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A B S T R A C T

Geospatial data constitutes a considerable part of Semantic Web data, but so far, its sources are inadequately
interlinked in the Linked Open Data cloud. Geospatial Interlinking aims to cover this gap by associating
geometries with topological relations like those of the Dimensionally Extended 9-Intersection Model. Due
to its quadratic time complexity, various algorithms aim to carry out Geospatial Interlinking efficiently.
We present JedAI-spatial, a novel, open-source system that organizes these algorithms according to three
dimensions: (i) Space Tiling, which determines the approach that reduces the search space, (ii) Budget-awareness,
which distinguishes interlinking algorithms into batch and progressive ones, and (iii) Execution mode, which
discerns between serial algorithms, running on a single CPU-core, and parallel ones, running on top of Apache
Spark. We analytically describe JedAI-spatial’s architecture and capabilities and perform thorough experiments
to provide interesting insights about the relative performance of its algorithms.
1. Introduction

Geospatial data has escalated tremendously over the years. The
outbreak of Internet of Things (IoT) devices, smartphones, position
tracking applications and location-based services has skyrocketed the
volume of geospatial data. For example, 100TB of weather-related
data is produced everyday1; Uber hit the milestone of 5 billion rides
among 76 countries already on May 20, 2017.2 Web platforms like
OpenStreetMap3 provide an open and editable map of the whole world.
Earth observation programmes like Copernicus4 publish tens of ter-
abytes of geospatial data per day on the Web.5 For these reasons,
geospatial data constitutes a considerable part of Web data, but the
links between its data sources and their geometries are scarce in the
Linked Open Data cloud [1,2].

Geospatial Interlinking aims to cover this gap by associating pairs of
geometries with topological relations like those of the Dimensionally
Extended 9-Intersection Model (DE-9IM) [3–5]. As an example consider
Fig. 1, where LineString 𝑔3 intersects LineString 𝑔4 and touches
Polygon 𝑔1, which contains Polygon 𝑔2. Two are the main challenges
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1 https://www.ibm.com/topics/geospatial-data
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3 https://www.openstreetmap.org
4 https://www.copernicus.eu
5 https://www.copernicus.eu/sites/default/files/Copernicus_DIAS_Factsheet_June2018.pdf

of this task: (i) its inherently quadratic time complexity, because it has
to examine every pair of geometries, and (ii) the high time complexity
of examining a single pair of geometries, which amounts to 𝑂(𝑁 log𝑁),
where 𝑁 is the size of the union set of their boundary points [6]. As a
result, Geospatial Interlinking involves a high computational cost that
does not scale to large Web datasets.

Numerous algorithms aim to address these challenges by enhancing
the time efficiency and scalability of Geospatial Interlinking. The most
recent ones operate in main memory, reducing the search space to pairs
of geometries that are likely to be topologically related according to
a geospatial index [7–9]. However, no open-source system organizes
these algorithms into a common framework that facilitates researchers
and practitioners in their effort to populate the LOD cloud with more
topological relations. Systems like Silk [10] and LIMES [11] convey
only the methods developed by their creators, Silk-spatial [12] and
RADON [13] respectively. Systems like stLD [14,15] could act as a li-
brary of established methods, but are not publicly available. Moreover,
no system supports progressive methods, which produce results in a
vailable online 24 March 2024
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Fig. 1. Example of four topologically related geometries.

pay-as-you-go manner, thus being indispensable for applications with
limited computational or temporal resources [2].

To address these issues, we present JedAI-spatial, an open-source
system that supports a broad range of Geospatial Interlinking applica-
tions by implementing all state-of-the-art methods. JedAI-spatial makes
the following contributions:

∙ It organizes the main algorithms into a novel taxonomy that
facilitates their use according to the application requirements.

∙ Its intuitive user interface supports both lay and expert users.
∙ It facilitates the benchmarking of the state-of-the-art algorithms,

while its modular and extensible architecture allows for easily incorpo-
rating new ones.

∙ We have publicly released all data and the code of JedAI-spatial
under Apache License V2.0.6 [16]

An extended version of this work is presented in [17].

2. Preliminaries

JedAI-spatial supports two types of geometries: (i) the one-
dimensional LineStrings, which comprise a sequence of points and the
line segments that connect the consecutive ones (e.g., 𝑔3 and 𝑔4 in
ig. 1), and (ii) the two-dimensional Polygons, which usually comprise a
equence of connected points, where the first and the last one coincide
e.g., 𝑔1 and 𝑔2 in Fig. 1).

Both types of geometries consist of an interior, a boundary and
n exterior (i.e., all points that are not part of the interior or the
oundary). These three parts are used by the DE-9IM model, which has
een standardized by the Open Geospatial Consortium (OGC), to define
0 topological relations between two geometries 𝐴 and 𝐵 with self-
xplanatory names: equals, disjoint, intersects, touches,
ithin, contains, covers, covered-by, crosses and over-
aps [17].

Note that JedAI-spatial disregards the relation disjoint because
t provides no positive information for the relative location of two
eometries, while it is impractical to compute it in the case of large
nput data — it scales quadratically with the input size, given that the
ast majority of geometries share no interior or boundary point [2].
edAI-spatial relies on a closed-world assumption: the lack of the
elation intersects between two geometries implies that they are
isjoint.

Following [2,18], JedAI-spatial considers Holistic Geospatial Inter-
linking, which simultaneously computes all positive topological rela-
tions (i.e., all DE-9IM relations except for disjoint): for each pair
of geometries, it estimates the Intersection Matrix, a 3 × 3 matrix that
contains the dimensions of the intersection between the interior, the
boundary and the exterior of two geometries such that all relations can
be extracted with boolean expressions.7 This task is formally defined
as:

6 https://github.com/AI-team-UoA/JedAI-spatial
7 https://en.wikipedia.org/wiki/DE-9IM#Matrix_model
2

n

Fig. 2. Progressive Geometry Recall for batch and progressive methods.

