
Updating an Adaptive Spatial Index
Fatemeh Zardbani
Aarhus University

Konstantinos Lampropoulos
U. of Ioannina & Aarhus U.

Nikos Mamoulis
U. of Ioannina & Athena RC

Panagiotis Karras
U. of Copenhagen & Aarhus U.

Abstract—Adaptive indexing allows for the progressive and
simultaneous query-driven exploration and indexing of memory-
resident data, starting as soon as they become available without
upfront indexing. This technique has been so far applied to one-
dimensional and multi-dimensional data, as well as to objects with
spatial extent arising in geographic information systems. How-
ever, existing spatial adaptive indexing methods cater to static
data made available in an one-off manner. To date, no spatial
adaptive indexing method can ingest data updates interleaved
with data exploration. In this paper we introduce GLIDE, a novel
method that intertwines the adaptive indexing and incremental
updating of a spatial-object data set. GLIDE builds a hierarchical
spatial index incrementally in response to queries and also ingests
updates judiciously into it. We examine several design choices and
settle for a variant that combines gradual self-driven top-down
insertions with query-driven indexing operations. In an extensive
experimental comparison, we show that GLIDE achieves a lower
cumulative cost than upfront-indexing methods and adaptive-
indexing baselines.

Index Terms—adaptive indexing, spatial indexing, R-tree

I. INTRODUCTION

Spatial-data management applications periodically collect in
bulk spatial objects, such as locations of objects of interest
or natural phenomena and require real-time query responses;
some of these objects may undergo updates while most re-
main static across snapshots. Such applications include IoT
networks [28], [14], [11], [8], observatories, satellite imaging,
management of real estate listings, and environmental data
management. Data updates are infrequent and queries may
focus on popular regions. In such environments, building a
spatial index, such as the popular R-tree [17], [4], [5], upfront
for all data would be time-consuming and superfluous, as some
spatial data areas may never attract queries, so a large part of
the initial and inserted data may need not be accessed.

To address this challenge, past work has introduced adaptive
spatial indexing methods [34], [19], [33], [39] and adaptive
metric-space indexing methods [26] that construct an access
method incrementally, in tandem with and as a side-effect of
query processing, inspired from counterparts for 1D data [21]
By these methods, the cost of queries is initially high yet
falls as the index develops. In the 1D case, adaptive indices
progressively crack the initially unorganized in-memory array
of index entries, via an incremental quicksort operation [18],
to a growing set of partitions, with each key in a partition
being larger than each key in the preceding one. In the
multidimensional case, partitions are progressively organized
in a tree [19], [39] without the need to preserve a total
order. Figure 1(a) illustrates a set of 9 gray-shaded minimum
bounding rectangles (MBRs) of objects a to i, which are

initially in an unorganized array, shown at the bottom of Figure
1(b). In response to three range queries r1 to r3 an adaptive
R-tree [39] is constructed by swapping array elements to bring
together query results. The root of the tree holds query ranges
that point to cracked array pieces that hold their results.

r1 r2 r3

a b g d e c h f i

a
b

c
d

e

f

g h

i

r1

r3

r2

[0..3] [4..6] [7..8]

x

insert(x)?

r1 r2 r3

[7..8]
x
TBI array

….

(a) MBRs and partitions (b) adaptive R-tree (c) GLIDE update techniques

a b g d f i e c h x

r1 r2 r3

[0..3] [4..8] [9..12]

Fig. 1: Spatial adaptive indexing.

To our knowledge, no existing method handles updates
intertwined with queries on an adaptive spatial index. The
challenge is that all data are packed in a single array, so
inserting a new object (e.g., object x) in a leaf would require
fitting a new item in a packed subarray (e.g., subarray [4..6]
pointed by r2). Updates on an adaptive index have only been
treated in 1D in a rudimentary manner [22]. To fit newly
inserted data values relevant to a query in the partitioned 1D
array, a rippling strategy [22] repeatedly swaps data from one
partition to the next, until it reaches a partition outside the
query range, whereupon it pushes some data into a temporary
log to make space space for the new items. Rippling is imposed
by the total order that the cracked array pieces should follow.
In multidimensional indexing, there is no requirement that the
partitions should follow a total order.

Contribution. Motivated by this, we propose GLIDE, a versa-
tile update management module applicable on any tree-based
multidimensional index built by adapting to queries [19], [34],
[39], [26]. To design GLIDE, we consider eager vs. lazy and
update-driven vs. query-driven options for ingesting query-
intertwined data updates into a single data array of contiguous
leaf buckets; we opt for a lightweight design that lets inserted
data objects gradually trickle down the index, provisionally
residing at internal nodes at any level, as illustrated at the
top of Figure 1(c). In case an array partition grows too
large, GLIDE moves a part to the array’s end, leveraging
the flexibility to locate data in the multidimensional case,
while also introducing holes (i.e., empty slots) in the array
to efficiently accommodate future insertions, as illustrated at
the bottom of Figure 1(c). Our thorough experimental analysis
shows that GLIDE robustly offers superior overall performance
across query-to-insertion ratios on real-world data sets.

