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Efficient Notification of Meeting Points for
Moving Groups via Independent Safe Regions

Jing Li Jeppe Rishede Thomsen Man Lung Yiu Nikos Mamoulis

Abstract—In applications like social networking services and online games, multiple moving users which form a group may
wish to be continuously notified about the best meeting point from their locations. A promising technique for reducing the
communication frequency of the application server is to employ safe regions, which capture the validity of query results with
respect to the users’ locations. Unfortunately, the safe regions in our problem exhibit characteristics such as irregular shapes
and inter-dependencies, which render existing methods that compute a single safe region inapplicable to our problem. To tackle
these challenges, we first examine the shapes of safe regions in our problem’s context and propose feasible approximations for
them. We design efficient algorithms for computing these safe regions. We also study a variant of the problem called the sum-
optimal meeting point and extend our solutions to solve this variant. Experiments with both real and synthetic data demonstrate
the effectiveness of our proposal in terms of computational and communication costs.

Index Terms—H.2.4.h Query processing, H.2.4.k Spatial databases

F

1 INTRODUCTION

Recently, social networking services in the ad-hoc mobile
environment have attracted significant attention [1]. Such
services exist in many popular social websites including
Facebook and Foursquare1. Managing the moving data
arising from such services brings new challenges due to
both spatial and social constraints.

In this paper, we propose a novel monitoring problem,
Meeting Point Notification (MPN) for multiple moving
users: given a group of moving users U and a set of
points of interest (POI) P , MPN continuously reports the
optimal meeting point po ∈ P to users in U such that the
maximum distance between any user and po is minimized.
MPN is motivated by many applications in social networks,
location-based games and massively multi-player online
(MMO) games [2], [3].

A real application relevant to MPN is EchoEcho2,
invented by Google Venture. EchoEcho assists users to
browse their friends’ real-time locations and share their
own. As a highlight feature, EchoEcho allows a user to
continuously observe her friends’ locations regarding to
a predetermined meeting point. Mobile users with such
interests have also been investigated in the collaborative
system research [4].

Furthermore, many popular social networking applica-
tions, e.g., event calendar in Facebook3, assist users to
share and synchronize event updates. These applications are

• J. Li and N. Mamoulis are with the Department of Computer Science,
University of Hong Kong, Hong Kong.
E-mail: {jli, nikos}@cs.hku.hk

• J. R. Thomsen and M. L. Yiu are with the Department of Computing,
Hong Kong Polytechnic University, Hong Kong.
E-mail: {csjrthomsen, csmlyiu}@comp.polyu.edu.hk

1. www.foursquare.com
2. www.echoecho.me
3. apps.facebook.com

designed to detect updates and suggest the necessary rear-
rangements automatically. As an example, consider a new
event created in the event calendar, e.g., enjoying Italian
food together. A group of users {u1, u2, u3} are interested
and participate in it (see Figure 1(a) for illustration). The
event calendar initially recommends a restaurant, i.e., p1,
based on the current locations of these users at timestamp
t1. However, due to unpredictable traffic, the velocities of
different users may change and thus the optimal meeting
point may also change. In Figure 1(a), the locations of users
change from ui(t1) to ui(t2). Due to a traffic jam, user u1
advances toward p1 with low speed and reaches u1(t2).
Thus, at timestamp t2, the optimal meeting point becomes
p2. With the help of MPN, such a change of the optimal
meeting point can be detected and thus subsequent events
in the event calendar can be rearranged in advance.
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Fig. 1. Motivation

Besides social networking services, MPN also finds
application in location-based games, such as the famous
outdoor GPS game, Tourality4. To win this game, the
distributed players of a team should reach one of geograph-
ically defined spots (POIs) by running, biking or driving

4. www.tourality.com
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as fast as possible. During a game, MPN can be used to
dynamically adjust the first meeting spot based on real-time
locations of players and thus shorten the meeting time.

Limitations of bandwidth and battery power raise chal-
lenges for mobile search problems, including MPN. Thus,
the main optimization goal for these applications is to
minimize communication frequency [5]–[9]. This goal also
reduces unnecessary computational workload at the server
because the communication cost between the clients and
the server is reduced. We adopt the same goal: minimize
the communication frequency, i.e., the frequency by which
users issue update messages to the server.

A straightforward solution is to force each client (i.e.,
user) to communicate with the server periodically (e.g.,
every second). However, this solution incurs huge com-
putation and communication costs at the server side. We
need to develop an efficient solution that reduces the
communication cost between the server and the users.
Previous work [10], which considers similar applications
under road networks, only develops techniques that reduce
road network distance computations but does not consider
minimizing the communication cost. Thus, these techniques
are inapplicable to our problem.

Motivated by this, we propose novel solutions based
on the safe region concept. Safe regions are a set of
geographical regions, one for each user, such that if each
user stays inside her region, the query result will remain
the same. For instance, in Figure 1(b) the optimal meeting
point is p1 as long as all users stay in their own safe
regions (R1, R2, R3). The use of safe regions for multiple
users raises several challenges. First, existing safe region
computation techniques for a single user are not applicable
for computing safe regions for a group of users, because
these regions are not independent. Second, the safe regions
have irregular shapes (as we demonstrate in Section 3.2),
unlike simple-shaped safe regions considered in previous
work (e.g., a Voronoi cell [11]). Third, it is infeasible to
pre-compute the safe regions for multiple users because
multiple safe regions depend on the multiple locations of
moving users, which are unpredictable.

In our preliminary work [12], we have proposed circular
safe regions that are easy to compute, and tile-based safe
regions that offer better approximations of maximal safe
regions. In this paper, our new contributions include:
• a buffering optimization that avoids repeated index

accesses (Section 5.4),
• a problem variant called the sum-optimal meeting

point and our solutions for it (Section 6), and
• additional experiments that demonstrate effectiveness

and efficiency of our new contributions (Section 7).
The paper is organized as follows. First, we review related
work in Section 2. Then, we introduce our notations and
define the problem formally in Section 3. Next, we present
our solutions in Section 4 and Section 5, together with
their optimizations. We study the problem variant for the
sum-optimal meeting point in Section 6. Our methods are
evaluated using real and synthetic data in Section 7. Finally,
we conclude our paper in Section 8.

2 RELATED WORK

Previous work on processing moving queries over mobile
data can be classified into two categories: (i) report query
results to a single user continuously, e.g., kNN queries
[11], [13]–[16], circular range queries [17], moving window
(rectangle range) queries [5], [18]; (ii) detect relationships
among moving objects, e.g., proximity detection [9] and
constraints monitoring [19].

The safe region concept has been widely used in moving
query processing to reduce the communication cost between
clients and servers. When a user registers a continuous
query, the server will return POIs along with a safe region.
The query result remains the same if the user stays inside
the current safe region. Upon leaving the safe region, the
user requests from the server a updated result together with
a new safe region. The shape of the safe region depends
on the query type, e.g., an order-k Voronoi cell for a kNN
query [18], or an arc-based region for a range query [17].
Defining safe regions for our problem is challenging be-
cause: 1) the safe regions for MPN have irregular shapes
and are thus hard to compute; 2) the safe regions of users
are interdependent and the users change their locations
dynamically and unpredictably, rendering pre-computation
techniques (e.g., as Voronoi cells [20]) inapplicable.

Proximity detection [9] helps a user to maintain a list of
friends who are within a distance threshold from her. Since
both the user and her friends are moving, [9] proposes self-
tuning policies to automatically assign an adjustable safe
region for each user. However, the work of [9] does not
consider POIs where the users are supposed to meet.

