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ABSTRACT
Top-k joins have been extensively studied in relational databases as
ranking operations when every object has, among others, at least
one ranking attribute. However, the focus has mostly been the case
when the join attributes are of primitive data types (e.g., numerical
values) and the join predicate is equality. In this work, we consider
string objects assigned such ranking attributes or simply scores.
Given two collection of string objects and a string similarity mea-
sure (e.g., the Edit distance), we introduce the top-k string similarity
join (k-SSJoin) which returns the k sufficiently similar pairs of ob-
jects with respect to a similarity threshold ϵ , which have the highest
combined score computed by a monotone aggregate functionγ (e.g.,
SUM). Such a join operation finds application in data integration,
data cleaning and de-duplication scenarios, and in emerging sci-
entific fields such as bioinformatics. We investigate how existing
top-k join methods can be adapted and optimized for k-SSJoin tak-
ing into account the semantics and the special characteristics of
string similarity joins. We present techniques to avoid computing
the entire string join and indexing that enables pruning candidates
with respect to both the string join and the ranking component of
the query. Our extensive experimental analysis demonstrates the
efficiency of our methodology for k-SSJoin, comparing solutions
that either prioritize the ranking/join component or are able to
handle both components of the query at the same time.
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1 INTRODUCTION
Consider two collections of objects R and S , each having (at least)
one scoring attribute score and a join attribute att. Given a join
predicate ϕ (e.g., equality =) on attribute att of two objects and a
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monotone aggregation function γ (e.g., SUM) on score, a top-k join
retrieves a k-subset J ⊆ R×S such that for each object pair (r , s) ∈ J ,
ϕ(r , s) is satisfied and for all (r ′, s ′) ∈ R × S ∖ J satisfying ϕ(r ′, s ′),
γ (r , s) ≥ γ (r ′, s ′) holds. As an example, assume a retail company
needs to identify the top-10 sales that maximize the associated
profit of the company; the profit is defined as the amount paid
by a customer plus the discount offered by a supplier. With the
Customers and Suppliers relations maintained by the company’s
sales database, we can write the following SQL top-k join query to
retrieve the top-10 sales:

SELECT *
FROM Customers C, Suppliers S
WHERE C.productID = S.productID
ORDER BY (C.price + S.discount) DESC
LIMIT 10;

In the above query, productID acts as the join attribute att, the
join predicate ϕ is equality, and price, discount are the scoring
attributes for input relations C , S , respectively.

Top-k joins have been widely studied by the data management
community as ranking operations [4, 16, 17, 25, 27, 32, 38]. The
focus, however, has been mainly on relational data objects with
join attributes of primitive data types such as numerical values, and
for an equality join predicate. To our knowledge, only [14, 19, 20]
consider the semantics and the efficient evaluation of top-k joins
on complex (non-relational) attributes. In [19, 20], every object o
has a location in space and a score; the top-k spatial distance join
considers the distance of the object locations as join predicate ϕ.
In [14], each object o (e.g., a biological cell) is assigned a set of
probabilistic locations and a confidence po (e.g., for belonging to
a specific cell class). The top-k join in this context considers the
distance between the uncertain locations of the objects as predicate
ϕ, while the aggregate function γ is defined based on the confidence
probability of the objects.

In this work, we study the top-k join operation for string objects.
We introduce the top-k String Similarity Join (k-SSJoin), where the
join predicate ϕ qualifies object pairs (r , s) of sufficiently similar
string attributes att, with respect to a string distance measure
dist(·, ·) (e.g., the Edit distance) and a user-defined distance thresh-
old ϵ , i.e., object pairs for which dist(r , s) ≤ ϵ holds. The k-SSJoin
operation finds application in tasks such as data integration where
object ratings from different sources are combined, or data cleaning
and de-duplication, and in emerging scientific fields such as bioin-
formatics where strings are used to model biological data such as
DNA sequences, and string joins can identify similar sequences.

Motivation examples. Consider the scenario of data integration.
A person looking for a good restaurant uses a meta-search engine
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id restaurant name rating
r1 La Bella Napoli 5
r2 New York Pancakes 3
r3 Luigi’s Pizza 3
r4 x-treme Burgers 1

id restaurant name rating
s1 La Bella Napoli 5
s2 Louigi’s Pizza 4
s3 Extreme Burgers 3
s4 New York’s Pancakes 1

Figure 1: Motivation example in data integration.

that ranks available options by combining ratings from different
websites. To this end, a string similarity join can be used to handle
potential typographic errors or abbreviations in restaurant names.
In addition, users are more often interested in the objects with the
highest combined ratings; in fact, [10] showed that users tend to
iterate over only the first one or two pages of (web) search results.
Therefore, a k-SSJoin operation is more useful than computing
the entire string similarity join of the sources. Figure 1 illustrates
the restaurant collections R, S from two different websites which
may store the same object under a slightly different name, e.g., r3
with “Luigi’s Pizza ” and s2 with “Louigi’s Pizza”. Assuming that
qualifying pairs should have an Edit distance of at most ϵ = 2
and aggregate function γ = AVG, the 2-SSJoin query returns pairs
(r1, s1) with aggregate score 5 and (r3, s4) with aggregate score 3.5.
Hence, the recommendation is restaurants “La Bella Napoli” and
“Luigi’s Pizza”, despite the fact the latter is misspelled as “Louigi’s
Pizza” in the second website.

As another example, consider the emerging field of bioinformat-
ics. In genome sequence assembly, the first step is to find all pairs of
similar reads (modeled as strings) under the Edit distance measure.
The third generation sequencing technology such as single mole-
cule real time sequencing (SMRT) [24] generates reads with 12-18%
sequencing errors; hence, a threshold-based similarity join is em-
ployed. At the same time, reads can also carry quality ratings based
on the sequencing scores of their bases. Under this, a top-k join
result is more useful than the complete string similarity join result
in data exploration scenarios where different similarity thresholds
and score aggregation need to be tested.

Contributions. In this work, we address the efficient computation
of the k-SSJoin operation. Contrary to relational top-k joins [7],
in non-relational top-k joins, such as top-k spatial joins [20], the
computational cost dominates the cost of accessing the objects.
Hence, we investigate the applicability of top-k join algorithms on
complex join attributes [19, 20], for the case where the join attribute
is of string data type. First, we redesign their core functions under
the semantics and the challenges of the string similarity join. For
this purpose, we built on the state-of-the-art string similarity join
algorithm, Pass-Join from [13]. Note however that the objective of
Pass-Join is to compute the complete string similarity join result set,
while in k-SSJoin our goal is to report only the k objects pairs that
qualify the join predicate and have the highest aggregate score. To
this end, we also employ optimizations to early terminate the string
similarity join computation when enough object pairs to answer

the k-SSJoin query are already determined. Last, we present the
aggregate inverted index which indexes both the join and the score
attribute of the input objects and therefore allows for pruning in
both dimensions of the data when answering k-SSJoin queries.

Outline. The rest of the paper is organized as follows. Section 2
provides a background on existing algorithms for the top-k join com-
putation. Then, Section 3 presents our methodology for k-SSJoin.
Section 4 reports our experimental analysis on the efficient evalua-
tion of k-SSJoin queries. Last, Section 5 reviews related work and
Section 6 concludes the paper.