Problem 1 (Holistic Geospatial Interlinking). Given a source and a target
dataset, 𝑆 and 𝑇 , together with the set of positive topological relations
𝑅, compute the set of links 𝐿𝑅 = {(𝑠, 𝑟, 𝑡) ⊆ 𝑆 ×𝑅 × 𝑇 ∶ 𝑟(𝑠, 𝑡)} from the
Intersection Matrix of all topologically related geometry pairs.

Progressive Geospatial Interlinking. An approximate solution to
Geospatial Interlinking is provided by progressive algorithms, which
run for a limited time or number of calculations. These algorithms
are necessary for applications with limited resources, such as cloud
applications with a specific budget for AWS Lambda functions, which
charge when called [19].

Compared to batch algorithms, the goal of progressive algorithms
is twofold [2]: (i) they should produce the same results if they process
the entire input data, and (ii) they should detect a significantly larger
number of related geometry pairs, if their operation is terminated
earlier.

These requirements are reflected in Fig. 2, where the horizontal axis
corresponds to the number of examined pairs and the vertical one to the
number of related pairs. Essentially, the progressive algorithms should
define a processing order that examines the related pairs before the
non-related ones, unlike batch algorithms, which examine candidate
pairs in an arbitrary order. Hence, the progressive algorithms should
maximize the area under their curve, an evaluation measure that
is captured by Progressive Geometry Recall (PGR) and is defined in
[0, 1], with higher values indicating higher effectiveness. More formally,
progressive algorithms tackle the following task [2]:

Problem 2 (Progressive Geospatial Interlinking). Given a source and a
target dataset, 𝑆 and 𝑇 , the positive topological relations 𝑅 and a
budget 𝐵𝑈 , maximize PGR@𝐵𝑈 .

3. System architecture

JedAI-spatial organizes the Geospatial Interlinking algorithms into
a novel taxonomy formed by three dimensions:

(1) Space Tiling distinguishes the algorithms into grid-, tree- and
partition-based ones. The first type includes Semantic Web techniques
that define a static or dynamic Equigrid, the second one encompasses
main-memory spatial join techniques from the database community,
and the third one conveys variations of plane sweep, a cornerstone of
computational geometry.

(2) Budget-awareness categorizes algorithms into batch and progres-
sive ones. The former are executed in a budget-agnostic manner that
processes the input data in no particular order and produces results
only upon completion of the entire process. Progressive algorithms
are suitable for applications with limited computational or temporal
resources, producing results in a budget-aware, pay-as-you-go manner.

(3) Execution mode distinguishes between serialized algorithms,
hich run on a single CPU core, and massively parallel ones, which

un on Apache Spark.
JedAI-spatial creates end-to-end pipelines that are defined by these

hree dimensions. This is achieved by the architecture in Fig. 3: JS-
ui offers two interfaces for user interaction (view), JS-core conveys

umerous algorithms and pipelines (controller), and the Data Model

https://github.com/AI-team-UoA/JedAI-spatial
https://en.wikipedia.org/wiki/DE-9IM#Matrix_model
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Fig. 3. The model-view-controller architecture of JedAI-spatial.

omponent provides the data structures that lie at its core (model). This
rchitecture serves the following goals:
∙ Broad data coverage. Through its Data Reading component, JedAI-

spatial supports the most popular structured and semi-structured for-
mats that are used for encoding geometries: Well Known Text (WKT),
GeoJSON, CSV and TSV files, JsonRDF as well as GeoSPARQL vocabu-
lary, accessed through RDF dumps or SPARQL endpoints. In this way,
JedAI-spatial is able to interlink heterogeneous datasets, e.g., WKT with
GeoJSON.

∙ Broad algorithmic coverage. JedAI-spatial serves as a library of the
tate-of-the-art algorithms in the literature, even if they have not been
pplied to Geospatial Interlinking before. This applies to spatial join
lgorithms, which are adapted to detect topological relations for the
irst time, as explained in Section 7.

∙ Broad application coverage. JedAI-spatial accommodates both aca-
demic and commercial applications, as its code is released under
Apache License V2.0. It also supports both batch and progressive
applications. In any type of applications, it is crucial to detect the
most suitable algorithm for the data at hand (e.g., different algorithms
might excel in a LineString-to-LineString scenario than in a Polygon-
to-LineString one). To cover this need, JedAI-spatial’s benchmarking
functionality facilitates the comparative evaluation of a large variety
of pipelines.

∙ High usability. JedAI-spatial supports both novice and expert users.
The former can apply complex pipelines to their data simply by choos-
ing among the available algorithms, without any knowledge about their
internal functionality or their configuration (see Section 5.2). Power
users can use JedAI-spatial as a library or a Maven dependency, can
manually fine-tune the selected methods and can extend it with more
algorithms or pipelines according to their needs.

∙ Extensibility. Every algorithm in JedAI-spatial implements the in-
terface of its workflow step, which determines its input and output.
New methods can be seamlessly integrated into JedAI-spatial by im-
plementing the respective interface so that they are treated like the
existing ones. New workflow steps can also be added as long as they
define a new interface specifying their input and output. All additions
should implement the IDocumentation interface (see Section 5.1).

∙ Efficiency and scalability. JedAI-spatial scales well to large datasets
both in stand-alone systems (cf. Section 4.1) and in Spark clusters (cf.
Section 4.2).

4. Back-end: JS-core

All methods have been re-implemented in JedAI-spatial’s common
framework, thus minimizing the dependencies to other systems and
libraries. For most algorithms, we have incorporated improvements
that significantly enhance their original performance — see [17] for
more details.
3

t

4.1. Serial algorithms

Following all relevant open-source libraries in the literature (i.e.,
Silk and LIMES), the serial algorithms of JS-core are implemented
in Java, which facilitates the deployment of our system (due to its
portability), its use as a library (through Maven), its extension by
practitioners and researchers (through the public interfaces) as well as
its maintenance (due to its object-oriented capabilities).

4.1.1. Batch algorithms
The methods of this category address Problem 1. JedAI-spatial

implements the state-of-the-art ones according to extensive experimen-
tal analyses [8,9,20]. To compute all positive topological relations
between the source and the target geometries, they follow a two-
step pipeline: initially, the Filtering step indexes the source dataset
nd, if necessary, the target one, based on the minimum bounding
ectangle (MBR) of each geometry — in Fig. 1, the MBRs are the dotted
ectangles surrounding each geometry. The resulting index is used to
enerate 𝐶, the set of candidate pairs, which are likely to satisfy at
east one topological relation. Next, the Verification step examines
very pair in 𝐶 as long as their MBRs are intersecting. The detected
opological relations are added to the set of triples 𝐿, i.e., the output.