The snapshot version of our problem is equivalent to the
group nearest neighbor (GNN) query [21], which attempts
to find a POI p that minimizes total distance between p and
a set of users’ locations. The group enclosing query [22] is a
specialized GNN, which minimizes the maximum distance
among a POI and the users. Contrary to these works, we
focus on computing safe regions in order to minimize the
communication cost.

The most related work to ours is [10], which focuses on
monitoring GNN in road networks. Our work is different
in two aspects: 1) our problem does not consider the road
network; 2) the solutions in [10] aim at minimizing compu-
tations at the server side and thus cannot be applied to solve
MPN. Finally, a related problem [23] is to continuously
identify the object from a given set of moving objects,
which is superior to others with respect to its aggregate
distance toward a set of selected POIs. This problem and
its solutions are also different from our work.

3 PROBLEM SETTING

We first introduce the preliminary concepts and the system
architecture. Then, we illustrate the unique characteristics
of the search space and safe regions in our problem. In the
end, we state our main objectives in this paper.
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3.1 Preliminaries & System Architecture
We first provide the definitions for distances, the optimal
meeting point, and safe regions. Unless otherwise stated,
we denote both a user and her location by ui. Table 1
summarizes the notations to be used throughout the paper.

DEFINITION 1 (DISTANCES): Let ‖p, l‖ be the Eu-
clidean distance between points p and l. The minimum
distance and the maximum distance from a point p to a
set/region S are:

‖p, S‖min = min
l∈S
‖p, l‖ (1)

‖p, S‖max = max
l∈S
‖p, l‖ (2)

DEFINITION 2 (OPTIMAL MEETING POINT): Given a
group of users U and a dataset of points P , the optimal
meeting point po is the point in P with the smallest
‖po, U‖max. It is also called MAX-GNN [21].

DEFINITION 3 (INDEPENDENT SAFE REGION GROUP):
Let m be the number of users in U . A group of regions
R = 〈 Ri|mi=1 〉 is said to be independent if the optimal
meeting point po is the same for every instance of user
locations ∀ 〈l1, l2, · · · , lm〉 ∈ R1 ×R2 × · · · ×Rm.

DEFINITION 4 (MAXIMAL SAFE REGION GROUP):
R∗ = 〈 R∗i |mi=1 〉 is said to be a set of maximal
safe regions if no other (independent) set of safe
regions R′ = 〈 R′i|mi=1 〉 satisfies: R′ 6= R∗ and
R∗i ⊆ R′i ∀ i = 1 · · ·m.
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Fig. 2. Distance

As an example, Figure 2(a) illustrates the minimum
distances (from p1 to a circle, and from p2 to a square) and
the maximum distances (from p3 to a circle, and from p2 to
a square). At timestamp t1 (t2) in Figure 1(a), the optimal
meeting point for the locations of u1–u3 at t1 is p1 (p2).
As shown in Figure 1(b), the independent safe regions for
three users u1–u3 are R1-R3. Note that the safe regions
(for the optimal meeting point) can have irregular shapes;
we will elaborate on this issue shortly.

In this paper, we adopt the client-server architecture
which is widely used in moving query processing [7],
[17], [18]. Figure 3 illustrates this architecture. The server
manages a dataset P of points-of-interest (e.g., restaurants,
cafes) and indexes it by an R-tree. A group of users
U wish to receive notifications of their optimal meeting
point po ∈ P from the server continuously. Besides the
result po, the server also reports a safe region Ri to

each user ui ∈ U . By Definition 3, the optimal meeting
point remains unchanged if every user ui moves within
her safe region Ri. Therefore, these safe regions serve to
reduce the communication frequency of the server (and its
computational overhead) significantly.

The system is triggered when a user ui ∈ U leaves her
safe region Ri. Then, ui sends her current location to the
server (Step 1). Next, the server probes the current locations
of other users in the group U (Step 2). Having received
replies from all users in U , the server recomputes and
notifies each user ui about the optimal meeting point po and
her corresponding safe region Ri (Step 3). In summary, the
server and users communicate via three types of messages.

Group of users Server

1. leaves safe region 

� updates location 

3. notifies meeting point po

and safe region R

2. probes for loc. updates Points of 

interests P

and safe region Ri

Fig. 3. System architecture

As we will show in Section 3.2, maximal safe regions
have irregular shapes and raise challenges in computation
and representation. Our objectives are as follows:

1) Design concise representations for safe regions;
2) Develop efficient algorithms for computing them.

In this paper, we will investigate conservative approxima-
tions for maximal safe regions. Specifically, we will study
circular safe regions in Section 4 and tile-based safe regions
in Section 5.

TABLE 1
Notation

Notation Meaning
U a group of users
ui a user or its location
P points of interest
‖p, u‖ Euclidean distance from p to u
‖p, S‖max max. dist. from p to a set S, i.e., S is R or U
‖p, S‖min min. dist. from p to a set S, i.e., S is R or U

po the current optimal meeting point
‖p, U‖† the dominant distance under U
‖p,R‖> the dominant max. distance under R
‖p,R‖⊥ the dominant min. distance under R
u>p the dominant user that contributes to ‖p,R‖>
u⊥p the dominant user that contributes to ‖p,R‖⊥
R a set of safe regions for U
R∗ a set of maximal safe regions

3.2 Characteristics of Safe Region Group
This section describes the unique characteristics exhibited
by the safe regions in our problem. By Definition 3, the
possible groups of safe regions indeed form a huge search
space: a m · d dimensional space, where m is the number
of users and d is the number of spatial dimensions. For
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example, for two users (m = 2) and the planar space (d =
2), the search space becomes 4-dimensional.

We first conduct a case study to visualize the search space
for the case m = 2 and d = 1 (i.e, each user location
is just a single value). Figure 4a shows the locations of
two users u, v and three points-of-interest a, b, c. Figure 4b
illustrates the optimal meeting point for every group of
locations for user u, v. Each cell (at i-th column, j-th row)
contains the optimal meeting point when u = i and v = j.
For instance, the current user locations are u = 3 and
v = 6, so the current optimal meeting point is a (see the
cell at 3-rd column, 6-th row). For readability, the cells
are colored based on their optimal meeting points (see
Figure 4b). It appears that the cells with the same color
form a connected ‘hyper-region’ in the high-dimensional
search space, e.g., the diamond-like ‘hyper-region’ for point
a. Unfortunately, we are unable to decompose such a high-
dimensional ‘hyper-region’ into an independent safe region
group 〈 Ri|mi=1 〉 for the users. First, two cells with the same
color are not necessarily connected in the spatial domain.
For instance, both groups 〈3, 9〉 and 〈5, 0〉 for 〈u, v〉 take a
as the optimal meeting point. However, user v cannot travel
from location 9 to 0 directly without visiting locations 1-
4, which have other optimal meeting points. Second, the
maximal safe region of a user is restricted by that of another
user. For instance, if the safe region for v is the interval
5-9, the safe region for u can only be the interval 0-4.
Otherwise, if u = 5 but v = 9, the optimal meeting point
is no longer a. Third, the groups of maximal safe regions
obtained from the search space are not unique. For instance,
consider two groups of safe regions: (i) 〈2-4, 3-9〉, and
(ii) 〈0-4, 5-9〉. Both groups are valid and they take a as
the optimal meeting point. Finally, the safe regions have
irregular shapes, which we will elaborate shortly.

All these are unique characteristics in our problem,
rendering existing safe region techniques [7], [17], [18]
inapplicable.