2 BACKGROUND ON TOP-k JOINS
Similar to other top-k join operations, i.e.., based on relational
equijoins [7, 8, 27] or spatial distance joins [19, 20], a k-SSJoin
query combines a join with a top-k query. In particular, it returns
pairs of objects with (i) similar string information and (ii) a high
aggregate score with respect to a monotone aggregate function γ .
Under this, we review top-k join evaluation methods proposed in
the existing literature. The first two prioritize either of the two top-k
join sub-queries/components; in brief, SFA primarily considers the
scoring attributes of the objects and the ranking component of the
query, while DFA prioritizes the join component. The third method,
called BA [19, 20] acts as a hybrid which considers both components
at the same time and therefore, alleviates the shortcomings of SFA
and DFA. We discuss the algorithms as general frameworks that
can work with any type of join attributes and predicates.

2.1 The Score-First Algorithm
The Score-First Algorithm (SFA) generalizes the binary HRJN∗ [7] /
PBRJ∗c [27] method. The idea is to progressively access input collec-
tions R and S in order of their score attribute, and incrementally
produce results. SFA joins the currently accessed object, e.g., from
R, on their join attribute with the buffered (i.e., already accessed)
objects from S , which are indexed by a dedicated data structure
IS . In [7] and the relational top-k equijoins, a hash-table was used
for this purpose while in [19, 20] and the top-k spatial distance
joins, an aR-tree [18]. Join results are organized in a priority queue
based on their aggregate score. Let ℓR ,hR (ℓS ,hS ) be the lowest
and highest scores seen in collection R (S) so far; all join results
currently in the queue with aggregate score higher than threshold
T = max{γ (hR , ℓS ),γ (ℓR ,hS )} are guaranteed to have higher aggre-
gate score than every future join result and thus can incrementally
be output as top-k join results.

Algorithm 1 illustrates the pseudo-code of SFA which takes as
input two object collections R and S , the predicate ϕ on their join
attributes att, the monotone aggregate function γ on their scoring
attributes score, and the number of requested results k . First, in
Lines 1–2, the algorithm sorts (if needed) 1 inputs R, S and initializes
indices IR , IS , min-heap C , bound θ and the lowest seen scores
ℓR , ℓS . Next, in Lines 3–12, SFA incrementally accesses objects
from collection R or S and evaluates the top-k join query. At each
iteration, SFA first decides which collection should be accessed and
consequently, which object will be examined. Following the pulling

1Input collections R and S need not to be sorted on their scoring attribute for example,
if they stem from previous query operators which produce such interesting orders.
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ALGORITHM 1: Score-First Algorithm (SFA)
Input :object collections R, S , join predicate ϕ,

monotone aggregate function γ , number of
results k

Output : result set C
Variables : indices IR , IS , bound θ , termination thresholdT ,

the lowest seen scores ℓR , ℓS
1 initialize C ← ∅, θ ← −∞, IR ← ∅, IS ← ∅, ℓR ←∞,
ℓS ←∞;

2 sort R, S in descending order of attribute score; ▷ If not

already sorted

3 while more objects exist in R and S do
4 i ← S , if ℓS > ℓR ; otherwise R ; ▷ Current input

5 j ← R, if ℓS > ℓR ; otherwise S ;
6 oi ← GetNextObject(i); ▷ Next object from

current input

7 ℓi ← oi .score; ▷ Update the lowest seen score

from current input

8 T ← max{γ (hR , ℓS ),γ (ℓR ,hS )} ; ▷ HRJN∗

termination threshold

9 ⟨θ ,C⟩ ← Probe(oi ,Ij ,T ,ϕ,γ ,k,θ ,C);
10 if T ≤ θ then ▷ Result secured
11 break;

12 insert oi to Ii ; ▷ Update index

13 return C;

strategy of HRJN∗, SFA reads the next object from the collection
with the higher last seen score, i.e., the higher between ℓR and ℓS .

With current object, e.g., r from input R (the case of s from S
is symmetric), SFA first updates termination threshold T = max
{γ (hR , ℓS ), γ (ℓR ,hS )} according to HRJN∗ in Line 8; hR and hS are
the highest seen scores from R and S , respectively, i.e., they equal
the score of the very first object in each collection. Then, it probes
object r against the IS index to retrieve objects s ∈ S , such that pair
(r , s) qualifies predicate ϕ, and γ (r , s) > θ holds. To this end, SFA
invokes the Probe procedure in Line 9. Procedure Probe employs
IS to identify every qualifying (r , s) pair and then updates C , θ
as follows. If |C | < k , pair (r , s) is inserted into candidates set C
regardless of its aggregate score. Otherwise, (r , s) is inserted into
C only if γ (r , s) > θ and in this case, it replaces the k-th pair in C ,
such that setC always keeps the best k pairs found so far. Finally, θ
is updated to the k-th aggregate score in C . The next step is to the
check the termination condition in Line 10. Specifically, as soon as
T ≤ θ , SFA terminates reporting C as the final result. Finally, SFA
updates the IR index on collection R inserting object r (Line 12) to
be probed by objects of S in future iterations.

2.2 The Distance-First Algorithm
Due to prioritizing the join sub-query/component of top-k join, the
Distance-First Algorithm (DFA) first joins the input collections R and
S to produce all object pairs that qualify the predicate ϕ, and then
identifies the k pairs among them with the highest aggregate score.
Algorithm 2 illustrates the pseudo code of DFA. Different from SFA,

ALGORITHM 2: Distance-First Algorithm (DFA)
Input :object collections R, S , join predicate ϕ,

monotone aggregate function γ , number of
results k

Output : result set C
Variables : Indices IR , IS

1 initialize C ← ∅;
2 IR ← CreateIndex(R);
3 IS ← CreateIndex(S);
4 C ← Join(IR ,IS ,ϕ,γ ,k);
5 return C;

DFA makes no pre-assumptions about the order of the objects in
collections R and S . DFA also employs a min-heap C of size k to
produce the final results. In Lines 2–4, the algorithm computes the
R ▷◁ϕ S join invoking the Join procedure. The procedure passes
each (r , s) result pair to heap C , which keeps track of the k pairs
with the highest aggregate score. The type of the join attribute and
the nature of the predicate ϕ dictate the strategy for computing
the R ▷◁ϕ S join. Without loss of generality, we assume that an
index join of IR and IS (created for inputs R and S in Lines 2–3) is
performed, but other approaches where one or none of the inputs
are indexed can be employed instead.

The performance of DFA can be further enhanced by special
indexing or sorting the inputs, to avoid computing the complete
result of R ▷◁ϕ S . For this purpose, the Join procedure in relational
top-k equijoins extends the HashJoin algorithm [28] with a min-
heap that retains thek object pairs that satisfy the join predicate and
have the highest aggregate score. In case of top-k spatial distance
joins [19, 20], the input collections are indexed by aR-trees and
Join adapts the classical algorithm of [2] to traverse the trees in a
best-first, instead of a depth-first order, using a min-heap. In this
manner, the tree entry pairs which have the maximum aggregate
score are examined first during the join and this order guarantees
that the object pairs qualifying the join predicate will be computed
incrementally in decreasing order of their aggregate scores.

2.3 The Block-based Algorithm
The Block-based Algorithm (BA) can be seen as an adaptation of SFA
and DFA at a block level. Similar to SFA, the algorithm examines
the objects in decreasing order of their scores. However, instead
of probing each accessed object against the buffered objects of the
other collection seen so far, BA each time probes a block of accessed
objects against the buffered blocks of objects of the other collection.
Moreover, before probing a new block of objects, BA creates an
index for this block, and therefore, the block-level probes corre-
spond to instances of DFA. Different however to DFA, BA does not
compute the entire R ▷◁ϕ S join. For this purpose, BA associates
each accessed block of objects b with a lower score bound bℓ and an
upper score bound bu . Since, the objects inside b are in decreasing
order of their scoring attributes, bu (bℓ ) corresponds to the score
of the first (last) object inside b.

