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A wide range of applications manage large collections of interval data. For instance, temporal databases

manage validity intervals of objects or versions thereof, while in probabilistic databases attribute values of

records are associated with confidence or uncertainty intervals. The main search operation on interval data is

the retrieval of data intervals that intersect (i.e., overlap with) a query interval (e.g., find records which were

valid in September 2020, find temperature readings with non-zero probability to be within [24, 26] degrees).

As query results could be many, we need mechanisms that filter or order them based on how relevant they

are to the query interval. We define alternative relevance scores between a data and a query interval based

on their (relative) overlap. We define relevance queries, which compute only a subset of the most relevant

intervals that intersect a query. Then, we propose a framework for evaluating relevance queries that can be

applied on popular domain-partitioning interval indices (interval tree and HINT). We present experiments on

real datasets that demonstrate the efficiency of our framework over baseline approaches.
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1 Introduction
Awide range of applicationsmanage and search large collections of interval data, including temporal

databases [7, 36], probabilistic databases [12, 17], anonymized databases [33], XML databases [24, 25],

spatial databases [23], and data streaming applications [4]. The most popular query retrieves the

intervals that overlap with a query point or range. Formally, consider a collection 𝑆 of intervals,

such that each 𝑠 ∈ 𝑆 is defined by a pair of values [𝑠 .𝑠𝑡𝑎𝑟𝑡, 𝑠 .𝑒𝑛𝑑], where 𝑠 .𝑠𝑡𝑎𝑟𝑡 ≤ 𝑠 .𝑒𝑛𝑑 .1 Given a

query interval 𝑞 = [𝑞.𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑒𝑛𝑑], the objective of the range overlap query is to find the subset 𝑆𝑞

of 𝑆 , such that for every 𝑠 ∈ 𝑆𝑞 , the intersection 𝑠 ∩ 𝑞 = [max{𝑞.𝑠𝑡𝑎𝑟𝑡, 𝑠 .𝑠𝑡𝑎𝑟𝑡},min{𝑞.𝑒𝑛𝑑, 𝑠 .𝑒𝑛𝑑}]
is non-empty. Below, we list important applications of interval search:

Temporal databases. In temporal databases [7, 36], records or versions thereof are associated

with validity time intervals based on transaction time, valid time, or both. Pure-timeslice queries
[32] ask for records valid sometime in a query time interval; these are equivalent to range-overlap

queries. Range-timeslice queries ask for records valid in a query interval, also having their key (or

some other attribute) in a given range. These two types of temporal selections are included in SQL

1
For the ease of exposition, we consider intervals that are closed at both ends. The techniques that we propose in this work

can also directly be applied on collections of intervals that may be open at one or both ends.
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extensions [26, 29] and implemented in PostgreSQL
2
, Oracle Workspace Manager, IBM DB2 [34],

Microsoft SQL Server
3
, Teradata [1], and MariaDB

4
.

Uncertain databases. Due to resource limitations or errors in sensing, an uncertainty interval

is often used to model the possible range of actual values of an object [12]. For instance, sensors

report their readings (e.g., temperature) periodically or only when they deviate a lot from the

previously transmitted value. The price of a stock within a certain time bound (a few seconds) is

approximated by a [𝑚𝑖𝑛,𝑚𝑎𝑥] interval [2]. The actual value of the object is assumed to be within

the uncertainty interval and its probability outside the interval is 0. Given a collection of such

uncertainty intervals, a probabilistic range query is also expressed by an interval (data range) and

the objective is to retrieve the set of all tuples (𝑠𝑖 , 𝑝𝑖 ), where 𝑠𝑖 is the uncertainty interval of the

reading and 𝑝𝑖 is the non-zero probability that the actual value of 𝑠𝑖 is inside the query range. In

effect, this is a range overlap query.

XML document encodings. Finding the relationship (e.g., ancestor, sibling, etc.) between nodes

in tree representations of XML documents facilitates the evaluation of XPath queries. Grust [24]

encodes each node 𝑣 by a [𝑝𝑟𝑒 (𝑣), 𝑝𝑜𝑠𝑡 (𝑣)] interval, where 𝑝𝑟𝑒 (𝑣) and 𝑝𝑜𝑠𝑡 (𝑣) are the ranks of 𝑣
in the preorder and postorder traversal of the tree, respectively. Retrieving the nodes relative to

a query node 𝑣 is then translated to interval search operations (e.g., interval containment search

retrieves the descendants).

Anonymized data. Generalization is one of the most popular anonymization approaches for

relational data [39]. The values of a sensitive column are clustered and each original value is

replaced by a range which includes all values in the cluster where the value belongs. Then, range

queries on the original column become interval overlap queries on the anonymized column, similar

to probabilistic range queries over uncertain data [12]. PostgreSQL v. 9.2 includes native ranged

data types, supported by range search operators.
5

Managing intervals for the efficient evaluation of range overlap queries is a well-studied problem

in the past 40 years for both memory-resident and disk-based data. A classic, worst-case optimal,

data structure for intervals is the interval tree [22], originally used for the support of windowing

operations in computational geometry [18]. Kriegel et al. adapted it for storage and search of

intervals in a relational database [28]. The state-of-the-art data structure for intervals in main

memory is HINT [14, 15]. To support range-timeslice queries in temporal databases, a number of

composite indices have been proposed, most notably the multi-version B-tree [5, 30], the timeline

index [27] (implemented in SAP HANA), and the recently proposed LIT [16]. These methods

primarily index the records by time and secondarily by other attributes (such as record keys), as

(typically) the time predicate is more selective.

Figure 1 shows a sample of intervals from the TAXIS dataset
6
, which we use in our experiments.

The dataset includes 169M NYC taxi trip records in 2009; the figure shows a tiny sample of the

trips timespan on March 1, 2009 as intervals 𝑠1 to 𝑠15. The numbers on top of each interval indicate

the number of passengers on that trip. Overall, 327K taxi trips took place on March 1, 2009 and

the number of passengers in each trip ranged from 1 to 5. For each trip, the pick-up and drop-off

locations are recorded but not the route in-between. Assume that a suspect involved in a crime

was eye-witnessed in a cab between 17:00 and 17:30, denoted by interval 𝑞 in the figure. In the

2
http://wiki.postgresql.org/wiki/Temporal_Extensions

3
http://learn.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables

4
http://mariadb.com/kb/en/system-versioned-tables/

5
https://wiki.postgresql.org/images/7/73/Range-types-pgopen-2012.pdf

6
http://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Fig. 1. Example of data intervals and a query

example, taxi trips denoted by 𝑠11 to 𝑠14 overlap with 𝑞, so these trips should be investigated (i.e., by

finding the license plates of the corresponding cabs and questioning the drivers). This corresponds

to a pure-timeslice query [32]. The number of taxi trips that overlap with the query interval 17:00

to 17:30 on March 1st, 2009 is 12432. The cost to retrieve them using a HINT index [14] built on the

entire data collection is 10 nsec, while a naive approach that accesses all intervals to find those that

overlap with 𝑞 is 65 msec. If additional information is known about the suspect, i.e., he was alone

in the cab, the query would retrieve only 𝑠11 and 𝑠13 in Figure 1, i.e., trips with 1 passenger only.

This range-timeslice query on the entire TAXIS dataset returns 8733 results. The cost to retrieve

these results using a HINT index on all data and post-filtering by the passenger number is 50 nsec,

while the cost of accessing only the single-passenger trips and verifying 𝑞 on them is 42 msec. This

example indicates that interval indexing such as the interval tree and HINT, are useful even if there

are additional filters on other non-interval attributes.
7
Composite indices, such as LIT (which uses

HINT to index part of the data), do even better, as shown in [16].

Motivation. In the previous example, regardless whether there is an additional selection on the

number of passengers or not, the interval overlap query (17:00 to 17:30 on March 1st, 2009) returns

numerous results. Examining these results one-by-one (e.g., questioning the taxi drivers that drove

these suspect trips and following up at the drop-off points) is tedious and resource-consuming. It

would make sense to either restrict the results to those that have large relative overlap with the

query interval, or rank them based on their overlap-based similarity to the query. For example, we

may want to examine the trips that overlap at least 80% of the query interval, or we may want to

retrieve the ones that have the highest probability to overlap with the query.

Contributions. We first define the concept of relevance for a data interval 𝑠 to a query 𝑞, denoted by
𝑅𝑒𝑙 (𝑠, 𝑞). We provide alternative definitions that could be useful in different application scenaria; i.e.,

based on the absolute length |𝑠 ∩ 𝑞 | of the intersection, based on the data- or query-relative length

(|𝑠 ∩ 𝑞 |/|𝑠 | or |𝑠 ∩ 𝑞 |/|𝑞 |), or based on the symmetric relative length (|𝑠 ∩ 𝑞 |/|𝑠 ∪ 𝑞 |). In probabilistic

databases, |𝑠 ∩𝑞 |/|𝑠 | computes the probability that an uncertain value in range 𝑠 , is inside the query

interval 𝑞. Absolute (|𝑠 ∩ 𝑞 |) and query-relative (|𝑠 ∩ 𝑞 |/|𝑞 |) relevance is meaningful in applications

with temporal data. For example, assume that 𝑞 is a time period (e.g., a month) during which a

rumor spread. The objective could be to find social network users who had been propagating the

rumor for the most time within 𝑞. Symmetric relevance (|𝑠 ∩𝑞 |/|𝑠 ∪𝑞 |) is a continuous-space analog
of Jaccard similarity and can be used to detect the most similar intervals to the query interval 𝑞;

e.g., find Web sessions whose timespan was very similar to the timespan of a fraudulent activity, to

identify suspects. Keyword Web queries (e.g., “war” and “peace”) can be semantically related if the

time periods when they are popular are similar [10]. Finally, as shown in [31], temporal queries

7
The decision which index (interval or other type) or any index at all should be used for a composite query is a query

optimization problem. Based on the analysis in [14], we can estimate the selectivity and the cost of an interval overlap

query, enabling the optimizer to consider predicates on intervals.
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may have too many or too few results, so defining approximate matches and ranking them is more

practical.

We study two types of relevance queries for interval data. Threshold-based queries take as input

a threshold 𝜃 and select only the data intervals 𝑠 with relevance 𝑅𝑒𝑙 (𝑠, 𝑞) at least 𝜃 ; ranking queries

take as input a positive integer 𝑘 and return the top-𝑘 data intervals having the highest relevance to

𝑞. For example, in Figure 1, the taxi trips with the highest relevance to 𝑞 using |𝑠 ∩𝑞 |/|𝑞 | are 𝑠12, 𝑠13;
if we limit the search to trips with only one passenger, the most relevant trip is 𝑠13. If relevance

is defined as |𝑠 ∩ 𝑞 |/|𝑠 |, then the most relevant trip is 𝑠13 regardless whether there is a filter that

the number of passengers is 1. If 𝑞 is the uncertain time interval where the suspect was seen, and

we look for the trips that overlap 𝑞 with 𝜃 = 80% probability, then we obtain 𝑠12, 𝑠13 as results (or

just 𝑠13 if we are looking for single-passenger taxi trips). The user may set appropriate values for

𝜃 and 𝑘 depending on the application; in our taxi suspect example, we could set a small value,

e.g., 𝑘 = 10, since following up with the results can be resource demanding. Implementations of

uncertain data management systems [13, 35] allow for the specification of probabilistic thresholds

in range-overlap queries.

A baseline approach to evaluate relevance queries is to first find all data intervals that overlap

with 𝑞 and then for each such object compute its relevance and output only the qualifying ones

(based on 𝜃 or 𝑘). To this end, any existing interval index can be utilized. However, this method

is expected to be slow, especially if the size of 𝑆𝑞 is large. We propose a more efficient, general

framework for relevance queries that can be used with any partition-based interval index, including

the interval tree [22] and HINT [14]. For each partition 𝑃 of the interval index, our approach requires

knowledge about the minimum and maximum 𝑠𝑡𝑎𝑟𝑡 and 𝑒𝑛𝑑 points of the intervals assigned to 𝑃 .

