
Proportionality in Spatial Keyword Search

Georgios Kalamatianos
Department of Information

Technology, Uppsala University
Uppsala, Sweden

georgios.kalamatianos@it.uu.se

Georgios J. Fakas
Department of Information

Technology, Uppsala University
Uppsala, Sweden

georgios.fakas@it.uu.se

Nikos Mamoulis
Department of Computer Science and
Engineering, University of Ioannina

Ioannina, Greece
nikos@cs.uoi.gr

ABSTRACT

More often than not, spatial objects are associated with some con-

text, in the form of text, descriptive tags (e.g. points of interest, flickr

photos), or linked entities in semantic graphs (e.g. Yago2, DBpedia).

Hence, location-based retrieval should be extended to consider not

only the locations but also the context of the objects, especially

when the retrieved objects are too many and the query result is

overwhelming. In this paper, we study the problem of selecting a

subset of the query result, which is the most representative. We

argue that objects with similar context and nearby locations should

proportionally be represented in the selection. Proportionality dic-

tates the pairwise comparison of all retrieved objects and hence

bears a high cost. We propose novel algorithms which greatly re-

duce the cost of proportional object selection in practice. Extensive

empirical studies on real datasets show that our algorithms are

effective and efficient. A user evaluation verifies that proportional

selection is more preferable than random selection and selection

based on object diversification.
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1 INTRODUCTION

Thousands of public and private datasets which include geo-spatial

information exist. For instance, on the web, there are datasets
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with GIS objects or POIs (e.g. spatialhadoop datasets1), datasets

with geo-tagged photographs (e.g. flickr), online social networks

(e.g. Facebook, Gowalla), semantic knowledge graphs (e.g. YAGO

[27], DBpedia), etc. Acknowledging the significance of discover-

ing datasets and making them universally accessible and useful,

Google recently introduced Google Dataset Search2, which facili-

tates the discovering of web-accessible datasets. Acknowledging

also the need for retrieval, various search paradigms have been

proposed by the research community. For instance, keyword search

paradigms liberate users from technical details such as understand-

ing the nature and structure of the data or a programming language

[1, 14, 21, 28, 29, 33, 39, 40].

In this paper, we focus on the location-based retrieval of spatial

entities in datasets. We assume that the spatial objects, besides

having a location, are also enriched with some context. The context

could be either explicit, i.e. in the form of descriptive text or tags,

or implicit, i.e. it could be derived by linked neighboring objects in

semantic RDF (resource description framework) graphs. Retrieval

models that consider the context of spatial objects, typically com-

bine proximity to a query location and contextual relevance to a set

of query keywords [9]. If the context is explicit, popular informa-

tion retrieval models, such as cosine similarity or tf-idf, can be used

to model relevance [3]. Examples of datasets on which such models

apply are collections of POIs or geo-located flickr photographs an-

notated with description tags. If the context is implicit, contextual

relevance can be defined by considering the linked entities in sub-

graphs which include the query keywords. For instance, the search

paradigms of [5, 38] consider minimal subgraphs of nodes that col-

lectively contain the keywords, whereas the object summaries (𝑂𝑆s)
paradigm [13–18] considers trees rooted at nodes containing the

keywords. Examples of datasets on which such models apply are

RDF knowledge graphs (e.g., YAGO, DBpedia) and social networks

(e.g. Facebook, Gowalla). It is important to note that, regardless

of the type of spatial objects and datasets, contextual similarity

between objects can be measured using Jaccard similarity between

the corresponding sets of items in their context. Namely, the items

can be keywords, tags, data set nodes, RDF graph nodes.

The 𝑂𝑆 paradigm summarises information about entities and

constitutes an example of implicit context in graphs. A spatial

𝑂𝑆 (𝑠𝑂𝑆) is a tree rooted at a spatial entity in a database (i.e., a

tuple with a location attribute) or an RDF graph and its context is

derived by the set of neighbouring important entities (linked either

directly or indirectly to the spatial root via foreign key links or

RDF predicates). For example, consider a user that wishes to get

information about museums in Stockholm from DBpedia (Figure

1). A spatial 𝑂𝑆 will comprise a node representing the “Swedish

1http://spatialhadoop.cs.umn.edu
2toolbox.google.com/datasetsearch



Place: Swedish History Museum
Year established: 1866
Type: History museum
Type: Nordic museum
Type: National museum
Collection size: 10 million
Director: K. Hauptman
Opening days: Everyday
Collection: Archaeological
Collection: Viking collection
Collection: Jewellery works

Place: The Nordic Museum
Year established: 1873
Type: History museum
Type: Nordic museum
Collection size: 1.5 million
Location: Stockholm
Opening days: Eeveryday
Collection: Buildings
Collection: Farms
Collection: Viking collection
Collection: Jewellery works

Spatial OS1
Place: Nobel Museum

Year established: 2001
Type: Natural science
Type: Literature museum
Type: Peace museum
Collection size: 3500
Director: Erika Lanner
Opening days: Everyday
Collection: Discovery
Collection: Laureates works
Collection: Photos

Spatial OS2 Spatial OS4

(a) Spatial Object Summaries

Relevance
Diversified
Proportional

ABBA The Museum

The Nordic
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(b) Map of Places

Figure 1: Example of Proportionality (querying formuseums in Stockholm)

History Museum” as a root and child nodes including contextual

information, e.g. “Nordic museum”, “History museum”, “Viking

collections”, etc. (spatial 𝑂𝑆1).
The retrieval goal is finding spatial objects, which are near the

query location and relevant to the query context (e.g., keywords,

entities). A retrieval score for each query result can be defined by

combining spatial distance with contextual relevance (e.g., to query

keywords). Still, the query results could be too many and may

overwhelm the user. A typical approach is to rank the results based

on their score and return the top-𝑘 objects [9, 38]. However, the

most relevant spatial objects could be in the same direction w.r.t. the

query location and/or could be too similar to each other in terms of

context [12, 31, 41]. Consider a user at location 𝑞 in Figure 1, who

is searching for nearby museums; the top-3 places 𝑝1, 𝑝2, and 𝑝3
are all located in the same direction with respect to the query and

have almost similar context (2 out of 3 are history museums).

Several studies reveal that users strongly prefer spatially and

contextually diversified query results over un-diversified ones and

propose algorithms which select a small number of results which

are not only relevant, but also spatially and contextually diverse

[43, 48]. Recently, Cai et al. [5] introduced diversification on spatial

keyword search by combining relevance and diversity. Namely, the

output places, in addition to being relevant to the query, should be

diverse w.r.t. their context and location. For instance, a diversified

query result for Figure 1 could include 𝑝1 (a history museum), 𝑝3
(ABBA museum) and 𝑝4 (Nobel museum). These places are close

to the query and at the same time they are diverse because they

are located in different directions w.r.t. the query location and they

have quite different context.

Still, simple diversity measures disregard the spatial and contex-

tual distribution of the objects; hence, they may fail to retrieve a

representative subset of the query results, compromising the quality

of results. For instance in our example, we see that 2 out of 4 places

are history museums in the same direction w.r.t query location.

More precisely, these two places share many common nodes (e.g.

common Type and Collection nodes) and are located in the same

direction w.r.t. query. This reveals that the general area is domi-

nated by (history) museums located on the right side of the query.

Therefore, by representing proportionally these properties (at the

same time facilitating diversity), we assist users to comprehend the

area; diversification fails to reveal such insightful information. Thus,

in this paper, we study selecting a subset of the query results by

combining (1) relevance, (2) spatial proportionality w.r.t. the query

location and (3) contextual proportionality w.r.t. the descriptive

entities of the objects. In our running example, a proportional result

will include 𝑝1, 𝑝2 and 𝑝4; where similar and proportional 𝑝1 and
𝑝2 places are diverse to 𝑝4. Our problem definition and solutions

are general and can be applied to any search paradigm where the

output is a (ranked) set of spatial entities with context.

The proportionality problem introduces efficiency challenges as

we need to perform pairwise comparison to all retrieved objects,

in order to determine the frequent common properties. Hence, we

propose novel efficient algorithms addressing contextual and spatial

proportionality. Our contributions can be summarized as follows:

• We introduce the problem of proportionality in location-

based retrieval for objects with context and show that it is

NP-hard. We also propose novel proportionality measures

w.r.t. location and context.

• We propose a novel efficient algorithm for contextual pro-

portionality (i.e. Micro set Jaccard hashing).

• We propose novel efficient algorithms for the calculation of

spatial proportionality (i.e., grid based algorithms).

• We propose a generic algorithmic framework that adapts ex-

isting greedy diversification algorithms (i.e. IAdU and ABP)

[5]. We prove the approximation bounds of IAdU and ABP

for the proportional selection problem.

• We present a thorough evaluation on real datasets demon-

strating the efficiency of our algorithms. We conduct a user

evaluation verifying that proportional results aremore prefer-

able than non-proportional or diversified results.

The rest of the paper is organized as follows. Sections 2 and 3

present related and background work. Sections 4 and 5 formalize

our problem and introduce the general framework. Sections 6 and 7

propose efficient contextual and spatial proportionality algorithms.

Section 8 provides approximation bounds of IAdU and ABP. Section

9 contains our experimental evaluation and Section 10 conclusions.

2 RELATEDWORK

Our proposed proportional selection framework considers (1) the

relevance of the objects to the query (i.e., spatial distance and key-

words similarity) (2) contextual proportionality and (3) spatial pro-

portionality w.r.t. the query location. To the best of our knowledge,



Table 1: Related Work vs. Our Work ([this])
Contextual Proportionality Spatial Proportionality

Relevance
Entities Topics Query Location Regions

[this], [19] [7, 11, 42, 46] [this] [23] [this], [19, 46]

there is no previous work that considers all these together in propor-

tional selection, as Table 1 shows. Hereby, we discuss and compare

related work in diversification and proportionality.

Diversification. Diversification of query results has attracted a

lot of attention as a method for improving the quality of results by

balancing relevance to the query and dissimilarity among results

[8, 19, 20, 25, 45]. The motivation is that, in non-diversified search

methods, users are overwhelmed with many similar answers with

minor differences [31]. PerK [41] and DivQ [12] address the di-

versification problem in keyword search over relational databases;

they use Jaccard distance as a measure of similarity between the

keywords in the node-sets that constitute the query results.

Spatial Diversification. Several works consider spatial diversi-

fication, which selects objects that are well spread in the region of

interest [6, 37]. In [24, 30], diversity is defined as a function of the

distances between pairs of objects. However, considering only the

distance between a pair and disregarding their orientation could be

inappropriate. In view of this, van Kreveld et al. [44] incorporate the

notion of angular diversity, wherein a maximum objective function

controls the size of the angle made by a selected object, the query

location, and an unselected object. Recently, Cai et al. [5] combine

both spatial and contextual diversity and propose a new measure

for spatial diversity (to be described in detail in Section 3).

Contextual Proportionality. [7, 10, 42, 46] facilitate propor-

tional diversity by considering topics (categories) on items’ charac-

teristics and then by proportionally representing these topics. In

contrast, our work considers proportionality directly on entities

(words, nodes, etc.) which is more dynamic and avoids complica-

tions of classifying results in topics (Table 1). In [10] (an early work

on this area), an election-based method is proposed to address pro-

portionality. However, this method disregards the relevance of items

to the query and thus they may result in picking irrelevant items.

In [19, 46], this limitation is addressed by considering relevance in

the objective function. Proportionality has also been studied in rec-

ommendation systems. For instance, [47] facilitates proportionality

by considering topics on both users and items’ characteristics. Pre-

vious work does not solve the proportionality problem, considering

spatial relevance and diversity in space and context.