Algorithm 3 illustrates the pseudo-code of BA. The algorithm
receives the same inputs as the previous two. To compute the join,
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ALGORITHM 3: Block-based Algorithm (BA)
Input :object collections R, S , join predicate ϕ,

monotone aggregate function γ , number of
results k

Output : result set C
Variables : Indices IR and IS , bound θ , termination

threshold T , the lowest seen scores ℓR and ℓS ,
block size λ

1 initialize C ← ∅, θ ← −∞, ℓR ←∞, ℓS ←∞;
2 sort R, S in descending order of the score attribute; ▷ if

not already sorted

3 determine block size λ;
4 while more blocks of objects exist in R and S do
5 i ← S , if ℓS > ℓR ; otherwise R ; ▷ Current input

6 j ← R, if ℓS > ℓR ; otherwise S ;
7 bi ← GetNextBlock(i, λ); ▷ Next objects block

from current input

8 ℓi ← bℓi ; ▷ Update the lowest seen score from

current input

9 Ibi ← CreateIndex(bi ); ▷ Index current block

10 for each block bj of j do
11 if γ (biu ,bju ) > θ then
12 ⟨θ ,C⟩ ← Join(Ibi ,Ibj ,T ,ϕ,γ ,k,θ ,C); ▷ Update

current C and θ

13 T ← max{γ (hR , ℓS ),γ (ℓR ,hS )}; ▷ Update

termination threshold

14 if T ≤ θ then ▷ Result secured
15 break

16 return C

it follows an approach similar to SFA, i.e., the object collections are
sorted (Line 2), and accessed by their scoring attribute in decreasing
order; also, at each iteration the last seen score and the termination
threshold are defined similar to SFA (Lines 8 and 13). However,
as discussed in the previous paragraph, BA operates on blocks
of objects instead of single objects. In particular, the next block
from current input, e.g., bR from R, is accessed in Line 7. Then, BA
constructs the IbR index (Line 9) and then joins bR with every block
bS accessed (and buffered) so far from collection S . The bS blocks
are considered in decreasing order of their score ranges (i.e., first
bS1 , then bS2 etc). A bR ▷◁ϕ bS block join is computed in similar
to DFA fashion, but with two key differences. First, BA decides to
ignore the pair if at least k candidate result pairs are already found
and γ (buR ,b

u
S ) ≤ θ (recall that θ is the k-th best aggregate score so

far). In other words, BA computes only “promising” block-joins.
Second, the Join procedure for BA updates both the min-heap C
and bound θ , similar to SFA.

Setting block size λ. The analysis in [20] unveiled the trade-off
between the response time of BA and its block size λ. Intuitively,
small λ values incur a high indexing cost, and hence, BA bene-
fits less from the block-wise join evaluation; while with a large
λ, BA resembles an improved but still inefficient version of DFA,

which computes a large part of the spatial distance join. Under this
trade-off, [20] modelled the problem of automatically selecting the
appropriate block size λ as an optimization problem. The optimal
λ value minimizes the computational cost of BA, captured by the
objective function:

C(λ) = |Nindex (λ)| · Cindex (λ) + |Njoin (λ)| · Cjoin (λ)

where Nindex (λ) is the number of indexed blocks and Cindex (λ),
the indexing cost per block, while Njoin (λ) denotes the number of
block-joins and Cjoin (λ), the cost of every block-join.

Costs Cindex (λ) and Cjoin (λ) depend on the nature of the join
attribute and predicate, and how a block-level join is implemented.
In relational top-k equijoins, we can use MergeJoin to perform a
block-level join. Thus, indexing simply involves sorting the contents
of the blocks accessed from the input collections in the order of
their join attribute, i.e., Cindex (λ) = α1 · λ · log λ + α2, and joining
involves traversing the sorted blocks with a cost linear to the block
size, i.e., Cjoin (λ) = α3 · λ + α4. In case of top-k spatial distance
joins, the indexing cost is dominated by the cost of sorting a block
to bulk-load its aR-tree, i.e., Cindex (λ) = α1 · λ · log λ + α2, while
the joining cost for two aR-trees is quadratic to the block size λ, i.e.,
Cjoin (λ) = α3 · λ2 + α4. Constants α1, α2, α3, α4 can be derived via
regression analysis. Last, |Nindex (λ)| and |Njoin (λ)| can be set by
estimating the so-called any-k and top-k depths of the join, i.e., the
number of objects required from each input to find k result pairs
for the first time, and the total number of objects to be accessed
from each input, to compute the final results, respectively.

3 EVALUATING k-SSJoin QUERIES
We next discuss the evaluation solutions for k-SSJoin. For this
purpose, we first revisit in brief the Pass-Join algorithm; to the best
of our knowledge, the algorithm still remains the most efficient
method for exact string similarity joins as shown in [9, 29]. Then,
we detail how SFA, DFA and BA can be adapted for k-SSJoin. The
key is to carefully design their Probe and Join procedures in order
to address the string similarity join, building on top of the Pass-
Join algorithm. Naturally, the objective of Pass-Join is to report
all similar string pairs. However, for the efficient evaluation of
k-SSJoin queries, we need to avoid computing the complete result
set of the string join, similar to the case of top-k joins in general. To
this end, we also adjust the functionality of Pass-Join and employ
advanced indexing which similar to the aR-tree in case of the top-k
spatial distance joins, allows for pruning based both on the join
predicate and the aggregate scores.

For the rest of the section, we use the collections of string objects
R = {r1, . . . , r8} and S = {s1, . . . , s8} in Figure 2 as our running
example. Also, for the rest of this paper, we use the Edit distance
to measure the similarity of two strings. Hence, objects r and s are
similar if the string attribute of r can be transformed to the string
attribute of s by at most ϵ edit operations which include replacing an
element in r , deleting an element from r , and inserting an element
into r , i.e., join predicate ϕ = (dist(r , s) ≤ ϵ). For example, the
Edit distance of r3 to s3 in Figure 2 is 2 as “burдermeister” can be
transformed to “burдermaster” by replacing the second e with a
and deleting i , i.e., minimum 2 operations.
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id string score

r1 “extreme_burдers” 1.0
r2 “x−tr eme_burдers” 0.8
r3 “burдermeister ” 0.8
r4 “draдon_snacks” 0.6
r5 “the_caf e_dr ive” 0.6
r6 “louдi′s_pizza” 0.4
r7 “дolden_snacks” 0.3
r8 “the_cake_place” 0.1

(a) Object collection R

id string score

s1 “дourmet_f ood” 0.9
s2 “luiдi′s_pizza” 0.9
s3 “burдermaster ” 0.8
s4 “burдer_meister ” 0.7
s5 “columbus_f ood” 0.7
s6 “extreme_burдers” 0.4
s7 “new_york_pancakes” 0.4
s8 “the_cake_palace” 0.2

(b) Object collection S

Figure 2: Running example of collections R and S with 8
string objects each; for clarity purposes, we replace white
space with the underscore character “_”.

3.1 The Pass-Join Algorithm
Pass-Join [13] adopts a filter-and-refinement framework. During
the filtering step, the algorithm follows a partition-based approach.
Particularly, given two collections of string objects R and S and an
Edit distance threshold ϵ , Pass-Join splits each object r in R into
ϵ + 1 disjoint segments. According to the pigeon hole principle, in
order for a string object s in collection S to be similar to r w.r.t.
threshold ϵ , object s must contain a substring which matches a
segment of r ; otherwise, candidate pair (r , s) can be safely pruned.