Users u v
Objects b a c
Location 0 1 2 3 4 5 6 7 8 9

(a) locations of users and objects in 1D space

9 a a a a a c c c c c
8 a a a a a a c c c c
7 a a a a a a a c c c
6 a a a a a a a a c c
5 a a a a a a a a a c
4 b a a a a a a a a a
3 b b a a a a a a a a
2 b b b a a a a a a a
1 b b b b a a a a a a
0 b b b b b a a a a a

v\u 0 1 2 3 4 5 6 7 8 9

(b) optimal meeting point for each group of user locations

Fig. 4. Optimal meeting point for a 2-user group, with
objects in 1D space

Shapes of maximal safe regions. We proceed to illustrate
the fact that the maximal safe regions in our problem have
irregular shapes. Figure 5 shows an example in the 2-
dimensional space (d = 2) with two users ui (m = 2)

and three data points. The current optimal meeting point is
marked as po.

The entire search space cannot be visualized here as it
has m·d = 2·2 = 4 dimensions. For the sake of illustration,
we consider the special case that u1 has a fixed location
and then attempt to find the maximal safe region of u2.

Let us examine how the point p1 affects the safe region of
u2 (see Figure 5(a)). Consider (i) the bisector line between
points p1 and po, and (ii) the circle at center p1 with radius
‖u1, po‖. If u2 moves across the bisector line in (i), then
both u1 and u2 become closer to p1 than to po. If u2 moves
inside the circle in (ii), then the optimal meeting point will
be decided by the ‘further-away’ u1, who is closer to p1
than po. Thus, the safe region (in gray color) is bounded
by the shapes (i) and (ii).

Following a similar argument, we can derive the bound-
aries of the safe region of u2 with respect to the point p2.
The maximal safe region of u2 is restricted by both p1 and
p2. Figure 5(b) shows that this region (in gray color) has
an irregular shape.

In general, the maximal safe regions in our problem have
irregular shapes, especially in typical applications which
involve many more users and data points than in the above
example. These irregular safe regions raise two challenges:
(i) they are time-consuming to compute, and (ii) they are
hard to be represented in a concise manner.
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Fig. 5. Safe Region Example

4 CIRCULAR SAFE REGION APPROACH
In this section, we approximate the maximal safe regions
of users by circles due to simplicity. We first study the
condition for verifying a set of safe regions. Then, we
design an algorithm for computing circular safe regions.

4.1 Verification of Safe Regions
An essential task in our problem is to verify whether a set
of regions {Ri|mi=1} satisfies Definition 3. By definition,
there are infinitely many instances of user locations in those
regions. It is infeasible to test all the instances one-by-one.

In this section, we plan to establish a conservative condi-
tion for verifying safe regions in an efficient manner. Before
that, we first define dominant distances and dominant user:

DEFINITION 5: Given a data point p ∈ P and a user set
U , the dominant distance is defined as

‖p, U‖† = max
ui∈U

‖p, ui‖
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Given a data point p ∈ P and a set of safe regions R, the
dominant minimum and maximum distances are defined as:

‖p,R‖⊥ = max
Ri∈R

‖p,Ri‖min (3)

‖p,R‖> = max
Ri∈R

‖p,Ri‖max (4)

A user is denoted as u†p if he contributes to the dominant
distance with respect to point p.

Observe that the optimal meeting point is the point with
the smallest dominant distance ‖p, U‖†. Regardless of the
actual locations of users (in their safe regions), ‖p,R‖⊥
serves as a lower-bound of ‖p, U‖†, and ‖p,R‖> serves as
an upper-bound of ‖p, U‖†. As an example, in Figure 2(b),
‖p2,R‖⊥ is the maximum over the minimum distances
from p2 to each region (corner in black), and ‖p1,R‖>
is the maximum over the maximum distances from p1 to
each region (corner in gray).

We now establish a conservative test (Lemma 1) for
verifying a set of safe regions with respect to a given data
point p ∈ P and the optimal meeting point po. This test
is conservative in the sense that it has no false positives
but it may have false negatives, i.e., (i) if the test returns
true, then po is definitely optimal when the users remain in
R; (ii) if the test returns false, then po may not be optimal.
We denote this test as Verify(R, po, p) throughout the paper.
This test is efficient as its time complexity is O(m).

LEMMA 1 (CONSERVATIVE VERIFICATION): Given a
set of regions R = {Ri|mi=1}, if for a point p ∈ P and
p 6= po

‖po,R‖> ≤ ‖p,R‖⊥ (5)

then the dominant distance of po must be smaller than or
equal to that of p.

Proof: For any instance {li|mi=1} of R, by definition
of dominant max. (min.) distance, we have

‖po, {li|mi=1}‖† ≤ ‖po,R‖>

and
‖p,R‖⊥ ≤ ‖p, {li|mi=1}‖†

Combining both equations with Equation (5), we derive:

‖po, {li|mi=1}‖† ≤ ‖p, {li|mi=1}‖†

which means that all instances in R are valid.
As an example, Figure 6(a) shows 2 data points and

3 users (with their safe regions). Note that ‖po,R‖> =
‖po, R2‖max and ‖p1,R‖⊥ = ‖p1, R1‖min. Since
‖po, R2‖max < ‖p1, R1‖min, by Lemma 1, we conclude
that p1 cannot replace po as the optimal meeting point (and
thus the safe regions are valid).

4.2 Algorithm
Although maximal safe regions have irregular shapes, they
can be conservatively approximated as circles. We now
assign each user ui a circular safe region Ri = �(ui, r),
where ui is the current user location and r is the radius.
Note that the same radius r is used across different Ri.
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Fig. 6. Verifications of safe regions

To reduce the communication cost between the server
and the users, the value r should be as large as possible.
The following theorem decides the maximum radius r such
that the safe regions remain valid.

THEOREM 1 (MAXIMAL CIRCLES): The maximum ra-
dius of circles for safe regions is:

rmax =
minp∈P−{po}(‖p, U‖max)− ‖po, U‖max

2
(6)

Proof: Let Ri = �(ui, r), a circle with radius r
and center as the current user location ui. We have:
‖p,Ri‖max = ‖p, ui‖+ r and ‖p,Ri‖min = ‖p, ui‖ − r.

By substituting these equations into Equation (5) in
Lemma 1, for any point p ∈ P − {po}, we have

max
ui∈U

(‖po, Ri‖max) ≤ max
uj∈U

(‖p,Rj‖min)

max
ui∈U

(‖po, ui‖+ r) ≤ max
uj∈U

(‖p, uj‖ − r)

By rearranging the terms, we obtain:

2r ≤ max
uj∈U

(‖p, uj‖)− max
ui∈U

(‖po, ui‖)

which is equivalent to

r ≤ ‖p, U‖max − ‖p
o, U‖max

2
(7)

Note that Equation (7) holds for any point p ∈ P − {po}.
By taking the minimum value of all ‖p, U‖max, we obtain:
rmax =

minp∈P−{po}(‖p,U‖max)−‖po,U‖max

2 .
Algorithm 1 is the pseudo-code for computing circular

safe regions for users. Assume that the dataset set P is
indexed by an R-tree. First, the algorithm finds the best two
meeting points by calling an existing algorithm [24] on the
R-tree of P . Note that the second best meeting point is the
point p that contributes to minp∈P−{po}(‖p, U‖max). Then,
it computes the maximum radius rmax by Equation (6) and
returns the corresponding circular safe regions to the users.