JedAI-spatial organizes these algorithms into three subcategories, based
on the type of the index used in Filtering i.e., according to the Space
Tiling dimension:

(1) Grid-based Algorithms. The input geometries are indexed by
ividing the Earth’s surface into cells of the same dimensions. The index
s called Equigrid and its cells tiles. Every geometry is placed into the
iles that intersect its MBR. JedAI-spatial conveys four state-of-the-art
lgorithms of this type, which differ in the definition and use of the
quigrid during Filtering and Verification.
∙ RADON [13]. Filtering loads both input datasets into main mem-

ry and defines an Equigrid index by setting the horizontal and vertical
imensions of its tiles equal to the average width and height, re-
pectively, over all geometries. Verification computes the Intersection
atrix for all candidate pairs [18], taking special care to avoid the ones

epeated across different tiles.
∙ GIA.nt [2]. Filtering loads in memory the input dataset with the

ewest geometries. The granularity of the Equigrid index is determined
y the average dimensions of this dataset. Verification reads the geome-
ries of the other dataset from the disk. For each geometry 𝑔, it sets as
andidates those with an MBR intersecting the same tiles as 𝑀𝐵𝑅(𝑔).
hen, it computes their Intersection Matrix, adding the detected links
o 𝐿.

∙ Static variants. Unlike the dynamic Equigrid of the above algo-
ithms, Silk-spatial [12] employs a static Equigrid, whose granularity
s predetermined (by the user), independently of the input data. The
esulting index might be too fine- or coarse-grained for the input
atasets, but the candidate pairs are eventually filtered out if their
BRs are disjoint. To put this approach into practice, JedAI-spatial

ncludes the custom methods Static RADON and Static GIA.nt.
(2) Partition-based Algorithms. They rely on a (usually vertical)

weep line that moves across the Earth’s surface, stopping at some
oints. Filtering sorts all input geometries in ascending order of their
ower boundary on the horizontal axis, 𝑥𝑚𝑖𝑛. Verification is restricted
o pairs of source and target geometries whose MBRs simultaneously
ntersect the sweep line at each stop. It terminates once the sweep line
rocesses all geometries.
∙ Plane Sweep [21]. It applies the above process to 𝑆 and 𝑇 . Before

erifying a pair of geometries, it ensures that they overlap on the 𝑦-axis.
∙ PBSM [22]. It splits the given geometries into a manually defined

umber of orthogonal partitions and applies Plane Sweep inside every
artition. Filtering defines the partitions, assigns every geometry to all
artitions that intersect its MBR and sorts all geometries per partition in
scending 𝑥𝑚𝑖𝑛. Verification goes through the partitions and in each of

hem, it sweeps a vertical line 𝑙, computing the Intersection Matrix for
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each pair of geometries that simultaneously intersect 𝑙 and overlap on
he 𝑦-axis. It avoids repeated verifications of the same geometry pairs
cross different partitions through the reference point technique, which
erifies two geometries only in the partition containing the top-left
orner of the intersection of their MBRs [23].

∙ Stripe Sweep. To lower the time complexity of Plane Sweep, this
ew algorithm sorts only the geometries of the smallest input dataset
uring Filtering, 𝑆. These geometries are then partitioned into several
ertical stripes, whose length is equal to the average width of the source
eometries. Every source geometry 𝑠∈𝑆 is placed in all stripes that
ntersect its MBR. Verification aggregates the set of source geometries
ontained in the stripes intersecting each 𝑡∈𝑇 . This set is further refined
y retaining only the candidates with intersecting MBRs.

To clarify the difference between these algorithms, it is worth
xplaining the data structures that lie at their core. JedAI-spatial equips
lane Sweep and PBSM with two different sweep structures for main-
aining the active geometries, whose MBR intersects the sweep-line in
ts current position:

(i) List Sweep maintains one linked list for each input dataset. In
very move of the sweep line 𝑙, the contents of both lists are updated,
nserting the geometries with an intersecting MBR and removing the
xpired ones, i.e., the geometries with 𝑥𝑚𝑎𝑥 < 𝑙𝑥.

(ii) Striped Sweep splits the given datasets into 𝑛 stripes and uses
different List Sweep per stripe. After preliminary experiments, the

ength of each stripe on the horizontal axis was set to the average width
f the source geometries.

Stripe Sweep can use two different data structures for storing the
ource geometries per stripe: (i) a hash map, which associates every
tripe id with the corresponding source geometry ids, and (ii) an STR-
ree [24], which indexes the source geometries in each stripe. The hash
ap does not ensure the overlap on the 𝑦-axis before checking the MBR

ntersection of candidate pairs, unlike the STR-Tree.
(3) Tree-based Algorithms. These algorithms rely on state-of-the-art

patial tree indices. During Filtering, they index the smallest input
ataset. During Verification, every geometry 𝑔 from the other dataset
ueries the tree index; its candidates are located in the leaf nodes whose
BR intersects with 𝑀𝐵𝑅(𝑔). For all candidate geometries with an
BR that intersects 𝑀𝐵𝑅(𝑔), the Intersection Matrix is computed.
∙ R-Tree [25]. In this index, every non-leaf node contains pointers

to its child nodes along with an MBR that encloses the span of all the
MBRs in its children. Every leaf node contains up to 𝑀 geometries.
When an entry is added to a full node, the node is split into two new
ones, which are initialized with the two largest geometries. Each of the
remaining geometries is added to the node whose MBR expands the
least after insertion.

∙ Quadtree [26]. In this index, every non-leaf node has exactly four
children, dividing the space into four quadrants: north-east, north-west,
south-east and south-west. Again, every node has a maximum capacity
𝑀 . When 𝑀 is reached, the corresponding cell is split into four new
children.