Algorithm 4 illustrates the pseudocode of Pass-Join. The algo-
rithm takes as input two collections of string objects R and S ,
and an Edit distance threshold ϵ . The string objects in the collec-
tions are sorted first by their length and second lexicographically
(Line 1). Next, an inverted index IR is built on top of collection
R (Lines 2–5) by dividing every object r ∈ R into ϵ + 1 segments.
The inverted lists of IR associate every distinct string segment
with the objects that contain it. Particularly, inverted list Ll,iR in
IR indexes the i-th segment of every object with length l . Figure 3
shows inverted index IR for collection R in Figure 2(a) with an Edit
distance threshold ϵ = 3. Consider for example object r1.att =
“extreme_burдers” of length 15. The object is partitioned into 4 seg-
ments {“ext”, “reme”, “_bur”, “дers”} which are added to lists L15,1R ,
L15,2R , L15,3R , L15,4R , respectively. If more than one objects contain a
segmentw , a bucket entry is added to the corresponding inverted
list. Observe bucket entries ⟨“_bur”, {r1, r2}⟩ and ⟨“дers”, {r1, r2}⟩
of lists L15,3R and L15,4R , respectively in Figure 3, for objects r1.att =
“extreme_burдers” and r2.att = “x−treme_burдers”, which both
contain segments “_bur” and “дers”.

After indexing collection R, Pass-Join iterates over the objects
in collection S and computes the join result C by probing the IR
index (Lines 6–11). According to the length filtering introduced

ALGORITHM 4: Pass-Join
Input : string collections R and S , string distance

threshold ϵ
Output : result set C = {(r , s) ⊆ R × S | dist(r , s) ≤ ϵ}

1 sort R and S first by string length and second in
alphabetical order;

2 initialize inverted index IR ← ∅;
3 for each r ∈ R do
4 partition r into ϵ + 1 segments;
5 add segments to IR ;
6 for each s ∈ S do
7 for each inverted list Ll,iR in IR with |s | − ϵ ≤ l ≤ |s | + ϵ

and 1 ≤ i ≤ ϵ + 1 do
8 W ← SelectSubstrings(s,Ll,iR );
9 forw ∈W do
10 if w is in Ll,iR then
11 C ← Verify(Ll,iR [w], s, ϵ,C) ; ▷ Ll,iR [w] is

the entry for segment w in Ll,iR

12 return C;

in [6], every object s in S can be only joined with objects in R of
length l , such that l ≥ |s | − ϵ and l ≤ |s | + ϵ , where |s | denotes the
length of the string object s . To access such objects in R, Pass-Join
traverses every inverted list Ll,iR with |s | − ϵ ≤ l ≤ |s | + ϵ and
1 ≤ i ≤ ϵ + 1 (Line 7). The contents of every Ll,iR list are filtered
keeping only the objects whose segments can match at least one
of the substrings of s in setW (Lines 9–10). The substrings of s
contained in setW are selected in a multi-match-aware manner
employed by the SelectSubstrings procedure (Line 8). Finally, Pass-
Join verifies candidate object pairs (r , s) for every object r in Ll,iR
that contains a matched segment/substringw , using a length-based
and an extension-based verification method (Line 11).

3.2 Aggregate Inverted Index
The inverted index employed by Pass-Join indexes only the string
join attribute of the input collections and hence, no pruning on
aggregate scores can be achieved. To address this issue, we propose
an extension to the inverted index inspired by the aggregate score
information maintained by an aR-tree [18] which was shown in
[19, 20] to outperform traditional R-tree for top-k spatial distance
joins. Such an aggregate inverted index introduces the following
changes:

(i) every (bucket) entry of an inverted list is associated with the
maximum score of the involved objects, and

(ii) every inverted list is augmented with the maximum score of
all the contained entries.

Figure 4 illustrates the inverted index of Figure 3 augmented with
aggregate score information. Notice the ⟨“the”, {r5, r8}⟩ bucket en-
try in list L14,1R assigned a score of 0.6 which equals r5.score, since
r5.score > r8.score, and the L13,4R inverted list which is associated
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inverted entries
list

L13,1R ⟨“bur ”, {r3 }⟩ ⟨“dra”, {r4 }⟩ ⟨“lou”, {r6 }⟩, ⟨“дol ”, {r7 }⟩
L13,2R ⟨“дer ”, {r3 }⟩ ⟨“дon”, {r4 }⟩ ⟨“дi′”, {r6 }⟩, ⟨“den”, {r7 }⟩
L13,3R ⟨“mei”, {r3 }⟩ ⟨“_sn”, {r4,r7 }⟩ ⟨“s_p”, {r6 }⟩
L13,4R ⟨“ster ”, {r3 }⟩ ⟨“acks”, {r4, r7 }⟩, ⟨“izza”, {r6 }⟩
L14,1R ⟨“the”, {r5, r8 }⟩
L14,2R ⟨“_ca”, {r5, r8 }⟩
L14,3R ⟨“f e_d”, {r5 }⟩, ⟨“ke_p”, {r8 }⟩
L14,4R ⟨“r ive”, {r5 }⟩, ⟨“lace”, {r8 }⟩
L15,1R ⟨“ext ”, {r1 }⟩, ⟨“x−t ”, {r2 }⟩
L15,2R ⟨“r eme”, {r1, r2 }⟩
L15,3R ⟨“_bur ”, {r1, r2 }⟩
L15,4R ⟨“дers”, {r1, r2 }⟩

Figure 3: Inverted index IR on collection R of Figure 2 under
an Edit distance threshold ϵ = 3.

inverted score entrieslist bound

L13,1R 0.8 ⟨“bur ”, {r3 }, 0.8⟩, ⟨“dra”, {r4 }, 0.6⟩,
⟨“lou”, {r6 }, 0.4⟩, ⟨“дol ”, {r7 }, 0.3⟩

L13,2R 0.8 ⟨“дer ”, {r3 }, 0.8⟩, ⟨“дon”, {r4 }, 0.6⟩,
⟨“дi′”, {r6 }, 0.4⟩, ⟨“den”, {r7 }, 0.3⟩

L13,3R 0.8 ⟨“mei”, {r3 }, 0.8⟩, ⟨“_sn”, {r4,r7 }, 0.6⟩,
⟨“s_p”, {r6 }, 0.4⟩

L13,4R 0.8 ⟨“ster ”, {r3 }, 0.8⟩, ⟨“acks”, {r4, r7 }, 0.6⟩,
⟨“izza”, {r6 }, 0.4⟩

L14,1R 0.6 ⟨“the”, {r5, r8 }, 0.6⟩
L14,2R 0.6 ⟨“_ca”, {r5, r8 }, 0.6⟩
L14,3R 0.6 ⟨“f e_d”, {r5 }, 0.6⟩, ⟨“ke_p”, {r8 }, 0.1⟩
L14,4R 0.6 ⟨“r ive”, {r5 }, 0.6⟩, ⟨“lace”, {r8 }, 0.1⟩
L15,1R 1.0 ⟨“ext ”, {r1 }, 1.0⟩, ⟨“x−t ”, {r2 }, 0.8⟩
L15,2R 1.0 ⟨“r eme”, {r1, r2 }, 1.0⟩
L15,3R 1.0 ⟨“_bur ”, {r1, r2 }, 1.0⟩
L15,4R 1.0 ⟨“дers”, {r1, r2 }, 1.0⟩

Figure 4: Aggregate inverted index aIR on collection R of Fig-
ure 2 under an Edit distance threshold ϵ = 3.

with a score of 0.8 equal to the maximum score of all its contained
entries.