In most cases this information can be readily available from the index, since intervals are typically

sorted there. In case they are not, such information can be computed and maintained at minimal

cost, as we will discuss. Given these statistics and 𝑞, we show how to derive fast upper and lower

relevance bounds for the intervals in each partition. These bounds make it possible to prune

partitions or obtain results in them without computations; they can also be used to define an access

order for the partitions in ranking queries.

Our contributions can be summarized as follows:

• This is the first work, to our knowledge, that defines and studies relevance queries over

interval data, based on alternative definitions, to be used by various applications that manage

large volumes of interval data.

• We propose a unified approach for the efficient evaluation of relevance queries that applies on

any off-the-shelf interval index. Our framework only requires statistics about the minimum

and maximum end points of the intervals in each partition. Our method computes provable

upper and lower bound relevance scores for each partition in 𝑂 (1) time, and uses them to

prune partitions or schedule their access.

• We conduct an experimental study on real datasets demonstrating that our framework, when

applied using state-of-the-art interval indices (interval tree, HINT) can reduce the relevance

query processing cost by orders of magnitude.

Outline. The rest of the text is organized as follows. Section 2 defines the problem under study

and includes the necessary background in indexing intervals. Section 3 presents our methodology

for efficient evaluation of relevance queries over popular interval indices. Section 4 presents our

experimental analysis. Section 5 discusses the related work. Finally, Section 6 concludes the paper.
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2 Preliminaries
We first introduce necessary notation and formally define the problem of relevance search on

interval data. Then, we briefly describe two state-of-the-art indexing structures for interval data;

later in the paper, we will elaborate on how to evaluate relevance queries efficiently using these

structures.

2.1 Notation and problem definitions
Given a discrete or continuous 1D space, an interval is defined by a starting and an ending point

in this domain. For instance, in the space of all non-negative integers N, an interval [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑]
with 𝑠𝑡𝑎𝑟𝑡 , 𝑒𝑛𝑑 ∈ N and 𝑠𝑡𝑎𝑟𝑡 ≤ 𝑒𝑛𝑑 , is the subset of N, which includes all integers 𝑥 with

𝑠𝑡𝑎𝑟𝑡 ≤ 𝑥 ≤ 𝑒𝑛𝑑 .
We denote by [𝑠 .𝑠𝑡𝑎𝑟𝑡, 𝑠 .𝑒𝑛𝑑] the interval which is associated to a data object 𝑠; for example,

𝑠 could be a version of a record in a temporal database, or a probabilistic object in an uncertain

database. We denote by |𝑠 | the extent (i.e., length) of an object 𝑠 , which equals the extent of its

associated interval, i.e., |𝑠 | = 𝑠 .𝑒𝑛𝑑 − 𝑠 .𝑠𝑡𝑎𝑟𝑡 in the domain is continuous or |𝑠 | = 𝑠 .𝑒𝑛𝑑 − 𝑠 .𝑠𝑡𝑎𝑟𝑡 + 1
if the domain is discrete. Given a query interval 𝑞 = [𝑞.𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑒𝑛𝑑], the intersection of an object

𝑠 with 𝑞 is 𝑠 ∩ 𝑞 = [max{𝑠 .𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑠𝑡𝑎𝑟𝑡},min{𝑠 .𝑒𝑛𝑑, 𝑞.𝑒𝑛𝑑}]. Last, we denote by 𝑅𝑒𝑙 (𝑠, 𝑞) the
relevance of an object 𝑠 to a query 𝑞. We introduce four alternative definitions for 𝑅𝑒𝑙 (𝑠, 𝑞):

𝑅𝑒𝑙𝑎 (𝑠, 𝑞) = |𝑠 ∩ 𝑞 | (1)

𝑅𝑒𝑙𝑟 (𝑠, 𝑞) =
|𝑠 ∩ 𝑞 |
|𝑠 ∪ 𝑞 | (2)

𝑅𝑒𝑙𝑟𝑑 (𝑠, 𝑞) =
|𝑠 ∩ 𝑞 |
|𝑠 | (3)

𝑅𝑒𝑙𝑟𝑞 (𝑠, 𝑞) =
|𝑠 ∩ 𝑞 |
|𝑞 | (4)

where 𝑠 ∪ 𝑞 denotes the interval that covers the collective range of 𝑠 , 𝑞, i.e.,

𝑠 ∪ 𝑞 = [min{𝑠 .𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑠𝑡𝑎𝑟𝑡},max{𝑠 .𝑒𝑛𝑑, 𝑞.𝑒𝑛𝑑}]

Equation 1 computes an absolute relevance of 𝑠 to𝑞, while Equations 2–4, a relative relevance. For the
relative relevance, we particularly distinguish between a symmetric version defined in Equation 2

and the data- or query-relative asymmetric one, defined in Equations 3 and 4, respectively.

Given a collection of data objects 𝑆 and a query interval 𝑞, we next define two variants of

relevance search on 𝑆 .

Definition 2.1 (Threshold-based). Let 𝜃 be a relevance threshold; the threshold-based relevance
query denoted by 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 (𝑆, 𝑞), returns all objects in 𝑆 whose relevance to query interval 𝑞

exceeds 𝜃 . Formally,

𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 (𝑆, 𝑞) = {𝑠 ∈ 𝑆 : 𝑅𝑒𝑙 (𝑠, 𝑞) ≥ 𝜃 }

Definition 2.2 (Ranking). Let 𝑘 be a positive integer; the ranking relevance query denoted by

𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 (𝑆, 𝑞), returns the 𝑘 subset of the objects in 𝑆 with the highest relevance to query interval
𝑞, Formally,

• |𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 (𝑆, 𝑞) | = 𝑘 , and
• 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 (𝑆, 𝑞) = {𝑠 ∈ 𝑆 : ∀𝑠′ ∈ 𝑆 \ 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 (𝑆, 𝑞), 𝑅𝑒𝑙 (𝑠′, 𝑞) ≤ 𝑅𝑒𝑙 (𝑠, 𝑞)}

2.2 Background on indexing intervals
We revisit the popular interval tree [22] and the recently proposed HINT [14, 15] for indexing a

collection of data objects S. Based on the analysis in [15], the two structures represent the best
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Fig. 2. Example of an interval tree

profiles in terms of query performance and storage requirements. Specifically, the interval tree

typically has the lowest space requirements while HINT achieves the highest query throughput.

2.2.1 Interval tree. The interval tree [22] is a binary search tree, which occupies 𝑂 (𝑛) space and
answers selection queries on interval data in 𝑂 (log𝑛 + 𝐾) time, where 𝐾 is the number of query

results. The tree divides the 1D domain hierarchically as follows. We first use the median𝑀1 of the

2𝑛 endpoints of all intervals to define the root 𝑣1 of the tree and partition the set 𝑆 of data intervals

into three sets: the intervals which include𝑀1 are placed in the root, the set of intervals 𝑆𝐿 which

end before 𝑀1 are assigned to the left subtree of the root and the set of intervals 𝑆𝑅 which begin

after 𝑀1 are assigned to the right subtree of the root. The intervals in the root 𝑣1 are placed in

two sorted lists: 𝑣1.𝐿𝑠𝑡 keeps the intervals in increasing order of their 𝑠 .𝑠𝑡𝑎𝑟𝑡 endpoint and 𝑣1 .𝐿𝑒𝑛𝑑

keeps the intervals in decreasing order of their 𝑠 .𝑒𝑛𝑑 endpoint. 𝑆𝐿 and 𝑆𝑅 are divided recursively

using their respective medians 𝑀2 and 𝑀3, to define 𝑣2 and 𝑣3, the left and right children of 𝑣1.

Figure 2 shows an example of an interval tree (bottom) for a set of 14 intervals (top).

Point and range queries can be evaluated as shown by Algorithm 1. Consider the range query

𝑞 = [𝑞.𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑒𝑛𝑑] shown in Figure 2. Since 𝑞.𝑠𝑡𝑎𝑟𝑡 > 𝑀1, we scan 𝑣1.𝐿𝑒𝑛𝑑 to find any intervals in

the root that overlap with 𝑞. As soon as we access one interval (e.g., 𝑠6) for which the end point is

smaller than 𝑞.𝑠𝑡𝑎𝑟𝑡 , we terminate the scan (e.g., 𝑠6.𝑒𝑛𝑑 < 𝑞.𝑠𝑡𝑎𝑟𝑡 ) because subsequent intervals 𝑠

(e.g., 𝑠8, 𝑠7) have an even smaller 𝑠 .𝑒𝑛𝑑 . Condition 𝑞.𝑠𝑡𝑎𝑟𝑡 > 𝑀1 dictates that we have to search

the right subtree, so we access 𝑣3 and compare 𝑀3 to 𝑞. In this case, 𝑀3 is included in 𝑞, so all

intervals assigned to 𝑣3 are guaranteed to overlap with 𝑞. To report them, we can scan any of 𝑣3.𝐿𝑠𝑡

or 𝑣3 .𝐿𝑒𝑛𝑑 . Since 𝑀3 is included in 𝑞, we have to recursively search both subtrees of 𝑣3. To the

left, 𝑀6 < 𝑞.𝑠𝑡𝑎𝑟𝑡 , so we scan 𝑣6 .𝐿𝑒𝑛𝑑 , obtain 𝑠10, and stop the scan at 𝑠9 since 𝑠9 .𝑒𝑛𝑑 < 𝑞.𝑠𝑡𝑎𝑟𝑡 .

To the right, 𝑀7 > 𝑞.𝑠𝑡𝑎𝑟𝑡 , so we scan 𝑣7 .𝐿𝑠𝑡 and obtain 𝑠13 (scanning is stopped at 𝑠14 since

𝑠14.𝑠𝑡𝑎𝑟𝑡 > 𝑞.𝑒𝑛𝑑).

2.2.2 HINT. HINT [14, 15] hierarchically and uniformly divides the domain into 2
ℓ
partitions for

ℓ = 0 to𝑚, defining𝑚 + 1 levels, as shown in Figure 3. Partitions at level ℓ are denoted by 𝑃ℓ,0
to 𝑃ℓ,2ℓ−1. Each interval 𝑠 is normalized, discretized in the [0, 2𝑚−1] domain, and assigned to the

smallest set of partitions from all levels that cover 𝑠 (at most 2 partitions per level). For example, in

Figure 3, intervals 𝑠1, 𝑠3, 𝑠4 are assigned only to partition 𝑃2,0, while interval 𝑠5 to partitions 𝑃3,1 and

𝑃3,2, and intervals 𝑠6, 𝑠8 to partitions 𝑃2,1 and 𝑃3,4. The intervals in each partition 𝑃 are split into two
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ALGORITHM 1: Range query on the interval tree

Input : Interval tree I, query interval 𝑞

Output : set of all intervals that overlap with 𝑞

1 Function Search(node 𝑣 , query interval 𝑞):
2 if 𝑣 .𝑀 < 𝑞.𝑠𝑡𝑎𝑟𝑡 then
3 𝑠 ← 𝑣 .𝐿𝑒𝑛𝑑.𝑓 𝑖𝑟𝑠𝑡 ();
4 while 𝑠 .𝑒𝑛𝑑 ≤ 𝑞.𝑠𝑡𝑎𝑟𝑡 do
5 output 𝑠;
6 𝑠 ← 𝑣 .𝐿𝑒𝑛𝑑.𝑛𝑒𝑥𝑡 ();
7 Search(𝑣 .𝑟𝑖𝑔ℎ𝑡𝑐ℎ𝑖𝑙𝑑, 𝑞);

8 else if 𝑣 .𝑀 > 𝑞.𝑒𝑛𝑑 then
9 𝑠 ← 𝑣 .𝐿𝑠𝑡 .𝑓 𝑖𝑟𝑠𝑡 ();

10 while 𝑠 .𝑠𝑡𝑎𝑟𝑡 ≥ 𝑞.𝑒𝑛𝑑 do
11 output 𝑠;
12 𝑠 ← 𝑣 .𝐿𝑠𝑡 .𝑛𝑒𝑥𝑡 ();
13 Search(𝑣 .𝑙𝑒 𝑓 𝑡𝑐ℎ𝑖𝑙𝑑, 𝑞);

14 else ⊲ 𝑞.𝑠𝑡𝑎𝑟𝑡 ≤ 𝑀 ≤ 𝑞.𝑒𝑛𝑑
15 output all 𝑠 ∈ 𝑣 .𝐿𝑠𝑡 ;
16 Search(𝑣 .𝑙𝑒 𝑓 𝑡𝑐ℎ𝑖𝑙𝑑, 𝑞);
17 Search(𝑣 .𝑟𝑖𝑔ℎ𝑡𝑐ℎ𝑖𝑙𝑑, 𝑞);

18 Search(I .𝑟𝑜𝑜𝑡, 𝑞); ⊲ Traverse the tree, depth-first

divisions (sub-partitions): those that start inside 𝑃 (called originals), denoted by 𝑃𝑂 , and those that

start before 𝑃 (called replicas), denoted by 𝑃𝑅 . For example, intervals 𝑠6, 𝑠8 are in 𝑃
𝑂
2,1 and in 𝑃𝑅

3,4.