∙ CR-Tree [27]. This index compresses the R-Tree so that it lever-
ages the L1 and L2 cache memory of CPUs, which have faster access
times. The Quantized Relative Representation of MBR minimizes the size
of the MBRs, which dominate the space requirements. CR-Trees are
usually wider and more shallow than R-Trees, due to their higher
branching factor, achieving higher time efficiency and occupying ∼60%
less memory.

4.1.2. Progressive algorithms
This category encompasses methods that address Problem 2. Their

goal is to maximize the number of related geometry pairs that are
detected after consuming the available budget 𝐵𝑈 , which determines
the maximum number of verifications. JedAI-spatial implements the
state-of-the-art ones [2,28], which follow a three-step pipeline: Fil-
tering is identical with that of batch methods, producing a set of
4

candidate pairs 𝐶. Scheduling first refines 𝐶 by discarding the pairs i
with non-overlapping MBRs. Then, it defines the processing order of
the remaining pairs so that the likely related ones are placed before
the unlikely ones. The new set of candidate pairs 𝐶 ′ is forwarded to
Verification, which carries out their processing and returns the set of
detected links, 𝐿.

The gist of progressive algorithms is the combination of Scheduling
with Filtering, as Verification remains the same in all cases. Based on
the co-occurrence frequency of geometries in the tiles of grid-based
Filtering, Scheduling assigns a score to every pair of candidates with
intersecting MBRs (note that the tree- and partition-based algorithms
detect the co-occurrence of geometry pairs, without the corresponding
frequency). The higher this score is, the more likely are the constituent
geometries to satisfy at least one topological relation. JedAI-spatial
offers all weighting schemes defined in [2,28]. These are leveraged by
the following algorithms:

∙ Progressive GIA.nt [2]. It applies the same Filtering as its batch
GIA.nt. Its Scheduling gathers in a priority queue the top-𝐵𝑈 weighted
andidate pairs.

∙ Dynamic Progressive GIA.nt [28]. It uses the same Filtering and
cheduling as Progressive GIA.nt. Its Verification does not employ a
tatic processing order, but updates the processing order of the top-
eighted candidate pairs dynamically, as more topologically related
airs are detected: whenever a pair of geometries (𝑠, 𝑡) is detected
s topologically related, it updates the weight 𝑤 of all top-ranked
andidate pairs that include 𝑠 or 𝑡, but have not been processed yet
hrough the following formula: 𝑤′ = 𝑤 × (1 + 𝑞), where 𝑞 is the
umber of times a geometry of this candidate pair has been verified as
opologically related. Promoting the weight of other pairs in this way is
seful in cases where one dataset involves long LineString geometries
ike roads or rivers, whereas the other involves Polygon geometries like
uildings or cities: the more buildings a road touched so far, the higher
hould be the weight of the rest of the candidate buildings, as it is likely
main road.
∙ Progressive RADON [2]. It applies RADON’s Filtering and defines

he processing order of the resulting tiles by sorting them in increasing
r decreasing number of candidate pairs, a hyperparameter that de-
ends on the data at hand. Inside every tile, it removes the redundant
andidates with the reference point technique. The rest are processed
n decreasing score, as determined by the selected weighting scheme.
hus, the pairs most likely to satisfy topological relations are processed
irst inside every tile. This is a local approximation of the global sorting
sed by Progressive GIA.nt.

Note that three more progressive algorithms are presented in [17]:
ocal Progressive GIA.nt, Geometry-ordered GIA.nt and Iterative Pro-
ressive GIA.nt. We omit them for brevity, as they have not achieved
igh performance in practice.

.2. Parallel algorithms

To scale to voluminous datasets, JedAI-spatial exploits the mas-
ive parallelization functionalities offered by Apache Spark. JedAI-
patial has aggregated all relevant algorithms in the literature that
re crafted for the same framework and the same types of geometries,
.e., LineStrings and Polygons [7] (we exclude SIMBA [29], which ex-
lusively applies to points). Note that these algorithms leverage grid or
ree indices, but partition-based parallel approaches are also possible.

We adapted all algorithms to the pipeline in Fig. 4 so as to reduce
he time-consuming Spark shuffles, increasing the overall performance.
he pipeline comprises three steps: (i) The Preprocessing Stage reads
he source and target datasets from HDFS, transforms them into Spark
DDs and partitions them according to a predetermined approach.
ii) The Global Join Stage joins the source and target partitions that
re overlapping and assigns every pair of overlapping partitions to a
ifferent worker for processing. (iii) In the Local Join Stage, each worker

nterlinks the assigned pairs of source and target partitions.
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Fig. 4. The three-step pipeline of parallel, batch algorithms in JedAI-spatial.
4.2.1. Batch algorithms
JedAI-spatial conveys the following approaches:
∙ GeoSpark [30]. This algorithm is now part of Apache Sedona [31].

During Preprocessing, it uses sampling to partition the input data with
a KDB-Tree or a Quadtree. The geometries that are not covered by
the index are added to an overflow partition. The overlapping source
and target partitions are assigned to the workers, during the Global
Join Stage. The Local Join Stage verifies the candidate pairs through a
nested loop join or indexes the source geometries with an R-Tree or a
Quadtree that is then probed by the target ones.

∙ Spatial Spark [32]. It entails two functionalities: (i) The broadcast
join supports up to 2 GB of source data. During the Preprocessing Stage,
the source dataset is indexed by an R-Tree, which is then broadcast as a
read-only variable to all workers. Every worker also receives a disjoint
partition of the target geometries. The Global Join Stage is skipped.
During the Local one, every worker iterates over its target geometries,
retrieves the candidate source ones from the R-Tree and verifies those
intersecting the target MBR. (ii) The partition join overcomes the size
limit of the broadcast join by implementing all three steps in Fig. 4. The
Preprocessing Stage indexes the entire input data (in case of a Fixed
Grid Partition, whose dimensions, 𝑑𝑖𝑚𝑋 ×𝑑𝑖𝑚𝑌 are defined by the user)
or a sample of the source and target data (in case of Binary Split or
Sort Tile Partitions, which use an R-Tree). The second stage assigns the
overlapping source and target partitions to the same worker so that
their candidate pairs are verified locally, during the third stage.