Algorithm 1 Circle-MSR ( Set of users U , Dataset P )
1: po, p← FindMaxGNN(U , P , 2) . apply algo. in [24]
2: compute the radius rmax . apply Equation (6)
3: for each user ui ∈ U do
4: return the safe region �(ui, rmax) to ui
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Discussion. Although circular safe regions can be com-
puted efficiently, they may not tightly capture maximal
safe regions. For instance Figure 7(a) contains two users
u1-u2 and three points p1-p2 and po. Since p1 is the
next optimal meeting point, according to Equation (6),
the radius for circles are determined by two distances
‖po, u1‖ and ‖p1, u2‖. Thus, the circular safe regions are
depicted in Figure 7(a). In the next section, we propose
a tighter approximation of maximal safe regions, named
the tile-based safe regions, in order to further reduce the
communication frequency. As illustrated in Figure 7(b),
the tile-based safe regions are much more tighter than the
circular safe regions in Figure 7(a).
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(b) tile-based safe regions

Fig. 7. Comparisons of safe regions

We are aware of a tight pruning technique [25] that
utilizes half-spaces for deciding whether every point in
a query rectangle R is closer to an object rectangle Oa
rather than another object rectangle Ob. Nevertheless, this
technique is not applicable to our problem because: (i) we
use multiple safe regions for multiple users respectively,
instead of using a single rectangle R, and (ii) a safe region
group (e.g., 〈R1, R2〉) can be valid even when some part
of R1, R2 do not take po as the nearest neighbor (see
Figure 7b).

5 TILE-BASED SAFE REGION APPROACH

A tile, as its name implies, is a square region (with side-
length δ). Tiles can be assembled to represent an irregular
shape and thus serve as a tighter approximation of maximal
safe regions. A tile-based safe region can be represented in
a concise manner, as shown in our preliminary work [12];
we omit these techniques here due to space limitations. In
the remainder of this section, we first show a tighter veri-
fication method for tiles. Next, we design an algorithm for
computing such tile-based safe regions. Then, we propose
techniques to optimize the efficiency of tile verification.
Finally, we suggest a buffering optimization that avoids
repeated accesses to an R-tree.

5.1 Divide-and-Conquer Verification for Tiles

We start by showing that the verification condition in
Lemma 1 is not tight. Figure 6(b) shows three users
u1, u2, u3 and two data points po and p1. Here, u2 is
the dominant user for both points po and p1. Consider
the safe region group R = 〈R1, R2, R3〉. As depicted in

Figure 6(b), the max. distance for po (‖po, R2‖max) is
larger than the min. distance for p1 (‖p1, R2‖min). By
Lemma 1, R cannot be verified. This phenomenon happens
due to the dominant min. and max. distances for the same
dominant user (e.g., u2), yet they are contributed by two
different locations inside R2.

On the other hand, if we divide R2 into four smaller
tiles (Ra2 , R

b
2, R

c
2, R

d
2) as shown in Figure 6(b), then R

can pass the verification. Consider the safe region group
R′ = 〈R1, R

a
2 , R3〉 for example. R′ passes the verification

since ‖po,R′‖max is less than ‖p1,R′‖min. Similarly, the
safe region group R′′ = 〈R1, R

d
2, R3〉 passes the verifica-

tion since ‖po,R′′‖max ≤ ‖p1,R′′‖min. After applying
Lemma 1 to the remaining two groups of safe regions
(〈R1, R

b
2, R3〉, 〈R1, R

c
2, R3〉), we conclude that R is valid.

Our next question is how to determine a suitable size
δ for a tile s. If δ is too small, then many tiny tiles are
examined and incur significant computation cost. If δ is
too large, then R may not be able to pass the verification.

To tackle this problem, we propose a divide-and-conquer
method for verification (Algorithm 2). The initial size
of the tile s will be discussed in the next section. The
parameter L is used to control the number of recursion
levels (and thus the computation cost). Suppose that R =
〈R1, R2, · · · , Ri, · · · , Rm〉 is a valid safe region group
(i.e., passed the verification). The algorithm aims to check
whether s is a valid safe region for user ui with respect to
the existing safe regions R1, · · · , Ri−1, Ri+1, · · · , Rm of
other users inR. If yes, then we can guarantee that Ri∪{s}
is also a valid safe region for user ui.

At Lines 1–3, we apply a function Tile-Verify to verify
the tile s for the user ui with respect to the safe regions of
other users in R. Efficient implementations of Tile-Verify,
and index pruning techniques (on R-tree), will be studied
in Section 5.3. If s passes the verification, then we add it
into the safe region of ui. Otherwise, we divide s into four
sub-tiles s′, and then call the method recursively on s′ (see
Lines 5–8). Note that recursion stops when the recursion
level L reaches 0.

Algorithm 2 Divide-Verify ( Safe region group R, User
ui, Tile s, Optimal point po, Dataset P , Level L )

1: if ∀ p ∈ P − {po}, Tile-Verify ( R, ui, s, p, p
o ) is true then

2: Ri ← Ri ∪ {s}
3: return true
4: flag ← false
5: if L > 0 then . control the recursion level
6: divide s into four sub-tiles
7: for each sub-tile s′ of s do
8: if Divide-Verify ( R, ui, s

′, po, P, L− 1 ) then
9: flag ← true

10: return flag

5.2 Algorithm

Having introduced a divide-and-conquer verification
method Divide-Verify, we are ready to present an algorithm
for computing tile-based safe regions (Algorithm 3). Each
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safe region Ri is modeled as a set of tiles, so it can be
used to approximate an irregular shape (see Figure 7(b)).
The main idea of the algorithm is to browse the tiles
around each user ui in a systematic way, apply verification
on them, and then add valid tiles into a safe region Ri.

Recall that Algorithm 1 computes the safe region of each
user ui as a circle �(ui, rmax). The maximal tile (square)
in each circle must also be a valid safe region. Thus, we
set the tile size δ =

√
2 · rmax and add a tile �(ui, δ) into

its corresponding safe region Ri (Lines 1–4).
The parameter α specifies the (maximum) number of tiles

to be assigned to each safe region Ri. It can also be used
to bound the number of iterations in Lines 5–11. In each
iteration, the algorithm examines the safe regions of users
in a round-robin manner.

We call a function Next-Tile to get the next tile s for
user ui. The implementation of Next-Tile will be discussed
shortly. Then, it tests the new tile s with other users’
safe regions by calling Divide-Verify (Line 9). The loop
terminates either when (i) the test returns true, or (ii) s is
empty, i.e., Next-Tile has exhausted all tiles for ui.. At the
end, the algorithm returns a safe region Ri to each user ui.

Algorithm 3 Tile-MSR ( Set of users U , Dataset P , Tile
limit α, Split level L )

1: compute po and rmax . apply Algorithm 1
2: δ ←

√
2 · rmax . initial tile size

3: for each user ui in U do
4: Ri ← { �(ui, δ) } . initial safe region
5: for τ ← 1 to α do . control running time
6: for each user ui ∈ U do . round robin
7: repeat
8: s←Next-Tile ( ui, δ ) . by tile ordering
9: flag ← Divide-Verify ( R, ui, s, p

o, P, L)
10: until flag = true or s = ∅
11: for each user ui ∈ U do
12: return the safe region Ri to ui

We examine two possible orderings for NextTile to select
the next tile. In Figure 8, the tiles are numbered by the their
insertion order. The first tile centered at ui is numbered as
0.

Undirected ordering. This approach picks the next tile
based on the anti-clockwise order as shown in Figure 8.
When all tiles in the current layer have been exhausted,
it checks whether some tile in the current layer has been
inserted in the safe region. If yes, then it picks the next
tile in an outer layer and repeats the process. Otherwise,
it returns a null tile, meaning that any subsequent tile
cannot become a valid tile for the user.