Given a selection query 𝑞 = [𝑞.𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑒𝑛𝑑], at each index level ℓ , only the sequence of partitions

𝑃ℓ,𝑖 that overlap with 𝑞 are accessed. For example, for query 𝑞 in Figure 3, the accessed partitions

are gray-shaded. To avoid producing duplicate results and save on unnecessary accesses and

comparisons, originals and replicas divisions are only processed in the first accessed partition at

each level ℓ , while for the remaining partitions only originals are processed. Hence, for query 𝑞 in

Figure 3, in partition 𝑃3,5, we access 𝑃
𝑂
3,5, containing intervals than begin inside 𝑃3,5, including 𝑠10,

and 𝑃𝑅
3,5 which includes any intervals that begin before 𝑃3,5 and end inside it. In 𝑃3,6, we only access

𝑃𝑂
3,6 which includes 𝑠11 and 𝑠12, but do not access 𝑃𝑅

3,6 = {𝑠10}, thus avoiding considering 𝑠10 again.

At each level ℓ , the partitions that overlap a query 𝑞 span from 𝑃ℓ,𝑓 to 𝑃ℓ,𝑙 , where 𝑓 and 𝑙 are the

ℓ-bit prefixes of 𝑞.𝑠𝑡𝑎𝑟𝑡 and 𝑞.𝑒𝑛𝑑 , respectively. For all partitions 𝑃ℓ,𝑖 with 𝑓 < 𝑖 < 𝑙 , we can simply

report all intervals in 𝑃𝑂ℓ,𝑖 (no comparisons are required). To minimize the required comparisons

for 𝑃ℓ,𝑓 and 𝑃ℓ,𝑙 , the search algorithm accesses HINT bottom-up, i.e., from level 𝑚 to level 0. If

𝑃ℓ,𝑓 (resp. 𝑃ℓ,𝑙 ) starts (resp. ends) at the same point as 𝑃ℓ+1,𝑓 (resp. 𝑃ℓ+1,𝑙 ), then no comparisons are

required for 𝑃ℓ,𝑓 (resp. 𝑃ℓ,𝑙 ) and for all 𝑃ℓ ′,𝑓 (resp. 𝑃ℓ ′,𝑙 ), ℓ
′ < ℓ . Given this, the search algorithm

conducts comparisons at just four partitions by expectation [14]. The number of comparisons can

be further reduced by splitting the 𝑃𝑂 division (i.e., originals) of a partition 𝑃 into subdivisions 𝑃𝑂𝑖𝑛

and 𝑃𝑂𝑎𝑓 𝑡
, so that 𝑃𝑂𝑖𝑛

(𝑃𝑂𝑎𝑓 𝑡
) holds the intervals from 𝑃𝑂 that end inside (resp. after) 𝑃 . Similarly,

each 𝑃𝑅 is divided into 𝑃𝑅𝑖𝑛 and 𝑃𝑅𝑎𝑓 𝑡
. For example, in partition 𝑃3,6, intervals 𝑠11 and 𝑠12 are both

“original” because they begin in the subdomain defined by 𝑃3,6, so they are placed in 𝑃𝑂
3,6. Division

𝑃𝑂
3,6 is further subdivided into 𝑃

𝑂𝑖𝑛

3,6
which includes 𝑠11 and 𝑃

𝑂𝑎𝑓 𝑡

3,6
which includes 𝑠12. Algorithm 2
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Fig. 3. Example of HINT

ALGORITHM 2: Range query on HINT

Input :HINT indexH , query interval 𝑞

Output : set of all intervals that overlap with 𝑞

1 foreach level ℓ =𝑚 to 0 do ⊲ traverse index, bottom-up
2 𝑓 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑠𝑡𝑎𝑟𝑡); ⊲ first overlapping partition

3 𝑙 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑒𝑛𝑑); ⊲ last overlapping partition

4 output all 𝑠 ∈ 𝑃𝑂𝑖𝑛

ℓ,𝑓
with 𝑠 .𝑠𝑡𝑎𝑟𝑡 ≤ 𝑞.𝑒𝑛𝑑 ;

5 output all 𝑠 ∈ 𝑃𝑂𝑎𝑓 𝑡

ℓ,𝑓
;

6 output all 𝑠 ∈ 𝑃𝑅𝑖𝑛
ℓ,𝑓

with 𝑞.𝑠𝑡𝑎𝑟𝑡 ≤ 𝑠 .𝑒𝑛𝑑 ;

7 output all 𝑠 ∈ 𝑃𝑅𝑎𝑓 𝑡

ℓ,𝑓
;

8 foreach partition 𝑖 with 𝑓 < 𝑖 < 𝑙 do
9 output all 𝑠 ∈ 𝑃𝑂𝑖𝑛

ℓ,𝑖

⋃
𝑃
𝑂𝑎𝑓 𝑡

ℓ,𝑖
;

10 output all 𝑠 ∈ 𝑃𝑂𝑖𝑛

ℓ,𝑙

⋃
𝑃
𝑂𝑎𝑓 𝑡

ℓ,𝑙
with 𝑠 .𝑠𝑡𝑎𝑟𝑡 ≤ 𝑞.𝑒𝑛𝑑 ;

illustrates the pseudocode for computing range queries with HINT.
8
Observe how the subdivisions

of 𝑃𝑂 and 𝑃𝑅 are processed in a different fashion allowing to reduce the necessary comparisons;

e.g., for the intervals in 𝑃𝑅𝑖𝑛 only their end is checked while for the intervals in 𝑃𝑅𝑎𝑓 𝑡
no checks are

required as they all overlap with the query 𝑞, by definition. Lastly, to further accelerate Lines 4, 6

and 10 where interval endpoints are compared against the query interval 𝑞, the contents of 𝑃𝑂𝑖𝑛

and 𝑃𝑂𝑎𝑓 𝑡
are sorted by 𝑠 .𝑠𝑡𝑎𝑟𝑡 and of 𝑃𝑅𝑖𝑛 , by 𝑠 .𝑒𝑛𝑑 , similar to the interval tree lists 𝐿𝑠𝑡 and 𝐿𝑒𝑛𝑑 .

3 Methodology
The naive approach of processing relevance queries (Definitions 2.1 and 2.2) is to use an index, such

as the interval tree or HINT (described in Section 2.2), to retrieve all data intervals that overlap
with the query interval 𝑞. For every such interval 𝑠 , we can compute 𝑅𝑒𝑙 (𝑠, 𝑞) and either verify

𝑅𝑒𝑙 (𝑠, 𝑞) ≥ 𝜃 (Definition 2.1) or keep track (in a heap) of the 𝑘 intervals with the highest 𝑅𝑒𝑙 (𝑠, 𝑞)
(Definition 2.2). However, this naive approach may access more data than necessary. In this section,

we present our methodology which prunes partitions that cannot produce results and reduces

computations in accessed partitions as much as possible.

8
For simplicity, we omitted the special case when the first and the last relevant partitions coincide, i.e., 𝑓 = 𝑙 .
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Fig. 4. Proposed relevance framework

3.1 Overview
Figure 4 illustrates our framework and the steps of query evaluation. In a preprocessing (offline)

phase, i.e., before any query arrives, for each partition (e.g., interval tree node or HINT partition),

we compute the minimum and maximum start and end points of any interval in the partition. As

we discuss in Section 3.2, these statistics can be readily available in the partitions.

Then, for a threshold query 𝑞 (Definition 2.1), where we search for data intervals 𝑠 having

𝑅𝑒𝑙 (𝑠, 𝑞) ≥ 𝜃 , we use the index to identify the partitions that may include intervals that overlap

with 𝑞; for each such partition 𝑃 , we use the minimum and maximum statistics for the start/end of

intervals in 𝑃 to compute 𝑈𝐵(𝑃) and 𝐿𝐵(𝑃), i.e., the upper and lower bound of 𝑅𝑒𝑙 (𝑠, 𝑞) for any
𝑠 ∈ 𝑃 , respectively, in 𝑂 (1) time, as explained in Section 3.3. If𝑈𝐵(𝑃) < 𝜃 holds, we can prune the

entire partition, without accessing any data in it. If 𝐿𝐵(𝑃) ≥ 𝜃 , we report all data intervals in 𝑃
as results without having to compute their intersection with 𝑞 and to conduct any comparisons.

If neither of the above holds, then we have 𝐿𝐵(𝑃) < 𝜃 ≤ 𝑈𝐵(𝑃) and we do have to access the

partition and for each 𝑠 ∈ 𝑃 that intersects 𝑞 compute 𝑅𝑒𝑙 (𝑠, 𝑞) and check if 𝑅𝑒𝑙 (𝑠, 𝑞) ≥ 𝜃 .
For a ranking query 𝑞 (Definition 2.2), we use again the index to identify all partitions with

intervals that may overlap with 𝑞, but do not access each of them immediately. Instead, we sort

all these partitions 𝑃 in decreasing order of their𝑈𝐵(𝑃), i.e., the upper bound of 𝑅𝑒𝑙 (𝑠, 𝑞) for any
𝑠 ∈ 𝑃 ; we break ties by 𝐿𝐵(𝑃). Then, we start processing the partitions in priority order, access each

data interval 𝑠 in each partition, compute their relevance score 𝑅𝑒𝑙 (𝑠, 𝑞) to 𝑞, and keep track of the

𝑘 intervals with the largest 𝑅𝑒𝑙 (𝑠, 𝑞) in a min-priority query Q. If the next partition 𝑃 to process

has𝑈𝐵(𝑃) ≤ 𝜃 , where 𝜃 is the smallest 𝑅𝑒𝑙 (𝑠, 𝑞) in Q, we stop, reporting Q as the top-𝑘 results.