∙ Magellan [33]. It relies on the Z-Order Curves, which define an
Equigrid on the Earth’s surface during the Preprocessing Stage. The
number of tiles in this grid is determined as 2𝑝, where 𝑝 is the precision
parameter that is set by the user. The higher this parameter is, the more
fine-grained is the resulting Equigrid index. The Global Join Stage sends
to the same workers the source and target geometries that intersect
the same tiles. During the Local Join Index, every worker checks every
candidate pair and verifies those with intersecting MBRs.

∙ Location Spark [34,35]. Its Preprocessing partitions the source
and target datasets using a Grid, R-Tree or Quadtree index. Then, its
Query Plan Scheduler performs a skew analysis in order to partition
the data as evenly as possible, balancing the workload among the
workers. In essence, it repartitions the skewed partitions, which include
at least twice as many geometries as the smallest one. After joining the
overlapping source and target partitions during the Global Join Stage,
a local index is constructed for the source geometries of every worker
using an R-Tree, a QuadTee or an EquiGrid. The Local Join Stage probes
the index with the target geometries and verifies the candidates with
intersecting MBRs.

∙ Parallel GIA.nt [2]. The Preprocessing estimates the average
width and height of the source geometries. These dimensions, which
are broadcast to all workers, define the Equigrid that partitions both
input datasets. The next stage joins the overlapping source and target
partitions, while the Local Join Stage creates an Equigrid of the source
geometries inside every worker, using the broadcast dimensions. The
target geometries query the index to retrieve the candidates with inter-
secting MBRs, which are then verified. The reference point technique
eliminates all repeated verifications.
5

4.2.2. Progressive algorithms
JedAI-spatial parallelizes all serial progressive algorithms described

in Section 4.1.2. The Preprocessing and Global Join Stage are identical
with Parallel GIA.nt. Then, the overall budget 𝐵𝑈 is split among the
partitions assigned to every worker based on the portion of candidate
pairs it involves. The Local Join Stage applies the progressive algorithm
to the data assigned to every worker, using the corresponding local
budget.

5. Remaining architectural components

5.1. Auxiliary components

We now describe the rest of the components in Fig. 3, which play
an important role in the system characteristics.

∙ Data Model. This component implements the classes and the
data structures that lie at the core of JedAI-spatial. The cornerstone is
the GeometryProfile class, which supports all heterogeneous data
formats mentioned in Section 3. This is accomplished by representing
every geometry as a set of name-value pairs, which capture the textual
information about an entity, coupled with a Geometry object of
the JTS library that is accompanied by its MBR and the method for
computing an Intersection Matrix. This simple, yet versatile Geome-
tryProfile class also facilitates the visualization and inspection of
input data via JS-gui.

∙ Documentation. This component essentially corresponds to a Java
interface that is implemented by all algorithms. The interface conveys
methods providing textual information about the most important as-
pects of each algorithm: its name, a summary of its functionality, the
name of every configuration parameter, a short description of every
parameter, the domain of every parameter (i.e., its default, minimum
and maximum values) as well as the configuration of the current
algorithm instantiation. JS-gui provides this information to the user.

∙ Parameter-configuration. JedAI-spatial facilitates the fine-tuning
of any supported algorithm, because a poor parameterization invariably
leads to poor performance. Three modes are supported: (i) Default con-
figuration a-priori sets all parameters of each algorithm to values that
empirically achieve reasonable performance across different datasets.
This mode allows lay users to apply the desired pipeline to their
data simply by choosing among the available methods. (ii) Manual
configuration enables power users to fine-tune an algorithm themselves,
based on their own experience or on the information provided by the
Documentation component. (iii) Grid search automatically identifies
the optimal configuration through a brute-force approach that tries
all reasonable values in the domain of each parameter. For batch
pipelines, the parameterization minimizing the run-time is selected as
the optimal one. For progressive pipelines, the optimal parameters are
those maximizing PGR.

∙ Workflow manager. At the moment, it is responsible for combin-
ing the selected filtering technique with the appropriate verification
method in terms of execution mode (i.e., serial or parallel). In the
future, it will play a crucial role in extending JedAI-spatial with: (i)
additional Verification methods like those computing distance relations
(e.g., ORCHID [1]), and (ii) multiple filtering methods per pipeline so as
to reduce the candidate pairs through the conjunction of their outcomes
(this can be carried out efficiently, at no cost in recall).
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𝑡

Table 1
The dataset pairs used in our experiments.

𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6

Source Dataset AREAWATER AREAWATER Lakes Parks ROADS Roads
Target Dataset LINEARWATER ROADS Parks Roads EDGES Buildings
#Source Geometries 2,292,766 2,292,766 8,326,942 9,831,432 19,592,688 72,339,926
#Target Geometries. 5,838,339 19,592,688 9,831,432 72,339,926 70,380,191 114,796,567

Cartesian Product 1.34 ⋅ 1013 4.49 ⋅ 1013 8.19 ⋅ 1013 7.11 ⋅ 1014 1.38 ⋅ 1015 8.30 ⋅ 1015

Geometry Pairs with intersecting MBRs 6,310,640 15,729,319 19,595,036 67,336,808 430,597,631 257,075,645
Total Topological Relations 5,635,635 402,936 10,019,188 29,627,279 418,379,333 2,481,027
f
b
c

5.2. Front-end: JS-gui

JedAI-spatial supports users of any experience level, offering two
wizard-like user interfaces that simplify its use to a great extent: (i)
The command line interface. JS-core produces an executable jar, which
when run, guides users in applying the desired pipeline to their data.
(ii) The Web application interface. JS-gui is available as a Docker
image, which, when deployed, runs a Web application that seamlessly
supports serial and parallel execution (based on Apache Livy [36]).

In both interfaces, users do not need to write code in order to
interlink their spatial data. First, the data reading screen [16,17] asks
them to provide the paths of their dataset and the corresponding
reading parameters (e.g., the separator character in CSV files). Next,
in the algorithm selection screen [16,17], users select the desired
pipeline, i.e., serial or parallel, progressive or batch, as well as the
desired algorithm among the available ones for the selected pipeline.
This applies even to the parallel pipelines that run on Apache Spark.
Users can also inspect the input data and store the detected links to a
specific path.