Spatial Proportionality has also been studied on Geographical

data. For instance, [23] facilitates proportionality by clustering POIs

in sub-regions and then by proportionally recommending POIs from

these sub-regions. This approach is restrictive since proportionality

is based on static regions rather than dynamic areas around a query

location (which is what we propose); in addition, this approach

uses the locations of POIs, but disregards their context (Table 1).

Jaccard Similarity Computation. Our approach involves Jac-

card similarity computations for numerous pairs of (small) sets.

Existing work on efficient Jaccard similarity calculation between

sets focuses on the scalability w.r.t. both (1) the size of sets and

(2) the number of sets. For instance, minhash is an approximation

algorithm that detects near duplicate web pages. Many of these

algorithms are top-𝑘 (or threshold based) and thus are designed to

qpA1 pA2

pB1 pB2pC1 pC2

Figure 2: Ptolemy’s Spatial Diversity

𝑑𝑆 (𝑝𝐴1, 𝑝𝐴2) > 𝑑𝑆 (𝑝𝐵1, 𝑝𝐵2) > 𝑑𝑆 (𝑝𝐶1, 𝑝𝐶2)
terminate fast by pre-processing sets (e.g., sorting or LSH (locality-

sensitive hashing) [4, 34]). Such a processing can be an effective

investment for top-𝑘 searches; on the other hand, in our case where

we need to compare all pairs, it is an unnecessary overhead. Some

algorithms (e.g., minhash) construct signatures in order to speed-up

comparisons. Similarly, signatures require preprocessing, which

is a useful investment on very large sets; however, for moderate

to small sets (as in our case), signatures are not effective and this

preprocessing does not pay off. In summary, existing eminent tech-

niques that address scalability in operations that involve Jaccard

similarity computations are not appropriate for our problem.

3 BACKGROUND

In this section, we describe the type of data that we focus on and

discuss applications which manage or use such data. In addition,

we discuss in more details definitions of relevance and diversity

that apply on the data.

Spatial objects with context. We consider a large collection

of objects which have spatial locations and some form of context.

The spatial locations are described by a set of coordinates and

common distance metrics apply on them (e.g., Euclidean distance).

The context can be in different forms [22, 32]. Specifically, the

context can simply be a set of descriptive keywords or tags. Another

type of context could be the set of nodes (or RDF entities), which are

linked to the object in a graph. Regardless the form of the context

and without loss of generality, we use Jaccard similarity to model

the similarity between the contexts of two objects.

Spatial diversity. Cai et al. [5] propose Ptolemy’s diversity, a

new spatial diversity metric, which considers the query location and

relative direction of objects from it. Ptolemy’s diversity between

two places 𝑝𝑖 and 𝑝 𝑗 with respect to a query location 𝑞 is defined

as follows:

𝑑𝑆 (𝑝𝑖 , 𝑝 𝑗 ) =
| |𝑝𝑖 , 𝑝 𝑗 | |

| |𝑝𝑖 , 𝑞 | | + | |𝑝 𝑗 , 𝑞 | |
, (1)

where | |𝑝𝑖 , 𝑝 𝑗 | | is the Euclidean distance between 𝑝𝑖 and 𝑝 𝑗 .
𝑑𝑆 (𝑝𝑖 , 𝑝 𝑗 ) is naturally normalized to take values in [0, 1], since
| |𝑞, 𝑝𝑖 | | + | |𝑞, 𝑝 𝑗 | | ≥ | |𝑝𝑖 , 𝑝 𝑗 | | (triangle inequality). Two places 𝑝𝑖 and
𝑝 𝑗 receive a maximum diversity score 𝑑𝑆 (𝑝𝑖 , 𝑝 𝑗 ) = 1, if they are

diametrically opposite to each other w.r.t. to 𝑞; e.g., points 𝑝𝐴1 and
𝑝𝐴2 in Figure 2.

In the same figure, pair of places (𝑝𝐶1, 𝑝𝐶2) have the same dis-

tance as pair (𝑝𝐴1, 𝑝𝐴2), but 𝑑𝑆 (𝑝𝐶1, 𝑝𝐶2) < 𝑑𝑆 (𝑝𝐴1, 𝑝𝐴2), because
𝑝𝐶1 and 𝑝𝐶2 are in the same direction w.r.t 𝑞 (i.e., north of 𝑞). Pair
(𝑝𝐵1, 𝑝𝐵2) are further from each other compared to the places in

pair (𝑝𝐶1, 𝑝𝐶2) and consequently have a higher diversity score (this
can be shown using Pythagorean theorem).



Table 2: Notations
Notation Definition

𝑝𝑖 A place (𝑝𝑖 also denotes the location and context of the place)

𝐶 (𝑝𝑖 ) Set of contextual items of 𝑝𝑖 (e.g., keywords or vertices)
|𝐶 (𝑝𝑖 ) | or |𝑝𝑖 | Number of elements in contextual set of place 𝑝𝑖
𝑟𝐹 (𝑝𝑖 ) Relevance score of 𝑝𝑖 w.r.t. 𝑞
𝑠𝐶 (𝑝𝑖 , 𝑝 𝑗 ) Contextual (Jaccard) similarity

𝑠𝑆 (𝑝𝑖 , 𝑝 𝑗 ) Ptolemy’s spatial similarity; i.e. 1 − 𝑑𝑆 (𝑝𝑖 , 𝑝 𝑗 ) (Eq. 1)
𝑠𝐹 (𝑝𝑖 , 𝑝 𝑗 ) Weighted similarity of 𝑝𝑖 and 𝑝 𝑗 (Eq. 13)
𝑝𝐶S(𝑝𝑖 ) Contextual proportionality of 𝑝𝑖 w.r.t. S (Eq. 3)

𝑝𝐶R(𝑝𝑖 ) Contextual proportionality of 𝑝𝑖 w.r.t. R (Eq. 4)

𝑝𝑆S(𝑝𝑖 ) Spatial proportionality of 𝑝𝑖 w.r.t. S (Eq. 6)

𝑝𝑆R(𝑝𝑖 ) Spatial proportionality of 𝑝𝑖 w.r.t. R (Eq. 7)

𝑝𝐹S(𝑝𝑖 ) Weighted summation of 𝑝𝐶S(𝑝𝑖 ) and 𝑝𝑆S(𝑝𝑖 ) (Eq. 11)
𝑝𝐹R(𝑝𝑖 ) Weighted summation of 𝑝𝐶R(𝑝𝑖 ) and 𝑝𝑆R(𝑝𝑖 ) (Eq. 12)
𝑝𝐶 (𝑝𝑖 ) Contextual proportionality score of 𝑝𝑖 (Eq. 2)
𝑝𝑆 (𝑝𝑖 ) Spatial proportionality score of 𝑝𝑖 (Eq. 5)
𝑝𝐹 (𝑝𝑖 ) Combined (contextual and spatial) proportionality of 𝑝𝑖 (Eq. 8)
𝐻𝑃𝐹 (𝑝𝑖 , 𝑝 𝑗 ) Holistic proportionality between 𝑝𝑖 and 𝑝 𝑗 (Eq. 15)
𝐻𝑃𝐹 (R) Holistic proportionality score of R (Eq. 10)

𝑐𝐻𝑃𝐹 (𝑝𝑖 ) Proportional contribution of 𝑝𝑖 if added to R (used by IAdU)

4 PROPORTIONAL SELECTION PROBLEM

Consider a query 𝑞 and its result S, a set of retrieved places. Each

place 𝑝𝑖 ∈ S carries (1) a relevance score 𝑟𝐹 (𝑝𝑖 ) combining the

distance to 𝑞 and potentially other criteria (such as relevance to a

set of query keywords [38]), (2) a location and (3) a context (i.e. a

set of contextual items such as keywords, nodes, etc.). Our objective

is to find a subset R of S that combines a relevance function to the

query and a proportionality function that considers the location

and the context of each place. If 𝐾 and 𝑘 denote the sizes of S and

R, respectively, then it should be 𝑘 < 𝐾 . Note that our problem

definition is general and is independent from any paradigm used to

derive the set S of retrieved objects. For instance, the places can be

geo-textual search results [9], spatial object summaries [14], spatial

keyword search results over RDF graphs [38], etc.

For each place 𝑝𝑖 in the retrieved set of places S, we assume that

the relevance score 𝑟𝐹 (𝑝𝑖 ) of 𝑝𝑖 to the query is known. The exact

definition of the relevance function 𝑟𝐹 (𝑝𝑖 ) depends on the retrieval

model used; e.g., it could be a linear combination of the Euclidean

distance between 𝑝𝑖 and the query location 𝑞 and the relevance of

𝑝𝑖 ’s context to the query keywords [9, 38].

In this section, we first define proportionality with respect to

context and location; then, we define a holistic score that trades

off relevance and proportionality; finally, we define the problem

formally. For a place 𝑝𝑖 , we overload the notation 𝑝𝑖 to denote its

location and contextual set; we also use 𝐶 (𝑝𝑖 ) to denote the con-

textual set wherever necessary. Table 2 shows the most frequently

used notation in the paper.

4.1 Proportionality Function

Contextual proportionality.We observe in the example of Figure

1 that the places in the retrieved set S may have common elements

in their contexts. For instance, “History museum”, “Nordic mu-

seum”, “Viking collections”, “Jewelry works” appear in both spatial

𝑂𝑆1 and 𝑂𝑆2 of S. These contextual elements are representative

for the spatial region which includes 𝑂𝑆1 and 𝑂𝑆2. Therefore, we
argue that in the selection of the subset R, we should favor propor-

tionally places that include such frequent contextual elements. At

the same time, we argue that results forming R should be dissimilar

as to facilitate diversity. In view of these properties we define the

proportional score of a place 𝑝𝑖 w.r.t. its context as follows:

𝑝𝐶 (𝑝𝑖 ) = 𝑝𝐶S(𝑝𝑖 ) − 𝑝𝐶R(𝑝𝑖 ), (2)

where

𝑝𝐶S(𝑝𝑖 ) =
∑

𝑝 𝑗 ∈S,𝑝𝑖≠𝑝 𝑗

𝑠𝐶 (𝑝𝑖 , 𝑝 𝑗 ), (3)

𝑝𝐶R(𝑝𝑖 ) =
∑

𝑝 𝑗 ∈R,𝑝𝑖≠𝑝 𝑗

𝑠𝐶 (𝑝𝑖 , 𝑝 𝑗 ). (4)

Here, 𝑠𝐶 (𝑝𝑖 , 𝑝 𝑗 ) measures the contextual similarity of two places

as the Jaccard similarity between the corresponding sets of elements

𝐶 (𝑝𝑖 ),𝐶 (𝑝 𝑗 ) (e.g., keywords, graph vertices, etc.) in their contexts;

i.e. 𝑠𝐶 (𝑝𝑖 , 𝑝 𝑗 ) = |𝐶 (𝑝𝑖 )∩𝐶 (𝑝 𝑗 ) |
|𝐶 (𝑝𝑖 )∪𝐶 (𝑝 𝑗 ) | . 𝑝𝐶S(𝑝𝑖 ) aggregates the similarity

between 𝑝𝑖 and all other places in S. We also define 𝑝𝐶R(𝑝𝑖 ) as
the similarity of 𝑝𝑖 to the rest of places in R. The rationale is that,
in our selection, we should penalize 𝑝𝑖 if it has large similarity