TABLE I: GLIDE vs. other ways to update a spatial index.
startup
cost query cost insertion

cost
cumulative
cost

robust-
ness

R/quad-tree v. high low medium high high
SAI+Scan zero high→high v. low high low
GLIDE zero high→low low low high

Table I positions GLIDE in relation to alternative ways to
handle spatial data subject to an unpredictable workload of
queries and updates. Classic methods, such as the R-tree and
the Quad-tree, have an immense startup cost to construct the
index before processing a workload. In addition, updating a
fully grown index is quite expensive, yielding a high cumula-
tive cost for construction and usage. An alternative, denoted as
SAI (Spatial Adaptive Index)+Scan, incrementally constructs
an adaptive spatial index on the initially unorganized array (as
in previous work [39], [19], [34]), while appending insertions
at the end of a separate array, keeping them unorganized. This
alternative has low insertion cost, yet its query processing
cost remains relatively high throughout the workload, as initial
queries apply on an unformed index and later ones have to scan
the unorganized inserted data. GLIDE confers the advantages
expected from an adaptive index, i.e., zero startup cost and
decreasing query cost, while also gradually ingesting insertions
with consistently low cumulative cost.

The rest of the paper is organized as follows. Section II
reviews the fundamental concepts relevant to spatial adaptive
indexing. We discuss the design space of strategies we use
in the face of updates in Section III and present our memory
organisation strategy in Section IV. Lastly, Section VI outlays
a thorough experimental analysis of our proposal in contradis-
tinction to the sate of the art.

II. RELATED WORK

This section overviews fundamentals on spatial indexes,
adaptive spatial indexing, and previous work on updates during
adaptive indexing.

A. Spatial indexes

The R-tree [17] extends the B+-tree to multidimensional
spaces; it is a balanced tree that hierarchically groups mini-
mum bounding boxes (MBBs) of objects, using heuristics to
reduce overlap between MBBs of groups; upon data insertion,
it utilizes one of two node splitting algorithms, linear split
and quadratic split, to keep MBB enlargement in check.
The R∗-tree [4], [5] variant employs enhanced insertion and
splitting heuristics. An associated bulk-loading method, sort-
tile-recursive (STR) [27], builds such a tree striving to enhance
node utilization and reduce empty indexed space, or dead
space. Aiming at reducing the I/O cost of updates, the RR-
tree [6] consists of a conventional disk-based R-tree paired
with a main-memory R-tree, which ingests recent updates;
search is applied on both indices, while updates on disk are
conducted in bulk when the memory R-tree becomes full. The
Quadtree [15] hierarchically divides the space into quadrants
and accommodates data in leaves, while ensuring that the
number of objects in each leaf does not exceed a maximum

capacity constraint. All the above data structures implement
insertions eagerly; a new object is placed in the leaf that
contains it following the most appropriate tree path.

B. Adaptive indexing

Adaptive indexing builds an index in a lazy and progressive
manner, during query processing [23], with a minor impact
on query response times. An adaptive indexing technique
tailored for column-store databases, database cracking [21],
uses range query bounds as pivots to progressively perform
steps of the quicksort algorithm that divide the array of index
entries to partitions, while incrementally building a binary
balanced search tree (e.g., an AVL tree) for those partitions.
Each query navigates the tree created by prior queries to reach
the data values in its range, cracks those parts further, up
to the resolution of a threshold [21], and expands the tree.
Figure 2 shows an example, in which the shaded partition
contains the results to range query (23 ≤ A < 27) on the
indexed attribute A; partitions to the left and right of the
shaded one contain smaller and larger values, respectively. To
ensure robustness, stochastic cracking uses carefully chosen
pivots in addition to those specified by queries [18], [38].

19 25 18 28 34 20 21 23

19 25 18 23 21 20 34 28

27

19 20 18 21 23 25 34 28

27

23

Q: 23 ≤ A < 27

Fig. 2: Database cracking example.

query

r1

r2

rq

r4

r3

id minp maxp

1 (-28, 10) (-26, -6)

2 (-2, -19) (1, -17)

3 (-11, 13) (-6, 20)

4 (-5, -8) (-3, -6)

5 (-19, -4) (-17, -2)

6 (15, -4) (17, -2)

7 (0, 9) (3, 11)

8 (7, 8) (10, 12)

9 (2, 18) (6, 20)

10 (15, 20) (17, 22)

11 (24, 5) (30, 8)

12 (26, -17) (28, -15)

root

id minp maxp

1 (-28, 10) (-26, -6)

3 (-11, 13) (-6, 20)

5 (-19, -4) (-17, -2)

4 (-5, -8) (-3, -6)

2 (-2, -19) (1, -17)

6 (15, -4) (17, -2)

7 (0, 9) (3, 11)

8 (7, 8) (10, 12)

9 (2, 18) (6, 20)

10 (15, 20) (17, 22)

11 (24, 5) (30, 8)

12 (26, -17) (28, -15)

root

r1

r4

rq

r3

root

r1

r2

id minp maxp

1 (-28, 10) (-26, -6)

3 (-11, 13) (-6, 20)

5 (-19, -4) (-17, -2)

4 (-5, -8) (-3, -6)

2 (-2, -19) (1, -17)

12 (26, -17) (28, -15)

7 (0, 9) (3, 11)

8 (7, 8) (10, 12)

6 (15, -4) (17, -2)

10 (15, 20) (17, 22)

9 (2, 18) (6, 20)

11 (24, 5) (30, 8)

ra

rb

Fig. 3: AIR cracking, spatial and array partitioning [39].