JedAI-spatial also acts as a workbench, encompassing a results
screen [16,17] that facilitates the comparison between the available
algorithms. This screen summarizes the performance of the latest runs
with respect to the effectiveness measures (i.e., recall, precision, F1
and PGR) as well as the efficiency ones (i.e., the run-time in total
and per workflow step). The workbench functionality also allows for
examining the impact of configuration parameters on the performance
of a particular algorithm (e.g., by changing the granularity of the grid
index).

6. Experimental analysis

We now examine the relative performance of serial and parallel
batch algorithms as well as of serial progressive algorithms.

Experimental Setup. All experiments were carried out on a server
with Intel Xeon E5-4603 v2 @ 2.20 GHz, 32 cores (16 physical), 4
NUMA nodes and 128 GB RAM. The serial methods are implemented in
Java 15 and the parallel ones in Scala 2.11.12 and Apache Spark 2.4.4.
For each time measurement, we performed 5 repetitions and took the
average.

We used 8 real datasets that are popular in the literature [2,28,37,
38]. They comprise real data from the US Census Bureau TIGER files
and OpenStreeMap (see [17] for details). These datasets are combined
into 6 pairs in Table 1.

Serial batch processing. Given that all serial batch algorithms
produce the same results (i.e., they detect all topological relations), we
exclusively assess their relative time efficiency w.r.t. the filtering time,
𝐭𝐟 , and the verification time, 𝐭𝐯.

First, we perform a weak scalability analysis, examining how the
run-time increases with the increase in the size of the input data. We
split 𝐷1 into 10 subsets of increasing size, from 10% of source and
target geometries to 100% with a step of 10%. The number of related
pairs increases in proportion to the dataset size. The resulting 𝑡𝑓 and
𝑣 appear in Figs. 5 and 6, respectively. We observe that 𝑡𝑓 amounts

to few seconds for all algorithms, even when processing the entire 𝐷1.
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The reason is that Filtering constitutes a quick process that considers A
exclusively the MBR of the input geometries, thus disregarding their
actual complexity. Yet, it reduces the number of candidates by several
orders of magnitude, as shown in Table 1.

The algorithms that consider only the source dataset when build-
ing their index are much faster than those iterating over both input
datasets. The former category includes (Static) GIA.nt, Stripe Sweep
and the tree-based algorithms. The static variants of the grid-based
algorithms are significantly faster, as they save the cost of deriving
the index granularity from the characteristics of the input datasets —
they merely index them. Finally, the filtering time of each partition-
based algorithm is practically stable, regardless of the underlying data
structure (List Sweep or Striped Sweep for Plane Sweep and PBSM, hash
map or STR-Tree for Stripe Sweep). Overall, Quadtree and Stripe Sweep
have the fastest Filtering.

In Fig. 6, 𝑡𝑣 is two orders of magnitude larger than 𝑡𝑓 in Fig. 5, due
to the complexity of the input geometries, which determines the cost
of calculating each Intersection Matrix. (Static) RADON, Plane Sweep
and PBSM are faster (in this order), because they a-priori load the target
geometries into main memory. Plane Sweep and PBSM should be com-
bined with Stripes rather than a Linked List to reduce the maintenance
overhead. CR-Tree is excluded, because its 𝑡𝑣 over the smallest subset
is 235 min, exceeding the time required by most algorithms even for
𝐷1. The reason is the high cost of retrieving the candidates for every
target geometry, due to the compression of MBRs. Finally, we should
stress that (Static) RADON is faster than (Static) GIA.nt by 5% to 12%,
which is in contrast with their relative performance in [2], due to
the significant impact of the implementation improvements we have
incorporated in JedAI-spatial. Yet, GIA.nt involves the fastest verification
among the algorithms that read the target geometries from the disk, with
Stripe Sweep being slightly slower.

We now compare the same algorithms over 𝐷1 to 𝐷3. Their 𝑡𝑓 (in
seconds) and 𝑡𝑣 (in hours) are reported in Fig. 7, on the left and the right
respectively. We exclude 𝐷4 to 𝐷6, because of very high run-times. We
also exclude CR-Tree and PBSM/Plane Sweep with a Linked List, due
to their poor weak scalability. (Static) RADON, Plane Sweep and PBSM
cannot process 𝐷3, because the available 128 GB of RAM do not suffice
for loading both 𝑆 and 𝑇 in main memory.

The results verify some patterns of the weak scalability analysis.
The static grid-based algorithms have a 𝑡𝑣 identical with their dynamic
counterparts, but a lower 𝑡𝑓 , because they do not go through the input
geometries when determining the dimensions of their Equigrid. PBSM’s
Filtering is significantly slower than that of Plane Sweep, because the
latter sorts the input geometries just once. Instead, PBSM sorts the
input geometries inside every tile. Due to their coarse granularity,
its tiles contain a large number of geometries, yielding an overall
computational cost that is higher than Plane Sweep. On the other ex-
treme lies Strip Sweep, which has the simplest filtering phase, yielding
consistently the lowest filtering time among all methods, followed by
Quadtree in close distance. R-Tree involves the next fastest Filtering, as
it is outperformed only by Static GIA.nt.

Regarding 𝑡𝑣, (Static) RADON is consistently the fastest algorithm,
ollowed in close distance by Plane Sweep. PBSM is a bit slower,
ecause its coarse-grained tiles involve a large number of redundant
andidate pairs that are filtered out by the reference point technique.

mong the algorithms that index only the source dataset, Stripe Sweep
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Fig. 5. Weak scalability analysis of the serial batch algorithms w.r.t. Filtering time (s).
Fig. 6. Weak scalability analysis of the serial batch algorithms w.r.t. Verification time (min).
Fig. 7. Filtering (left) and verification (right) time per serial, batch algorithm in 𝐷1-𝐷3.
Fig. 8. (a) Weak scalability of parallel batch algorithms, and (b) performance of the
parallel batch algorithms over all datasets in Table 1.

with STR is the fastest one, being slower than RADON by 7.1% and
5.5% over 𝐷1 and 𝐷2, respectively. This difference corresponds to the
overhead of reading the target dataset from the disk. (Static) GIA.nt is
slower than RADON by ∼16% in all cases, because it creates a much
larger number of fine-grained tiles compared to Stripe Sweep. As a
7

result, (Static) GIA.nt examines the content of many more tiles while
processing each 𝑡 ∈ 𝑇 .