𝑝𝐶R(𝑝𝑖 ) with the rest places in R. Hence, to assess the value of 𝑝𝑖
in 𝑅, we subtract 𝑝𝐶R(𝑝𝑖 ) from 𝑝𝐶S(𝑝𝑖 ). This is inspired by earlier
work in proportionality [10, 19] that follows the same strategy. The

proportional score 𝑝𝐶 (𝑝𝑖 ) of a place ranges in [0, 𝐾 − 𝑘], where
𝐾 and 𝑘 denote the amount of elements in S and R respectively,

since each 𝑠𝐶 (𝑝𝑖 , 𝑝 𝑗 ) ranges in [0, 1].
Spatial proportionality. Similarly, we define the proportion-

ality score of a place w.r.t the query location. For instance in our

running example, we observe that the area containing places 𝑝1,
𝑝2, 𝑝3 is a representative neighborhood for the given query (i.e. for

both keywords and location), as opposed to the area containing

the spatial outlier 𝑝4. Therefore, we argue that we should favor

proportionally places located in such representative neighborhoods

w.r.t. the query location. At the same time, we argue that places

should be located in diverse directions w.r.t the query location. In

view of these properties, we define the proportionality score of a

place as follows:

𝑝𝑆 (𝑝𝑖 ) = 𝑝𝑆S(𝑝𝑖 ) − 𝑝𝑆R(𝑝𝑖 ), (5)

where

𝑝𝑆S(𝑝𝑖 ) =
∑

𝑝 𝑗 ∈S,𝑝𝑖≠𝑝 𝑗

𝑠𝑆 (𝑝𝑖 , 𝑝 𝑗 ), (6)

𝑝𝑆R(𝑝𝑖 ) =
∑

𝑝 𝑗 ∈R,𝑝𝑖≠𝑝 𝑗

𝑠𝑆 (𝑝𝑖 , 𝑝 𝑗 ). (7)

Here, 𝑠𝑆 (𝑝𝑖 , 𝑝 𝑗 ) measures the pairwise spatial similarity of two

points w.r.t.𝑞 by using the complementary of their Ptolemy’s spatial

diversity (i.e. 𝑠𝑆 (𝑝𝑖 , 𝑝 𝑗 ) = 1−𝑑𝑆 (𝑝𝑖 , 𝑝 𝑗 ), Eq. 1). The rationale of the
𝑝𝑆S(𝑝𝑖 ) definition is to favor a place withmany neighbors inS w.r.t

𝑞. Similarly, 𝑝𝑆R(𝑝𝑖 ) favors places spatially diverse to the rest of the
places in R. Thus, both 𝑝𝑆S(𝑝𝑖 ) and 𝑝𝑆R(𝑝𝑖 ) consider the query
location 𝑞. 𝑝𝑆 (𝑝𝑖 ) score also ranges in [0, 𝐾 − 𝑘]. Like 𝑝𝐶S(𝑝𝑖 ),
𝑝𝑆S(𝑝𝑖 ) also requires computing 𝑠𝑆 (𝑝𝑖 , 𝑝 𝑗 ) for all pairs. In Section

6, we propose algorithms that accelerate these computations.

Combined scores. We can combine contextual and spatial pro-

portionality to a proportionality score as follows:

𝑝𝐹 (𝑝𝑖 ) = (1 − 𝛾) · 𝑝𝐶 (𝑝𝑖 ) + 𝛾 · 𝑝𝑆 (𝑝𝑖 ), (8)

where 𝛾 ∈ [0, 1] controls the relative importance of the two factors.

We can combine proportionality and relevance to a holistic score:

𝐻𝑃𝐹 (𝑝𝑖 ) = (1 − 𝜆) · (𝐾 − 𝑘) · 𝑟𝐹 (𝑝𝑖 ) + 𝜆 · 𝑝𝐹 (𝑝𝑖 ), (9)



where 𝜆 ∈ [0, 1] controls the relative importance of relevance and

proportionality. We multiply the relevance score 𝑟𝐹 (𝑝𝑖 ) by 𝐾 −𝑘 in

order to normalize against 𝑝𝐹 (𝑝𝑖 ) that ranges in [0, 𝐾 − 𝑘]. Finally,
we can combine these scores for all places in R:

𝐻𝑃𝐹 (R) =
∑
𝑝𝑖 ∈R

𝐻𝑃𝐹 (𝑝𝑖 ). (10)

Additional useful definitions. Before we proceed with the

problem definition, we also introduce additional definitions that

are used through the paper. First, we introduce weighted (𝛾 ) scores:

𝑝𝐹S(𝑝𝑖 ) = (1 − 𝛾) · 𝑝𝐶S(𝑝𝑖 ) + 𝛾 · 𝑝𝑆S(𝑝𝑖 ), (11)

𝑝𝐹R(𝑝𝑖 ) = (1 − 𝛾) · 𝑝𝐶R(𝑝𝑖 ) + 𝛾 · 𝑝𝑆R(𝑝𝑖 ) (12)

𝑠𝐹 (𝑝𝑖 , 𝑝 𝑗 ) = (1 − 𝛾) · 𝑠𝐶 (𝑝𝑖 , 𝑝 𝑗 ) + 𝛾 · 𝑠𝑆 (𝑝𝑖 , 𝑝 𝑗 ) (13)

𝑝𝐹S(𝑝𝑖 ) (resp. 𝑝𝐹R(𝑝𝑖 )) is the combined similarity (contextual and

spatial) of 𝑝𝑖 and all other places in S (resp. R), whereas 𝑠𝐹 (𝑝𝑖 , 𝑝 𝑗 )
is the combined similarity between 𝑝𝑖 and 𝑝 𝑗 . Based on the above

equations, we can also define the proportionality score 𝑝𝐹 (𝑝𝑖 ) as:
𝑝𝐹 (𝑝𝑖 ) = 𝑝𝐹S(𝑝𝑖 ) − 𝑝𝐹R(𝑝𝑖 ) (14)

We also introduce the following pairwise holistic score that can

facilitate the heuristics of our greedy algorithms (Section 5):

𝐻𝑃𝐹 (𝑝𝑖 , 𝑝 𝑗 ) = (1 − 𝜆) · (𝐾 − 𝑘) · 𝑟𝐹 (𝑝𝑖 ) + 𝑟𝐹 (𝑝 𝑗 )
𝑘 − 1

+

𝜆 · ( 𝑝𝐹S(𝑝𝑖 ) + 𝑝𝐹S(𝑝 𝑗 )
𝑘 − 1

− 2 · 𝑠𝐹 (𝑝𝑖 , 𝑝 𝑗 )).
(15)

This score is defined in such a way that the summation of

𝐻𝑃𝐹 (𝑝𝑖 , 𝑝 𝑗 ) scores of all pairs of places in R will give us the same

score as the summation of 𝐻𝑃𝐹 (𝑝𝑖 ) scores of all places in R (i.e.

𝐻𝑃𝐹 (R) = ∑
𝑝𝑖 ∈R 𝐻𝑃𝐹 (𝑝𝑖 ) =

∑
𝑝𝑖 ,𝑝 𝑗 ∈R,𝑝𝑖≠𝑝 𝑗

𝐻𝑃𝐹 (𝑝𝑖 , 𝑝 𝑗 )). (Note
that Equation 9 can also be defined as 𝐻𝑃𝐹 (𝑝𝑖 ) = (1 − 𝜆) · (𝐾 −
𝑘) · 𝑟𝐹 (𝑝𝑖 ) + 𝜆 · (𝑝𝐹S(𝑝𝑖 ) − 𝑝𝐹R(𝑝𝑖 )).) Then, the summations of

𝑟𝐹 (𝑝𝑖 ), 𝑝𝐹S(𝑝𝑖 ) and 𝑝𝐹R(𝑝𝑖 ) for all places in R are equal to the

summations of
𝑟𝐹 (𝑝𝑖 )+𝑟𝐹 (𝑝 𝑗 )

𝑘−1 ,
𝑝𝐹S(𝑝𝑖 )+𝑝𝐹S(𝑝 𝑗 )

𝑘−1 and 2 · 𝑠𝐹 (𝑝𝑖 , 𝑝 𝑗 )
for all pairs in R respectively, i.e.

∑
𝑝𝑖 ∈R 𝑟𝐹 (𝑝𝑖 ),

∑
𝑝𝑖 ∈R 𝑝𝐹S(𝑝𝑖 )

and
∑
𝑝𝑖 ∈R 𝑝𝐹R(𝑝𝑖 ) respectively. Thus, we have:

𝐻𝑃𝐹 (R) = (1 − 𝜆) · (𝐾 − 𝑘) ·
∑
𝑝𝑖 ∈R

𝑟𝐹 (𝑝𝑖 )+

+𝜆 · (
∑
𝑝𝑖 ∈R

𝑝𝐹S(𝑝𝑖 ) −
∑
𝑝𝑖 ∈R

𝑝𝐹R(𝑝𝑖 )).
(16)

4.2 Problem Definition

Hereby, we define the proportional selection problem. As proven

below this problem is NP-hard; thus, we resort to greedy algorithms

for solving it.

Problem Definition 1. Given a set of 𝐾 places S (where each

place carries a relevance score, location and set of contextual items), a

query location 𝑞, and an integer 𝑘 < 𝐾 , find a set R of 𝑘 places that

have the highest 𝐻𝑃𝐹 (R) among all 𝑘-subsets of S.
Theorem 4.1. Problem 1 is NP-hard.

Proof. In order to prove the hardness of our proportionality

problem, we construct a reduction from the independent set prob-

lem. Given an undirected graph 𝐺 (𝑉 , 𝐸) and a positive integer

𝑘, (𝑘 ≤ |𝑉 |), the independent set problem is to decide if 𝐺 contains

v1  

v2  v3  v4  

v5  v6  v10 v7  v8  v9  

 
 

(a) Independent set

𝐶 (𝑝1) = {𝑣1,2, 𝑣1,3, 𝑣1,4 }
𝐶 (𝑝2) = {𝑣1,2, 𝑣2,5, 𝑣2,6 }
𝐶 (𝑝3) = {𝑣1,3, 𝑣3,7, 𝑣3,8 }
𝐶 (𝑝4) = {𝑣1,4, 𝑣4,9, 𝑣4,10 }
𝐶 (𝑝5) = {𝑣2,5, 𝑣5𝑎, 𝑣5𝑏 }
𝐶 (𝑝6) = {𝑣2,6, 𝑣6𝑎, 𝑣6𝑏 }
𝐶 (𝑝7) = {𝑣3,7, 𝑣7𝑎, 𝑣7𝑏 }
𝐶 (𝑝8) = {𝑣3,8, 𝑣8𝑎, 𝑣8𝑏 }
𝐶 (𝑝9) = {𝑣4,9, 𝑣9𝑎, 𝑣9𝑏 }
𝐶 (𝑝10) = {𝑣4,10, 𝑣10𝑎, 𝑣10𝑏 }

(b) Corresponding contextual sets

Figure 3: Example of Reduction

an independent set R of size 𝑘 (i.e. there is not any edge connecting

any pair of nodes in R).
We generate an instance of our problem as follows. Each vertex

𝑣𝑖 in 𝑉 corresponds to a place 𝑝𝑖 with a contextual set 𝐶 (𝑝𝑖 ). For
every edge (𝑣𝑖 , 𝑣 𝑗 ) in 𝐸, we add an element 𝑣𝑖, 𝑗 to the contextual

sets of both 𝑝𝑖 and 𝑝 𝑗 . We now construct the complete set of places

S as follows. First, we add toS all places that correspond to vertices

of 𝑉 . Let 𝑑 be the maximum degree of any vertex in 𝑉 . For each

vertex 𝑣𝑖 ∈ 𝑉 , for which the degree 𝑑𝑒𝑔(𝑣𝑖 ) is less than 𝑑 , we add
𝑑 − 𝑑𝑒𝑔(𝑣𝑖 ) new places in S and “connect” them to 𝑣𝑖 . Namely, for

each such new place 𝑝 𝑗 , we add an element 𝑣𝑖, 𝑗 to the contextual
sets of both 𝑝𝑖 and 𝑝 𝑗 . Finally, we add to the contextual set 𝐶 (𝑝 𝑗 )
of each new place 𝑝 𝑗 𝑑 − 1 elements which are unique to 𝑝 𝑗 (i.e.,
no other place has any of these elements in its contextual set). As

a result, each 𝑝𝑖 corresponding to a vertex in 𝑉 with a degree less

than 𝑑 will have exactly one common element with each of the new

places linked to it. In general, all places 𝑝𝑖 , which correspond to

vertices in𝑉 will have identical 𝑝𝐶S(𝑝𝑖 ) scores because (1) they all
have exactly one common element with exactly 𝑑 places in S and

(2) all places in S have exactly 𝑑 elements in their contextual sets.