3.2 Min/Max statistics in partitions
For each partition, our framework needs four numbers: the minimum and maximum 𝑠𝑡𝑎𝑟𝑡 and

the minimum and maximum 𝑒𝑛𝑑 of the intervals in the partition. For example, for partition 𝑃
𝑂𝑖𝑛

2,0

in Figure 3, we have𝑚𝑖𝑛𝑠𝑡 = 𝑠1 .𝑠𝑡𝑎𝑟𝑡 ,𝑚𝑎𝑥𝑠𝑡 = 𝑠4.𝑠𝑡𝑎𝑟𝑡 and𝑚𝑖𝑛𝑒𝑛𝑑 = 𝑠1.𝑒𝑛𝑑 ,𝑚𝑎𝑥𝑒𝑛𝑑 = 𝑠4.𝑒𝑛𝑑 . In

principle, these bounds can be obtained from respective statistics which we can maintain together

with the index. They take up to 𝑂 (1) space per partition, so their space requirements are bounded

by the number of non-empty partitions.
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For the interval tree, there is no space or maintenance overhead for the min/max statistics. Recall

that in each node 𝑣 , the contained intervals are kept in two lists: 𝑣 .𝐿𝑠𝑡 and 𝑣 .𝐿𝑒𝑛𝑑 , sorted by their

𝑠𝑡𝑎𝑟𝑡 and by their 𝑒𝑛𝑑 point, respectively. Hence, 𝑣 .𝑚𝑖𝑛𝑠𝑡 , 𝑣 .𝑚𝑎𝑥𝑠𝑡 and 𝑣 .𝑚𝑖𝑛𝑒𝑛𝑑 , 𝑣 .𝑚𝑎𝑥𝑒𝑛𝑑 equal

the first and the last entry in 𝑣 .𝐿𝑠𝑡 and 𝑣 .𝐿𝑒𝑛𝑑 , respectively. When a new interval is inserted to 𝑣

or an existing interval is deleted from 𝑣 , 𝑣 .𝐿𝑠𝑡 and 𝑣 .𝐿𝑒𝑛𝑑 are updated and the order in each list is

maintained, so the min/max statistics in 𝑣 are still obtained from the first and last entries in the

lists.

In HINT, for a partition 𝑃 , we distinguish between two cases depending on whether the contents

of the 𝑃𝑂𝑖𝑛
, 𝑃𝑂𝑎𝑓 𝑡

and 𝑃𝑅𝑖𝑛 subdivisions are sorted or not (see Section 2.2.2). If no sorting is imposed,

we store and maintain all four𝑚𝑖𝑛𝑠𝑡 ,𝑚𝑎𝑥𝑠𝑡 and𝑚𝑖𝑛𝑒𝑛𝑑 ,𝑚𝑎𝑥𝑒𝑛𝑑 statistics for every subdivision.

When a new interval 𝑠 is added to a subdivision, it suffices to compare 𝑠 .𝑠𝑡𝑎𝑟𝑡 and 𝑠 .𝑒𝑛𝑑 against

these four numbers and update the statistics if needed. When an existing interval is deleted, we

need to scan the contents of the subdivision to update the statistics, only if 𝑠 .𝑠𝑡𝑎𝑟𝑡 = 𝑚𝑖𝑛𝑠𝑡 or

𝑠 .𝑠𝑡𝑎𝑟𝑡 = 𝑚𝑎𝑥𝑠𝑡 and 𝑠 .𝑒𝑛𝑑 = 𝑚𝑖𝑛𝑒𝑛𝑑 or 𝑠 .𝑒𝑛𝑑 = 𝑚𝑎𝑥𝑒𝑛𝑑 . Since deletion requires scanning the

subdivision to find 𝑠 and delete it, asymptotically, updating the statistics does not impose an

overhead to the update process. On the other hand, when sorting is used, we explicitly store and

update only𝑚𝑖𝑛𝑒𝑛𝑑 ,𝑚𝑎𝑥𝑒𝑛𝑑 for the 𝑃𝑂𝑖𝑛
, 𝑃𝑂𝑎𝑓 𝑡

subdivisions, which are sorted by the 𝑠𝑡𝑎𝑟𝑡 point,

and𝑚𝑖𝑛𝑠𝑡 ,𝑚𝑎𝑥𝑠𝑡 for 𝑃𝑅𝑖𝑛 which is sorted by 𝑒𝑛𝑑 , similar to the interval tree and lists 𝐿𝑖𝑛 and 𝐿𝑒𝑛𝑑 ,

respectively. Note that 𝑃𝑅𝑎𝑓 𝑡
employs no sorting and so, all four bounds are stored and maintained.

Overall, for HINT, (1) the time complexity of updates is not affected by the maintenance of min/max

statistics and (2) we need 𝑂 (1) space per non-empty subdivision to store its min/max statistics.

3.3 Computing relevance bounds
Given a partition 𝑃 of an interval index, a query interval 𝑞, and a definition 𝑅𝑒𝑙 for relevance (e.g.,

Equation 3), our framework computes an upper bound𝑈𝐵(𝑃) and a lower bound 𝐿𝐵(𝑃) of 𝑅𝑒𝑙 (𝑠, 𝑞)
for any data interval 𝑠 ∈ 𝑃 , to be used for potentially pruning or ranking partitions.

3.3.1 Upper relevance bounds. Our first theoretical result is that, in all definitions of relevance, the

best possible interval in a partition is the shortest possible interval in the partition that maximizes
the absolute overlap with the query interval. This interval can be derived from the minimum and

maximum statistics (see Section 3.2) and the query interval. More formally:

Theorem 3.1. Let𝑚𝑖𝑛𝑠𝑡 and𝑚𝑎𝑥𝑠𝑡 (resp.𝑚𝑖𝑛𝑒𝑛𝑑 and𝑚𝑎𝑥𝑒𝑛𝑑) be the smallest and largest start
(resp. end) points of the intervals in a partition 𝑃 . In addition, let 𝑞 be a query interval. The data interval
𝑠𝑢𝑏 in 𝑃 that gives the largest possible relevance score for any definition of relevance 𝑅𝑒𝑙 (𝑠, 𝑞) has
𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡 = min{max(𝑞.𝑠𝑡𝑎𝑟𝑡,𝑚𝑖𝑛𝑠𝑡),𝑚𝑎𝑥𝑠𝑡} and 𝑠𝑢𝑏 .𝑒𝑛𝑑 = max{min(𝑞.𝑒𝑛𝑑,𝑚𝑎𝑥𝑒𝑛𝑑),𝑚𝑖𝑛𝑒𝑛𝑑}.

Proof. (Sketch.) Provided that we do not know the contents of 𝑃 , but only its min/max sta-

tistics (i.e., 𝑚𝑖𝑛𝑠𝑡 , 𝑚𝑎𝑥𝑠𝑡 , 𝑚𝑖𝑛𝑒𝑛𝑑 , and 𝑚𝑎𝑥𝑒𝑛𝑑), we will first prove that 𝑠𝑢𝑏 is the shortest in-

terval in 𝑃 which maximizes the overlap with 𝑞. Based on the statistics, 𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡 ranges within

[𝑚𝑖𝑛𝑠𝑡,𝑚𝑎𝑥𝑠𝑡]. If 𝑞.𝑠𝑡𝑎𝑟𝑡 < 𝑚𝑖𝑛𝑠𝑡 , then 𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡 should be𝑚𝑖𝑛𝑠𝑡 because any value greater than

𝑚𝑖𝑛𝑠𝑡 will result in smaller overlap, regardless where 𝑞.𝑒𝑛𝑑 lies. If 𝑚𝑖𝑛𝑠𝑡 ≤ 𝑞.𝑠𝑡𝑎𝑟𝑡 ≤ 𝑚𝑎𝑥𝑠𝑡 ,

to maximize overlap 𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡 should be smaller than or equal to 𝑞.𝑠𝑡𝑎𝑟𝑡 , so, the shortest in-

terval that maximizes the overlap with 𝑞 should start at 𝑞.𝑠𝑡𝑎𝑟𝑡 . Finally, if 𝑞.𝑠𝑡𝑎𝑟𝑡 ≤ 𝑚𝑎𝑥𝑠𝑡 ,

𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡 should be𝑚𝑎𝑥𝑠𝑡 , as setting it to a smaller value does not increase the overlap. The three

cases, exemplified in Figure 5, can be combined to 𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡 = min{max(𝑞.𝑠𝑡𝑎𝑟𝑡,𝑚𝑖𝑛𝑠𝑡),𝑚𝑎𝑥𝑠𝑡}.
𝑠𝑢𝑏 .𝑒𝑛𝑑 = max{min(𝑞.𝑒𝑛𝑑,𝑚𝑎𝑥𝑒𝑛𝑑),𝑚𝑖𝑛𝑒𝑛𝑑} can be proved symmetrically. Overall, 𝑠𝑢𝑏 is the

shortest possible interval 𝑠 ∈ 𝑃 having maximal intersection |𝑠 ∩ 𝑞 | with 𝑞.
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Proof of upper bound

• best = [min{max(q.st,minst),maxst}, 
max{min(q.end,maxend),minend}]

q

minst maxst

sub.start

q

minst maxst

sub.start

q

minst maxst

sub.start

Fig. 5. Three cases of 𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡

Now, we will show, for all definitions of relevance 𝑅𝑒𝑙 (𝑠, 𝑞), that if we change the endpoints of
𝑠𝑢𝑏 within their allowable bounds, 𝑅𝑒𝑙 (𝑠, 𝑞) cannot increase. For 𝑅𝑒𝑙𝑎 (𝑠, 𝑞) = |𝑠∩𝑞 | and 𝑅𝑒𝑙𝑟𝑞 (𝑠, 𝑞) =
|𝑠 ∩ 𝑞 |/|𝑞 |, the proof is straightforward, as we have already shown that 𝑠𝑢𝑏 is the interval that

maximizes |𝑠 ∩ 𝑞 |. Hence, changing endpoints of 𝑠𝑢𝑏 can only decrease the relevance. Regarding

𝑅𝑒𝑙𝑟𝑠 (𝑠, 𝑞) = |𝑠 ∩ 𝑞 |/|𝑠 |, reducing 𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡 or increasing 𝑠𝑢𝑏 .𝑒𝑛𝑑 does not increase |𝑠 ∩ 𝑞 |, but
increases |𝑠 |, so relevance decreases. Increasing 𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡 or decreasing 𝑠𝑢𝑏 .𝑒𝑛𝑑 reduces the length

of 𝑠 , say by 𝑎, decreasing the denominator |𝑠 | by 𝑎. The numerator |𝑠 ∩𝑞 | can decrease by at most 𝑎.

Hence, the fraction may only decrease as the numerator is smaller than or equal to the denominator

and 𝑥/𝑦 ≥ (𝑥 −𝑎)/(𝑦 −𝑎) for all positive 𝑥,𝑦, 𝑎, where 𝑥 ≤ 𝑦. Finally, for 𝑅𝑒𝑙𝑟 (𝑠, 𝑞) = |𝑠 ∩𝑞 |/|𝑠 ∪𝑞 |,
reducing 𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡 or increasing 𝑠𝑢𝑏 .𝑒𝑛𝑑 does not increase |𝑠 ∩ 𝑞 |, but can only increase |𝑠 ∪ 𝑞 |.
Increasing 𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡 or decreasing 𝑠𝑢𝑏 .𝑒𝑛𝑑 can reduce the numerator |𝑠 ∩ 𝑞 | and the denominator

|𝑠 ∪ 𝑞 | by at most the same value. □

Theorem 3.1 is an important result, because it allows us to derive upper bounds for the partitions

that overlap with the query 𝑞 in an efficient and unified manner, regardless the type of the interval

index and the relevance measure. We simply have to compute 𝑠𝑢𝑏 and use 𝑅𝑒𝑙 (𝑠𝑢𝑏, 𝑞) as the upper
bound𝑈𝐵(𝑃).

3.3.2 Lower relevance bounds. Lower relevance bounds for the intervals in a partition 𝑃 can be also

derived from the minimum and maximum statistics in 𝑃 . Similar to the 𝑠𝑢𝑏 for the upper relevance

bound, the goal is to determine the data interval 𝑠𝑙𝑏 in 𝑃 which minimizes the |𝑠𝑙𝑏 ∩𝑞 | overlap while
maximizing |𝑠𝑙𝑏 ∪ 𝑞 | for 𝑅𝑒𝑙𝑟 and |𝑠𝑙𝑏 | for 𝑅𝑒𝑙𝑟𝑞 . Under this premise, the process of determining 𝑠𝑙𝑏
heavily depends on the relevance definition and thus, we devise a case-based solution for 𝐿𝐵(𝑃).

