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Abstract. Consider a group of users who would like to meet to a place
in order to participate in an activity together (e.g., meet at a restaurant
to dine). Such meeting point queries have been studied in the context
of spatial databases, where typically the suggested points are the ones
that minimize an aggregate traveling distance. Recently, meeting point
queries have been enriched to take as input, besides the locations of
users, also some preference criteria (e.g., expressed by some keywords).
However, in many applications, a group of users may require a meet-
ing point recommendation without explicitly specifying any preferences.
Motivated by this, we study this scenario of group recommendation for
such passive users. We use topic modeling to infer the preferences of the
group on the different points of interest and combine these preferences
with the aggregate spatial distance of the group members to the can-
didate points for recommendation in a unified search model. Then, we
propose an extension of the R-tree index, called TAR-tree, that indexes
the topic vectors of the places together with their spatial locations, in
order to facilitate efficient group recommendation. We propose and com-
pare three variants of the TAR-tree and a compression technique for the
index, that improves its performance. The proposed techniques are evalu-
ated on real data; the results demonstrate the efficiency and effectiveness
of our methods.

1 Introduction

With the proliferation of smart mobile devices, recommendation services are
becoming location-aware; advertisements and suggestions to users are not gen-
erated only based on the (explicitly expressed or implicitly derived) user pref-
erences, but also based on the user locations. For example, a mobile user who
likes green tea would be recommended a nearby green tea shop (if she wants to
take a break), instead of a more famous one, which is too far.

In this paper, we consider the scenario of providing recommendations to a
group of users who would like to meet and enjoy an activity or event together.
By considering only the locations of the individual users in the group, a meeting
point query can be modeled and solved as an group nearest neighbor search [23],



where the suggested places are the ones that minimize the average or maximum
distance to the users of the group. In addition, spatial skyline queries [27] can be
used to suggest the places which are not dominated by other places in the space
defined by their distances from the users in the group.

Given the fact that the recommended places by spatial-only criteria may
not be consistent with the preferences of the group, recent work has considered
additional, non-spatial search criteria that are explicitly expressed by the group.
For example, the group may provide a set of keywords and require that the
recommended places are textually relevant to the keywords in addition to being
spatially near the group members. In this direction, the textually relevant spatial
skyline was proposed in [28], which includes all objects that are not dominated
by others with respect to their aggregate spatial distance to the group users
and their similarity to a set of given keywords. A similar, location-aware group
preference query was proposed in [17]; the objective is to find a nearby destination
that belongs to a specific category (e.g., a bar), which is also close to places that
satisfy the explicitly given preferences of each user.

In a real scenario of recommending a place to a group of users, the users
could be passive, i.e., they might not express their preferences explicitly. For
example, it might be hard for the group to reach a consensus for the set of
keywords to use in the search, or some users in the group might find it difficult
to express their preferences by keywords or by ranking functions on the features
of the places. Hence, previous work on meeting point recommendation largely
ignores the preferences of silent users. In this paper, we learn these preferences by
analyzing the check-in/reviewing history of users and use them in meeting point
recommendation. It is worth mentioning that, although geographic information
has been considered in previous work on recommending venues to groups of
passive users (e.g., see [20]), recommender systems do not consider the case
where the users of the group are presently at different locations.

Hence, in this paper, we consider the problem of location-aware group rec-
ommendation for passive users (P-LAG for short), assuming that the members
of the group are spatially dispersed and they have to meet in order to enjoy an
activity or event at the recommended place. Although the locations of the users
are known, the preferences of the group should be inferred based on any previ-
ously collected information related to the activities of the users on the candidate
places (e.g., check-in history in a geo-social network such as Foursquare, place
visits derived by analyzing GPS trajectories, posted reviews that indicate place
visits and preferences). For this purpose, we use a topic modeling approach [5],
which represents each user by a topic vector that models his/her preferences to
each topic. A topic is a hidden property of the places; accordingly, the candidate
places are also represented by topic vectors. Thus, for each user and each place
we can model the preference of the user to the place by the similarity between
the corresponding vectors. For the group of users, we compute an aggregate topic
vector and use it to model the preferences of the group.