Finally, Quadtree and RTree perform almost as well as GIA.nt in 𝐷1
and 𝐷2. Over 𝐷3, though, Quadtree is 16% slower than GIA.nt, whereas
R-Tree is the slowest algorithm by far, with its 𝑡𝑣 (57 h) exceeding the
scale of the vertical axis. For both algorithms, this is caused by their
sensitivity to their configuration parameters and the large number of
overlapping MBRs in 𝐷3. As a result, the range search for candidates
per 𝑡 ∈ 𝑇 visits numerous subtrees recursively, yielding a high time
complexity that deviates from the average one.

To conclude, the most robust serial, batch algorithms are (Static) GIA.nt
and Strip Sweep STR. Their simple, but effective filtering phase scales
linearly with the size of the input data, after excluding the effect of a
constant overhead in all dataset sizes. Their robust index allows for fast
verification, unlike methods like Quadtree and R-Tree, which perform
well only after fine-tuning. Finally, RADON, Plane Sweep and PBSM
provide competitive run-times for datasets small enough to fit into main
memory, given that their Verification phase saves the cost of loading
the target dataset from the disk on-the-fly.

Parallel batch processing. To assess the relative run-time of the
parallel batch algorithms in Section 4.2.1, we perform a weak scal-
ability analysis using the same subsets of 𝐷1 as in Figs. 5 and 6.
After preliminary experiments, we fine-tune the considered algorithms
as follows: GeoSpark is coupled with KDB-Tree partitioning and local
indexing with R-Tree, Spatial Spark with a 512 × 512 Fixed Grid
Partitioning and Location Spark with Quadtree partitioning and local
indexing with R-Tree. For Magellan, we set the precision parameter to
20. For Parallel GIA.nt, we changed the source with the target dataset.

Fig. 8(a) reports the corresponding overall wall-clock times (in
seconds). Parallel GIA.nt is consistently the fastest algorithm, with Location
Spark following in close distance over the largest subsets, where its skew



Journal of Web Semantics 81 (2024) 100817M. Papamichalopoulos et al.
Fig. 9. Performance of the main serial progressive algorithms over 𝐷1-𝐷4 using as budgets all portions of candidate pairs in [0.05, 0.50] with a step of 0.05.
analysis bears fruit, leaving GeoSpark in the third place. These algorithms
require less than half the overall run-time of Spatial Spark, with Mag-
ellan lying in the middle of these two extremes. All algorithms scale
linearly with the input size, after excluding the effect of a constant
overhead in all dataset sizes.

All algorithms are much faster than the serial ones, especially over
the larger subsets, where Spark’s overhead pays off: for the entire 𝐷1,
the slowest parallel algorithm (Spatial Spark) is 3.2 times faster than
the best serial one (RADON).

Next, we investigate the relative wall clock time of all parallel algo-
rithms over all dataset pairs in Table 1. After preliminary experiments,
we applied the same configurations as in the weak scalability analysis
to all datasets. The only exceptions are Spatial Spark, which is now
combined with 512 × 512 Sort Tile Partitioning, and Parallel GIA.nt,
which uses its default configuration, setting the smallest dataset as the
source one.

The results appear in Fig. 8(b), exhibiting similar patterns as in
the weak scalability analysis. Magellan is consistently the slowest ap-
proach, with its run-time increasing disproportionately from 𝐷4 on (for
𝐷6, its execution was actually terminated after 24 h). The reason is
that its Preprocessing Stage assigns geometries in significantly more
partitions than the rest of the algorithms, thus yielding a very high
overhead for the two subsequent phases of the parallel framework
in Fig. 4. The second slowest approach is Spatial Spark, because its
sampling-based Sort Tile partitioning scales poorly to large datasets,
especially 𝐷5 and 𝐷6. The rest of the algorithms yield similar run-
times, with each one being the fastest in two datasets: Parallel GIA.nt
in 𝐷1-𝐷2, Location Spark in 𝐷3-𝐷4 and GeoSpark in 𝐷5-𝐷6.

Overall, Geospark, Location Spark and Parallel GIA.nt are the most
time efficient parallel batch algorithms. The first two depend heavily on
their parameter configuration, but Parallel GIA.nt is quite robust with its
default configuration, ranking at least as the second best algorithm in
all datasets, but 𝐷6.

Serial budget-aware processing. We now compare the best pro-
gressive algorithms according to [2] over 𝐷1-𝐷4. These are: Progressive
GIA.nt in combination with the Jaccard (𝐽𝑆) and the 𝑀𝐵𝑅𝑂 simi-
larity weighting schemes, denoted by PGJS and PGMB, resp., their
dynamic counterparts, DPGJS and DPGMB, and Composite Dynamic
Progressive GIA.nt, CDPG, which uses 𝐽𝑆 as the primary scheme and
𝑀𝐵𝑅𝑂 as the secondary one to break the ties. Note that 𝐽𝑆 normal-
izes the number of tiles shared by two geometries by the number of
tiles intersecting each geometry, while 𝑀𝐵𝑅𝑂 returns the normalized
overlap of the MBRs of the two geometries. As baseline, we use the
optimal progressive algorithm (OPTI), which verifies all topologically
related pairs before the non-related ones. For every dataset, we report
the performance with respect to PGR for all budgets in the interval
[0.05 ⋅ |𝐶|, 0.50 ⋅ |𝐶|] with a step of 0.05, where |𝐶| denotes the set of
candidate pairs. For precision and recall, please refer to [17] and the
Appendix in the supplemental material. The results appear in Fig. 9.