Theorem 3.2. Let𝑚𝑖𝑛𝑠𝑡 and𝑚𝑎𝑥𝑠𝑡 (resp.𝑚𝑖𝑛𝑒𝑛𝑑 and𝑚𝑎𝑥𝑒𝑛𝑑) be the smallest and largest start
(resp. end) points of the intervals in a partition 𝑃 . Assume that𝑚𝑎𝑥𝑠𝑡 ≥ 𝑚𝑖𝑛𝑒𝑛𝑑 . Also, let 𝑞 be a query
interval. The data interval 𝑠𝑙𝑏 in 𝑃 that gives the lowest possible relevance score for 𝑅𝑒𝑙𝑎 (𝑠, 𝑞) and
𝑅𝑒𝑙𝑟𝑞 (𝑠, 𝑞) has 𝑠𝑙𝑏 .𝑠𝑡𝑎𝑟𝑡 =𝑚𝑎𝑥𝑠𝑡 and 𝑠𝑙𝑏 .𝑒𝑛𝑑 =𝑚𝑖𝑛𝑒𝑛𝑑 .

Proof. 𝑠𝑙𝑏 corresponds to the shortest possible valid interval in 𝑃 . Also, 𝑠𝑙𝑏 is covered by all valid

intervals in 𝑃 . Hence, |𝑠𝑙𝑏 ∩ 𝑞 | is the smallest possible overlap between any interval in 𝑃 and 𝑞. □

Following Theorem 3.2, we simply set 𝐿𝐵(𝑃) = 𝑅𝑒𝑙𝑎 (𝑠𝑙𝑏, 𝑞) or 𝐿𝐵(𝑃) = 𝑅𝑒𝑙𝑟𝑞 (𝑠𝑙𝑏, 𝑞), depending on

the relevance definition.

Note that if𝑚𝑎𝑥𝑠𝑡 > 𝑚𝑖𝑛𝑒𝑛𝑑 , 𝑠𝑙𝑏 is invalid as its start point is greater than its end point. In this

case, |𝑠 ∩ 𝑞 | in 𝐿𝐵(𝑃) is the smallest possible interval length, if 𝑞 fully covers [𝑚𝑖𝑛𝑠𝑡,𝑚𝑎𝑥𝑒𝑛𝑑] or
set 𝐿𝐵(𝑃) = 0, otherwise. In both situations, 𝐿𝐵(𝑃) corresponds to a very small (and hence useless

lower bound), so for partitions where𝑚𝑎𝑥𝑠𝑡 > 𝑚𝑖𝑛𝑒𝑛𝑑 (i.e., at the lowest level of HINT), it is not

advisable to compute and use 𝐿𝐵(𝑃) for 𝑅𝑒𝑙𝑎 or 𝑅𝑒𝑙𝑟𝑞 .
For the relative 𝑅𝑒𝑙𝑟 (𝑠, 𝑞) and the data-relative 𝑅𝑒𝑙𝑟𝑑 definitions, 𝐿𝐵(𝑃) cannot be determined

by a single 𝑠𝑙𝑏 , but by the four extreme cases of 𝑠𝑙𝑏 considering all four combinations of the𝑚𝑖𝑛𝑠𝑡 ,

𝑚𝑎𝑥𝑠𝑡 and𝑚𝑖𝑛𝑒𝑛𝑑 ,𝑚𝑎𝑥𝑒𝑛𝑑 bounds.
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Proof of lower bound for rel_data, rel_jaccard

• sub = [min{max(q.st,minst),maxst}, 
max{min(q.end,maxend),minend}]
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slb

q

minst maxst

sub.start

minend maxend

sub.end
slb

q

minst maxst

sub.start

minend maxend

sub.end
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slb (Relr)
slb (Relr,d)

Fig. 6. Four cases of lower bounds 𝑅𝑒𝑙𝑟 and 𝑅𝑒𝑙𝑟𝑑

Theorem 3.3. Let𝑚𝑖𝑛𝑠𝑡 and𝑚𝑎𝑥𝑠𝑡 (resp.𝑚𝑖𝑛𝑒𝑛𝑑 and𝑚𝑎𝑥𝑒𝑛𝑑) be the smallest and largest start
(resp. end) points of the intervals in a partition 𝑃 . Assume that 𝑚𝑎𝑥𝑠𝑡 ≥ 𝑚𝑖𝑛𝑒𝑛𝑑 . Also, let 𝑞 be a
query interval. The lower relevance bound for the relative 𝑅𝑒𝑙𝑟 (𝑠, 𝑞) and the data-relative 𝑅𝑒𝑙𝑟𝑑 (𝑠, 𝑞)
definitions is computed by:

𝐿𝐵(𝑃) = min{𝑅𝑒𝑙 ( [𝑚𝑖𝑛𝑠𝑡,𝑚𝑖𝑛𝑒𝑛𝑑], 𝑞),
𝑅𝑒𝑙 ( [𝑚𝑖𝑛𝑠𝑡,𝑚𝑎𝑥𝑒𝑛𝑑], 𝑞),
𝑅𝑒𝑙 ( [𝑚𝑎𝑥𝑠𝑡,𝑚𝑖𝑛𝑒𝑛𝑑], 𝑞),
𝑅𝑒𝑙 ( [𝑚𝑎𝑥𝑠𝑡,𝑚𝑎𝑥𝑒𝑛𝑑], 𝑞)}

Proof. (Sketch.) Assume 𝑠 is any of the {[𝑚𝑖𝑛𝑠𝑡,𝑚𝑖𝑛𝑒𝑛𝑑], [𝑚𝑖𝑛𝑠𝑡, 𝑚𝑎𝑥𝑒𝑛𝑑], [𝑚𝑎𝑥𝑠𝑡,𝑚𝑖𝑛𝑒𝑛𝑑],
[𝑚𝑎𝑥𝑠𝑡,𝑚𝑎𝑥𝑒𝑛𝑑]}. For each one of the two definitions of 𝑅𝑒𝑙 , i.e., 𝑅𝑒𝑙𝑟 or 𝑅𝑒𝑙𝑟𝑑 , we can prove that

if we move 𝑠 .𝑠𝑡𝑎𝑟𝑡 toward 𝑠𝑢𝑏 .𝑠𝑡𝑎𝑟𝑡 and/or move 𝑠 .𝑒𝑛𝑑 toward 𝑠𝑢𝑏 .𝑒𝑛𝑑 , where 𝑠𝑢𝑏 is defined by

Theorem 3.1, 𝑅𝑒𝑙 (𝑠, 𝑞) can only increase; details are case-based and they are omitted for brevity.

Hence, each of the four possible instances of 𝑠 gives a local lower bound and the global lower bound

is the lowest of the local ones. □

Finally, like before, the case where 𝑚𝑎𝑥𝑠𝑡 > 𝑚𝑖𝑛𝑒𝑛𝑑 should be treated specially. If 𝑞 covers

[𝑚𝑖𝑛𝑠𝑡,𝑚𝑎𝑥𝑒𝑛𝑑] the lower bound is 1 for 𝑅𝑒𝑙𝑟𝑑 or derived using the minimum possible interval

length for 𝑅𝑒𝑙𝑟 . If 𝑞 does not cover [𝑚𝑖𝑛𝑠𝑡,𝑚𝑎𝑥𝑒𝑛𝑑], 𝐿𝐵(𝑃) = 0. Figure 6 exemplifies some cases of

applying Theorem 3.3 (𝑚𝑎𝑥𝑠𝑡 ≥ 𝑚𝑖𝑛𝑒𝑛𝑑) to derive 𝑠𝑙𝑏 , i.e., the interval that gives the lower bound,

for 𝑅𝑒𝑙𝑟𝑑 and 𝑅𝑒𝑙𝑟 . Observe that, in both definitions of relevance, if we move the endpoints of 𝑠𝑙𝑏
towards the endpoints of the interval 𝑠𝑢𝑏 (that gives𝑈𝐵(𝑃)), relevance cannot decrease.

3.4 Query processing algorithms
Finally, we show how to integrate the lower and upper relevance bounds of the index partitions in

the computation of threshold-based and ranking relevance queries.

3.4.1 Threshold-based queries. We start off with 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦. For the interval tree, we rely on the

depth-first traversal depicted in Algorithm 1. Algorithm 3 shows parts of the modifications to

Algorithm 1 for the 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦, highlighted by gray shade. We detail the necessary modifications

when 𝑣 .𝑀 < 𝑞.𝑠𝑡𝑎𝑟𝑡 ; similar changes are made when 𝑀 > 𝑞.𝑒𝑛𝑑 or 𝑞.𝑠𝑡𝑎𝑟𝑡 ≤ 𝑀 ≤ 𝑞.𝑒𝑛𝑑 . For
each visited node 𝑣 , we first compute 𝑈𝐵(𝑣) following the procedure outlined in Section 3.3.1. If

𝑈𝐵(𝑣) ≥ 𝜃 , we compute 𝐿𝐵(𝑣), following Section 3.3.2 and if 𝐿𝐵(𝑣) ≥ 𝜃 we directly report all

contents of 𝑣 (e.g., taken from 𝑣 .𝐿𝑒𝑛𝑑) without incurring any computations. Otherwise, depending
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ALGORITHM 3: 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 on the interval tree

Input : Interval tree I, query interval 𝑞, threshold 𝜃

Output :all intervals that overlap with 𝑞 and 𝑅𝑒𝑙 (𝑠, 𝑞) ≥ 𝜃
1 Function Search(node 𝑣 , query interval 𝑞, threshold 𝜃 )
2 if 𝑣 .𝑀 < 𝑞.𝑠𝑡𝑎𝑟𝑡 then
3 if 𝑈𝐵(𝑣) ≥ 𝜃 then
4 if 𝐿𝐵(𝑣) ≥ 𝜃 then
5 output all 𝑠 ∈ 𝑣 .𝐿𝑒𝑛𝑑 ;
6 else
7 𝑠 ← 𝑣 .𝐿𝑒𝑛𝑑.𝑓 𝑖𝑟𝑠𝑡 ();
8 while 𝑠 .𝑒𝑛𝑑 ≤ 𝑞.𝑠𝑡𝑎𝑟𝑡 do
9 if 𝑅𝑒𝑙 (𝑠, 𝑞) ≥ 𝜃 then
10 output 𝑠;
11 𝑠 ← 𝑣 .𝐿𝑒𝑛𝑑.𝑛𝑒𝑥𝑡 ();

12 Search(𝑣 .𝑟𝑖𝑔ℎ𝑡𝑐ℎ𝑖𝑙𝑑, 𝑞, 𝜃 );

13 ... ⊲ Similar changes to Lines 8–17 in Algorithm 1

14 Search(I .𝑟𝑜𝑜𝑡, 𝑞, 𝜃 ); ⊲ Traverse the tree, depth-first

on the value of𝑀 w.r.t. 𝑞, we traverse 𝑣 .𝐿𝑠𝑡 or 𝑣 .𝐿𝑒𝑛𝑑 and conduct comparisons and computations

of 𝑅𝑒𝑙 (𝑠, 𝑞) for the intervals 𝑠 ∈ 𝑣 that overlap with 𝑞. For example, consider the interval tree and

the query 𝑞 in Figure 2 and assume that we want to retrieve relevant intervals to 𝑞 based on 𝑅𝑒𝑙𝑟𝑞
using 𝜃 = 0.3. When accessing the root of the tree (𝑣1), we first compute the interval 𝑠𝑢𝑏 that gives

the upper relevance bound of any interval in 𝑣1 using 𝑣1.𝑚𝑖𝑛𝑠𝑡 = 𝑠6.𝑠𝑡𝑎𝑟𝑡 , 𝑣1 .𝑚𝑎𝑥𝑒𝑛𝑑 = 𝑠6.𝑒𝑛𝑑 .