Our second contribution is an extension of the classic R-tree, called TAR-
tree, to index the topic vectors of the places together with their spatial loca-



tions. We propose three variants of the TAR-tree and a compression technique
for the index, that greatly improves search performance. The effectiveness of the
TAR-tree is largely due to the skew in the topic vectors and the spatial auto-
correlation of the topics, which we analyze experimentally. Finally, we conduct
a comparative study, using two real datasets, which demonstrates the efficiency
and effectiveness of our proposed methods.

The remainder of this paper is organized as follows. Section 2 provides a
formal definition of the top-k location-aware group recommendation problem in
a passive user setting and discusses a naive solution as well as our framework. In
Section 3, we present our approach for extracting the topic vectors of users and
places, in a preprocessing phase. Online query evaluation is studied in Section 4.
Section 5 evaluates the effectiveness and efficiency of the proposed framework.
In Section 6, we discusses related work. Finally, Section 7 concludes the paper.

2 Problem Definition

The P-LAG problem we are focusing on in this paper is to find k venues (i.e.,
places) which are (i) spatially close to the current location of each group user
and (ii) consistent to the preferences of the group. Without loss of generality,
Euclidean distance dist(pi, qj) is used as spatial distance in this work. A formal
definition of the P-LAG query is given below:

Definition 1. (P-LAG query) Consider a set of venues P = {p1, p2, ..., pn},
each with a topic vector pi.ψ. Given a group Q = {q1, q2, .., qm} of users having
an aggregate topic vector Q.ψ, the P-LAG query finds the k venues pi ∈ P which
minimize the distance function Dist(pi, Q) = f(

∑
qj∈Q dist(pi, qj), ω(pi.ψ,Q.ψ)),

where dist(pi, qj) is the spatial distance between pi and the location of user qj,
ω(pi.ψ,Q.ψ) is the similarity between topic vectors pi.ψ and Q.ψ.

Notice that the ranking function Dist(pi, Q) can be any monotonic aggregate
function f(·, ·) which considers both spatial information and user preferences,
such as weighted sum α×

∑
qj∈Q dist(pi, qj) + (1− α)× (1− ω(pi.ψ,Q.ψ)) [30]

and weighted distance
∑
qj∈Q dist(pi, qj)/ω(pi.ψ,Q.ψ) [28]. In this paper, we

use the latter definition, because it is parameter-free and it does not require
normalization. Still, the approaches proposed in this paper are independent of
how f(·, ·) is defined.

To support P-LAG queries, we follow the two-step framework illustrated in
Figure 2. First, the topic vectors of both users and venues (i.e., user preference
vectors and venue topic vectors) are automatically extracted with the help of
a model that uses previous trajectory/check-in information. This is an offline
process executed once based on the available historical data. The process can be
repeated in regular time intervals in order to keep the topic vectors up-to-date.
The second component of our framework addresses online query evaluation. Once
a group of users are formed, the top-k venues for the group are identified and
recommended within milliseconds.
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3 Vector Extraction

3.1 Topic Vector Extraction

Our framework first extracts topic vectors for all users and places. For this
purpose, we apply Latent Dirichlet Allocation (LDA) [5] on the history of user
visits to places, which can be obtained by past check-in or trajectory records.
Hence, the raw input data is a collection of 〈u, l, t〉 records, where u represents
a user, l is a location (i.e., place) visited by u, and t is the time of the visit.

For each user u ∈ U , we synthesize a document Du by aggregating all records
of u, and regard each location l ∈ L visited by u, as a word in Du. Hence, for
each user u, we have a document Du = {u, Lu}, where Lu includes the identifiers
of all places visited by u. Overall, we obtain a collection D of documents Du,
one for each u ∈ U .

Figure 2 shows the graphical representation of the Location-LDA model we
have designed, which uses two distributions: a user-topic distribution θ and a
topic-location distribution φ. The topic-location distribution represents the topic
vector for each location, e.g., φl for location l. The user-topic distribution rep-
resents the topic vector for each user, e.g., θu for user u. The latent topics Z
are extracted based on the check-in preferences of users (i.e., they are not re-
lated to the spatial features of the places). α, β are prior parameters for the two
distributions; we use α = 50/K and β = 0.01, where K is the number of topics.