In addition, all places 𝑝 𝑗 which do not correspond to vertices in 𝑉
(i.e., all places added later), will have exactly one common element

with exactly one place in S. This means that the 𝑝𝐶S(𝑝𝑖 ) scores of
all 𝑝𝑖s corresponding to vertices in 𝑉 are equal and strictly larger

than the 𝑝𝐶S(𝑝 𝑗 ) scores of all other places 𝑝 𝑗 .
We can now prove that the 𝑘-subset R of S, which maximizes

𝐻𝑃𝐹 (R) is a 𝑘 independent set in the original graph 𝐺 . We con-

sider a special case of our problem, where 𝜆 = 1 (i.e., we disre-

gard relevance) and 𝛾 = 0 (i.e., we disregard Ptolemy’s diversity).

First, all 𝑘-subsets of S, which include only vertices in 𝑉 have

a common
∑
𝑝𝑖 ∈R 𝑝𝐹S(𝑝𝑖 ) score (equal to

∑
𝑝𝑖 ∈R 𝑝𝐶S(𝑝𝑖 ), since

𝛾 = 0), which is higher than the corresponding score of all 𝑘-subsets
which include some vertex outside 𝑉 . This is because all vertices

in such a subset have the maximum possible 𝑝𝐶S(𝑝𝑖 ) score (as

discussed above). Second, all 𝑘 independent sets from𝑉 correspond

to 𝑘-subsets for which the quantity
∑
𝑝𝑖 ∈R 𝑝𝐹R(𝑝𝑖 ) is zero. This is

because, all pairs of places in such a set have no common elements.

The reduction takes polynomial time, since the maximum degree of

any vertex in |𝑉 | is |𝑉 | −1, which means that we should add at most

|𝑉 | · ( |𝑉 | − 1) edges and vertices. This completes the proof. �

Figure 3 shows an example of the reduction. Consider the graph

shown in Figure 3(a), which includes four vertices, such that 𝑣1
is connected to all vertices and there are no other edges. A 3-

independent set in this graph is {𝑣2, 𝑣3, 𝑣4}. For the reduction, we
initially define 𝐶 (𝑝1) = {𝑣1,2, 𝑣1,3, 𝑣1,4}, 𝐶 (𝑝2) = {𝑣1,2}, 𝐶 (𝑝3) =



{𝑣1,3}, and 𝐶 (𝑝4) = {𝑣1,4}. Then, for each one of the vertices

{𝑣2, 𝑣3, 𝑣4}, we connect it to two new vertices, add the correspond-

ing new places to S, and update the corresponding contexts. This

results in all four original vertices in 𝑉 to have the same (maxi-

mum) degree 3; hence, all corresponding places have 3 elements

in their contexts and any subset with 𝑘 = 3 such vertices have the

same (maximum) sum of 𝑝𝐹S(𝑝𝑖 ) scores. At the same time, each

vertex in the independent set R = {𝑣2, 𝑣3, 𝑣4} has a zero 𝑝𝐹R(𝑝𝑖 )
score. Overall, any 𝑘 independent set problem can be converted to

a special case of our problem for 𝜆 = 1 and 𝛾 = 0.

5 GENERIC PROPORTIONALITY
ALGORITHMIC FRAMEWORK

Our problem (Definition 1) necessitates the pairwise comparison

of all places in S in order to compute all the proportionality scores

𝐻𝑃𝐹 (𝑝𝑖 , 𝑝 𝑗 ), essential to determine the 𝑘-sized subset R with the

highest 𝐻𝑃𝐹 (R). We propose a two-step algorithmic framework,

which first computes and stores the pairwise scores, which are

then used for finding the solution. As we explain below, our main

contribution is in the first step, since we use previously known

greedy algorithms for the second step.

Step 1: Compute proportionality scores of S. The greedy

algorithms utilise Equation 15 which requires 𝑟𝐹 (𝑝𝑖 ), 𝑝𝐶S(𝑝𝑖 ),
𝑝𝑆S(𝑝𝑖 ) and 𝑠𝐹 (𝑝𝑖 , 𝑝 𝑗 ). In contrast to the 𝑟𝐹 (𝑝𝑖 ) score which is

given to us, the calculation of 𝑝𝐶S(𝑝𝑖 ) and 𝑝𝑆S(𝑝𝑖 ) is very chal-

lenging as it dictates the comparison of all pairs (𝑝𝑖 , 𝑝 𝑗 ) of places
in S (i.e., a quadratic number of pairs), in order to calculate their

𝑠𝐹 (𝑝𝑖 , 𝑝 𝑗 ). As we discuss in the following sections, baseline ap-

proaches for calculating sub functions 𝑠𝐶 (𝑝𝑖 , 𝑝 𝑗 ) and 𝑠𝑆 (𝑝𝑖 , 𝑝 𝑗 )
require up to |𝐶 (𝑝𝑖 ) | (size of the contextual set) and 20 operations,

respectively. Hence, we need a total of 𝑂 (𝐾2 · ( |𝐶 (𝑝𝑖 ) | + 20)) oper-
ations for all pairs of places in S. We introduce tailored algorithms

that greatly reduce this complexity in practice (Sections 6 and 7).

We also compare them with such baseline approaches [5]. In order

to avoid performing redundant computations, after an 𝑠𝐹 (𝑝𝑖 , 𝑝 𝑗 )
score is computed, it is cached and reused whenever necessary

during the execution of our greedy algorithms.

Step 2: ComputeR. The problem is NP-hard, as we have already

shown. We use two alternative greedy algorithms from previous

work [5], i.e., IAdU and APB. The two algorithms use thresholds

in order to facilitate a faster termination, which we adapt accord-

ingly. Hereby, we will focus our description on the heuristics, the

respective adaptations and their complexity (efficiency aspects can

be found in [5]). In Section 8, we study their approximation bounds.

IAdU. This algorithm iteratively constructs the result setR by se-

lecting each time the place from S that maximizes the contribution

it can make towards the overall score 𝐻𝑃𝐹 (R). The contribution
𝑐𝐻𝑃𝐹 (𝑝𝑖 ) of 𝑝𝑖 to be added to the current result set R is defined as

follows:

𝑐𝐻𝑃𝐹 (𝑝𝑖 ) =
{
𝑟𝐹 (𝑝𝑖 ), if R = ∅,∑
𝑝 𝑗 ∈R 𝐻𝑃𝐹 (𝑝𝑖 , 𝑝 𝑗 ), otherwise.

(17)

𝑐𝐻𝑃𝐹 (𝑝𝑖 ) considers the relevance score and the proportionality

of 𝑝𝑖 against existing elements in R. In the first iteration, R is

empty, thus the available contribution of a place can only be the

corresponding 𝑟𝐹 (𝑝𝑖 ) score. The contributions of all other places are

then updated to consider the new entry in R. Then, the algorithm
iteratively selects the place 𝑝𝑖 that maximizes 𝑐𝐻𝑃𝐹 (𝑝𝑖 ) w.r.t. the
current R, adds 𝑝𝑖 to R, and updates the contribution of the places

not in R. The complexity of the algorithm is 𝑂 (𝐾 · 𝑘 · 𝑙𝑜𝑔𝐾 + 𝐾2).
ABP. This algorithm greedily constructs the result set R by

iteratively selecting the pair of places (𝑝𝑖 , 𝑝 𝑗 ) with the largest

𝐻𝑃𝐹 (𝑝𝑖 , 𝑝 𝑗 ) score (Equation 15). ABP selects the next pair (𝑝𝑖 , 𝑝 𝑗 )
based on only its 𝐻𝑃𝐹 (𝑝𝑖 , 𝑝 𝑗 ) value, independently of the relation-

ships of 𝑝𝑖 or 𝑝 𝑗 to places already in R (in contrast to IAdU). Once

a pair is selected, both its constituent elements and any pairs they

make are removed from further consideration by the algorithm

(in a lazy fashion). Since a single pair is selected in each iteration,

�𝑘/2	 iterations apply when the value of 𝑘 is even. When 𝑘 is

odd, an arbitrary place is chosen to be inserted in the result set

R as its last entity. The worst case complexity of the algorithm is

𝑂 (𝐾2 · log(𝐾2)) which is higher than that of IAdU.

6 CONTEXTUAL PROPORTIONALITY
CALCULATION

𝑝𝐶S(𝑝𝑖 ) scores require the calculation of Jaccard similarity of all

pairs of contextual sets of places in S, which can be an expensive

process. We propose a novel micro set Jaccard hashing (msJh) al-

gorithm, which is tailored to the characteristics of our sets (i.e.,

numerous sets of moderate size). Jaccard similarity is a generic

measure, appropriate for any type of contextual items (e.g. for sets

of keywords, tags, RDF entities, nodes, etc.).

Baseline approach. We first discuss a baseline approach for

computing the contextual similarities of all pairs of places in S.
This approach, for each pair, first creates a hash table with the

elements of the first set and then uses it to check for each element

in the second set if it appears in the first set. For comparing all pairs

inS, we still need to hash all𝐾 sets inS. Assume, for simplicity, that

all sets have the same size |𝑝𝑖 |. The hashing phase costs 𝑂 (𝐾 · |𝑝𝑖 |),
as we have to scan all elements from all sets. The comparison phase

costs𝑂 (𝐾2 · |𝑝𝑖 |), because for each of the𝑂 (𝐾2) pairs, we need |𝑝𝑖 |
checks in the worst case. The baseline approach is expensive if S
contains many places; for instance, for 𝐾 = 100 and |𝑝𝑖 | = 5, we

need approximately 25,000 operations.

Minhash is an eminent technique for the fast calculation of

Jaccard similarity on vast amounts of sets of big size. This approach

works in two steps. During the first step, we apply 𝑡 hash functions

(i.e. 𝐾 · 𝑡 operations) on each set (where we get 𝑡 minimum values).

During the second step each pair is compared against the respective

𝑡 minimum values (i.e. in total 𝐾2 · 𝑡/2 operations). Thus, in order

to compare all pairs, we need in total of 𝐾2 · 𝑡/2 + 𝐾 · 𝑡 operations.
Apparently, this approach can be very efficient when the number of

elements |𝑝𝑖 | in the contextual set of each place 𝑝𝑖 is large, as |𝑝𝑖 |
does not affect the cost. We implemented this algorithm, in order

to compare it with our proposed msJh algorithm, but it failed to

perform well on our data, where the sets are relatively small.

