities in most cases. Among them, MBRO excels in distinc-
tiveness, thus being ideal for the secondary role in a composite scheme. In this way, it manages
to boost the performance of all other weighting schemes, even CF, in the context of Dynamic
Progressive GIA.nt, as shown in Table 8.

Finally, it is worth stressing that our massive parallelization scheme significantly improves the
run-time of all algorithms, i.e., the batch GIA.nt and its progressive variants.

8 CONCLUSIONS

In this article, we defined Holistic Geospatial Interlinking as the task of simultaneously computing
all non-trivial DE-9IM topological relations between the input geometries. To solve it, we proposed
GIA.nt, an algorithm that provides several advantages over the state-of-the-art approach RADON—
both quantitative (significantly lower space requirements for slightly lower running times)
and qualitative (easier massive parallelization and stronger co-occurrence patterns for progressive
approaches). We also proposed Progressive Geospatial Interlinking as the task of computing
as many topological relations as possible within a limited budget in terms of pair verifications.
We considered two progressive algorithms: (i) Static Progressive GIA.nt, which produces an
immutable processing order of geometry pairs, and (ii) Dynamic Progressive GIA.nt, which
updates the processing order on-the-fly, based on the qualifying pairs that are detected. Both
algorithms are equipped with five weighting schemes, which a-priori estimate the likelihood
that a pair of geometries satisfies at least one topological relation. A series of experiments over
several real dataset pairs verified that Dynamic Progressive GIA.nt consistently achieves the top
performance, especially when combined with composite weighting schemes, where the secondary
one resolves the ties of the primary one. Depending on the input data, the following weighting
schemes should be preferred:

(1) If the two input datasets are heterogeneous, i.e., the one contains LineStrings and the other
Polygons, then MBRO achieves the highest performance, on average (see D;, Dy, Dy in
Table 8 and D¢ in Table 9). That is, MBRO is the best choice if there is no background
knowledge about the type of topological relations to be discovered. However, if the majority
of the qualifying pairs satisfies the relation touches (as in D;), then JS+MBRO outperforms
all weighting schemes, whereas a high proportion of the relations contains, covered-by,
or covers favors CF+MBRO (as in Dy).

(2) In the case of homogeneous input data with Polygons (as Ds), MBRO clearly constitutes
the most effective weighting scheme. Yet, JS+MBRO and y?+MBRO offer equivalent
performance for slightly lower verification times, since they promote smaller and simpler
geometries.
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(3) In the case of homogeneous input data with LineStrings (as Ds), all composite weighting
schemes achieve very high effectiveness, except CF. However, ISP+MBRO reduces the
verification time to a significant extent, due to its emphasis on low complexity pairs, at the
cost of slightly lower effectiveness.

If possible, then these configurations should be run in parallel, on top of Apache Spark, which
is able to reduce the overall run-time by a whole order of magnitude.

In the future, we will focus on the Verification step, trying to minimize the time required for
computing the Intersection Matrix for each pair of geometries. We will also consider 3D geome-
tries as input, with time constituting the third dimension. Finally, we intend to explore the use of
supervised progressive approaches.
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