3.2 Topic Vector Analysis

In this section, we conduct two spatial analysis studies on the extracted topic
vectors that lead us to important observations. The first study shows the corre-
lation between the geographical distance and topic similarity of two locations.
The second one shows that different topics have different spatial distributions.
We use the topic vectors extracted from Yelp-USA, which is a subset of the Yelp
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Fig. 2. Graphical representation of our Location-LDA model

Dataset Challenge dataset1. The vectors have a dimensionality K = 20, which
is the default value in our experiments (see Section 5).

Correlation between Spatial Distance and Topic Proximity. Intuitively,
locations that are geographically close to each other should have overlapping top-
ics with high probability. To confirm this, we sampled 2000×2000 locations pairs
from the check-in data of Yelp-USA. For each pair of locations (places) (pi, pj),
we compute their distance dist(pi, pj) in the Euclidean space and the similarity
between their topic vectors w(pi.ψ, pj .ψ). The topic similarity is computed as
the dot product of the vectors.

We divided the location pairs into several groups based on their geographic
distances and calculated the average topic similarity for each group. As shown
in Figure 3, topic similarity is positively correlated to spatial proximity. The
size of each point in the plot represents the number of location pairs that fall
in the corresponding distance range. Note that location pairs that are within 1
kilometer to each other are significantly more related than others.
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Fig. 3. Correlation between spatial distance and topic proximity

1 http://www.yelp.com/dataset challenge



Geographical Topic Heatmap. By visualization analysis, we observed that
the spatial distributions of different topics differ significantly. In other words,
different topics form different spatial clusters even in a map of relatively small
scale. For example, in Figure 4, we use heatmaps to visualize the spatial distri-
bution of different topics in locations of Charlotte. Each place is colored based
on its value of topic 0 (Figure 4(a)) and topic 3 (Figure 4(b)). Observe that
different topics cover different spatial regions and different spatial regions have
relevance to a given topic.

(a) Topic 0 (b) Topic 3

Fig. 4. Topic value heatmap in Charlotte

4 Indexing and Search for P-LAG

Deriving topic vectors for venues and users as described in Section 3 allows us to
search for the best places to recommend to a given group of users, based on spa-
tial distance and topic similarity (see Definition 1). Specifically, for a group Q =
{q1, q2, .., qm} of spatially dispersed users, we should compute the k places pi ∈ P
that minimize the objective functionDist(pi, Q) =

∑
qj∈Q dist(pi, qj)/ω(pi.ψ,Q.ψ).

A naive algorithm (NA) traverses all venues pi ∈ P one by one, computes
the objective function for each of them, and maintains the set of k venues with
smallest Dist(pi, Q). This approach is generally expensive because it computes
Dist(pi, Q) exhaustively for each place pi. In addition, the topic vector simi-
larity component of Dist(pi, Q) is more expensive to compute compared to the
spatial distance component. Therefore, a natural approach for P-LAG queries
is to access the candidate venues for recommendation in a spatial order, while
deriving bounds for the k-th distance; this enables us to stop search early by
avoiding examining the places whose spatial distances are too large.

4.1 Basic R-tree Approach

An intuitive approach for supporting P-LAG queries efficiently is to spatially
index all venues pi ∈ P , e.g., by an R-tree [4, 11]. With the help of the R-tree,



we can derive a lower bound for the group spatial distance
∑
qj∈Q dist(e, qj) to

each entry e in the R-tree (see [23]). However, we can access the topic vector of
each place, only after accessing the place at leaf level of the tree, which gives us
no information about the vector similarity between the places under an R-tree
entry e and Q.ψ during search. This makes it hard to prune sets of candidate
places at the non-leaf levels of the R-tree. A basic approach for alleviating this
problem is to compute and use the maximum value of ω(pi.ψ,Q.ψ),∀pi ∈ P , i.e.
ω(p∗.ψ,Q.ψ), where p∗.ψ is a vector having the maximum values of each dimen-
sion in the topic space. It is easy to prove ω(p∗.ψ,Q.ψ) as a upper bound of all
ω(pi.ψ,Q.ψ), pi ∈ P since ω(pi.ψ,Q.ψ) =