6.1 Micro Set Jaccard hashing (msJh) Algorithm

In view of the limitations of the previous algorithms, we propose

the micro set Jaccard hashing (msJh) algorithm. The algorithm

generates an inverted list for each element with the sets wherein

the element appears. The rationale of the msJh index is that we can



Algorithm 1 Micro set Jaccard hashing (msJh)

1: for each 𝑝𝑖 in S do

2: for each element 𝑣 in 𝑝𝑖 do
3: if𝑚𝑠𝐻𝑇 [𝑣 ] does not exist then
4: Generate new𝑚𝑠𝐻𝑇 [𝑣 ] list
5: Add 𝑝𝑖 in the front of𝑚𝑠𝐻𝑇 [𝑣 ] list
6: for each 𝑝𝑖 in S do

7: for each element 𝑣 in 𝑝𝑖 do
8: for each 𝑝 𝑗 in𝑚𝑠𝐻𝑇 [𝑣 ] with 𝑗 > 𝑖 do

9: Update Jaccard Score (𝑝𝑖 , 𝑝 𝑗 )

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

𝑝1:{𝑎, 𝑏, 𝑐, 𝑑} {𝑎, 𝑑} ⇒ 2/4 {} ⇒ 0 {𝑎, 𝑏} ⇒ 2/5 {𝑏, 𝑐} ⇒ 2/5
𝑝2:{𝑎, 𝑑} {} ⇒ 0 {𝑎} ⇒ 1/4 {} ⇒ 0

𝑝3:{𝑒, 𝑓 , 𝑔} {} ⇒ 0 {} ⇒ 0

𝑝4:{𝑎, 𝑏, ℎ} {𝑏} ⇒ 1/5
𝑝5:{𝑏, 𝑐, 𝑖}

Figure 4: Example of the𝑚𝑠𝐽ℎ Algorithm

facilitate a targeted Jaccard comparison. Namely, we facilitate the

comparisons of sets only if we know they have common elements

(by using msJh). Our technique is very efficient for small sets and

at the same time computes it is exact (in contrast to minhash which

is efficient on large sets with a minor approximation loss). The

algorithm consists of two steps (i.e. Algorithm 1). Figure 4 illustrates

an example.

Step 1: Generate msJh. We parse all sets and add on a hash

table all elements and the sets wherein they appear (i.e., micro set

hash table, denoted as msht; lines 1-5). More precisely, for each

element we maintain a reverse list of the sets wherein the element

appears (the reverse order of the places in the inverted list facilitates

avoidance of redundant checks and we explain this in the following

step). Figure 5 illustrates the msht for the example of Figure 4.

Step 2: Compare sets.We compare pairs in an economical fash-

ion by utilising msht. More precisely, we calculate the intersection

of any pair 𝑝𝑖 and 𝑝 𝑗 , for pairs with 𝑖 < 𝑗 and for each element 𝑣𝑙
in 𝑝𝑖 (lines 6-10). For instance, in our example of Figure 4, we will

process first 𝑝1. For each element in 𝑝1 (i.e., {𝑎, 𝑏, 𝑐, 𝑑}), we consult
the msht as to see in which sets these elements appear. Then, we

update the Jaccard (partial) scores accordingly. E.g. 𝑎 of 𝑝1 appears
in 𝑝4 and 𝑝2. Then, we process 𝑏 of 𝑝1, which appears in 𝑝5 and 𝑝4.
Recall that we add elements onmsht in a reverse order. Thus, we can

stop processing an element against sets that have been previously

processed or against the set itself. For instance, while processing

𝑝1, we will not compare 𝑎 against 𝑝1; also, while comparing 𝑝2,
we will not compare 𝑎 against 𝑝2 and 𝑝1. An illustrative example

of the savings of this algorithm (against the baseline algorithm)

can be shown in the comparison of 𝑝1 and 𝑝3. Where, according to

msht, the two sets have no common elements and this will result in

zero operations. On the other hand, the baseline approach will still

have to compare these two sets. Finally, given the intersection of

|𝑝𝑖 | and |𝑝 𝑗 |, we can infer the union by subtracting the size of the

intersection from |𝑝𝑖 | + |𝑝 𝑗 |.
The algorithm has the following time costs. During the first step,

we need to create the micro hash table, which requires 𝑂 (𝐾 |𝑝𝑖 |)
time, where |𝑝𝑖 | is the average number of elements in a set in S.

Micro Hash Sets (Reverse order)

a 𝑝4, 𝑝2, 𝑝1
b 𝑝5, 𝑝4, 𝑝1
c 𝑝5, 𝑝1
d 𝑝2, 𝑝1
e 𝑝3
f 𝑝3
g 𝑝3
h 𝑝4
i 𝑝5

Figure 5: Micro set hash table (𝑚𝑠ℎ𝑡 ) for example of Fig. 4

During the second step, we build the intersections of all pairs of

𝑝𝑖s. Thus, assuming again for simplicity that all sets have common

size |𝑝𝑖 |, we need 𝑂 (𝐾2 ∗ |𝑝𝑖 |) time (i.e., the worst case is when

all sets are equal), i.e., the same cost as the baseline approach in

the worst case. However, in practice, the pairs of sets will not have

high overlap; hence, the algorithm is much faster than the baseline

approach as we verify experimentally.

7 SPATIAL PROPORTIONALITY
CALCULATION

The computation of 𝑝𝑆S(.) is demanding as we need to compare

all 𝑂 (𝐾2) pairs in S. Furthermore, computing Ptolemy’s 𝑠𝑆 (𝑝𝑖 , 𝑝 𝑗 )
is expensive. Specifically, for each distance | |𝑝𝑖 , 𝑝 𝑗 | | between two

places we need 6 operations, i.e.
√
(𝑝𝑖 .𝑥 − 𝑝 𝑗 .𝑥)2 + (𝑝𝑖 .𝑦 − 𝑝 𝑗 .𝑦)2.

We need three distance computations per pair (i.e. for | |𝑝𝑖 , 𝑝 𝑗 | |,
| |𝑝𝑖 , 𝑞 | | and | |𝑝 𝑗 , 𝑞 | |). Finally, we also need 2 more operations, i.e.:

(1) the addition of | |𝑝𝑖 , 𝑞 | | and | |𝑝 𝑗 , 𝑞 | | at the denominator and finally

(2) the division of the nominator and denominator. Thus in total we

need 20 operations for each 𝑑𝑆 (𝑝𝑖 , 𝑝 𝑗 ). We refer to this brute-force

computation approach as the baseline algorithm. Considering its

high cost, we propose Grid based 𝑝𝑆S(.) approaches which reduce

the cost by one order of magnitude (at some approximation loss).

7.1 Grid based 𝑝𝑆S(.) calculation
We propose an efficient grid based algorithm for 𝑝𝑆S(.), which
accelerates the computation of Ptolemy’s similarity 𝑠𝑆 (𝑝𝑖 , 𝑝 𝑗 ). We

investigate its application on two grid structures, i.e. a squared

and a radial grid structure. More precisely, we create a regular

grid centered on 𝑞, which covers the locations of all places in S
and assign each place 𝑝𝑖 in S to the corresponding cell. We ap-

proximate 𝑠𝑆 (𝑝𝑖 , 𝑝 𝑗 ) of any pair of places by replacing their real

coordinates with the coordinates of the centres of the respective

cells. This approach can decrease drastically the computational

cost of 𝑝𝑆S(𝑝𝑖 ) at a small compromise on approximation. The grid-

based approach also has an important and useful property (which

we prove). Namely, the 𝑠𝑆 (, ) of the centres of any two cells is in-

dependent from the size of the cells. Thus, we can pre-compute

the 𝑠𝑆 (, ) scores for the centers of any pair of cells and use these

scores for any query. Recall that 𝑠𝑆 (, ) calculation requires up to 20

operations. Hence, if we use the pre-computed scores, we reduce

this cost to 1 operation only. Algorithm 2 illustrates the algorithm

with a pseudo code, and Figure 6 illustrates a running example.

7.1.1 Squared grid and algorithm. Hereby, we describe the steps

of the algorithm when using a squared grid.
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Figure 6: 𝑝𝑆S Grid Examples (annotated with |𝑐𝑖 |)

Step 1: Generate the 𝑝𝑆S(.) grid. We define the grid 𝐺 by a

triplet𝐺 (𝐺𝑐 ,𝐺𝑧 , |𝐺 |). The grid is divided into square cells and hence
itself is a square. 𝐺𝑐 is the center of the grid and it is aligned to the

query location 𝑞. 𝐺𝑧 is the length of each of the grid’s sides, which

is set to 2𝑓 𝑝 , where 𝑓 𝑝 is the distance between 𝑞 and the furthest

point from 𝑞 in S (see the example of Figure 6(a)). |𝐺 | is the number

of cells in the grid. A larger |𝐺 | decreases the approximation error

but also increases the cost of 𝑝𝑆S(𝑝𝑖 ) computation.

Each grid row or column has |𝑔 | cells, where |𝑔 | =
√
|𝐺 |. Value

|𝑔| should be an even number, because the number of cells on the

left (bottom) of the grid’s centre 𝐺𝐶 is equal to the number of cells

on the right (top) of 𝐺𝐶 , as determined by 𝑓 𝑝 . Each cell 𝑐𝑖 contains
a number of places, denoted by |𝑐𝑖 |. For each query, a good choice

of |𝐺 | should be such that |𝐺 | ≈ 𝐾 , according to our experiments.

Step 2. Allocate places to cells. We allocate each place 𝑝 to

the cell that contains 𝑝 and maintain a counter |𝑐𝑖 | for the number

of places in each cell. For each cell 𝑐𝑖 , its centre, denoted as 𝑐𝑐𝑖 ,
represents (i.e., approximates) the locations of all places in 𝑐𝑖 .

Step 3. Calculate 𝑝𝑆S(, ). Let us assume that 𝑠𝑆 (𝑐𝑐𝑖 , 𝑐𝑐 𝑗 ) be-
tween the centres (𝑐𝑐𝑖 , 𝑐𝑐 𝑗 ) of every pair of cells (𝑐𝑖 , 𝑐 𝑗 ) has been
pre-computed and is accesible from a matrix 𝑠𝑆𝑀 . We calculate

the 𝑝𝑆S(𝑐𝑖 ) of a cell, by considering the cardinality |𝑐𝑖 | and the

cardinality |𝑐 𝑗 | of all other cells together with the precomputed

𝑠𝑆 (𝑐𝑐𝑖 , 𝑐𝑐 𝑗 ) scores, by adapting Equation 6 as follows:

𝑝𝑆S(𝑐𝑖 ) =
∑
𝑐 𝑗 ∈𝐺

|𝑐 𝑗 | · (𝑠𝑆 (𝑐𝑐𝑖 , 𝑐𝑐 𝑗 )) − 1. (18)

𝑝𝑆S(𝑐𝑖 ) represents the score for any place 𝑝 residing in 𝑐𝑖 and will

be the same for all places in 𝑐𝑖 , i.e. 𝑝𝑆S(𝑝) = 𝑝𝑆S(𝑐𝑖 ) for each 𝑝 in

𝑐𝑖 . In the computation of 𝑝𝑆S(𝑐𝑖 ), we also consider all places in 𝑐𝑖 ;
𝑐𝑖 includes |𝑐𝑖 | collocated places with 𝑠𝑆 (𝑝, 𝑝 𝑗 ) = 1 for all 𝑝, 𝑝 𝑗 in
𝑐𝑖 . We subtract 1 in order to disregard the comparison of a place

against itself. We consider all cells with |𝑐𝑖 | > 0.