According to Theorem 3.1, 𝑠𝑢𝑏 = [𝑣1 .𝑚𝑖𝑛𝑠𝑡, 𝑣1.𝑚𝑎𝑥𝑒𝑛𝑑], so the upper relevance bound 𝑈𝐵(𝑣1)
for 𝑣1 is 𝑅𝑒𝑙𝑟𝑞 (𝑠𝑢𝑏, 𝑞) = 0. This means that we do not have to access any intervals in 𝑣3 (i.e., the

condition of Line 3 in Algorithm 3 is false). Then, we recursively search the right child of 𝑣1
(Line 12) and for 𝑣3, we compute𝑈𝐵(𝑣3) and 𝐿𝐵(𝑣3), using Theorems 3.1 and 3.2, respectively, with

𝑠𝑢𝑏 = [𝑠11.𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑒𝑛𝑑] and 𝑠𝑙𝑏 = [𝑠12.𝑠𝑡𝑎𝑟𝑡, 𝑠11.𝑒𝑛𝑑]. Both bounds are greater than 𝜃 = 0.3, hence

we know that all intervals in 𝑣3 are query results (Line 5). The algorithm now searches recursively

both children of 𝑣3, i.e., 𝑣6 and 𝑣7. For 𝑣6, 𝑠𝑢𝑏 = 𝑠10, so 𝑈𝐵(𝑣6) < 𝜃 and the contents of 𝑣6 are not

accessed. For 𝑣7, 𝑠𝑢𝑏 = [𝑠13.𝑠𝑡𝑎𝑟𝑡, 𝑠14.𝑒𝑛𝑑] and𝑈𝐵(𝑣7) > 𝜃 , but 𝑠𝑙𝑏 = 𝑠14 and 𝐿𝐵(𝑣7) = 0, hence, the

intervals in 𝑣7 are accessed to compute their relevance to 𝑞; from these 𝑠13 is reported as result.

For HINT, we accordingly adapt Algorithm 2 to include the additional checks for verifying

overlapping intervals and for the relevance bounds. Algorithms 4 exemplifies these modifications

for Line 4 in Algorithm 2 and the 𝑃
𝑂𝑖𝑛

ℓ,𝑓
subdivision of the first relevant partition on each level,

again highlighted by gray shade. The subdivision is considered only if𝑈𝐵(𝑃𝑂𝑖𝑛

ℓ,𝑓
) ≥ 𝜃 holds for its

upper relevance bound. If 𝐿𝐵(𝑃𝑂𝑖𝑛

ℓ,𝑓
) ≥ 𝜃 also holds for the lower relevance bound then all contained

intervals can be directly output; their overlap with the query is guaranteed. Otherwise (i.e., if

𝐿𝐵(𝑃𝑂𝑖𝑛

ℓ,𝑓
) < 𝜃 ), we need to compute for every overlapping interval 𝑠 (i.e., with 𝑠 .𝑠𝑡𝑎𝑟𝑡 ≥ 𝑞.𝑒𝑛𝑑) its

relevance score and output 𝑠 only if 𝑅𝑒𝑙 (𝑠, 𝑞) ≥ 𝜃 . As an example consider query 𝑞 and HINT in

Figure 3 using 𝑅𝑒𝑙𝑟𝑞 and 𝜃 = 0.3. Recall that the gray-shaded partitions (their subdivisions) in the

figure are the ones to be accessed in a bottom-up fashion, since they overlap with the query range.

From these partitions, subdivisions 𝑃
𝑂𝑎𝑓 𝑡

3,5
, 𝑃

𝑂𝑖𝑛

3,7
, 𝑃

𝑂𝑖𝑛

2,2
, 𝑃

𝑅𝑖𝑛
2,2

, are pruned (as per Line 4 of Algorithm 4)
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ALGORITHM 4: 𝜃𝑅𝑒𝑙𝑄𝑞𝑢𝑒𝑟𝑦 on HINT

Input :HINT indexH , query interval 𝑞

Output : set of all intervals that overlap with 𝑞

1 foreach level ℓ =𝑚 to 0 do ⊲ traverse index, bottom-up
2 𝑓 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑠𝑡𝑎𝑟𝑡); ⊲ first overlapping partition

3 𝑙 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑒𝑛𝑑); ⊲ last overlapping partition

4 if 𝑈𝐵(𝑃𝑂𝑖𝑛

ℓ,𝑓
) ≥ 𝜃 then

5 if 𝐿𝐵(𝑃𝑂𝑖𝑛

ℓ,𝑓
) ≥ 𝜃 then

6 output all 𝑠 ∈ 𝑃𝑂𝑖𝑛

ℓ,𝑓
;

7 else
8 output all 𝑠 ∈ 𝑃𝑂𝑖𝑛

ℓ,𝑓
with 𝑠 .𝑠𝑡𝑎𝑟𝑡 ≤𝑞.𝑒𝑛𝑑 and 𝑅𝑒𝑙 (𝑠, 𝑞) ≥𝜃 ;

9 ... ⊲ Similar changes to Lines 5-10 in Algorithm 2

ALGORITHM 5: 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 on the interval tree

Input : Interval tree I, query interval 𝑞, number of results 𝑘

Output :𝑘 intervals that overlap with 𝑞, having the highest 𝑅𝑒𝑙

1 Function Search(node 𝑣 , query interval 𝑞, min-priority queue Q, number of results 𝑘)
2 if 𝑣 .𝑀 < 𝑞.𝑠𝑡𝑎𝑟𝑡 then
3 if 𝑈𝐵(𝑣) > 𝑅𝑒𝑙 (Q .𝑡𝑜𝑝 (), 𝑞) then
4 𝑠 ← 𝑣 .𝐿𝑒𝑛𝑑.𝑓 𝑖𝑟𝑠𝑡 ();
5 while 𝑠 .𝑒𝑛𝑑 ≤ 𝑞.𝑠𝑡𝑎𝑟𝑡 do
6 if 𝑅𝑒𝑙 (𝑠, 𝑞) > 𝑅𝑒𝑙 (Q .𝑡𝑜𝑝 (), 𝑞) then
7 add 𝑠 to Q; ⊲ Update result

8 if |𝑄 | > 𝑘 then
9 remove Q .𝑡𝑜𝑝 ();

10 𝑠 ← 𝑣 .𝐿𝑒𝑛𝑑.𝑛𝑒𝑥𝑡 ();

11 Search(𝑣 .𝑟𝑖𝑔ℎ𝑡𝑐ℎ𝑖𝑙𝑑, 𝑞,Q, 𝑘);

12 ... ⊲ Similar changes to Lines 8–17 in Algorithm 1

13 initialize min-priority queue Q; ⊲ top-𝑘 list for result

14 Search(I .𝑟𝑜𝑜𝑡, 𝑞,Q, 𝑘); ⊲ Traverse the tree, depth-first

15 output Q;

because their𝑈𝐵(𝑃) (derived from the corresponding intervals computed using Theorem 3.1) are

smaller than 𝜃 . For subdivisions 𝑃
𝑂𝑖𝑛

3,6
, 𝑃

𝑂𝑎𝑓 𝑡

3,6
and 𝑃

𝑂𝑖𝑛

2,3
, all contents are reported as results (as per

Lines 5–6 of Algorithm 4), because their lower bounds (computed with the help of Theorem 3.2)

exceed 𝜃 .

3.4.2 Ranking queries. We next discuss 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦. For the interval tree, we can still capitalize on

the depth-first approach of Algorithm 1, extended to filter out nodes using the upper relevance

bound 𝑈𝐵(𝑃); lower bounds are not useful in this context. The key idea is to maintain the 𝑘

intervals with the highest relevance scores seen so far inside a min-priority queue Q, which will
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ALGORITHM 6: 𝑘𝑅𝑒𝑙𝑄𝑞𝑢𝑒𝑟𝑦 on HINT

Input :HINT indexH , query interval 𝑞, number of results 𝑘

Output :𝑘 intervals that overlap with 𝑞, having the highest 𝑅𝑒𝑙

1 initialize min-priority queue Q; ⊲ top-𝑘 list for result

2 foreach level ℓ =𝑚 to 0 do ⊲ traverse index, bottom-up
3 𝑓 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑠𝑡𝑎𝑟𝑡); ⊲ first overlapping partition

4 𝑙 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 (ℓ, 𝑞.𝑒𝑛𝑑); ⊲ last overlapping partition

5 if 𝑈𝐵(𝑃𝑂𝑖𝑛

ℓ,𝑓
) > 𝑅𝑒𝑙 (Q .𝑡𝑜𝑝 (), 𝑞) then

6 foreach interval 𝑠 ∈ 𝑃𝑂𝑖𝑛

ℓ,𝑓
with 𝑠 .𝑠𝑡𝑎𝑟𝑡 ≤ 𝑞.𝑒𝑛𝑑 do

7 if 𝑅𝑒𝑙 (𝑠, 𝑞) > 𝑅𝑒𝑙 (Q .𝑡𝑜𝑝 (), 𝑞) then
8 add 𝑠 to Q; ⊲ Update result

9 if |𝑄 | > 𝑘 then
10 remove Q .𝑡𝑜𝑝 ();

11 ... ⊲ Similar changes to Lines 5-10 in Algorithm 2

12 output Q;

eventually contain the final result. Under this premise, the relevance 𝑅𝑒𝑙 (Q .𝑡𝑜𝑝 (), 𝑞) of the top
element in Q (i.e., the lowest relevance in Q) can be used for pruning similar to threshold 𝜃 for

𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦. Algorithm 5 presents the pseudocode of this approach; for the interest of space, we

again only discuss the case of 𝑣 .𝑀 < 𝑞.𝑠𝑡𝑎𝑟𝑡 . In between Lines 3–10, the algorithm scans the 𝑣 .𝐿𝑒𝑛𝑑

list of the current node 𝑣 only if its upper relevance bound exceeds the lowest relevance score in

the current result, i.e., if 𝑈𝐵(𝑣) > 𝑅𝑒𝑙 (Q .𝑡𝑜𝑝 (), 𝑞). If so, similar to Algorithm 3, we first identify

each overlapping interval 𝑠 to 𝑞 in 𝑣 .𝐿𝑒𝑛𝑑 and then check whether this interval can be part of

the result, i.e., if 𝑅𝑒𝑙 (𝑠, 𝑞) > 𝑅𝑒𝑙 (Q .𝑡𝑜𝑝 (), 𝑞) holds. Note that Lines 8–9 guarantee that queue Q
can never contain more than 𝑘 intervals. As an example, assume that we apply Algorithm 5 on

Figure 2 for 𝑘 = 2, using query 𝑞 and 𝑅𝑒𝑙𝑟𝑞 . Node 𝑣1 does not have any intervals that overlap with

𝑞; after accessing 𝑣3, both its intervals 𝑠11 and 𝑠12 are added to Q = {𝑠11, 𝑠12} as currently the 𝑘 = 2

most similar ones to 𝑞, with Q .𝑡𝑜𝑝 () = 𝑠12. Upon reaching 𝑣6, we compute 𝑠𝑢𝑏 = 𝑠10 and find that

𝑈𝐵(𝑣6) < 𝑅𝑒𝑙𝑟𝑞 (𝑠12, 𝑞), so, the contents of 𝑣6 need not be accessed (Line 3 of Algorithm 5). When

accessing 𝑣7, we also see that 𝑈𝐵(𝑣7) < 𝑅𝑒𝑙𝑟𝑞 (𝑠12, 𝑞), so there is no need to access the intervals in

𝑣7 and the algorithm terminates reporting Q = {𝑠11, 𝑠12}.
In a similar fashion, we modify Algorithm 2 to compute 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 in a bottom-up fashion on

HINT. Algorithm 6 illustrates part of the pseudocode, which covers again the case of the 𝑃
𝑂𝑖𝑛

ℓ,𝑓

subdivision for the first relevant partition on every level ℓ . Similar to Algorithm 5, the subdivision

is scanned only if 𝑈𝐵(𝑃𝑂𝑖𝑛

ℓ,𝑓
) > 𝑅𝑒𝑙 (Q .𝑡𝑜𝑝 (), 𝑞). Then, each contained overlapping interval 𝑠 with

𝑅𝑒𝑙 (𝑠, 𝑞) > 𝑅𝑒𝑙 (Q .𝑡𝑜𝑝 (), 𝑞) is used to update current result in Q. To illustrate Algorithm 6, consider

the index and query 𝑞 in Figure 3 and 𝑘 = 2, using 𝑅𝑒𝑙𝑟𝑞 . The partitions are accessed bottom-up,

and left-to-right for each level. Upon accessing 𝑃3,5 from Level 3, Q is populated by 𝑠10. Then,

after accessing 𝑃3,6, Q is updated to include 𝑠11 and 𝑠12, which have higher relative overlap to 𝑞

compared to 𝑠10. Now, Q .𝑡𝑜𝑝 () = 𝑠12. Partition 𝑃3,7 is eliminated because 𝑈𝐵(𝑃𝑂𝑖𝑛
3,7 ) = 0. At level 2,

partitions 𝑃2,2 and 𝑃2,3 are eliminated because their upper bounds are smaller than 𝑅𝑒𝑙𝑟𝑞 (𝑠12, 𝑞) and
the algorithm terminates reporting Q = {𝑠11, 𝑠12}.