3.3 The Score-First Algorithm
As discussed in Section 2.1, SFA incrementally accesses the objects
of the input collection R or S in decreasing order of their scoring
attribute, and joins them with the objects already examined from S
or R. Under this perspective, to employ Pass-Join for SFA, we need
to make the following two adjustments:

(i) the objects in each collection are no longer sorted first by their
length and second lexicographically, but according to their
scoring attribute, and

(ii) instead of indexing only collection R to build a traditional
index IR offline, two aggregate inverted indices aIR and aIS

PROCEDURE 1: Probe (for SFA)
Input :object o, aggregate inverted index aI,

termination threshold T , join predicate
dist(·, ·) ≤ ϵ , monotone aggregate function γ ,
number of results k , k-th highest aggregate
score θ , candidate set C

Output :updated θ , C
1 for each list Ll,i in aI with |o | −ϵ ≤ l ≤ |o |+ϵ , 1 ≤ i ≤ ϵ + 1

and γ (o.score,Ll,i .score) > θ and while T > θ do
2 W ← SelectSubstrings(o,Ll,i );
3 forw ∈W do
4 if w is in Ll,i then
5 if γ (o.score,Ll,i [w].score) > θ then
6 ⟨θ ,C⟩ ← Verify(Ll,i [w],o, ϵ,θ ,C);

7 return ⟨θ ,C⟩;

are incrementally built online to buffer the objects examined
from collections R and S , respectively.

Hence, the currently accessed object, e.g., r from R, is first probed
against the aIS aggregate inverted index to retrieve objects s ∈ S
such that pair (r , s) qualifies the join predicate dist(r , s) ≤ ϵ and
γ (r , s) > θ holds, where θ equals the score of k-th candidate result
pair found so far. Then, r is divided into ϵ +1 segments and indexed
by aIR according to the rationale of Pass-Join.

Algorithm 1 from Section 2.1 remains unchanged in case of SFA
for k-SSJoin; the input collections are indexed by the aggregate
inverted indices aIR , aIS and predicate is defined according to Edit
distance and threshold ϵ ,ϕ = (dist(r , s) ≤ ϵ). Procedure 1 illustrates
the pseudocode of SFA’s Probe for k-SSJoin. The functionality of
Probe is reminiscent to the probing part of Algorithm 4 in Lines
6–11. The current object o = r (assume without loss of generality
that o is from R) is joined with already examined objects s in S of
length l that is larger than or equal to |r | − ϵ , and smaller than
or equal to |r | + ϵ , provided that the segments of s can match at
least one of the substrings of r . However, there exist two important
differences compared to the probing process of Pass-Join:
(i) An entire inverted list is ignored if the maximum aggregate

score involving current object o and any entry in Ll,iS can-
not exceed bound θ , i.e., if γ (o.score,Ll,iS .score) ≤ θ , where
Ll,iS .score denotes the maximum score of all entries inside list
Ll,iS .

(ii) The objects s from S that contain a match substring w of
r , i.e., the contents of the Ll,iS [w] entry, are further filtered
using the γ (o.score,Ll,iS [w].score) > θ condition, where
Ll,iS [w].score equals the highest score of the objects in L

l,i
S [w].

Finally, Probe employs the Verify procedure to verify the candidate
object pairs similar to Pass-Join. Verify for SFA also updates C and
the θ bound which equals the aggregate score of k-th candidate
pair found so far.
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PROCEDURE 2: Join (for DFA)
Input :aggregate inverted index aIR , object collection

S , join predicate dist(·, ·) ≤ ϵ , number of results
k

Output :candidate set C
1 initialize θ ← −∞;
2 sort S in descending order of the score attribute;
3 for each s in S do
4 if γ (rmax , s) ≤ θ then
5 break; ▷ rmax is the object in R with the

highest score.

6 ⟨θ ,C⟩ ← Probe(s,aIR ,∞, (dist(·, ·) ≤ ϵ) ,γ ,k,θ ,C);
▷ Procedure 1

7 return C;

Example 3.1. Consider collections R and S of Figure 2 and a
k-SSJoin query with k = 1, ϵ = 3, and γ = SUM . SFA first accesses
r1 from R. As aggregate inverted index aIS is currently empty, r1
is only split into ϵ + 1 = 4 segments which are inserted to aIR :
L15,1R = {1.0, ⟨“ext”, {r1}, 1.0⟩}, L15,2R = {1.0, ⟨“reme”, {r1}, 1.0⟩},
L15,3R = {1.0, ⟨“_bur”, {r1}, 1.0⟩}, L15,4R = {1.0, ⟨“дers”, {r1}, 1.0⟩}.
Next, s1 is accessed from S and probed against aIR without pro-
ducing any join results as no substring of s1 matches the existing
segments in the aIR index. Since ℓR = 1.0 > ℓS = 0.9, r2 is the next
object to be accessed and joined (unsuccessfully) withaIS . Similarly,
s2 and s3 are accessed in turn, still without producing any string
join results. When r3 is accessed and probed against aIS (now con-
taining entries for s1, s2 and s3), the substring “bur” of r3 is matched
with entry L12,1S [“bur”] that contains s3. Verification confirms that
dist(r3, s3) = 2 < ϵ , and as bound θ is not yet defined, SFA inserts to
C the first join result (r3, s3) and sets θ = γ (r3, s3) = 1.6. Currently,
T = max{γ (1.0, 0.8),γ (0.8, 0.9)} = 1.8 > θ , which means that a
possibly better object pair can be found and SFA cannot terminate
yet. The next accessed object is r4. At this point, all inverted lists
in aIS (containing entries for s1, s2 and s3) have a score bound
of 0.9 (i.e., due to an entry for a segment of either s1 or s2), and
as γ (r4, 0.9) = 1.5 < θ , no object pair involving r4 can be better
than current C . Hence, SFA ignores r4 without probing against any
inverted lists. Then, s4 is accessed and unsuccessfully probed only
against L15,1R –L15,4R lists of aIR with a score bound of 1.0; lists L13,1R –
L13,4R are ignored as their score bound is 0.8 and γ (0.8, s4) = 1.5 < θ .
Next, s5 gives no new join pairs. Finally, s6 is retrieved without
traversing any inverted lists, similar to r4. At this points, since the
T termination threshold is now set to 1.5, i.e., lower than θ = 1.6,
SFA terminates reporting C = {(r3, s3)} as the final result.

3.4 The Distance-First Algorithm
To compute k-SSJoin following the rationale of DFA, we directly
employ the Pass-Join algorithm discussed in Section 3.1 in order to
identify the object pairs that qualify the string distance predicate
dist(r , s) ≤ ϵ . Compared to Algorithm 2 in Section 2.2 where DFA
performs an index join, for k-SSJoin we index only R using aggre-
gate index aIR and probe every object in S against aIR , according

to Pass-Join. For probing aIR , we employ the Probe procedure in-
troduced in the previous section for SFA by setting termination
thresholdT = ∞; in other words, the probing process of Join cannot
terminated before all inverted lists in aIR are considered.