Precomputation. The algorithm requires that the 𝑠𝑆 (𝑐𝑐𝑖 , 𝑐𝑐 𝑗 )
scores between all cell centres are pre-computed for any resolu-

tion and position of 𝐺 . This is possible because of the nature of

Ptolemy’s similarity, which makes it independent from the scale

of distances between points; only their relative orientation to 𝑞
matters. We prove this property in Theorem 7.1, at the end of this

section. Specifically, the 𝑠𝑆 (𝑐𝑐𝑖 , 𝑐𝑐 𝑗 ) score depends on the relative

position of cells 𝑐𝑖 and 𝑐 𝑗 w.r.t. the center of the grid, where this

Algorithm 2 Grid based 𝑝𝑆S() calculation
1: Generate empty grid𝐺 (𝑞, 2 · 𝑓 𝑝, |𝐺 |) {Step 1}

2: for each 𝑝 in S do

3: Assign 𝑝 to the cell 𝑐𝑖 which contains 𝑝 {Step 2}

4: |𝑐𝑖 | = |𝑐𝑖 | + 1

5: for each cell 𝑐𝑖 with |𝑐𝑖 | > 0 do

6: for each cell 𝑐 𝑗 with |𝑐 𝑗 | > 0 and 𝑗 ≥ 𝑖 do
7: 𝑝𝑆S(𝑐𝑖 ) = 𝑝𝑆S(𝑐𝑖 ) + |𝑐 𝑗 | · 𝑠𝑆 (𝑐𝑐𝑖 , 𝑐𝑐 𝑗 ) {Step 3}

8: 𝑝𝑆S(𝑐𝑖 ) = 𝑝𝑆S(𝑐𝑖 ) − 1

position is measured in terms of number of cells. For example in

Figure 6, 𝑠𝑆 (𝑐𝑐−1,1, 𝑐𝑐−1,−1) equals to 1 − 1/√2 and depends only

on the relative positions of the cells w.r.t. the grid centre, but not

on their sizes. Hence, by pre-computing all scores for a large grid

𝐺𝑀𝐴𝑋 which can be superimposed on top of any query, we can

use the pre-computed values. If the query requires a smaller grid

(recall that |𝐺 | ≈ 𝐾), where |𝐺 | ≤ |𝐺𝑀𝐴𝑋 |, then we use only the

pre-computed scores of the respective subset of 𝐺𝑀𝐴𝑋 .

Complexity. For Step 1, in order to generate the grid, we need

𝑂 ( |𝐺 |) time. During Step 2, we need 𝑂 (𝐾) operations to assign

𝐾 places to cells. For Step 3, in order to calculate the 𝑝𝑆S() for
a pair of cells, we need two operations (i.e. multiplying |𝑐 𝑗 | by
𝑠𝑆 (𝑐𝑐𝑖 , 𝑐𝑐 𝑗 )). In the worst case, the 𝐾 places will be in different cells.

Thus, for calculating 𝑝𝑆S(𝑐𝑖 ), we will need 2 ·𝐾 operations. Hence,

for the whole grid with 𝐾 cells, we will need 𝑂 (𝐾2) operations in
the worst case. The space complexity is 𝑂 (𝐾), since |𝐺 | ≈ 𝐾 , while

the storage requirements for pre-computation are 𝑂 ( |𝐺𝑀𝐴𝑋 |).
7.1.2 Radial grid. An alternative to the square grid approximation

is a radial grid 𝑅, which is defined by sectors formed by (1) circles

and (2) lines as follows. We use a set of 𝑟𝑐 homocentric circles, all

centered at the grid center 𝑅𝑐 (i.e., the query location 𝑞). These
circles have as radii multiples of a constant 𝑐𝑧 , where the outmost

circle has diameter 2·𝑓 𝑝 . We also use a set of𝑅𝑑 lines that divides the

space into equal slices (any two consecutive lines have a common

angle). These lines’ lengths are set to the diameter of the outmost

circle (Figure 6(b)). The algorithm (i.e., Algorithm 2) remains the

same; but here we have a radial grid and sectors (instead of cells).

The rationale of using a radial grid is that it has smaller cell sizes

near the query location and could give a better approximation when

many places are located very close to 𝑞. We set 𝑅𝑑 = 2 · 𝑟𝑐 which
results in |𝑅 | = 2 · 𝑅𝑑 · 𝑟𝑐 sectors. Hence, the radial grid can be

denoted by 𝑅(𝑅𝑐 , 𝑅𝑧 , |𝑅 |), where (1) 𝑅𝑐 is the centre of the grid (𝑞),

(2) 𝑅𝑧 is the length of the diameter and is set to 2 · 𝑓 𝑝 , and (3)

|𝑅 | is the number of sectors (cells) in the grid (i.e. 𝑅2
𝑑
). Note that

𝑅𝑧 = 2 · 𝑟𝑐 · 𝑐𝑧 . Each 𝑠𝑖 may contain a number of places, denoted

as |𝑠𝑖 |. We use the center 𝑠𝑐𝑖 of a sector 𝑠𝑖 as the representative

point, defined by the intersection between a circle having as radius

the average radii of the two cirles that define it and the diameter

having as angle the average angle of the two diameters that define

the sector. Finally, we can easily see that the time and space analysis

and Theorem 7.1 (i.e. we can pre-compute and reuse the 𝑠𝑆 (, ) of
sectors) apply here as well.

7.1.3 Scale-free property of Ptolemy’s similarity. Given a pair of

points (𝑝𝑖 , 𝑝 𝑗 ) and a query location 𝑞, we now prove that their

𝑠𝑆 (𝑝𝑖 , 𝑝 𝑗 ) score remains the same if we multiply their difference to

𝑞 in all dimensions by the same factor 𝑓 . Formally:



Theorem 7.1. Let 𝑝𝑖 and 𝑝 𝑗 be two points with coordinates (𝑥𝑖 , 𝑦𝑖 )
and (𝑥 𝑗 , 𝑦 𝑗 ), respectively. Let 𝑞 be a query location with coordinates

(𝑥𝑞, 𝑦𝑞). Let 𝑝 ′
𝑖 and 𝑝 ′

𝑗 be two points with coordinates (𝑥 ′
𝑖 , 𝑦

′
𝑖 ) and

(𝑥 ′
𝑗 , 𝑦

′
𝑗 ), respectively, such that (𝑥 ′

𝑖 − 𝑥𝑞) = 𝑓 · (𝑥𝑖 − 𝑥𝑞), (𝑦′
𝑖 −𝑦𝑞) =

𝑓 · (𝑦𝑖 −𝑦𝑞), (𝑥 ′
𝑗 −𝑥𝑞) = 𝑓 · (𝑥 𝑗 −𝑥𝑞), and (𝑦′

𝑗 −𝑦𝑞) = 𝑓 · (𝑦 𝑗 −𝑦𝑞).
It holds that 𝑠𝑆 (𝑝𝑖 , 𝑝 𝑗 ) = 𝑠𝑆 (𝑝 ′

𝑖 , 𝑝
′
𝑗 ).

Proof. We have 𝑠𝑆 (𝑝 ′
𝑖 , 𝑝

′
𝑗 ) = 1 − | |𝑝′𝑖 ,𝑝′𝑗 | |

| |𝑝′𝑖 ,𝑞 | |+ | |𝑝′𝑗 ,𝑞 | | =

1 −
√
(𝑥 ′𝑖−𝑥 ′𝑗 )2+(𝑦′𝑖−𝑦′𝑗 )2√(𝑥 ′𝑖−𝑥𝑞 )2+(𝑦′𝑖−𝑦𝑞 )2+

√
(𝑥 ′𝑗−𝑥𝑞 )2+(𝑦′𝑗−𝑦𝑞 )2

We also have 𝑥 ′
𝑖 − 𝑥 ′

𝑗 = 𝑓 · (𝑥𝑖 − 𝑥𝑞) − 𝑓 · (𝑥 𝑗 − 𝑥𝑞) = 𝑓 · (𝑥𝑖 − 𝑥 𝑗 )
and similarly 𝑦′

𝑖 − 𝑦′
𝑗 = 𝑓 · (𝑦𝑖 − 𝑦 𝑗 ), 𝑥 ′

𝑖 − 𝑥𝑞 = 𝑓 · (𝑥𝑖 − 𝑥𝑞),
𝑦′
𝑖 −𝑦𝑞 = 𝑓 · (𝑦𝑖 −𝑦𝑞), 𝑥 ′

𝑗 −𝑥𝑞 = 𝑓 · (𝑥 𝑗 −𝑥𝑞), 𝑦′
𝑗 −𝑦𝑞 = 𝑓 · (𝑦 𝑗 −𝑦𝑞).

Hence, 𝑠𝑆 (𝑝 ′
𝑖 , 𝑝

′
𝑗 ) =

1 −
√
𝑓 · (𝑥𝑖−𝑥 𝑗 )2+𝑓 · (𝑦𝑖−𝑦 𝑗 )2√

𝑓 · (𝑥𝑖−𝑥𝑞 )2+𝑓 · (𝑦𝑖−𝑦𝑞 )2+
√
𝑓 · (𝑥 𝑗−𝑥𝑞 )2+𝑓 · (𝑦 𝑗−𝑦𝑞 )2

=

1 −
√
(𝑥𝑖−𝑥 𝑗 )2+(𝑦𝑖−𝑦 𝑗 )2√(𝑥𝑖−𝑥𝑞 )2+(𝑦𝑖−𝑦𝑞 )2+

√(𝑥 𝑗−𝑥𝑞 )2+(𝑦 𝑗−𝑦𝑞 )2
= 1 − | |𝑝𝑖 ,𝑝 𝑗 | |

| |𝑝𝑖 ,𝑞 | |+ | |𝑝 𝑗 ,𝑞 | | =

𝑠𝑆 (𝑝𝑖 , 𝑝 𝑗 ). �

Now, consider a grid𝐺 that is centered at𝑞. For every pair of cells
𝑐𝑖 , 𝑐 𝑗 in the grid 𝐺 , let (𝑐𝑐𝑖 , 𝑐𝑐 𝑗 ) be the corresponding pair of cell

centres. Based on Theorem 7.1, score 𝑠𝑆 (𝑐𝑐𝑖 , 𝑐𝑐 𝑗 ) is independent
from the cell size 𝑐𝑧 and only depends on the relative positions

of 𝑐𝑖 , 𝑐 𝑗 w.r.t. the grid’s centre, measured in terms of number of

cells. For example, in Figure 6, the grid cells are given identifiers,

based on their relative position (in number of cells) to the grid

centre. Based on Theorem 7.1, the 𝑠𝑆 (𝑐𝑐𝑎,𝑏 , 𝑐𝑐𝑐,𝑑 ) score between
any two cell centres 𝑐𝑐𝑎,𝑏 and 𝑐𝑐𝑐,𝑑 depends only on the grid-based

coordinates (𝑎, 𝑏) and (𝑐, 𝑑) of cells 𝑐𝑎,𝑏 and 𝑐𝑐,𝑑 and not on the sizes

of the cells. This is because in two grids 𝐺 and 𝐺 ′, the ratio of the

differences between cell centres 𝑐𝑐𝑎,𝑏 ∈ 𝐺 and 𝑐𝑐 ′
𝑎,𝑏

∈ 𝐺 ′ and the

corresponding grid centres in each dimension is the same for any

(𝑎, 𝑏). In addition, 𝑠𝑆 (𝑐𝑐𝑎,𝑏 , 𝑐𝑐𝑐,𝑑 ) is the same for any position of the

grid centre. Summing up, the same pre-computed 𝑠𝑆 (𝑐𝑐𝑎,𝑏 , 𝑐𝑐𝑐,𝑑 )
values are used for any query location 𝑞 and any grid size 𝐺𝑧 and

number of cells |𝐺 |.