∑
j pi.ψj ·Q.ψj ≤

∑
j p
∗.ψj ·Q.ψj =

ω(p∗.ψ,Q.ψ). Therefore, ω(p∗.ψ,Q.ψ) is also a upper bound and Dist(e,Q) =∑
qj∈Q dist(e, qj)/ω(p∗.ψ,Q.ψ) can be utilized as a lower bound to prune non-

qualifying R-tree nodes.
Algorithm 1 illustrates our algorithmic framework for P-LAG queries. Line

17 computes and uses a lower distance bound of each R-tree entry. This bound
for the basic R-tree approach (i.e.,

∑
qj∈Q dist(e, qj)/ω(p∗.ψ,Q.ψ)) is too loose,

motivating us to study additional ways for tightening the bound and speeding
up P-LAG search.

Algorithm 1 P-LAG Algorithmic Framework
1: procedure RTree Approach(P,Q, k)
2: MinHeap H ← ∅ . nodes to visit
3: R← ∅ . top-k result set
4: kDist← Inf . k-th Dist(pi, Q) in R
5: Add root of RTree to H
6: while H is not empty do
7: e← deHeap(H)
8: if e.dist > kDist then
9: return R
10: N ← readNode(e)
11: if e is an leaf node then
12: for each object p′ in N do

13: p′.dist←
∑
qj∈Q dist(p′,qj)

ω(p′.ψ,Q.ψ)

14: Update R and kDist with p′

15: else
16: for each entry e′ in N do
17: e′.dist← lower bound of Dist(e′, Q)
18: if e′.dist < kDist then
19: Add e′ to H
20: return R

4.2 TAR-tree Approach: Topic-aware R-tree

Our approach for improving our framework is to embed vector information into
the R-tree, making it a TAR-tree (i.e. Topic-aware R-tree), which helps deriving
tighter bounds for pruning the search space effectively.
B-TAR-tree: Ball Bounding. One way of doing so is to borrow the idea
behind the Ball-tree [21], and use ball bounding to group multi-dimensional



topic vectors pi.ψ, such that pi ∈ P . For each entry e in the R-tree, we need
to find the bounding ball with the minimum radius that contains all places in
the subtree pointed by e. The minimum balls are computed in a bottom up
fashion similar to the ball tree, but following the original structure of the R-tree.
Following the proof in [25], it is easy to get an upper bound for vector similarity
for each entry e in the B-TAR-tree, as ω(e.ψ,Q.ψ) ≤ ω(e.µ,Q.ψ) + e.λ · ‖q‖,
where e.µ is the center of minimum ball and e.λ is the radius of the minimum
ball of entry e. Therefore, we can derive a bound for Dist(e,Q) as Dist(e,Q) =∑
qj∈Q dist(e, qj)/ω(e.ψ,Q.ψ) ≥

∑
qj∈Q dist(e, qj)/(ω(e.µ,Q.ψ)+e.λ ·‖q‖) to be

used in line 17 of Algorithm 1. However, the ball bounding approach has the side
effect of storing extra information at the non-leaf levels of TAR-tree: a vector e.µ
as well as a number e.λ. Hence, each non-leaf node has a much smaller fanout
compared to the original R-tree and the tree’s height becomes larger.
N-TAR-tree: Norm Bounding. As an alternative of the ball bounding tech-
nique, which requires the storage of one extra vector for each MBR, we sug-
gest a second approach (norm bounding), which only needs to store one num-
ber per MBR. Specifically, for each non-leaf entry e in the R-tree pointing to
a node S with entries {s1, s2, ..., sf}, it is easy to show that ω(si.ψ,Q.ψ) =
‖si.ψ‖·‖Q.ψ‖· cos(si.ψ,Q.ψ) ≤ ‖si.ψ‖·‖Q.ψ‖,∀si ∈ S. Let e.φ be the maxi-
mum ‖si.ψ‖,∀si ∈ S. We can get a tighter bound for ω(e.ψ,Q.ψ) compared
to ω(p∗.ψ,Q.ψ) of the basic R-tree approach, since ω(e.ψ,Q.ψ) ≤ e.φ · ‖Q.ψ‖,
where e.φ is the maximum norm value of entries si ∈ S (i.e, a single number).
R-TAR-tree: Rectangle Bounding. The third proposed TAR-tree variant
uses rectangle bounding. For each entry e in a R-tree node, we store a vector
e.ψ, which stores for each topic dimension the maximum value of that dimension
in the subtree pointed by e. Then, we have ω(e.ψ,Q.ψ) ≥ ω(si.ψ,Q.ψ),∀si ∈ S,
where S = {s1, s2, ..., sf} is the set of entries in the node pointed to by e.