Directed ordering. Existing studies [26] show that the
travel direction of a user ui in the near future has a limited
angle deviation θ from his current one. θ is learned from
ui’s recent travel directions. We can exploit this feature
and examine only the tiles whose subtended angles at ui
deviate by less than θ. By incorporating this idea into the
above undirected ordering, we are able to select more tiles
that are likely to cover the future locations of ui. Figure 8

shows an example of this directed ordering.
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Fig. 8. Ordering for tiles

5.3 Efficient Implementation of Tile Verification
The running time of Algorithm 3 is dominated by the time
for verifying tiles, i.e., the recursive Divide-Verify function.
This function needs to invoke the Tile-Verify function for
every point p ∈ P − {po} (Line 1). In this section, we
optimize this step in order to reduce the overall running
time. We first study how the Tile-Verify function can be
implemented efficiently. Then, we propose a technique for
pruning a large portion of points in P − {po} without
processing them one-by-one.

Individual Tile Verification (IT-Verify). This is a basic
technique for verifying a new tile s to be allocated to user
ui. Given a valid safe region group 〈Ri|mi=1〉 for all users,
consider a tile group 〈s1 ∈ R1, . . . , si = s, . . . , sm ∈ Rm〉
which contains a tile from each user, where (i) si = s, and
(ii) sj is a tile from Rj for any other user uj 6= ui.

IT-Verify would enumerate all possible tile groups (as
defined above) and verify them. If any group fails, then s
is not valid as part of the safe region of user ui. However,
such an implementation suffers from high computation cost
due to the huge number of tile groups formed by the safe
regions of other users uj 6= ui. The number of such groups
is O(Πm

i=1|Ri|), where |Ri| is the number of tiles in the
safe region Ri.

Group Tile Verification (GT-Verify). Instead, we propose
an optimized verification method for the new tile s. The
main idea of GT-Verify is to group tiles and test entire
groups collectively, reducing the total number of checks
significantly.
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Fig. 9. Examples of GT-Verify

We illustrate two main types of grouping strategies.
Figure 9 depicts two users u1 and u2, the optimal meeting
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point po, and a candidate point p1. The new tile s is colored
in gray. In Figure 9(a), the maximum distance between the
new tile and po (‖po, s‖max) is the dominant max. distance
for two tile groups 〈s, s1〉 and 〈s, s2〉. 〈s, s1〉 (〈s, s2〉) has
the dominant min. distance to p1 incident to s1 (s2). If
〈s, s2〉 fails in the verification test, so does 〈s, s1〉 since
‖p1, 〈s, s1〉‖⊥ < ‖p1, 〈s, s2〉‖⊥ < ‖po, s‖max. Thus, we
can group s1 and s2 and test 〈s, s1 ∪ s2〉 instead of testing
each group individually. In Figure 9(b), the minimum dis-
tance between the new tile and p1 (‖p1, s‖min) is the dom-
inant min. distance for two tile groups 〈s1, s〉 and 〈s2, s〉.
〈s1, s〉 (〈s2, s〉) has the dominant max. distance to po inci-
dent to s1 (s2). If 〈s2, s〉 fails the verification test, so does
〈s1, s〉 since ‖po, 〈s1, s〉‖> > ‖po, 〈s2, s〉‖> > ‖p1, s‖min.
Thus, we can group s1 and s2 and test 〈s1 ∪ s2, s〉 instead
of testing each group individually.

The key observation is that we can categorize tile
groups involving s based on two dominant distances: do =
‖po, s‖max and dp = ‖p, s‖min. Using these distances, the
tiles inside a safe region Rj are partitioned into four groups
as shown below.

G↓↓j = 〈s′ ∈ Rj | ‖po, s′‖max < do ∧ ‖p, s′‖min < dp〉
G↑↓j = 〈s′ ∈ Rj | ‖po, s′‖max ≥ do ∧ ‖p, s′‖min < dp〉
G↓↑j = 〈s′ ∈ Rj | ‖po, s′‖max < do ∧ ‖p, s′‖min ≥ dp〉
G↑↑j = 〈s′ ∈ Rj | ‖po, s′‖max ≥ do ∧ ‖p, s′‖min ≥ dp〉

The following theorem establishes test conditions for
these groups and ensures that they cover all possible tile
groups.

THEOREM 2: Let u>po and u⊥p be the users that realize
the dominant max. distance of po and the dominant min.
distance of p, respectively. Let {s}i be the new tile s to be
allocated as the safe region of user ui. If all tile groups are
valid, then the testing for the following safe region groups
must be valid:

1) Safe region group R′ = 〈G↓↓1 , . . . , {s}i, G↓↓m 〉. ui is
u>po and also u⊥p .

2) Safe region group R′ = 〈G↓↓1 ∪
G↑↓1 , . . . , {s}i, . . . , G↓↓m ∪ G↑↓m 〉. ui is u⊥p and
another user uj (ui 6= uj) is u>po .

3) Safe region group R′ = 〈G↓↓1 ∪
G↓↑1 , . . . , {s}i, . . . , G↓↓m ∪ G↓↑m 〉. ui is u>po and
another user uj (ui 6= uj) is u⊥p .

4) If ui is not a dominant user and s′ ∈ Ri exists such
that ‖po, s′‖max ≤ do and ‖p, s′‖min ≤ dp, then all
the tile groups R′′ that are not covered in above safe
region group are valid. Otherwise, test all these R′′ by
calling Verify(R′′, po, p).
Proof: It is easy to see that each tile group is included

in the four types. We prove the converse-negative proposi-
tion of this theorem.

If 1) fails the verification, there exists a tile group 〈s1 ∈
G↓↓j , . . . , si = s, . . . , sm ∈ G↓↓m 〉 that have user ui as the
dominant users, which fails the verification.

If 2) fails, there exists s′ ∈ G↑↓j for a tile group 〈s1 ∈
G↓↓1 ∪G

↑↓
j , . . . , si = s, . . . , sj = s′, . . . , sm ∈ G↓↓m ∪G↑↓m 〉

( ui as u⊥p and user uj as u>po ), which fails the verification.
If 3) fails, there exists s′ ∈ G↓↑j for a tile group 〈s1 ∈

G↓↓1 ∪G
↓↑
1 , . . . , si = s, . . . , sj = s′, . . . , sm ∈ G↓↓m ∪G↓↑m 〉

(ui as u>po and user uj as u⊥p ), which fails the verification.
For 4), all tile groups R′′ involving uj and uk (j 6= i and

k 6= i) as the dominant users share the same verifications.
If there exists a tile s′ ∈ Ri s.t. ‖po, s′‖max ≤ do and
‖p, s′‖min ≤ dp, the group R′′ with s′ as the safe region
for user ui is valid in the previous verifications. Thus, R′′

with s as the safe region for user ui is valid as well.
Otherwise, we check these remaining tile groups R′′ by
calling Verify(R′′, po, p).

Based on the above theorem, we design the GT-Verify
(Algorithm 4) that applies the grouping strategy. First, GT-
Verify directly call Verify(R′, po, p) to verify the new tile
s together with all other users’ safe regions in Line 1-2.
Otherwise, it partitions each safe region Rj ∈ R into four
groups as described previously (Line 3). From Line 4–11,
GT-Verify behaves as described in Theorem 2 by calling
Verify(R′, po, p) on the partitioned group.