As both Algorithm 5 and 6 build upon their counterparts for range query, they do not prioritize

the examination of the index partitions (i.e., nodes of the interval tree or HINT partitions and their
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ALGORITHM 7: 𝑘𝑅𝑒𝑙𝑄𝑞𝑢𝑒𝑟𝑦 best-first search

Input : Interval index I, query interval 𝑞, number of results 𝑘

Output :𝑘 intervals that overlap with 𝑞, having the highest 𝑅𝑒𝑙

Output : set of all intervals that overlap with 𝑞

1 initialize min-priority queue Q; ⊲ top-𝑘 list for result

2 let P contain all relevant partitions in I ; ⊲ Algorithm 1 or 2

3 sort partitions in P by𝑈𝐵 in decreasing order; solve ties with 𝐿𝐵;

4 foreach partition index 𝑃 ∈ P do
5 if 𝑈𝐵(𝑃) ≤ 𝑅𝑒𝑙 (Q .𝑡𝑜𝑝 (), 𝑞) then
6 break;

7 else
8 scan 𝑃 to update Q;

9 output Q;

subdivisions). In view of this, we devise a best-first approach, which examines the partitions in

decreasing order of their potential to include the most relevant intervals to 𝑞. Algorithm 7 shows

the key steps of this approach. We first find the index partitions that may include intervals which

overlap with the query, but we do not access them yet. For each such partition 𝑃 , we use the min/max

statistics of the contained intervals to compute 𝑈𝐵(𝑃) and 𝐿𝐵(𝑃). We then sort the partitions in

decreasing order of their𝑈𝐵(𝑃), breaking ties using 𝐿𝐵(𝑃). Finally, we consider the partitions in
this particular order and access their contents (i.e., the intervals assigned to them), updating the

𝑘 most relevant intervals to 𝑞 so far. These intervals are again maintained inside a min-priority

queue Q. As soon as the next partition’s upper bound is smaller than or equal to the 𝑘-th lowest

relevance to 𝑞 in the current result (i.e., the relevance of Q .𝑡𝑜𝑝 ()), we can terminate, as there is no

chance for all subsequent partitions to improve the top-𝑘 results so far. Let us consider again our

running example with 𝑘 = 2 and 𝑅𝑒𝑙𝑟𝑞 . For the interval tree, Algorithm 7 considers the relevant

nodes in the following order, 𝑣3, 𝑣7, 𝑣6, 𝑣1. After examining 𝑣3, Q contains intervals 𝑠11 and 𝑠12,

with Q .𝑡𝑜𝑝 () = 𝑠12. Hence, when scanning 𝑣7 the algorithm computes𝑈𝐵(𝑣7) and terminates since

𝑈𝐵(𝑣7) < 𝑅𝑒𝑙𝑟𝑞 (𝑠12, 𝑞). For HINT, Algorithm 7 orders the subdivisions of the relevant partitions as

𝑃
𝑂𝑖𝑛

3,6
, 𝑃

𝑂𝑎𝑓 𝑡

3,6
, 𝑃

𝑂𝑖𝑛

2,3
, 𝑃

𝑂𝑎𝑓 𝑡

3,5
, 𝑃

𝑂𝑖𝑛

3,7
, 𝑃

𝑂𝑖𝑛

2,2
and 𝑃

𝑅𝑖𝑛
2,2

. The algorithm inserts 𝑠11, 𝑠12 to Q after scanning the

first two subdivisions 𝑃
𝑂𝑖𝑛

3,6
, 𝑃

𝑂𝑖𝑛

3,6
and then terminates since𝑈 (𝑃𝑂𝑖𝑛

2,3
) < 𝑅𝑒𝑙𝑟𝑞 (Q .𝑡𝑜𝑝 (), 𝑞).

4 Experimental Analysis
We implemented both interval tree and HINT indices, and the query processing methods in C++,
compiled using gcc (v4.8.5) with -O3 and -march=native flags.

9
Our tests ran on an Apple M1 Pro

(3.20GHz) with 32GBs of RAM, running MacOS 14.6.1 Sonoma.

4.1 Setup
We wrote the interval tree according to [22]. For HINT, we used its public source code

10
, activating

the subdivisions, the sorting and the cache misses optimizations. Similar to previous work, the

datasets and the indices all reside in main memory.

9
Source code is available in https://github.com/pbour/interval-relevance/

10
https://github.com/pbour/hint/
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Table 1. Characteristics of tested datasets

BOOKS WEBKIT BTC TAXIS

[8] [20] [2] [8]

Cardinality 2,050,707 2,347,346 2,538,921 169,290,307

Size [MBs] 32 28 52 2,794

Domain 1 year 15 years 3 months 1 year

Min duration 1 hour 1 sec 1 sec 1 min

Max duration 1 year 15 years 6 days 5 hours

Avg. duration 67 days 1 year 40 mins 12 mins

Avg. duration [%] 18.4 7.22 0.03 0.002

Table 2. Overhead in space and maintenance costs for HINT

overhead BOOKS WEBKIT BTC TAXIS

space 0.02% 0.04% 2.2% 0.09%

insertions 0.3% 0.4% 3.3% 3.1%

deletions 1.2% 0.2% 5.8% 3.1%

We experimented with 4 datasets of real intervals, which have also been used in past studies;

Table 1 summarizes their characteristics. BOOKS [9] contains the periods of time in 2013 when

books were lent out by libraries in the city of Aarhus, Denmark.
11
WEBKIT [19] records the file

history in the git repository of the Webkit project from 2001 to 2016
12
; the intervals indicate the

periods during which a file did not change. BTC [2] contains historical price intervals of Bitcoin
13
;

the low and high prices are used to determine the 𝑠𝑡𝑎𝑟𝑡 and the 𝑒𝑛𝑑 points, respectively. TAXIS

[9] stores the time periods of taxi trips (pick-up and drop-off timestamps) from NY City in 2009.
14

Datasets BOOKS and WEBKIT represent inputs with long intervals, covering on average over 5% of

the domain, whereas BTC and TAXIS contain short intervals, covering less than 0.1% of the domain.

Lastly, the number of bits𝑚 for the HINT index on each dataset is automatically set utilizing the

cost model in [14].

Our analysis focuses on the relative relevance definitions from Section 2.1, i.e.,𝑅𝑒𝑙𝑟 (𝑠, 𝑞),𝑅𝑒𝑙𝑟𝑑 (𝑠, 𝑞)
and 𝑅𝑒𝑙𝑟𝑞 (𝑠, 𝑞). We omit 𝑅𝑒𝑙𝑎 (𝑠, 𝑞) which gives the same results as 𝑅𝑒𝑙𝑟𝑞 (𝑠, 𝑞) if we divide its 𝜃 by

|𝑞 |. To assess the performance of the methods, we measure their throughput (number of queries

per second), while varying (1) the extent of the query interval as a percentage of the domain size

inside the {0.01%, 0.0%, 0.1%, 0.5%, 1%} set of values, (2) the value of 𝜃 inside {0.1, 0.3, 0.5, 0.7, 0.9}
for threshold-based queries, and (3) 𝑘 in {3, 5, 10, 50, 100} for ranking queries. In each test, we run

10K random queries and vary one of the above parameters while fixing the rest to their default

value (0.1% for the query extent, 0.5 for 𝜃 and 10 for 𝑘). Lastly, we also assess the accuracy of the

lower and upper relevance bounds in Section 3.3 from the min/max bounds in Sections 3.2.

4.2 Computing and maintaining stats & bounds
In our first set of experiments, we study the merit of the bounds employed by our framework. We

start off with the min/max endpoint statistics detailed in Section 3.2 and showcase the overhead of

storing and maintaining them in each partition of HINT.
15
Table 2 reports the relative overhead

11
https://www.odaa.dk

12
https://webkit.org

13
https://www.kaggle.com/datasets/swaptr/bitcoin-historical-data

14
https://www1.nyc.gov/site/tlc/index.page

15
For the interval tree, there is no overhead, as the statistics can directly derived from the 𝐿𝑠𝑡 and 𝐿𝑒𝑛𝑑 lists in each node.
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Fig. 7. Accuracy of computed relevance bounds on the interval tree; defaults, 0.1% query interval extent,
𝜃 = 0.5, 𝑘 = 10
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Fig. 8. Accuracy of computed relevance bounds on HINT; defaults, 0.1% query interval extent, 𝜃 = 0.5, 𝑘 = 10

for storing and maintaining the statistics, for each dataset. For the insertion updates, we indexed

offline the first 90% of each dataset and then, added the remaining 10% of the intervals in HINT,

while for the deletion updates, we removed 10% of the indexed intervals. We observe that both

the space and the maintenance overheads are very low, always below 6%. The highest overhead is

witnessed in BTC and TAXIS where the HINT hierarchy contains more levels (and therefore, more

partitions as well) compared to BOOKS and WEBKIT.

We also study the accuracy of the 𝐿𝐵(𝑃) and 𝑈𝐵(𝑃) relevance bounds that our framework

computes. Figures 7 and 8 report the average absolute error for the 𝐿𝐵(𝑃) and𝑈𝐵(𝑃) estimations in

all four datasets, for the default experimental parameters. We observe that our framework manages

to estimate the highest and lowest relevance in a partition with high accuracy for both indices

and under all relevance definitions; the absolute error is typically below 0.1 - recall that 𝑅𝑒𝑙𝑟 (𝑠, 𝑞),
𝑅𝑒𝑙𝑟𝑑 (𝑠, 𝑞) and 𝑅𝑒𝑙𝑟𝑞 (𝑠, 𝑞) draw values inside [0, 1]. These findings directly reflect on the query

performance enhancement showcased in the next experiments.

4.3 Best approach for query processing
The next set of experiments investigate the best approach, i.e., bounds and algorithm. For 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦,

this question translates to determining which of the lower and upper relevance bounds should be

used, while for 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦, also the best index traversal approach. We include in our analysis, a

baseline which operates without any relevance bounds and simply extends the process for range

selection queries (Algorithms 1 and 2); all intervals overlapping with the query are identified and

then verified, as described in the beginning of Section 3. Figures 9 and 10 report on the query

processing performance, for the default experimental parameters. Overall, the tests show the benefit

of using relevance bounds and the merit of our framework. The depth-first and bottom-up baselines

are always outperformed by at least one method which uses bounds, in both query types, by up to

3 orders of magnitude.