Contrary to Pass-Join however, the Join procedure of DFA needs
score bounds to avoid computing the entire string join between
the input collections, accelerating therefore the computation of
k-SSJoin. For this purpose, we sort the objects of collection S in
decreasing order of their score attribute; essentially, we replace
Line 3 in Algorithm 2 with a sort command for collection S . When
DFA accesses an object s , the procedure checks whether s can
contribute to a join result of aggregate score higher than the θ
threshold, i.e., the score of the k-th object pair found so far. If
not, DFA terminates, because all objects from S not examined yet
have score equal to or lower than current object s . Procedure 2
illustrates the pseudocode of the Join procedure for DFA. For the
termination condition in Line 4, we consider the object rmax with
the highest score in R, and therefore, γ (rmax , s) is an upper bound
of the aggregate score a join pair that includes current object s
could have.

Example 3.2. Consider the k-SSJoin query of Example 3.1. As
a first step, DFA partitions the string attribute of the objects in
R into ϵ + 1 = 4 segments and builds the aIR aggregate inverted
index of Figure 3. It also sorts the objects of S in descending order
of their scores. Next, DFA performs the string join by probing
first object s1 against aIR which produces no join result. Then, s2
is successfully joined with r6 as dist(r6, s2) = 1; thus, the result
pair (r6, s2) is inserted into C and θ = γ (r6, s2) = 1.3. When s3
is examined, DFA considers the best possible result pair (r1, s3)
combined with r1 = rmax from collection R. Since, γ (r1, s3) = 1.8 >
θ , DFA cannot terminate; thus, s3 is probed against aIR . At this
point, the candidate join pair (r3, s3) which has higher aggregate
score than current θ is identified and hence, (r3, s3) replaces (r6, s2)
in C and θ = γ (r3, s3) = 1.6. In the following, objects s4 and s5
are examined without however producing any better results than
(r3, s3). Specifically, both objects are probed against lists L15,1R –L15,4R
with a score bound of 1.0 but not against L13,1R –L13,4R with score
bound 0.8 as γ (0.8, 0.7) = 1.5 < θ . Finally, when s6 is accessed and
the best possible result pair (r1, s6) is considered, γ (r1, s6) = 1.4 < θ
holds; thus, DFA terminates ignoring the rest of the objects in S
and reporting C = {(r3, s3)} as the final result.

3.5 The Block-based Algorithm
As discussed in Section 2.3, BA operates as an adaptation of both
SFA and DFA at the block level. To compute k-SSJoin, the objects
of input collections R and S , sorted in decreasing order of their
score attribute similar to SFA, are accessed in blocks of size λ. BA
accesses one block of objects at a time from either of the collections.
Following the rationale of Pass-Join, the current block is indexed
only if it originates from R, i.e., bR , while in both cases the current
block bR or bS is joined against the blocks already accessed from
collection S or R, respectively. 2 Recall at this point that BA utilizes
the score bounds retained for each block to avoid computing every

2We also experimented with a version of BA that uses two aggregate inverted indices,
which however was always less efficient.
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PROCEDURE 3: Join (for BA)
Input :aggregate inverted index aIbR , block bS ,

termination threshold T , join predicate
dist(·, ·) ≤ ϵ , monotone aggregate function γ ,
number of results k , k-th highest aggregate
score θ , candidate set C

Output :updated θ , C
1 for each object s in block bS do
2 if γ (buR , s .score) ≤ θ then
3 break;
4 ⟨θ ,C⟩ ← Probe(s,aIbR ,T , (dist(·, ·) ≤ ϵ) ,γ ,k,θ ,C);

▷ Procedure 1

5 return ⟨θ ,C⟩;

possible block-level join, and consequently, the entire string join
(Line 10 in Algorithm 3). The process of joining two blocks bR and
bS is similar to the one employed by DFA, i.e., every object s in bS is
probed against aggregate inverted index aIbR . However, different
from DFA and its Join procedure, objects in bS are already sorted
in decreasing order of their score attribute.

Similar to SFA, the pseudocode of BA for k-SSJoin is identical to
Algorithm 3; input collections are indexed by aggregate inverted
indices aIR , aIS and predicate ϕ = (dist(r , s) ≤ ϵ). Procedure 3
illustrates the pseudocode of BA’s Join for k-SSJoin. Similar to DFA,
Join for BA employs a breaking condition to terminate a block-level
join betweenbR andbS if for current object s inbS ,γ (buR , s .score) ≤
θ holds, i.e., s cannot contribute to a join result with an aggregate
score higher than the score of the k-th object pair found so far;
recall that buR is the highest score of the objects contained in block
bR . Join for BA uses the Probe procedure of SFA and it also utilizes
the termination threshold T to avoid considering all inverted lists
in aIbR , i.e., unlike DFA’s Join, threshold T is not set to∞.

Example 3.3. Consider once again collections R and S in Fig-
ure 2 and the k-SSJoin query with k = 1, ϵ = 3, γ = SUM .
For the sake of this example, the collections are partitioned into
blocks of 2 objects each, as pictured in Figure 5. Initially, block
bR1 is read and aggregate inverted index aIbR1 is built by divid-
ing the string attribute of the contained objects into ϵ + 1 = 4
segments; we have L15,1bR1

= {⟨“ext”, {r1}, 1.0⟩, ⟨“x−t”, {r2}, 0.8⟩},

L15,2bR1
= {⟨“reme”, {r1, r2}, 1.0⟩}, L15,3bR1

= {⟨“_bur”, {r1, r2}, 1.0⟩},

and L15,4bR1
= {⟨“дers”, {r1, r2}, 1.0⟩}. Then, bS1 is accessed and ob-

jects s1 and s2 are probed against aIbR1 producing no join results.
Similarly, bS2 is accessed and joined (unsuccessfully) with bR1 . Af-
ter reading bR2 , the block is joined with bS1 and bS2 (in this order).
When joining with bS2 , the substring “bur” in s3 is matched with
the L13,1bR2

[“bur”] entry that contains object r3. Further verification
confirms that dist(r3, s3) = 2 < ϵ and thus, the (r3, s3) pair is in-
serted into C and θ = γ (r3, s3) = 1.6. In addition, index aIbR2 for
current block bR2 is built. The next block bS3 is joined with bR1
but not with bR2 , because γ (b

u
R2
,buS3
) = γ (0.8, 0.7) = 1.5 < θ = 1.6.

Specifically for bS3 , probing s5 against aIbR1 does not improve the
current k-SSJoin result while s6 is not probed against aIbR1 at all

block id string score

bR1
r1 “extreme_burgers" 1.0
r2 “x-treme_burgers" 0.8

bR2
r3 “burgermeister" 0.8
r4 “dragon_snacks" 0.6

bR3
r5 “the_cafe_drive" 0.6
r6 “lougi’s_pizza" 0.4

bR4
r7 “golden_snacks" 0.3
r8 “the_cake_place" 0.1

(a) collection R

block id string score

bS1
s1 “gourmet_food" 0.9
s2 “luigi’s_pizza" 0.9

bS2
s3 “burgermaster" 0.8
s4 “burger_meister" 0.7

bS3
s5 “columbus_food" 0.7
s6 “extreme_burgers" 0.4

bS4
s7 “new_york_pancakes" 0.4
s8 “the_cake_palace" 0.2

(b) collection S

Figure 5: Example of BA with block size λ = 2 on the collec-
tions in Figure 2.

because γ (buR1
, s6.score) = γ (r1, s6) = 1.4 < θ , i.e., s6 is not able

to produce join results of aggregate score higher than θ . At this
stage, BA terminates as T = 1.5 is not higher than θ = 1.6, and
C = {(r3, s3)} is returned as the final result.