Algorithm 4 GT-Verify(Safe region group R, User ui, Tile
s, Point p, Optimal point po)

1: if R′ = 〈R1, . . . , {s}i, . . . , Rm〉 is valid then
2: return true
3: partition each safe region Rj ∈ R into four groups
4: if 〈G↓↓1 , . . . , s, G↓↓m 〉 is invalid

or 〈G↓↓1 ∪ G
↑↓
1 , . . . , {s}i, . . . , G↓↓m ∪ G↑↓m 〉 is invalid

or 〈G↓↓1 ∪G
↓↑
1 , . . . , {s}i, . . . , G↓↓m ∪G↓↑m 〉 is invalid then

5: return false
6: if ∃s′ ∈ Ri s.t. ‖po, s′‖max ≤ do and ‖p, s′‖min ≤ dp then
7: return true
8: for group R′′ not covered in above groups do
9: if Verify(R′′, po, p) = false then

10: return false
11: return true

Index Pruning. Recall that the Divide-Verify function
invokes the Tile-Verify function (e.g., IT-Verify or GT-Verify)
for every point p ∈ P−{po} (Line 1). In fact, many of such
point p cannot become candidates to replace the optimal
meeting point po.

Motivated by this, we formulate the following theorem to
detect unpromising points that cannot become candidates.

THEOREM 3: Given a safe region group R, a point p
cannot yield better dominant distance than po if for any
ui ∈ U ,

‖p, ui‖ > ‖po,R‖> + r†i (8)

where r†i is the maximum distance between user ui’s
current location and its safe region boundary.

Proof: By Equation (8), we have

‖p,R‖⊥ = maxRi∈R ‖p,Ri‖min by Equation (3)
> maxui∈U (‖p, ui‖ − r†i )
> maxui∈U (‖po,R‖>) by Equation (8)
= ‖po,R‖>

By Lemma 1, we conclude that p cannot replace po as the
optimal meeting point.
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Fig. 10. Index Pruning

In order to retrieve the candidates from P , we traverse the
R-tree (of P ) while pruning candidates disqualified by the
above theorem. For example, in Figure 10, p2 is a candidate
but p1 is not a candidate. Similarly, the pruning technique
can be extended to the MBRs in the R-tree. For instance,
MBR2 can be pruned since its min. distance to u1 is larger
than ‖po,R‖> + r†1. On the other hand, MBR1 contains
the potential points since it overlaps the circle with radius
‖po,R‖> + r†1 and that with radius ‖po,R‖> + r†2.

5.4 Buffering Optimization for Index Access

Observe that the computation of tile-based safe regions
(Algorithm 3) invokes the Divide-Verify function multiple
times, causing frequent accesses to the R-tree (of dataset
P ). In this section, we present an optimization method
so that Algorithm 3 accesses the R-tree exactly once,
regardless of the number of calls to Divide-Verify.

5.4.1 Buffering points for verification

Our idea is to retrieve a subset of points from the R-
tree and only use them in subsequent calls to the Divide-
Verify function. Given a parameter β, we define a distance
threshold λβ as follows. We will elaborate how to reduce
the sensitivity of β later.

DEFINITION 6 (DISTANCE THRESHOLD): The distance
threshold λβ is defined as follows:

λβ =
‖pβ+1, U‖max − ‖po, U‖max

2
(9)

where point pj denotes the j-th MAX-GNN of U .
Theorem 4 states that the best β MAX-GNNs (of U )

are sufficient for verifying a group location instance L,
provided that each li ∈ L is within distance λβ from ui.

THEOREM 4 (BUFFERING CONDITION): Let P ∗1..j =
{p1(= po), p2, · · · , pj} be the set of the best j MAX-
GNNs. Given a group location instance L = 〈l1, · · · , lm〉,
if ‖li, ui‖ ≤ λβ holds for every 1 ≤ i ≤ m, then the
MAX-GNN of L cannot be any point in P − P ∗1..β .

Proof: Let p′ be an arbitrary point in P −P ∗1..β . Note
that ‖pβ+1, U‖max ≤ ‖p′, U‖max. Combining this with
Equation 9, we derive the following:

max
ui∈U

(‖po, ui‖) + 2λβ ≤ max
ui∈U

(‖p′, ui‖) (10)

From the given condition ‖li, ui‖ ≤ λβ , we can ob-
tain: maxui∈U (‖po, ui‖) ≥ maxui∈U (‖po, li‖) − λβ and
maxui∈U (‖p′, ui‖) ≤ maxui∈U (‖p′, li‖) + λβ . Combining
these two inequalities with Equation 10, we get:

max
ui∈U

(‖po, li‖) ≤ max
ui∈U

(‖p′, li‖)

Thus, the MAX-GNN of L cannot be p′.
We are now ready to present our buffering method.

Specifically, before computing safe regions, we first retrieve
the best β + 1 MAX-GNN of U . When we verify a tile s
for user i (Divide-Verify, Algorithm 2), we only process
s if ‖s, ui‖max ≤ λβ . This guarantees that the condition
‖li, ui‖ ≤ λβ in Theorem 4 is always satisfied. Then, we
use the point set P ∗1..β (instead of the entire P ) in the
verification function. We need not access the R-tree again
since we have retrieved P ∗1..β+1 (which contains P ∗1..β).

5.4.2 Reducing the sensitivity of parameter β
Observe that the parameter β exhibits a tradeoff between
the verification cost and the extent of safe regions. A small
β limits the extent of safe regions significantly (due to the
distance threshold λβ). To avoid overly small safe regions,
we recommend to use a sufficiently large β.5 However, the
verification cost is directly proportional to β.

In the following, we provide an efficient implementation
(Algorithm 5) whose verification cost is less sensitive to
β. Now, we consider all β possible distance thresholds:
λ1, λ2, · · · , λβ . To reduce the verification cost, we pick
the smallest distance threshold λz such that it satisfies the
condition of Theorem 4 for the current safe region group R
and the new tile s. This can be implemented efficiently in
O(log β) time by binary search (Line 2). If such a distance
threshold λz cannot be found, then the verification returns
false as the new tile s violates the condition of Theorem 4.

Algorithm 5 Buffer-Divide-Verify (Safe region group R,
User ui, Tile s, Optimal point po, Set P ∗1..β+1, Level L)

1: dist← max{‖ui, s‖max,maxRj∈R ‖uj , Rj‖max}
2: find the minimum slot z such that dist ≤ λz . binary search
3: if no such z exists then
4: return false
5: if ∀ p ∈ P ∗1..z − {po}, Tile-Verify ( R, ui, s, p, p

o ) is true
then

6: Ri ← Ri ∪ {s}
7: return true
8: apply Lines 4–10 of Algorithm 2

6 THE SUM-OPTIMAL MEETING POINT

In this section, we study a problem variant for the sum-
optimal meeting point, which aims to minimize the sum
of distances traveled by users, rather than their meeting
time. We call this problem as Sum-optimal Meeting Point
Notification ( Sum-MPN ). We first provide a formal
definition for this problem, and then present extensions of
our solutions for this problem.

5. We set β = 100 based on our experimental results
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6.1 Problem Definition
We first provide the definitions for the sum distance and
the sum-optimal meeting point.

DEFINITION 7 (SUM DISTANCE): The sum distance
from a point p to a group of users U is:

‖p, U‖sum =
∑
ui∈U

‖p, ui‖

DEFINITION 8 (SUM-OPTIMAL MEETING POINT):
Given a group of users U and a dataset of points P , the
sum-optimal meeting point po is the point in P with the
smallest ‖po, U‖sum. It is also called SUM-GNN [21].

The sum-optimal meeting point is more suitable when
a group of users wishes to minimize the sum of their
travel distances (and thus their total fuel cost). As for the
incentive, the users in a group may agree on sharing the
total fuel cost evenly when they reach the meeting point.
Specifically, for those having fuel cost less than the average,
they would contribute the cost difference (from the average)
to other users in the group.