As an illustration, in Figure 5, M1 and M2 are two entries of a TAR-tree,
each pointing to a leaf node containing a triple of venues; each venue v1 to v6 has
a topic distribution vector (shown next to each vi), whereas the corresponding
vector of each Mi has the maximum of values for each topic of the entries in Mi.
By using the minimum spatial distances of the user locations to each Mi and
the vector of Mi, we can derive bounds for the spatial distances and the vector
similarities of each venue in Mi. These bounds can be used to prune Mi, if it is
worse than the k-th venue found so far.

4.3 Vector Compression in the TAR-tree

All three TAR-tree variants we have discussed extend the R-tree to store extra
topic information into its entries. However, the potential benefit of getting tighter
bounds can be outweighed by the side effect of higher storage requirements,
leading to a slower method. In view of this, we propose a compression technique
that exploits the skew and the spatial autocorrelation of topic vectors.

To demonstrate the skew of topic vectors in practice, we first conduct an
experiment on the Foursquare [10] dataset we used in our experiments. For
20-dimensional topic vectors, Figure 6(a) shows the average distribution of their
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Fig. 5. Example of TAR-tree

values after ranking them from larger to smaller. Note that the largest 2-3 scalars
are significantly larger than the remaining ones. We repeat this experiment, this
time for the non-leaf entries of the above-leaf level of the TAR-tree (Figure 6(b)).
The skew at the vectors of the non-leaf entries indicates that the vectors in the
same leaf node are correlated. This is due to the spatial autocorrelation of the
topics (see our analysis in Section 3.2).
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Fig. 6. Skewness of topic vectors stored in the TAR-tree

Recall that, in the R-TAR-tree, we store a vector e.ψ for each entry e in
an R-tree node, whose value at each dimension is the maximum of the corre-
sponding dimensions in all its children entries. Then, we use ω(e.ψ,Q.ψ) as the
largest approximate vector topic value of all its children nodes. To reduce the
storage cost for these vectors, which is linear to their dimensionality, we pro-
pose a compression technique. Take e.ψ = (v0, v1, ..., v19) whose vector size is 20
as a example (shown in Figure 7). After rearranging the scalars in decreasing
value, we get a list vt0 , vt1 , ..., vt19 , where vti is the value of dimension ti in the
original e.ψ vector and vti ≥ vti+1

for each i ∈ [0, 18]. Instead of storing the
entire 20-dimensional vector e.ψ, we can reduce the storage size by only storing
the top-m (m is called compression factor) largest values in it together with



their indexes ti and the (m + 1)-th largest value. This way, the storage cost of
each topic vector can be reduced to 2m + 1. With the compressed vector, we
have a looser upper bound for vector similarity as w(e.ψ,Q.ψ) =

∑
j vj ·Q.ψj =∑m−1

j=0 vtj ·Q.ψtj +
∑|e.ψ|−1
j=m vtj ·Q.ψtj ≤

∑m−1
j=0 vtj ·Q.ψtj +

∑|e.ψ|−1
j=m vtm ·Q.ψtj ,

where vtm denotes the (m+ 1)-th largest value.

5.29 37.7 8.18 3.77 2.79 18.3 5.84 6.74 217.9 4.9 5.66 4.44 2.16 4.06 12 3.31 9.62 4.25 1.4 4.67 xE-05

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

217.9 8 37.7 1 18.3 5 12 14 9.62 xE-05

�1

Fig. 7. Example of compression

This vector compression technique is used only at the non-leaf entries of the
tree. We denote this approach by R-TAR-tree+. However, non-leaf nodes are
significantly fewer than leaf-nodes, hence the space saved by the compression
is limited. Therefore, we consider also applying this compression to place topic
vectors at the leaves of the tree. Note that after this change the tree only indexes
the vectors approximately. We denote this approach by R-TAR-tree-C. Since
topic vector extraction is an approximation technique by nature, we do not
expect much loss of accuracy in practice.