8 THEORETICAL ANALYSIS

In this section, we analyze the approximation bounds of the greedy

algorithms (IAdU and ABP) for our proportional selection problem.

Our proofs are based on the assumption that 𝐻𝑃𝐹 (𝑢, 𝑣) satisfies
the triangle inequality. For this purpose, we first investigate when

does 𝐻𝑃𝐹 (𝑢, 𝑣) satisfy the triangle inequality. Then, by using this

key observation, we can trivially prove the approximation loss.

Lemma 8.1. Given a set of distance functions𝑑𝐹 1 (𝑢, 𝑣), ..., 𝑑𝐹𝑛 (𝑢, 𝑣)
that satisfy triangle inequality, then their weighted summation (de-

noted as 𝑑𝐹 (𝑢, 𝑣) = ∑
𝑤𝑖 ·𝑑𝐹 𝑖 (𝑢, 𝑣)) also satisfies triangle inequality,

as given by

𝑑𝐹 (𝑢, 𝑣) + 𝑑𝐹 (𝑣,𝑤) ≥ 𝑑𝐹 (𝑢,𝑤).
Proof. By definition of 𝑑𝐹 (𝑢, 𝑣), the inequality can be rewritten

as:
∑

𝑤𝑖 · 𝑑𝐹 𝑖 (𝑢, 𝑣) +∑
𝑤𝑖 · 𝑑𝐹 𝑖 (𝑢,𝑤) ≥ ∑

𝑤𝑖 · 𝑑𝐹 𝑖 (𝑣,𝑤). Thus,

𝑤1 · 𝑑𝐹 1 (𝑢, 𝑣) +𝑤1 · 𝑑𝐹 1 (𝑣,𝑤) ≥ 𝑤1 · 𝑑𝐹 1 (𝑢,𝑤),
...
𝑤𝑛 · 𝑑𝐹𝑛 (𝑢, 𝑣) +𝑤𝑛 · 𝑑𝐹𝑛 (𝑣,𝑤) ≥ 𝑤𝑛 · 𝑑𝐹𝑛 (𝑢,𝑤).
The addition of these equations completes the proof. �

In general, any diversity function 𝑑𝐹 (𝑢, 𝑣) maintains its triangle

inequality properties as long as the constituent components follow

triangle inequality. Since from [5], we know that 𝑑𝑆 (𝑢, 𝑣) (i.e. 1 −
𝑠𝑆 (𝑢, 𝑣)) satisfies the inequality and from [35] we see that 𝑑𝐶 (𝑣,𝑤)
(i.e. 1 − 𝑠𝐶 (𝑢, 𝑣)) which is a Jaccard distance is a metric and hence

satisfies the triangle inequality; then, we can infer that 𝑑𝐹 (𝑢, 𝑣) (i.e.
1 − 𝑠𝐹 (𝑢, 𝑣)) also satisfies triangle inequality.

Theorem 8.2. 𝐻𝑃𝐹 (𝑢, 𝑣) (Eq. 15) satisfies the Triangle Inequality
when 𝑟𝐹 (𝑣) ≥ 𝜆 · (𝑘−1)

(1−𝜆) ·(𝐾−𝑘)

Proof. By expanding 𝐻𝑃𝐹 (𝑢, 𝑣) we get:
(1− 𝜆) · 𝐾−𝑘

𝑘−1 · (𝑟𝐹 (𝑢) + 𝑟𝐹 (𝑣))+ 𝜆 · ( 1
𝑘−1 · (𝑝𝐹S(𝑢) + 𝑝𝐹S(𝑣)) −

2 · 𝑠𝐹 (𝑢, 𝑣))+ (1− 𝜆) · 𝐾−𝑘
𝑘−1 · (𝑟𝐹 (𝑣) + 𝑟𝐹 (𝑤))+ 𝜆 · ( 1

𝑘−1 · (𝑝𝐹S(𝑣) +
𝑝𝐹S(𝑤)) −2 ·𝑠𝐹 (𝑣,𝑤)) ≥ (1−𝜆) · 𝐾−𝑘

𝑘−1 · (𝑟𝐹 (𝑢) +𝑟𝐹 (𝑤))+ 𝜆 · ( 1
𝑘−1 ·(𝑝𝐹S(𝑢) + 𝑝𝐹S(𝑤)) − 2 · 𝑠𝐹 (𝑢,𝑤)) =⇒

(1− 𝜆) · 𝐾−𝑘
𝑘−1 · 𝑟𝐹 (𝑣) + 𝜆 · 1

𝑘−1 · 𝑝𝐹S(𝑣) −𝜆 · 𝑠𝐹 (𝑢, 𝑣) −𝜆 · 𝑠𝐹 (𝑣,𝑤) ≥
−𝜆 · 𝑠𝐹 (𝑢,𝑤) =⇒
(1 − 𝜆) · 𝐾−𝑘

𝑘−1 · 𝑟𝐹 (𝑣) + 𝜆 · 1
𝑘−1 · 𝑝𝐹S(𝑣) −𝜆 · (𝑠𝐹 (𝑢, 𝑣) + 𝑠𝐹 (𝑣,𝑤) −

𝑠𝐹 (𝑢,𝑤)) ≥ 0 =⇒
(1−𝜆) · 𝐾−𝑘

𝑘−1 · 𝑟𝐹 (𝑣) +𝜆 1
𝑘−1 ·𝑝𝐹S(𝑣) −𝜆 · (1−𝑑𝐹 (𝑢, 𝑣) −𝑑𝐹 (𝑣,𝑤) +

𝑑𝐹 (𝑢,𝑤)) ≥ 0.
Considering that 𝑑𝐹 (𝑢, 𝑣) ranges in [1, 0] and satisfies triangle

inequality (according to Lemma 8.1), then the minimum value for

𝑑𝐹 (𝑢, 𝑣) + 𝑑𝐹 (𝑣,𝑤) − 𝑑𝐹 (𝑢,𝑤) is 0. Then we have:

(1 − 𝜆) · 𝐾−𝑘
𝑘−1 · 𝑟𝐹 (𝑣) + 𝜆 1

𝑘−1 · 𝑝𝐹S(𝑣) − 𝜆 · 1 ≥ 0 =⇒
(1 − 𝜆) · (𝐾 − 𝑘) · 𝑟𝐹 (𝑣) + 𝜆 · 𝑝𝐹S(𝑣) ≥ 𝜆 · (𝑘 − 1) =⇒
𝑟𝐹 (𝑣) ≥ 𝜆 · (𝑘−1)

(1−𝜆) ·(𝐾−𝑘) . �

For further simplification, we drop 𝑝𝐹S(𝑣) (which is the summa-

tion of 𝐾 − 𝑘 elements (including 𝑠𝐹 (𝑢, 𝑣) and 𝑠𝐹 (𝑣,𝑤)) and thus

should be a significant value.

If we seemore carefully this inequality, it holds inmost pragmatic

cases and our default settings. For 𝜆 = 0.5 and𝐾 = 10 ·𝑘 = 10𝑘 , then

we get: 𝑟𝐹 (𝑣) ≥ 𝑘−1
10𝑘−𝑘 =⇒ 𝑟𝐹 (𝑣) ≥ 𝑘

9𝑘 =⇒ 𝑟𝐹 (𝑣) ≥ 1/9. In
summary, we have triangle inequality when 𝑟𝐹 (𝑣) ≥ 0.1. This is a
pragmatic case as results with smaller 𝑟𝐹 (𝑣) are not really relevant

and they never make it in the S.
Approximation Bounds. Given 𝐻𝑃𝐹 (𝑢, 𝑣) satisfies triangle in-

equality, IAdU and ABP algorithms can achieve approximation

ratios of 4 and 2 respectively. For such conditions, these bounds are

proved by [5] and are based on earlier work in [36] and [26].

9 EXPERIMENTS

In this section, we evaluate the efficiency and approximation quality

of the proposed proportionality framework. Finally, we present a

user evaluation and testing of our approach.

9.1 Setup

Datasets.We used DBpedia and Yago2 (version 2.5) datasets that

have been used in [5, 38]. The DBpedia RDF graph has 8M vertices
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Figure 7: Efficiency of msJh (Jaccard)

(0.8M of them are places) and 72M edges. Yago2 has 8M vertices

(with 4.7M places) and 50M edges. In general, our techniques had

similar behaviour on both datasets; due to space limitations, we

present all results on DBpedia and skip some results on Yago2 if

they are similar. For the performance experiments of our grids, we

also used synthetically generated data, which are discussed later.

Queries. We selected locations and keywords, to form a total of

100 queries, such that the number of retrieved places per query is

at least 1000. For each place 𝑝𝑖 in the query result, we compute

its relevance score 𝑟𝐹 (𝑝𝑖 ) to 𝑞 by combining the Jaccard similarity

to the keywords and the normalized distance of 𝑝𝑖 to the query

location (by considering the largest distance of the city) [2, 5].

Experimental settings. Our algorithms are evaluated by varying

parameter values. First, we experimented with different sizes 𝐾 of

S. For a given query, for each value 𝐾 , we selected from the query

results, the 𝐾 most relevant places to form S according to 𝑟𝐹 (𝑝𝑖 ).
𝐾 varies in {20, 40, 50, 60, 100, 150, 200, 400, 1000}, with 100 being

the default value. Second, we experimented with different values of

|𝑝𝑖 |, i.e. the number of elements in the contextual sets of 𝑝𝑖s in S.
For a given S, we formed the contextual sets of the places included

in it, by using keywords from neighboring vertices to 𝑝𝑖 in the

corresponding RDF graph, until the desired |𝑝𝑖 | is reached for each

|𝑝𝑖 |. That is, we enriched (or constrained) the contextual sets of the
places on demand by adding (or removing) keywords, in order to

satisfy the requirement of the required |𝑝𝑖 | by the experiment. The

tested |𝑝𝑖 | values range in {20, 40, 50, 60, 100, 150, 200, 400}, with
100 being the default value. Third, we experimented with different

values of the grid size |𝐺 |; i.e. values in {36, 64, 100, 144, 196} with
a default of |𝐺 | = 100. Fourth, we experimented with values of 𝑘
in {5, 10, 15, 20} with a default value of 10. We experimented with

different values of the weights 𝜆 and 𝛾 , with default 𝜆 = 𝛾 = 0.5.
Platform. All methods were implemented in Java and evaluated

on a 2.7 GHz dual-core, quad-thread machine, with 16 GBytes of

memory, running Windows 10.

9.2 Efficiency

In this section, wemeasured the average run-time costs of the tested

algorithms on our queries for the various parameter values.

9.2.1 Contextual and Spatial Proportionality Algorithms. We study

the efficiency of our solutions for contextual and spatial propor-

tionality computation, presented in Sections 6 and 7.