Setting block size λ. We finally discuss the automatic tuning of
block size λ for k-SSJoin. For this purpose, it suffices to define the
Cindex (λ) and Cjoin (λ) costs of the objective cost function C(λ).
Specifically, the cost of partitioning the string attribute of the objects
inside a block and building an aggregate inverted index is linear to
λ, i.e., Cindex (λ) = α1 ·λ+α2, while, the joining cost for two blocks
is dominated by substring selection and verification; according to
[13], Cjoin (λ) = α3 · λ + α4. Again, constants α1, α2, α3, α4 can be
derived via regression analysis, while |Nindex (λ)| and |Njoin (λ)|
can be estimated by applying the model for any-k and top-k depths
proposed in [20].

4 EXPERIMENTAL EVALUATION
We finally present our experimental analysis for k-SSJoin. We im-
plemented all k-SSJoin methods in C++ and run the tests on a 2.3
GHz Intel Core i7 CPU with 8GB of RAM. All data (input collec-
tions and inverted indices) reside in main memory. First, Section 4.1
details the setup of our analysis. Then, Section 4.2 demonstrates the
effectiveness of adapting the [20] model for selecting BA’s block
size in case of k-SSJoin. Last, Section 4.3 conducts an extensive
comparison of SFA, JFA and BA.

4.1 Setup

Datasets. Our analysis involves both real-world and synthetic
datasets. First, we used a collection of 645K hotels from Book-
ing.com denoted by BHOTELS, and a collection of 255K hotels from
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Table 1: Experimental parameters (default values in bold).

description parameter values

Join selectivity ϵ
READS: 0, 4, 8, 12, 16
CITIES: 0, 1, 2, 3, 4

BHOTELS-THOTELS: 0, 1, 2, 3, 4
Number of results k 1, 5, 10, 50, 100
Number of seeds |Σ | CORR: 10, 20, 50, 100
Number of objects

|R |+ |S | READS: 0.625, 1.25, 2.5, 5(×1,000,000)
Cardinality ratio |R |/ |S | 1, 2, 3, 4, 5

TripAdvisor.com denoted by THOTELS. The scoring attribute is a
user-generated rating, while the joining attribute stores the name
of a hotel. Second, we used collections of string attributes from
[29] with synthetic scores. Specifically, CITIES is a collection of
1M geographical names taken from World Gazetteer with a 200
symbols dictionary and a non-uniform distribution of string length
(5-64), while READS is a collection of 5M reads obtained from a
human genome with a 5-symbol dictionary and a uniform length
distribution (around 100 symbols per string). To generate scores,
we employed a similar strategy to [19] which produces two types of
scores, named IND and CORR. For IND, score values are normally
distributed inside the [0, 1] interval and independent to the values
of the string join attribute. In contrast, for CORR, we first randomly
generate |Σ| seeds, and assign to each of them a score uniformly
distributed inside [0, 0.8]. The generated objects are divided into
|Σ| clusters based on their distance to the seeds and the score of
each object equals the score of its closest seed plus a noise normally
distributed inside [0, 0.2].

Tests. To assess the performance of the evaluation methods, we
measure their response time forγ = SUM 3, including any indexing
and/or sorting costs, while varying: (i) the join selectivity, captured
by distance threshold ϵ , (ii) the number of results k , and (iii) the
number of seeds |Σ| for synthetic collections of CORR scores. We
also perform scalability and cardinality tests over subsets of the
synthetic collections varying parameters |R |+|S | and |R |/|S |. Table 1
summarizes all parameters involved in our study. On each test, we
vary one parameter; the rest are set to their default value. Note that
as the value of |Σ| increases the score generator produces more
independent and less correlated scores; for |Σ| = 100, the generated
scores are uniformly distributed.

4.2 Setting Block Size λ
To automatically set block size λ for BA, we adapt our model from
[20] for k-SSJoin, as discussed in Section 3.5. We then investigate
the accuracy of the model by running BA while varying the value
of λ. Figure 6 reports the algorithm’s response time excluding the
sorting costs. For clarity purposes, we only show the time around
the optimal value λopt of the block size and mark λest estimated
by the model. The tests reveal the anticipated trade-off between
BA’s response time and the value of λ. Recall that for λ = 1 BA
operates similar to SFA but as the block size increases towards λopt
the algorithm increasingly benefits from the block-wise evaluation.
However, when λ increases beyond optimal value λopt , BA becomes
3Our analysis can be directly extended to any monotone aggregate function.
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Figure 6: Response time of BA (excluding sorting cost), vary-
ing block size λ.

less efficient as it resembles an improved version of DFA which
computes an increasing larger part of the R ▷◁ϵ S string similarity
join. Although the model is not able to find the exact λopt , the
figure shows that BA’s execution time for IND and CORR score
types increases only 3% and 2%, respectively when λest is used;
for the real datasets (plot omitted due to lack of space) the time
increases only by 1%. Note that this estimation procedure is very
fast; our tests show that the time spend to compute λest corresponds
to only the 3.3% of the total response time of BA, on average.

4.3 Comparison of Evaluation Algorithms
We next present our tests on comparing SFA, DFA and BA. Figure 7
reports the response time of the methods for the synthetic datasets
in case of IND scoring attributes while reducing the selectivity
of the join (i.e., increasing the string distance threshold ϵ) and
while varying the number of requested results k . Similarly, Figure 8
reports the times in case of CORR scoring attributes while also
varying the number of seeds |Σ|. We observe that BA is the most
efficient method for k-SSJoin queries; its response is lower than
both SFA’s and DFA’s in all cases. These findings are completely
aligned with the case of the top-k spatial distance join, we studied
in [19, 20], which proves the merit of BA and the advantage of
the block-based evaluation for top-k joins. Regarding, the second
fastest method, SFA has the advantage in most of the cases.

The key in understanding the behaviour of the algorithms when
varying the join selectivity is to recall that k-SSJoin comes as a
hybrid of a join and a top-k query, which introduces an interesting
trade-off. Specifically, while increasing ϵ , the join component of a
k-SSJoin query becomes less selective and therefore, more expen-
sive. However, as more object pairs qualify the join predicate, the
best k results can be now identified faster, sometimes even among
the highly ranked objects. In other words, the top-k component of
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Figure 7: Evaluating k-SSJoin queries: scoring attributes of
type IND.

the query becomes cheaper. As a result, DFA is competitive to SFA
and BA only when the string join component of the k-SSJoin query
is very selective and hence cheap, i.e., for ϵ equal to 0, 1 for CITIES
and 0, 2, 4 for READS. In all other cases, pruning based on the
aggregate score is more effective and therefore, BA and SFA have
the benefit. We also observe a difference in the way ϵ impacts each
dataset. Specifically, while ϵ increases the response time of SFA,
BA rises for READS but drops for CITIES. As READS collections
contain more in number and longer in length strings drawn from a
much smaller dictionary compared to CITIES, the join component
of the query is far more expensive than the top-k selection and
becomes even more expensive as ϵ increases.

On the other hand, when increasing the number of results, all
algorithms are negatively affected as they need to examine and
compute the aggregate score for increasingly more objects, and
hence compute a larger part of the R ▷◁ϵ S string join. In contrast,
the algorithms are positively affected by the increase of |Σ| for
CORR scores. This is because the scoring and the join attribute
become less correlated, similar to the collections of IND scores.