For 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 (the first row of plots in each figure), we observe that utilizing𝑈𝐵(𝑃) typically
improves more the performance over the baseline, compared to just using 𝐿𝐵(𝑃). Exceptions arise
when the queries return a large number of intervals, i.e., when 𝑅𝑒𝑙𝑟𝑞 is applied on datasets with
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Fig. 9. Query processing on the interval tree; defaults, 0.1% query interval extent, 𝜃 = 0.5, 𝑘 = 10
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Fig. 10. Query processing on HINT; defaults, 0.1% query interval extent, 𝜃 = 0.5, 𝑘 = 10

longer intervals such as BOOKS and WEBKIT, where |𝑠 | ≫ |𝑞 | holds, or when 𝑅𝑒𝑙𝑟𝑞 is applied on

datasets with short intervals such as BTC and TAXIS, where |𝑞 | ≫ |𝑠 |. In these cases, the computed

lower bounds approach 1, which enables the methods to massively output intervals without further

comparisons and without computing their actual relevance. Nevertheless, the best option is to

use both relevance bounds; such an approach successfully combines the pruning power of𝑈𝐵(𝑃)
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Table 3. Comparison (throughput) against a table scan; defaults, 0.1% query interval extent, 𝜃 = 0.5, 𝑘 = 10

BOOKS

method 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦

𝑅𝑒𝑙𝑟 𝑅𝑒𝑙𝑟𝑠 𝑅𝑒𝑙𝑟𝑞 𝑅𝑒𝑙𝑟 𝑅𝑒𝑙𝑟𝑠 𝑅𝑒𝑙𝑟𝑞

Table scan 165 160

Interval tree 423821 457105 6696 50280 68093 2728

HINT 1410706 1480266 408371 161300 238222 235655

WEBKIT

method 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦

𝑅𝑒𝑙𝑟 𝑅𝑒𝑙𝑟𝑠 𝑅𝑒𝑙𝑟𝑞 𝑅𝑒𝑙𝑟 𝑅𝑒𝑙𝑟𝑠 𝑅𝑒𝑙𝑟𝑞

Table scan 584 560

Interval tree 262768 311903 16084 135640 455143 22041

HINT 508101 484103 386997 317411 436873 588916

BTC

method 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦

𝑅𝑒𝑙𝑟 𝑅𝑒𝑙𝑟𝑠 𝑅𝑒𝑙𝑟𝑞 𝑅𝑒𝑙𝑟 𝑅𝑒𝑙𝑟𝑠 𝑅𝑒𝑙𝑟𝑞

Table scan 917 900

Interval tree 437744 360936 438420 214074 221829 458476

HINT 637283 488649 804783 1238550 460774 604134

TAXIS

method 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦

𝑅𝑒𝑙𝑟 𝑅𝑒𝑙𝑟𝑠 𝑅𝑒𝑙𝑟𝑞 𝑅𝑒𝑙𝑟 𝑅𝑒𝑙𝑟𝑠 𝑅𝑒𝑙𝑟𝑞

Table scan 12 12

Interval tree 3916 4338 4640 3258 3455 3455

HINT 11087 12125 13873 4021 4531 4436

shown in all tests, with the advantage of 𝐿𝐵(𝑃) in these special cases. Note that this finding applies

for both the interval index and HINT.

For 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦, the choice of bounds and method is more dataset-oriented. As a general ob-

servation, best-first processing of partitions typically benefits from using both upper and lower

relevance bounds for prioritization. Yet, the best-first powered by 𝐿𝐵(𝑃) and𝑈𝐵(𝑃) does not always
outperform the native depth-first and bottom-up methods of interval tree and HINT, respectively,

powered by𝑈𝐵(𝑃). Specifically, the best-first method is the fastest on datasets with long intervals;

the native traversals are better on datasets with short intervals. This phenomenon is due to the

number of relevant partitions per query. This number is higher in BTC, TAXIS compared to BOOKS,

WEBKIT, as their indices contain more levels (compared to BOOKS) or cover a smaller domain

(compared to WEBKIT). Under this, the cost of sorting the relevant partitions is slowing down

best-first. In view of these findings, we use for both indices, the best-first method with 𝐿(𝐵) and
𝑈𝐵(𝑃) on BOOKS and WEBKIT and their native method with𝑈𝐵(𝑃) for BTC and TAXIS.

4.4 Index comparison
Finally, we evaluate the performance of the two studied indices under their best setting. We start

off by comparing them against a table-scan baseline to conceive the magnitude of the performance

enhancement achieved by our framework. Table 3 shows the results for the default experimental

parameters; the table clearly shows that our framework (both indices) achieves several orders of

magnitude faster query processing than a straightforward approach that iterates over all input

intervals and computes their relevance.
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Fig. 11. Index comparison: 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦

Next, we extensively compare the two indices and study how the experimental parameters of

the query extent, the threshold 𝜃 and the number of request results 𝑘 affect query performance.

Figures 11 and 12 report the throughput for the 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦 and 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦, respectively. First of all,
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we observe that query processing is negatively affected (i.e., the throughput of both methods drops)

when increasing the extent of the query interval because the number of relevant partitions to be

examined also rises. For 𝜃𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦, the methods are accelerated when the value of 𝜃 increases

because in this case, the pruning power of the upper relevance bounds is enhanced and the size of

result set gets smaller. In contrast, when the number of requested results increases for 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦,

the queries become more expensive and more partitions are examined to fill the result set. The

extensive tests in Figures 11 and 12 also unveil that HINT is, in general, faster than the interval

tree for both threshold-based and ranking relevance queries. This result aligns with the findings in

[14, 15] for selection (range and stabbing) queries.

5 Related Work
We discuss access methods (additionally to Section 2.2) and ranking techniques for intervals.

5.1 Indexing intervals
The interval tree [22] (see Section 2.2.1) is a data structure that offers optimal worst-case space

and time guarantees. A relational interval tree RI-tree for disk-resident data was proposed in [28].

The segment tree [18] is another binary search tree for intervals with 𝑂 (𝑛 log𝑛) space and time

requirements, which however was designed for stabbing (or point) selection queries where the goal

is to determine the intervals that contain a specific value. Simple 1D partitioning (i.e., a grid) can

also be used to divide the domain into uniform partitions and replicate intervals to all partitions

they overlap. To avoid duplicate results when the query range spans multiple partitions, a reference

value method [21] can be used.

Other solutions for indexing intervals are the timeline index [27], the period index [6] and the

RD-index [11]. The timeline index [27] is a general-purpose access method for temporal (versioned)

data, implemented as SAP-HANA tables. A table called the event list stores a ⟨𝑡𝑖𝑚𝑒, 𝑖𝑑, 𝑖𝑠𝑆𝑡𝑎𝑟𝑡⟩
triple for the endpoints of all intervals, where 𝑡𝑖𝑚𝑒 is either the start or end of an interval, specified

accordingly by the boolean 𝑖𝑠𝑆𝑡𝑎𝑟𝑡 flag. In addition, at certain timestamps, called checkpoints, the
entire set of active objects is materialized, i.e., those with an interval that contain the checkpoint.

Selection queries 𝑞 = [𝑞.𝑠𝑡𝑎𝑟𝑡, 𝑞.𝑒𝑛𝑑] are evaluated by comparing the contents of the closest

checkpoint before 𝑞.𝑠𝑡𝑎𝑟𝑡 and the entries in the event list after the checkpoint against the query

range. The period [6] and the RD-index [11] are self-adaptive structures which split the domain

into coarse partitions, and then further divide each partition hierarchically, in order to organize

the contained intervals based on their positions and durations. They are specialized to range and

duration queries. The RD-index [11] essentially improves upon the period index by supporting

arbitrary distributions of interval durations and allowing to index the intervals either first by

duration or time. Moreover, RD-index does not replicate intervals, yielding a smaller memory

footprint and better query performance.

HINT was proposed in [14] and then extended in [15] to support interval range queries with

arbitrary predicates from Allen’s temporal algebra (e.g., before, meets, covers, etc.). As shown in

[11, 15], HINT outperforms alternative access methods for interval range queries without other

predicates (such as duration). HINT also has low space complexity in practice due to its storage

optimizations.

5.2 Ranking queries over interval data
Besides range and duration selection queries, additional query types have been studied on interval

data that apply some sort of ranking. Pilourdault et al. [31] define join operations that find interval

pairs satisfying one of Allen’s temporal relation (e.g., meets). Since there could be too few interval

pairs satisfying this relation exactly, they accept pairs that do so approximately and assign scores
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Fig. 12. Index comparison: 𝑘𝑅𝑒𝑙𝑄𝑢𝑒𝑟𝑦

to them (e.g., a pair 𝑟, 𝑠 such that 𝑟 ends just before 𝑠 starts is better than a pair such that 𝑟 ends

much earlier than 𝑠). The proposed MapReduce solution for this problem cannot be used to evaluate

relevance queries, as the objectives are totally different (i.e., ranking interval pairs vs. query-based
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retrieval, ranking based on similarity to a temporal relation vs. ranking based on the length of

intersection).

Amagata [2] observed that interval overlap queries, such as “show taxis which were active

between 17:00 and 22:00 yesterday”, “find books which were borrowed in the last week”, may

retrieve too many results to be postprocessed by the user. To remedy this, Amagata [2] suggests to

obtain only a small sample of the results and develop an independent range sampling technique that

operates on a variant of the interval tree. In this paper, we follow a different approach, where we

provide the user with an option to retrieve the most relevant results using overlap-based definitions
of relevance.

Xu and Lu [38] consider intervals associated with weights. They study the problem of retrieving

the 𝑘 intervals that intersect a query interval and have the highest weights. To solve this problem

they use an interval tree to retrieve the intervals that overlap with the query range and select the

𝑘 best in them. Amagata et al. [3] propose a more efficient solution that extends a segment tree

to sort the intervals along each path based on weight and limit the number of required accesses.

Our search problem is different, because our relevance score depends on the intersection between

data intervals and the query interval and not on some independent weight. Hence, the methods

proposed in [3, 38] are not applicable. However, we share the same motivation that ranking of

interval query results can facilitate their postprocessing and analysis.

Another related problem is the evaluation of probabilistic queries in uncertain databases [12, 37].

Assuming that values are approximated by probabilistic density functions (PDFs), given a range

query, the objective is to find the values inside the query range with a probability at least 𝜃 . This is

aligned with our 𝑅𝑒𝑙𝑟𝑑 (𝑠, 𝑞) definition, for the special case where PDFs are uniform. However, the

authors in [37] and follow-up papers do not study other definitions and they focus on arbitrary

multi-dimensional PDFs, proposing specialized data structures for such data, whereas our approach

can be applied using off-the-shelf interval indices.

6 Conclusions
In this paper, we proposed relevance queries for intervals, which find use in many applications that

manage large collections of temporal data (temporal databases, uncertain databases, etc.). Relevance

queries limit the potentially numerous results of range queries that are hard to postprocess and

interpret, by filtering or ranking the intervals with high relevance score to the query. We proposed

a unified framework for processing queries under different definitions of relevance on any interval

index that divides the intervals into partitions. At the heart of our framework lies a method for

computing provable upper and lower relevance bounds for entire index partitions. We applied

our framework on two popular interval indices (interval tree and HINT); our experiments on four

large real interval collections demonstrate that it achieves orders of magnitude higher throughput

over a baseline approach. In the future, we plan to study the application of our framework for the

efficient evaluation of top-𝑘 interval joins [31]. In addition, we plan to integrate relevance queries

in PostgreSQL, which includes native ranged data types, and extend its query optimizer to consider

interval-based selection and ranking predicates.
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