We illustrate an example of the sum-optimal meeting
point in Figure 11. Assume that the user group is U =
{u1, u2} and the dataset is P = {p1, p2}. The sum-
optimal meeting point is p1 with the value ‖p1, U‖sum =
1.5 + 9.5 = 11.

y

u2

x

u1

u2

p1 p2

9.1
9.5

1.5 7.2

Fig. 11. Example for the sum-optimal meeting point

The definitions for independent safe region group and
maximal safe region group (Definitions 3 and 4) are still
applicable in the context of the sum-optimal meeting point.
We proceed to extend our solutions to compute a safe region
group for the sum-optimal meeting point.

Observe that Papadias et al. [21] have studied the snap-
shot version of our problem, i.e., computing the sum-
optimal meeting point (called SUM-GNN in their work).
In contrast, we focus on computing safe regions for such a
meeting point.

6.2 Circular Safe Region Approach
Algorithm 1 can be easily adapted to compute a safe region
group for the sum-optimal meeting point. At Line 1, we
call the “FindSumGNN” algorithm in [24]. At Line 2, we
compute the value of rmax by Equation 11. Its correctness
is guaranteed by the following theorem.

THEOREM 5 (SUM-OPTIMAL MAXIMAL CIRCLES):
The maximum radius of circles for safe regions is:

rmax =
minp∈P−{po}(‖p, U‖sum)− ‖po, U‖sum

2m
(11)

Proof: Let Ri = �(ui, r), a circle with radius r
and center as the current user location ui. We have:
‖p,Ri‖max = ‖p, ui‖+ r and ‖p,Ri‖min = ‖p, ui‖ − r.

By applying the definition of safe regions for Sum-
optimal meeting point, we derive the following inequality
for any point p ∈ P − {po}:∑

ui∈U
(‖po, Ri‖max) ≤

∑
uj∈U

(‖p,Rj‖min)

∑
ui∈U

(‖po, ui‖+ r) ≤
∑
uj∈U

(‖p, uj‖ − r)

By rearranging the terms, we obtain:

2m · r ≤
∑
uj∈U

(‖p, uj‖)−
∑
ui∈U

(‖po, ui‖)

which is equivalent to

r ≤ ‖p, U‖sum − ‖p
o, U‖sum

2m
(12)

Note that Equation (12) holds for any point p ∈ P −{po}.
By taking the minimum value of all ‖p, U‖sum, we obtain:
rmax =

minp∈P−{po}(‖p,U‖sum)−‖po,U‖sum

2m .

6.3 Tile-based Safe Region Approach
Algorithm 3 can be applied to compute a safe region group
for the sum-optimal meeting point. Also, we adopt the
divide-and-conquer method (Algorithm 2) to check whether
a tile s should be inserted into the safe region Ri of user
ui. It remains to discuss how to extend the optimizations
in Sections 5.3 and 5.4 for the sum-optimal meeting point.

6.3.1 Group tile verification
Let 〈Ri|mi=1〉 be a valid safe region group obtained so far.
Given a new tile s for user ux, we want to verify efficiently
whether the above safe region group is valid after inserting
s into Rx. Let L = 〈l1, · · · , lm〉 be a group location
instance, where lx ∈ s and li ∈ Ri for all i 6= x.

Specifically, we want to verify that, for every instance of
users’ locations L (as stated above), whether ‖po, L‖sum ≤
‖p′, L‖sum holds for every non-result point p′ ∈ P −{po}.
We define the comparison function F (p′, po, L) as:

F (p′, po, L) = ‖p′, L‖sum − ‖po, L‖sum
=

∑
li∈L

(‖p′, li‖ − ‖po, li‖) (13)

The verification returns false if F (p′, po, L) < 0 for some
non-result point p′ ∈ P − {po} and some group location
instance L.

For a given point p′ ∈ P −{po}, we minimize the value
of F (p′, po, L) in order to check whether it can become
negative. Observe that, in Equation 13, we can minimize
the term ‖p′, li‖ − ‖po, li‖ for each user ui independently.

It turns out that the loci of ‖p′, l‖ − ‖po, l‖ = r can
be described by hyperbola curves, as shown in Figure 12.
In this example, po = (1, 0) and p′ = (−1, 0). Given a
square tile s, our task is to find the minimum value of
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‖p′, l‖ − ‖po, l‖ among all location l of s. First, we divide
the space by the axis p′po into the upper half-plane and the
lower half-plane. Observe that, within the same half-plane,
the same hyperbola curve can be either a decreasing curve
or an increasing curve, but not both. As such, the minimum
value along a straight line must occur at either of its end
vertices. To find the minimum value of a tile s, it suffices
to compute the value ‖p′, v‖ − ‖po, v‖ at: (i) each corner
v of s (e.g., A,B,C,D), and (ii) any intersection v between
s and the axis p′po (e.g., E, F).

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1  2  3  4

r=2

r=1.6

r=1.2

r=0.8
r=0.4

r=0

r=-2

r=-1.6

r=-1.2

r=-0.8
r=-0.4

pop'

BA

D C

E F

Fig. 12. Hyperbola curves for ‖p′, l‖ − ‖po, l‖ = r

This verification function is summarized as Algorithm 6.
Observe that there are redundant computations during
different calls of the algorithm (Lines 6–8). We can
apply memorization techniques to avoid such redundant
computations. The idea is to employ m hash tables:
H1, H2, · · · , Hm. For each user ui, the minimum Fi value
for point p′ can be maintained at the hash entry Hi(p

′).
Then, we make two changes to the algorithm:

• replace Lines 6–8 by the statement: Fi ← Hi(p
′)

• at Line 12, we also execute Hx(p′) ←
min{Fx, Hx(p′)} because the tile s will be inserted
into the safe region of user ux

Algorithm 6 Sum-GT-Verify(Safe region group R, User
ux, Tile s, Point p, Optimal point po)

1: Fx ←∞
2: for each vertex or intersection v of tile s do
3: Fx ← min{Fx, ‖p′, v‖ − ‖po, v‖}
4: for each user ui except ux do
5: Fi ←∞
6: for each tile si of safe region Ri do
7: for each vertex or intersection v of tile si do
8: Fi ← min{Fi, ‖p′, v‖ − ‖po, v‖}
9: if

∑
i=1..m Fi < 0 then

10: return false
11: else
12: return true

6.3.2 Index pruning

Since it is expensive to invoke the above verification
function for every point p ∈ P − {po}, we derive the

following theorem to detect unpromising points that cannot
become candidates.

THEOREM 6: Given a safe region group R, a point p
cannot yield better result than po if,

‖p, U‖sum > ‖po, U‖sum + 2 ·
∑
ui∈U

r†i (14)

where r†i is the maximum distance between user ui’s
current location and its safe region boundary.

The above pruning technique can also be extended to the
MBRs in the R-tree. For instance, a MBR can be pruned if
the value

∑
ui∈U dmin(MBR,ui) is larger than the right-

side of Equation (14).

6.3.3 Buffering optimization for index access
The same buffering technique in Section 5.4 can also be
applied here, except that the distance threshold λβ is now
obtained from Equation 15 in the following theorem. The
proof is similar to that of Theorem 4 and it is omitted due
to lack of space.

THEOREM 7 (SUM-OPTIMAL BUFFERING CONDITION):
Without loss of generality, assume that point pj is the j-th
SUM-GNN of U , and the set P ∗1..j contains the best j
SUM-GNNs. Given a parameter β, we define the distance
threshold λβ as follows:

λβ =
‖pβ+1, U‖sum − ‖po, U‖sum

2m
(15)

Given an instance of users’ locations L = 〈l1, · · · , lm〉, if
‖li, ui‖ ≤ λβ holds for every 1 ≤ i ≤ m, then the SUM-
GNN of L cannot be any point in P − P ∗1..β .