We also compare the methods for our real-world datasets while
increasing the number of requested results and varying the join
selectivity via ϵ ; Figure 9 reports the response times. Similar to the
synthetic collections, BA outperforms both SFA and DFA. However,
we also observe that DFA is now the second fastest method, instead
of SFA. Due to their characteristics (primarily, fewer objects), the
string similarity join for the real collections is cheaper compared to
the synthetic datasets which benefits DFA that prioritizes the join
component of the k-SSJoin queries.

Last, we conduct scalability and cardinality tests varying pa-
rameters |R | + |S |, |R |/|S | for READS with both IND and CORR
scores. Figure 10 and 11 report the response time of the evaluation
algorithms. We observe that (i) BA outperforms SFA and DFA in
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Figure 8: Evaluating k-SSJoin queries: scoring attributes of
type CORR.
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Figure 9: Evaluating k-SSJoin queries: real object collections.

all cases, and (ii) BA scales always better than DFA and in most of
setups also than SFA.

5 RELATEDWORK
Finally, we review previous work on ranking queries, i.e., top-k
queries and top-k joins (besides [7, 19, 20]), and also briefly discuss
previous work on string similarity joins (besides [13]).

Top-k Queries. Fagin et al. [5] present an analytical study of vari-
ous methods for top-k aggregation of ranked inputs by monotone
aggregate functions. Consider a collection of objects (e.g., restau-
rants) which have scores (i.e., rankings) at two or more different
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Figure 10: Evaluating k-SSJoin queries: scalability tests on
READS.
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Figure 11: Evaluating k-SSJoin queries: cardinality tests on
READS.

sources (e.g., different ranking websites). Given an aggregate func-
tion γ (e.g., SUM) the top-k query returns the k restaurants with
the highest aggregated scores (from the different sources). Each
source is assumed to provide a sorted list of the objects accord-
ing to their atomic scores there; requests for random accesses of
scores based on object identifiers may be also possible. For the case
where both sorted and random accesses are possible, the Threshold
Algorithm (TA) retrieves objects from the ranked inputs (e.g., in a
round-robin fashion) and a priority queue is used to organize the
best k objects seen so far. Let ℓi be the lowest seen score in source
Si ; T = γ (ℓ1, ..., ℓm ) defines a lower bound for the aggregate score
of objects never seen in any Si yet. If the k-th highest aggregate
score found so far is no less than T , the algorithm is guaranteed to
have found the top-k objects and terminates. For the case where
only sorted accesses are possible, [15] presents an optimized imple-
mentation of the No-Random accesses Algorithm (NRA), originally
proposed also in [5]. The top-k results are incrementally fetched
based on their aggregate scores. [34] presents a framework for top-
k queries on top of relations having multi-attribute indices. An
index-merge paradigm is proposed to merge multiple index nodes
progressively and selectively. Recently, there has also been work
for multiple attributes in top-k ranking criteria. For example, [21]
studies the semantic based spatial keyword querying, which finds
the k objects most similar to the query, subject to their spatial,
textual and semantic meaning properties. To this end, the authors
propose hierarchical indexing structures to integrate all types of
involved information and devise appropriate pruning techniques.

Top-k Joins. Natsev et al. [16] first studied the top-k join evalu-
ation proposing multi-way join operator J∗. Objects are accessed

incrementally from the input streams (e.g., in round-robin) sorted
by their scores. Partial join results are computed, and at each step,
the top partial combination is completed by filling the missing
values from the streams. J∗ incrementally outputs the top combina-
tions in the heap if they are complete join results. As a follow-up
to [7], Li et al. [11] applied HRJN∗ on multiple inputs with one or
more scoring attributes each. Rank joins with multiple inputs and
more than one scoring attributes were also covered by PBRJ in [27].
Further, [4, 25, 32] targeted top-k joins on inputs from different
physical locations. Wu et al. [32] model this as a graph problem
solved by a branch-and-bound algorithm that minimizes the num-
ber of network accesses. In contrast, [4, 25] determined the number
of objects to be accessed from each network input, through the
depth estimation procedure. Last, Ntarmos et al [17] studied top-k
joins in NoSQL databases using statistical structures (similar to 2-
dimensional histograms) to reduce object accesses in a distributed
environment. In contrast, our focus is on the centralized scenario.

String Similarity Joins. A string similarity join finds all pairs
of similar string objects based on a similarity measure, e.g., the
Edit distance, and a threshold ϵ . Most of the existing solutions
[1, 6, 12, 13, 22, 26, 30, 31, 33, 36, 37] employ a filter-and-refinement
evaluation framework. In addition, some of these methods [13, 22,
31, 37] follow a string partition framework and so, the performance
of the algorithm is largely determined by the number of partitions
generated for each string, and the number of index probes to search
for similar strings. Recent surveys on the string similarity join
methods can be found in [9, 29, 35].

Gravano et al. [6] proposed string join techniques on top of com-
mercial databases. By matching q-grams and taking into account
both positions and total number of matches, several techniques
were proposed to prune string pairs not within the desired Edit
distance. Xiao et al. proposed ED-Join [33], which is also a q-gram-
based method but enhances the filter process using Edit distance
lower bounds derived from the location-based and content-based
q-grams mismatching. Qin et al. [22] also used q-grams. QChunk
first obtains a global q-grams order and then partitions each string
into a set of chunks; the first ϵ + 1 out of which (according to the
global order) are stored in a hash table, where ϵ is the Edit dis-
tance join threshold. For each string s the algorithm probes the
hash table using a subset of s q-grams according to the global or-
der. Trie-Join [30] is a trie index based framework which employs
the prefix filtering [3] to generate similar string pairs without the
need for a refinement step. However, Trie-Join is only efficient for
short strings. PETER [23] is a prefix tree based indexing algorithm
for approximate search and joins. It combines an efficient imple-
mentation of compressed prefix trees with advanced pre-filtering
techniques that exclude many candidate strings early. Wang et al.
[31] proposed VChunk which partitions each string into at least
2 ·ϵ + 1 chunks of possibly different lengths, determined by a chunk
boundary dictionary (CBD). Computing the optimal CBD is an
NP-hard problem and so the authors proposed a greedy algorithm.
Zhang and Zhang [36] proposed EmbedJoin which first embeds
each string from the Edit distance metric space to the Hamming
distance metric space. Then, it uses Locality Sensitive Hashing to
compute (approximate) similarity joins in the Hamming space. Last,
[37] proposed MinJoin, a randomized and approximate algorithm
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which partitions each string into a set of substrings, and then uses
hash join on these substrings to find all pairs of strings that share
at least one common substring.

In this work, we built on Pass-Join [13] as experimental studies
[9, 29] showed that it is the most efficient exact algorithm for both
short and long strings.

6 CONCLUSIONS
In this paper, we extended the top-k join ranking operation in
case of string objects, introducing the top-k string similarity join
(k-SSJoin). For its efficient evaluation, we investigated the merit of
existing top-k join solutions for non-relational complex data types.
We considered SFA which prioritizes the ranking component of a
k-SSJoin query, DFA which prioritizes the join component and BA
which acts a hybrid that combines the two methods under a block-
based instead of an object-based accessing and evaluation paradigm.
We redesigned their core procedure to determine similar string
objects building on top of the state-of-the-art string similarity join
algorithm Pass-Join. At the same time, we proposed optimizations
and indexing to avoid computing the complete result of the string
join. Our extensive experimental analysis on both real-world and
synthetic data showed the effectiveness of our methodologies and
proved that similar to the case of top-k on spatial objects, the block-
based evaluation of BA clearly outperforms both SFA and DFA.
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