5 Experimental Evaluation

We evaluate the performance of all approaches proposed in this paper, namely
the basic R-tree approach (Section 4.1), the three variants of TAR-tree approach
(Section 4.2), and the two compression approaches (Section 4.3). All tested meth-
ods were implemented in Java and the experiments were conducted on an In-
tel(R) Core(TM) i5-3570 CPU @ 3.40GHz machine, with 16GB of RAM.

5.1 Datasets

We used two real datasets, Foursquare [10] and Yelp-USA2, in our evaluation.
Foursquare is a popular geo-social network with more than 50 million users and
10 billion check-ins3. Yelp-USA is a subset of the dataset used in the Yelp Dataset
Challenge, containing all USA located records. The details of the datasets are
shown in Table 1. In the topic vector extraction phase, for each dataset, we
mark 80% of the data as the training set and use the remaining data to test

2 http://www.yelp.com/dataset challenge
3 https://foursquare.com/about/



the accuracy of our Location-LDA model. To generate the user groups for the
queries, we sample users by bounding the average distance to each other; we use
the real learnt topic vectors for the users.

Table 1. Statistics of the datasets

Dataset Yelp-USA Foursquare

# of records 1,525,924 2,290,997
# of users 432,536 11,326
# of venues 38,694 187,218

5.2 Efficiency Analysis

We evaluate the performance of different methods under various parameter set-
tings, i.e. varying the result set size k, the topic vector dimensionality K, the
group size, the average distance between the users in the group measured in
degrees of latitude and longitude, and the compression factor m. The details of
the parameters are listed in Table 2.

Table 2. Parameters (default values in bold)

Parameter Value

k 5, 10, 20, 50, 100
dimensionality of topic vectors (K) 5, 10, 20, 50, 100

group size 3, 5, 10, 15, 20
user maximum distance 0.05, 0.1 0.2, 0.5, 1

compression parameter (m) 1, 2, 4, 6, 8

Effect of k. To study the effect of the result set size k, we fix the other param-
eters to their default values, and vary k from 5 to 100. As shown in Figure 8,
the cost increases with k, which is consistent with our expectation. We observe
that the basic R-tree method is much faster compared to the naive sequential
scan approach and the TAR-tree methods further reduce the query time and
I/O. Different TAR-tree methods do not have big differences and generally R-
TAR-tree+ performs best among all exact methods. R-TAR-tree-C improves the
efficiency of R-TAR-tree+ up to 2 times; as we will see in Section 5.3 its accuracy
is very high.

Effect of vector dimensionality. The second parameter of which the effect we
investigate is the vector dimensionality. As shown in Figure 9, on both datasets,
the average query time increases as the dimensionality increases. The I/O cost
shows a similar trend (we omit the plots due to space constraints). At the same
time, we observed (in experiments not shown here) that the topic extraction
quality does not improve much when we increase the dimensionality to above
20. Therefore, 20 is a good enough value in terms of quality.
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Effect of group size. The third parameter that we study is the group size
|Q|; in general, the groups can be formed by any number of users. Observe from
Figure 10 that the query time decreases when the group size increases. The
reason is that the increase in the group size increases the importance of the
spatial distance component, which helps to prune the search space faster.