Contextual Proportionality. Figure 7 compares the perfor-

mance of our msJh algorithm against the baseline algorithm for

calculating 𝑝𝐶S(𝑝𝑖 ) for all 𝑝𝑖 ∈ S (i.e. for all pairs in S). Figure

7(a) reveals that the two algorithms have similar behaviour for

𝐾 ≤ 40, but for 𝐾 > 40 our msJh becomes significantly faster. For

instance for 𝐾 = 1000 and |𝑝𝑖 | = 100, msJh and baseline require

233ms and 6567ms respectively. Similarly, we observe in Figure 7(b)

that the two algorithms have similar performance for |𝑝𝑖 | ≤ 20, but

for |𝑝𝑖 | > 40 our msJh becomes significantly faster. msJh does not

pay off for small values of |𝑝𝑖 | due to the overhead of bookkeeping

operations. We also implemented minhash and compared it with

msJh, but minhash performed poorly for our settings (minhash

outperforms msJh only when 𝐾 and |𝑝𝑖 | become larger than 1000

and 200, respectively); thus, we do not present further details.

Spatial Proportionality. In Figure 8, we present the perfor-

mance of our squared and radial grids techniques against the base-

line algorithm for calculating the 𝑝𝑆S(𝑝𝑖 ) for all 𝑝𝑖 ∈ S (i.e. for

all pairs in S). We see that our algorithms outperform the baseline

algorithm by at least one order of magnitude for all settings and

datasets. We also observe that the squared grid approach is almost

always slightly faster than the radial one. Figure 8(a) shows that

the performance gap between the baseline and the grid-based algo-

rithms increases with 𝐾 . Figure 8(b) shows that the size of the grid

|𝐺 |marginally affects the time of the grid-based algorithms.We also

conducted the same experiments on Yago2 for 𝐾 and |𝐺 | that gave
similar results, thus we combine them more synoptically in Figure

8(c). Finally, in Figure 8(d), we tested the efficiency of grid-based

proportionality computation on synthetically generated locations

of places. For this purpose, we generated 20, ..., 200 (𝐾) random

locations around the query location 𝑞 to model the retrieved set

S, using different spatial distributions: uniform and Gaussian. In

the Gaussian distributions each place coordinate was generated

having as mean the corresponding coordinate of 𝑞 and a standard

deviation of either 0.25 or 0.5. Note that the baseline approach had

much larger cost and was omitted from this sub-figure in order for

the difference between the other methods to be easier to see.

9.2.2 Greedy algorithms. Next, we measure the (average of) the

combined costs of the greedy (IAdU and ABP) with the contextual

and spatial proportionality algorithms. For the proportionality cal-

culation, we compare our optimised algorithms (i.e. msJh and grid

based algorithms, which are the most efficient options) against the

respective baselines. Figure 11 shows the results on DBpedia for

different values of 𝐾 and 𝑘 (the results on Yago2 are similar and

they are omitted for brevity). Each bar adds up the total cost of

the corresponding combination; the bottom part is the cost of the

greedy algorithm, the middle part is the cost of computing spatial

proportionality scores and the top part is the cost of computing

spatial contextual proportionality scores.

Both optimised and baseline versions of IAdU and ABP compute

proportionality scores for all pairs just once in Step 1 and then

reuse these scores multiple times in Step 2. Optimised versions are

about one order of magnitude faster than baseline versions; the cost

difference is insensitive to 𝐾 and becomes larger for smaller values

of 𝑘 . IAdU and ABP require similar times, e.g. for the default setting

(𝑘 = 10 and 𝐾 = 100), they require 0.24ms. As already discussed,

msJh and grid based algorithms are faster than baselines counter-

parts. Their default setting’s times are 6.9ms and 0.1ms, whereas

the corresponding baselines take 140ms and 1.08ms respectively.

We observe that the greedy algorithms costs are insignificant in
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Figure 9: Effectiveness of Squared and Radial Grid algorithms (Relative Approximation Error)
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Figure 10: Efficiency on DBpedia

comparison to the proportionality scores. As expected, the weights

𝜆 and 𝛾 have impact only on the greedy algorithms and thus their

impact remains insignificant against the total time (thus we omit

further discussion due to lack of space). In summary, either greedy

algorithm in combination with msJh and grid based algorithms

constitute the fastest approach. The experimental results justify

our focus on processing efficiently the contextual and spatial pro-

portionality scores and use them as many times as necessary in the

greedy algorithms.

9.3 Approximation Quality

Grid based Algorithms. We compare the approximate 𝑝𝑆S(𝑝𝑖 )
scores for the whole S (i.e.

∑
𝑝𝑖 ∈S 𝑝𝑆S(𝑝𝑖 )) produced by the two

grid approaches against the optimal one (produced by baseline). Fig-

ure 9 presents the relative approximation error of the
∑
𝑝𝑖 ∈S 𝑝𝑆S(𝑝𝑖 )

of the competitive approaches. We observe that the squared grid is

always better than the radial grid and that 𝐾 does not affect this er-

ror. We also observe that increasing |𝐺 | (i.e., making the grid finer)

leads to a reduction of the relative approximation error and that in

general a |𝐺 | ≈ 𝐾 is a good choice (see Figure 9(b)). We also tried

various distributions (Figure 9(d)) that also present similar results.
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Figure 11: Approximation Quality on DBpedia

We conclude that the squared grid with |𝐺 | ≈ 𝐾 is an appropriate

choice with a negligible error of around 5% or lower in practice.

Greedy Algorithms. We assess the approximation quality of

the combination of the two greedy algorithms with the approxi-

mated grid based and optimal (spatial and contextual) algorithms.

Figure 11 shows the 𝐻𝑃𝐹 (R) scores on DBpedia for these combina-

tions, different values of 𝐾 and 𝑘 and default settings (Yago2 results

were similar and thus omitted). Each bar adds up the (normalised

average) total score of the corresponding weighted combination;

the top part represents
∑
𝑝𝑖 ∈R 𝑝𝐶 (𝑝𝑖 ) (denoted as 𝑝𝐶), the middle

part represents
∑
𝑝𝑖 ∈R 𝑝𝑆 (𝑝𝑖 ) (i.e. 𝑝𝑆𝑏𝑎𝑠 , 𝑝𝑆𝑎𝑝 ) and the bottom part

the relevance (𝐾 − 𝑘) · ∑𝑝𝑖 ∈R 𝑟𝐹 (𝑝𝑖 ) (i.e. 𝑟𝐹𝐼𝐴𝑑𝑈 , 𝑟𝐹𝐴𝐵𝑃 ). Recall
that we cannot obtain the optimal 𝐻𝑃𝐹 (R) scores due to the high

computational cost required. ABP always achieves (marginally)

better 𝐻𝑃𝐹 (R) score than IAdU which reflects their (comparative)

approximation quality. For instance, for the default settings, ABP

performs in average 2.36% better 𝐻𝑃𝐹 (R) score than IAdU (i.e.

67.2 − 65.7%). The approximation compromise of the grid based al-

gorithm is minor; for the default settings, the difference on𝐻𝑃𝐹 (R)
scores with and without using the approximated spatial scores on

IAdU and ABP is 0.8% and 6.6% respectively. The 𝜆 and 𝛾 weights



have marginal impact on the relative approximation quality (details

are ommitted for the interest of space).

9.4 User evaluation

We also conducted a user evaluation (i.e. user preference and usabil-

ity testing), which confirms the preference of users to proportional

results. We asked help from ten evaluators, who are employees of

our institutes (none of them was involved in this paper). First, we

familiarized them with the query concepts and relevance metrics.

We also explained to them the concepts of proportionality and di-

versity; to avoid any bias, we avoided to discuss their advantages

or disadvantages. Then, we presented to them ten random queries

from both data sets and their results according to the three alter-

native frameworks. Namely, S𝑘 (i.e. the top-𝑘 places in S with the

largest 𝑟𝐹 (𝑝𝑖 )), ABP𝐷 (i.e. diversification results produced by ABP

[5], since ABP was shown superior to IAdU) and our proportional

ABP. For each task, we asked them to give a score in a scale of

one to ten. In order to assist evaluators with their tasks, we also

presented a map with the places, their contextual sets and useful

statistics (for each query). We presented the output of each method

in a random order (to avoid any bias).

9.4.1 User Preference Study. In this study, we asked evaluators to

evaluate and express their preference w.r.t. (P1) the general content

of results (by considering how representative and informative they

are) and (P2) their ranking. The P1 and P2 bars in Figure 12(a) av-

erage the evaluators’ preference scores of the three methodologies,

for the two criteria (i.e., general content and ranking), for 𝑘 = 10

(using the default settings). For the first criterion (general content),

we observe that the users prefer proportional, then diversified and

lastly non diversified results. For the second criterion (ranking),

users prefer proportional and diversified results. The study revealed

that the top places are typically proportional at the same time facil-

itating both diversity and representation of S; whereas, only some

bottom results had some similarity to previous ones. E.g. the top

5 places are proportional and repetitions appear in the bottom 5

places (e.g. additional museums). This type of bird’s eye view is

preferable by users.

9.4.2 Usability Test. We conducted a comparative study of the

usability of the three paradigms. Usability is the ease of use and

learnability of a human-made object; namely, how efficient it is to

use (for instance, whether it takes less time to accomplish a partic-

ular task), how easy it is to learn and whether it is more satisfying

to use3. We gave them three tasks to complete (for each query and

paradigm) and asked them to give a score and also to justify their

answers (where possible). Namely, to score them considering (1)

the ease of accomplishing each task, (2) how easy and (3) satisfying

are to learn and use.

The three tasks were about the understanding and the extraction

of information about the queries’ results and the entire S. Task
1 (T1) "How easily can you infer the area with many collocated

places of interest?". For instance in Stockholm, how easily can you

infer that Gamla Stan is an area with many collocated museums; so

someone can visit this area and can visit more than one museums.

Task 2 (T2) "How easily can you infer the most representative type

3www.wikipedia.org/wiki/Usability
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Figure 12: User Evaluation and Usability Test

of places in the area?"; e.g. an arts or history museum in Stockholm.

Task 3 (T3) "How easily can you infer at least three different types

of places of interest in the area?"; e.g. so someone can choose from

all types of museums in Stockholm.

The T1–T3 bars in Figure 12(a) average the evaluators’ usability

scores of the three methods per query and per task. The results

show that evaluators preferred firstly proportional, then diversified

and lastly non-diversified results for both datasets. The average

scores of ABP𝐷 , ABP on tasks T1, T2, and T3 are 6.1, 6.7, and 7.5

respectively. The evaluators also provided justifications for their

scores. They explained that in general they prefer the concept of

proportionality as it also considers frequent properties; which is a

property other types do not consider. They found diversification

very useful in covering the most diverse places (addressing T2);

however, they pointed out that rare but important elements may

appear which again can be to some extend misleading. They found

the non-diversified results more misleading as very important and

relevant places are too dominant in them.

Figure 12(b) depicts the preference of users for the various values

of 𝜆 and 𝛾 for 𝑘 = 10 using the ABP algorithm. Other settings also

gave interestingly good results; however, in most cases results from

the default setting were more preferable.

10 CONCLUSIONS

In this work, we extend spatial keyword search to support propor-

tional selection of the retrieved places. Our framework combines

relevance and proportionality, w.r.t. both context and location. After

proving the hardness of the problem, we identify the bottlenecks of

proportional selection and propose techniques that greatly reduce

its computational cost in practice. We use our methods as modules

of two greedy algorithms (IAdU and ABP). Our experiments on

real data verify the approximation quality and efficiency of our

algorithms and confirm that our framework is preferred by hu-

man evaluators. More precisely, either greedy algorithm (IAdU or

ABP) in combination with the msJh and squared grid algorithms

appears to be the best choice for our paradigm as it is the fastest of

all options. In our future work, we will study alternative scoring

functions for the contextual and spatial search components (e.g.,

road network distance in place of Euclidean distance).
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