7 EXPERIMENTS

7.1 Settings
In this section, we experimentally evaluate the performance
of our proposed techniques. All methods were implemented
in C++ and the experiments were performed on an Intel
Core2Duo 2.66GHz CPU machine with 8 GBytes memory,
running on Ubuntu 10.04.

Dataset and Query Workload. We obtain a real dataset
from www.pocketgpsworld.com, which consists of N =
21, 287 POIs. We simulate the movement of query users
by using both synthetic and real trajectories: (i) GeoLife,
a real trajectory set of taxi drivers released by Microsoft6;
(ii) Oldenburg, a synthetic trajectory set generated from
Brinkhoff’s generator [27]. Each trajectory set consists of
60 trajectories that have above 10,000 timestamps. We
partition each trajectory set into 10 user groups and then
report the average performance on these user groups.

Measures. We evaluate our performance in three as-
pects: (i) update frequency, which reflects the frequency
for users to issue update messages to the server, and (ii)
average running time, which is the computation time for
safe regions per update. (iii) communication cost (packet
count), measures the number TCP packets for messages

6. www.microsoft.com
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sent between the server and the clients. A packet contains
at most (576− 40)/8 = 67 (double-precision) values since
the typical Maximum Transmission Unit (MTU) over a
network is 576 bytes and a packet has a 40-byte header7.
To represent a shape, we use 3 values per a circle, 3 values
per a square, and 4 values per a rectangle.

Configurations. We study our proposed solutions with
different variations. Circle denotes the Circle-MSR method
in Section 4. Tile denotes the Tile-MSR method in Section 5
using undirected ordering on tiles and lossless compression
in [12]. Tile-D is a variant of Tile using directed ordering
on tiles. Both Tile and Tile-D apply the GT-Verify function
and index pruning technique. Table 2 presents the default
values and ranges of parameters in our experiments.

TABLE 2
Parameter values in experiments

Parameter Default Range
Data size n N 0.25N, 0.5N, 0.75N, 1.0N

User group size m 3 2, 3, 4, 5, 6
User speed V (speed limit) 0.25V, 0.5V, 0.75V, 1.0V
Tile limit α 30 /
Split level L 2 /

Our proposed methods require two extra parameters: (i)
the tile limit α, and (ii) the split limit L. In our preliminary
work [12], we have investigated the performance of our
methods with respect to these parameters. As the default
setting in [12], we set α = 30 and L = 2 as they achieve a
good trade-off between the the running time and the update
frequency.

7.2 Scalability experiments ( for MPN )
In this section, we compare the circle-based safe regions
and the tile-based safe regions.

Effect of user group size m. We vary the group size
m in experiments on both Geolife and Oldenburg (see
Figure 13). The update frequency of Tile is less than half of
Circle. Tile-D reduces the update frequency further, since
it applies the directed ordering and covers more tiles for
future possible locations. Due to the lossless safe-region
compression technique in [12], our methods require only a
few packets per sending a tile-based safe region. Thus, our
methods still incur lower communication cost than Circle,
as shown in Figures 13(c),(d). As expected, the running
time grows with m in Figures 13(e),(f). Circle is efficient to
compute but has a larger update frequency than tile-based
safe regions; our tile-based safe regions are much more
effective in optimizing the update frequency. Among these
methods, Tile-D is the best in terms of update frequency.

Effect of data size n. We vary the data size (i.e., the
number of POIs) in Figure 14. As depicted in both data sets,
the update frequencies of the methods increases because
more POIs become as the candidates for the optimal
points. Besides, Circle has a larger increase than those of
methods based on the tile-based safe regions. Note that the

7. http://tools.ietf.org/html/rfc879
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Fig. 13. Vary group size m

communication costs of the methods are proportional to
their corresponding update frequencies.
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Fig. 14. Vary POI number n, as a fraction of data size
N

Effect of user speed. We proceed to vary the speed
of users in this experiment. Recall that previous exper-
iments use trajectories with 10,000 timestamps traveling
at the speed limit V . To ensure consistent trajectories,
when we generate trajectories for the speed x · V , we
pick the trajectory segments under the first x fraction of
timestamps and then sample 10,000 locations uniformly on
those segments. Figure 15 shows the update frequency and
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the communication cost of the methods with respect to the
speed (x · V ). Intuitively, as users move faster, they escape
their safe regions quickly. Thus, all the methods have a
large update frequency and communication cost at a high
speed.
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Fig. 15. Vary speed, as a fraction of speed limit V

Effect of buffering parameter β. We proceed to study
the effectiveness of the buffering optimization technique
(see Section 5.4). Since Tile-D outperforms Tile, we do not
include Tile in this experiment. Tile-D-β denotes the version
of Tile-D using the buffering optimization, which requires
the parameter β. Figure 16 plots the performance of the
methods as a function of β. The CPU time of Tile-D-β is
lower than that of Tile-D by an order of magnitude. This
is because Tile-D-β avoids multiple accesses on the object
R-tree. Recall that β determines a distance threshold (in
Definition 6) that limits the extent of safe regions. When β
increases, Tile-D-β obtains larger safe regions and thus its
update frequency drops. Furthermore, its update frequency
converges fast to that of Tile-D. We conclude that it is not
hard to tune the parameter β. In general, it is safe to set β
to any value between 10 and 100.

7.3 Scalability experiments ( for Sum-MPN )

This section studies the scalability of our methods for the
Sum-MPN problem.

Effect of user group size m. We vary the group size
m in experiments on both datasets in Figure 17. The
trend is similar to that in corresponding experiments in the
previous subsection. Again, tile-based safe region methods
are effective in optimizing the update frequency and the
communication cost.

Effect of data size n. Next, we vary the data size (i.e.,
the number of POIs) in Figure 18. When n is large, the
data density in the space is high so all the methods have
high update frequency. Nevertheless, the update frequency
and the communication cost of tile-based methods increase
at a slower rate than the circle-based method.
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Fig. 16. Vary buffering parameter β

Effect of buffering parameter β. Figure 19 shows the
performance of Tile-D and Tile-D-β. Again, the trend is
similar to that in corresponding experiments in the previous
subsection. Tile-D-β achieves a much smaller CPU time,
while its update frequency stays close to Tile-D for a wide
range of β values. Thus, it is safe to tune the parameter β
to any value between 10 and 100.

7.4 Summary of experimental results
Circle has the lowest running time, but it incurs higher
update frequency and communication cost (packet count)
than our tile-based methods.

Tile-D achieves the best update frequency and communi-
cation cost. Furthermore, our buffering optimization offers
a substantial saving in the running time while only slightly
increases the update frequency.

8 CONCLUSION

In this paper, we focus on minimizing the communication
cost for monitoring the optimal meeting point for a group of
users. We propose the concept of independent safe region
group, in order to reduce the communication frequency of
users. We design efficient algorithms and various optimiza-
tions to compute these safe regions. Also, we have studied
a problem variant of the optimal meeting point based on
the sum of distances.

In future, we plan to extend our techniques to the road
network space. For Circle, we may replace a circular region
by a range search region over road segments. For Tile,
we may replace recursive tiles by recursive partitions of
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Fig. 17. Vary group size m ( for Sum-MPN )
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Fig. 18. Vary POI number n ( for Sum-MPN ), as a
fraction of data size N

the road network. Also, we will develop a cost model for
estimating the update frequency, the communication cost,
and the running time of our methods.
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Fig. 19. Vary buffering parameter β ( for Sum-MPN )
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