In 𝐷1, the best performance is consistently achieved by CDPG,
with PGJS and DPGJS following in close distance. These methods
rely on 𝐽𝑆, outperforming those relying on 𝑀𝐵𝑅𝑂, i.e., PGMB and
DPGMB. The reason is the large proportion of pairs satisfying the
relation touches (∼64.6% [17]), which is hard to be detected by
𝑀𝐵𝑅𝑂; the bounding rectangles of touching geometries typically have
very low overlap and, thus, 𝑀𝐵𝑅𝑂 assigns extremely low weights to
8

them. Nevertheless, all methods achieve very high performance that is
close to the optimal one, due to the relatively large portion of qualifying
pairs (∼38% of all pairs with intersecting MBRs [17]). In fact, the
distance of CDPG from the optimal performance increases with the
budget, but amounts to just 8.3%, on average.

In 𝐷2, DPGMB outperforms all other algorithms to a significant
extent. PGMB lies in the second place, with its PGR being lower by
5.8%, on average, across all budgets. DPGJS and CDPG exhibit similar
behaviors, underperforming DPGMB by 10.7%, on average. PGJS
yields the worst performance, which is lower by 20% than DPGMB,
on average. In all cases, the smaller the budget is, the higher are
differences with CDPG. The distance of DPGMB from OPTI is very
high, i.e, ∼42.5% on average, due to the heavy class imbalance [17].

Similar to 𝐷2, in 𝐷3, DPGMB and PGMB (in that order) outperform
the other algorithms across all budgets. Their average distance from
the optimal one is significantly higher than 𝐷1 and 𝐷2, exceeding
40% for all evaluation measures. This should be attributed to the
topological relations that dominate the qualifying pairs in 𝐷3, but are
underrepresented or absent from 𝐷1 and 𝐷2: CoveredBy, Overlaps,
Within and Equals.

In 𝐷4, DPGMB and PGMB (in that order) lie between the opti-
mal approach and the progressive methods that leverage 𝐽𝑆. In fact,
their average distance from the former exceeds 64% for all evaluation
measures, while they outperform CDPG, DPGJS and PGJS by 27.7%
and 33.8% in terms of precision/recall and PGR, respectively. The
high distance from the ideal solution is caused by the same types of
topological relations as in 𝐷3. The superiority of 𝑀𝐵𝑅𝑂 over 𝐽𝑆 is
caused by the polygons that are exclusively contained in 𝐷4.

Overall, we can conclude that Dynamic Progressive GIA.nt is the best
serial progressive algorithm when combined with 𝑀𝐵𝑅𝑂 weights. The only
exception applies to datasets abounding in touches relations. The more
geometries with intersecting MBRs are topologically related, the closer is the
performance of Dynamic Progressive GIA.nt to the optimal one.

7. Related work

In the Semantic Web domain, there are three related systems:
(1) Silk [10] constitutes an open-source, generic framework for

Link Discovery that comprises a specialized component for Geospatial
Interlinking, called Silk-spatial [12]. It exclusively supports a batch,
parallel method that runs on Apache Hadoop (http://hadoop.apache.
org). Its Filtering relies on a static, coarse-grained Equigrid, whose
dimensions are defined by the user. Its Verification computes one
topological relation per run.

(2) LIMES [11] is an open-source, generic framework for Link
Discovery with two algorithms for Geospatial Interlinking: ORCHID [1],
which detects proximity relations in an efficient way, and RADON [13],
which detects topological relations. RADON’s Filtering employs a dy-
namic Equigrid, whose granularity depends on the input data, while its
Verification employs a hash map that maintains all examined pairs in
memory to avoid repeated computations. Due to this data structure,
RADON has been parallelized as a multi-core, shared-memory process,
rather than a shared-nothing, MapReduce approach. Its Verification
computes all relations at once [18].

(3) stLD [14,15] is a proprietary system for Geospatial Interlinking.

It is limited to batch approaches, conveying a variety of algorithms,

http://hadoop.apache.org
http://hadoop.apache.org
http://hadoop.apache.org
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such as R-Tree, static Equigrid as well as hierarchical grid. Similar to
JedAI-spatial and GIA.nt [2], its algorithms are capable of loading only
the source dataset in main memory, while reading the target one on-
the-fly. stLD also supports massive parallelization on Apache Flink [39].
Its Verification supports both proximity and topological relations, but
computes a single relation per run.

None of these systems supports progressive algorithms, unlike
JedAI-spatial, which conveys all the existing progressive methods [2,
28]. JedAI-spatial is also the first system to combine the state-of-
the-art main memory spatial join algorithms, which essentially per-
form Filtering, with the Verification approach that detects topological
relations.

Other relevant tools offer parallelization on top of Apache Hadoop
or Spark, supporting a variety of spatial queries, such as distance
(range) and kNN queries [7]. However, only their spatial join is applica-
ble in the context of Geospatial Interlinking. Each tool essentially offers
a single parallel algorithm for this join. The most recent and advanced
systems are GeoSpark [30] (a.k.a., Apache Sedona), Spatial Spark [32],
Location Spark [34,35] and Magellan. All their algorithms have been
integrated into JedAI-spatial.

8. Conclusions

We presented JedAI-spatial, an open-source system that acts as a
library of the state-of-the-art algorithms for Geospatial Interlinking.
It incorporates optimized implementations and facilitates users by of-
fering two wizard-like interfaces that assume no expert knowledge.
Its benchmarking functionality allows for evaluating the relative per-
formance of the available algorithms and for examining the impact
of configuration parameters on performance. We elaborated on its
architecture, describing the components of its back- and front-end, and
performed a thorough experimental analysis, highlighting the relative
performance of all batch algorithms and the serial progressive ones.

JedAI-spatial has been developed in the context of the ExtremeEarth
EU project [40]. Since then, it is used and extended in other research
projects involving geospatial data, namely AI4Copernicus (https://
ai4copernicus-project.eu), DeepCube (https://deepcube-h2020.eu) and
STELAR (https://stelar-project.eu). It is also used in master theses and
student projects in the postgraduate course on Knowledge Technologies
at the University of Athens.

We plan to reimplement JedAI-spatial in Python, adding it into the
data science ecosystem, and to extend it with multi-core parallelization
of all serial algorithms in a systematic way that ensures nearly linear
speedup as more CPU cores are available.
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