Effect of user maximum distance. The fourth parameter is the maximum
distance between the users in the group, which we vary from 0.05 to 1 degrees
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of latitude and longitude and sample instances randomly so that their distances
satisfy this bound. Similar to the effect of the group size, the query time and
I/O increases when distance increases as shown in Figure 11.
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Fig. 11. Comparison when varying group average distance

Effect of compression size. The compression techniques used in R-TAR-tree+
and R-TAR-tree-C are different in nature. For R-TAR-tree+, only vectors in
non-leaf nodes of the tree are compressed, rendering it an exact method, while
R-TAR-tree-C is an approximate method since it compresses all vectors. The
compression factor m therefore plays different role in them as shown in Figure
12: the query time of R-TAR-tree-C increases with compression size, while the
query time of R-TAR-tree+ first decreases and then increases. When m is too
small, the approximate vectors in non-leaf nodes are too loose to be useful,
resulting in higher I/O cost. However, when m increases, the approximation
becomes better, which brings the final kinked pattern.
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Fig. 12. Comparison when varying the compression parameter m

5.3 Effectiveness

In this section, we study the performance of R-TAR-tree-C since it is an approx-
imate method. We use Precision@k = |Ek ∩ Rk|/k for measuring the accuracy
of the result Rk computed by R-TAR-tree-C compared to the exact top-k result
Ek. Table 3 shows that when the compression factor m equals 4, the result set
is nearly same as that of exact search for topic vector dimensionality of 20.

Table 3. Precision@k when varying the compression parameter m

Dataset Foursquare Yelp
Precision@k 1 2 4 6 8 1 2 4 6 8

1 0.110 0.290 1.0 1.0 1.0 0.0 0.010 0.990 1.0 1.0
5 0.322 0.612 1.0 1.0 1.0 0.018 0.070 0.998 1.0 1.0
10 0.563 0.781 1.0 1.0 1.0 0.123 0.270 0.999 1.0 1.0
20 0.841 0.937 1.0 1.0 1.0 0.494 0.653 1.0 1.0 1.0

5.4 Storage Requirements

Although the TAR-tree method is more efficient than the basic R-tree, it needs
more storage. Table 4 shows the space occupied by the TAR-tree versions and
the R-tree for different vector dimensionality. R-TAR-tree has higher storage
size compared to R-tree, but R-TAR-tree+ reduces the cost a little using com-
pression. The differences are not big because the R-tree also stores the topic
vectors of places in the leaf nodes to avoid random accesses for fetching them.
Finally, R-TAR-tree-C compresses all vectors and therefore has the least storage
requirement among all methods.

6 Related Work

Group Recommendation Recommender systems [1] have been successfully
deployed in a wide range of applications, such as inferring the preferences of



Table 4. Storage size when varying vector dimension

Dataset Foursquare Yelp

Vector Dimensionality 5 10 20 50 100 5 10 20 50 100

R-tree 47.0M 70.2M 118.6M 263.1M 492.5M 9.8M 14.6M 24.5M 54.3M 101.6M

R-TAR-tree 47.4M 71.4M 122.3M 284.0M 578.0M 10.0M 14.9M 25.5M 59.0M 119.5M

R-TAR-tree+ 47.2M 70.2M 119.7M 269.1M 514.9M 9.8M 14.7M 24.6M 55.1M 106.3M

R-TAR-tree-C 35.4M 42.6M 56.5M 100.2M 182.1M 7.4M 8.9M 11.8M 20.8M 37.7M

a given user on a set of items (e.g., products, services, events, venues) and
recommending the items with the highest probability to be liked by the user.
Group recommendation is also supported, with the input of a set of users, rec-
ommending the items that are most likely to be favored by the input group.
Early approaches [15, 22], for each item, combine the predicted ratings of all
group members to derive a single representative rating for the group and then
suggest to the group the items with the highest representative ratings. In [3] the
agreement between group members is also considered. More recently [16], the
social relationships between members are used to enhance the quality of group
recommendations. Topic-based group recommendation models [18, 35] estimate
the impact (i.e., influence) that every user in the group has on the other group
members for different topics (i.e., aspects) of the objects to be recommended.
For the case where the recommended items are venues, the spatial preferences of
the group have to be considered. In [35], the distances between candidate venues
and those visited in the past by the users of the group are used as a factor in the
group recommendation model. To our knowledge, no previous work considers
the current locations of users in the target group.
Group Spatial Search Nearest neighbor (NN) search [26] is one of the most
common spatial queries, well studied in both Euclidean [12] and spatial network
spaces [24]. Given a query location q and a collection P of spatial points of
interest, NN query retrieves the nearest spatial object in P to q (or the k nearest
ones in kNN search). NN queries, were extended to aggregate NN (ANN) queries
in [23]. An ANN query takes as input a group Q = {q1, q2, ..., qm} of m query
locations (e.g., representing different users who want to dine together). The
objective is to find the object p in P that minimizes an aggregation of the
distances from each qi ∈ Q to p (e.g.,

∑
qi∈Q dist(qi, p) or maxqi∈Q dist(qi, p).

The distance function can be Euclidean distance [23] or spatial network distance
[34]. Papadias et al. [23] propose an algorithm for ANN queries, which applies
on the original Euclidean space and assumes that P is indexed by an R*-tree.
Yiu et al. [34] present algorithms which adapt the top-k retrieval methods of
Fagin et al. [9] to compute ANN queries in spatial networks.

Later, the spatial skyline query (SSQ) [27] has been proposed as an alterna-
tive of ANN search, which utilizes the concept of skyline query [6]. Similar to
ANN search, the input is a set P of points of interest and a set Q of m query
locations, representing the locations of a group of users who want to meet. A
point pi ∈ P is said to spatially dominate another point pj ∈ P if for each q ∈ Q,
dist(q, pi) ≤ dist(q, pj). Intuitively, in this case, pi would be a better point to



meet compared to pj in the eyes of every user in the group. SSQ reports as
the spatial skyline the largest subset of P which contains only points that are
not spatially dominated by others in P . Voronoi Diagrams are precomputed and
indexed to facilitate the efficient computation of spatial skylines in [27, 29]. [8]
extended the techniques of [27] to apply on a road network, where Euclidean
distance is replaced by shortest path distance. Later, [36] proposed a novel in-
dex and a filter-and-refine approach for this problem. Dynamic skyline queries
in general metric spaces have been investigated in [7]. However, both ANN or
SSQ do not consider the explicit or implicit preferences of the users.
Preference-based Meeting Point Search [28] extends SSQ to a Spatio-
Textual Skyline (STS) query, which allows users to find places that are both close
to the locations of the group users and relevant to a set of user-defined keywords.
Three different models for integrating textual relevance into spatial skylines are
proposed. Among them, model STD (Spatio-Textual Dominance), which replaces
the spatial distance measure of the derived dimensions by a combined spatio-
textual distance, is experimentally shown to be the best one. Another recent
work [17] proposed a Location-aware Group Preference (LGP) query, which sug-
gests a place labeled with a specified category feature (e.g., hotel) to a group of
users. Each user in the group has a location and a set of additional preferences.
The query result should belong to the specified category and should be near
the current location of the users and close to places satisfying the additional
preferences of users. In this project, we assume that the group members are spa-
tially dispersed and study methods for venue recommendation that consider (i)
the traveling cost of the group members to the suggested venues based on their
locations and (ii) the implicit preferences of users for the venues.
Spatial Topic Modeling Spatial topic models have been extensively studied
in the past decade. Yin et al. [33] proposed a model based on Probabilistic La-
tent Semantic Indexing (PLSI), after observing that geographical distributions
can help model topics while topics group different geographical regions. Hong
et al. [13] proposed a sparse generative model to uncover geographical topic
patterns on Twitter. Liu et al. [19] proposed the spatio-temporal topic model
to capture microscopic and macroscopic patterns of check-ins. Ahmed et al. [2]
presented a hierarchical topic model which captures regional variations of topics.
Spatial topic models are typically used for location recommendation [14,31,32].
For example, Yin et al. [31] proposed a system (LCARS) that exploits both local
preferences and item content information for spatial item recommendation. Since
our main focus is to model the implicit user preferences with spatial topic mod-
eling, we adapted the most commonly used Latent Dirichlet Allocation (LDA)
model [5] for simplicity.

7 Conclusion

This paper is the first study on location-aware group recommendation queries for
passive users (P-LAG problem), which builds on previous work on meeting point
recommendation. We follow a two-step framework: offline topic vector extraction



and online querying based on appropriate indexing. Three variants of a TAR-tree
approach are proposed, as well as a vector compression technique that improves
search performance and reduces the storage requirements. In the future, we
plan to test alternative approaches for preference extraction or elicitation and
apply our framework with alternative definitions of spatial distance (e.g., travel
distance on spatial networks).
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