C. Spatial adaptive indexing

The need for responding to spatial queries as soon as the
data becomes available led to efforts for spatial adaptive
indexing. SFCracker [34] transforms multi-dimensional data to
one-dimensional using space filling curves. Other efforts [19],

2

[34] have generalized one-dimensional adaptive indexing to
multiple dimensions by handling a different dimension per
index level. Those approaches were recently superseded by
the adaptive incremental R-tree (AIR) [39], which builds a
compact tree by overseeing all dimensions in each index level
and applying quality-aware criteria in splitting and adjusting
tree nodes based on query boundaries. AIR commences with
an unorganized static data array and progressively organizes
queried data areas while responding to queries. It initially
comprises a single leaf root enclosing all the data, relaxing
the principles of a traditional R-tree, whereby each node
holds no more than a predefined number of entries. Leaves
of cardinality above a threshold Mℓ, called irregular, are
eligible for cracking, while those below Mℓ, called regular,
are not cracked further. As the example in Figure 3 shows,
in response to a range query, represented by a rectangle,
AIR cracks the data space through 2d hyper-planar cracks
(dashed lines), each yielding a spatial partition (r1–r4), with
a remaining partition containing the query results (rq); each
crack reorganizes the data array accordingly, as the second
row of Figure 3 shows. To avoid the repercussions of a
pathologically skewed workload, AIR adds a stochastic crack
on the largest ensuing piece, totaling at most 2d+2 pieces in d
dimensions. We illustrate this process for a single node fully
containing a query range, yet it is applicable on each leaf node
that overlaps the query. AIR cracks irregular leaves in response
to queries, eventually creating regular leaves, and evolves
into a structure resembling a classic R-tree that outperforms
prior multi-dimensional adaptive indexing methods [19], [34]
in a variety of workloads across spatial and point multi-
dimensional datasets.

D. Updating an adaptive index

An extension of database cracking [22] provisionally stores
newly inserted data in a log and triggers their insertion in the
data array only once they become relevant to a query by a
rippling strategy that recursively moves items from one array
partition to the next, until it reaches the end of the array or a
piece not relevant to the query; in the latter case, it moves some
data to the log, to be reinserted in response to future queries.
Deletions are also materialized once they become relevant to
a query, creating empty array positions (holes) that are used
whenever possible to accommodate insertions.

E. So-called ‘adaptive indexes’ in the wild

Several prior works have proposed workload-aware index
structures for diverse types of data, which are occasionally
described as ‘adaptive indexes’. However, the motivation and
intention of those works differs from ours; some of them build
a workload-aware index in advance [2], [12], [29], [32]; others
first build a regular, non-workload-aware index, and later refine
it in response to queries [3], [30], [7]. Besides, the work
in [30], enhances throughput by responding to the ratio of
queries to updates, while being indifferent to the distribution
of queries. Likewise, the work in [7] adjusts an index to
accommodate heavy updates. Overall, none of these works

ingests initially unorganized data into an index in response to
queries, as the adaptive indexing methods we discuss do.

III. GLIDE

GLIDE is a mechanism that augments any tree-based adap-
tive spatial index to accommodate updates interleaved with
queries. We assume that the data is stored in a single array,
with the data items belonging to a leaf residing in contiguous
memory space. We investigate our options with respect to
when and how to ingest updates into the index and the data
array. Section III-A overviews the design space for GLIDE,
considering these issues. We outline strategies for handling in-
sertions in Section III-B and discuss deletions in Section III-C.

A. Design options

Figure 4 arranges the design options we explore along three
axes and presents the arising candidates we consider.

rip
ple

sli
ng

sli
ng

-cr
ac

k complete

gradual

self-driven

query-driven

GS
GS-crack

CS
CS-crack

GQ
GQ-crack

CQ
CQ-crack

CQ-rip
ple

Array reorganisation strategy

M
an

ne
r of

ins
ert

ion

Tr
ig

ge
r

Fig. 4: GLIDE design space.

First, we consider the design choice of what event triggers
an insertion; we outline two options: by the self-driven option,
we insert items to the index as they arrive; by the query-
driven option, we keep insertions in a separate global list and
materialize them only once they become relevant to a query.
Second, we consider two options for how we materialize a
triggered insertion; in the complete manner, we fully traverse
the index and directly enter newly inserted items into the
tree leaves; in the gradual manner, we accommodate inserted
data in separate, pre-reserved spaces in each tree node, and
distribute them in bulk among the node’s children once they
exceed the size threshold. Lastly, we consider three options
on how to reorganize the data in the single array, which we
describe in Section IV.

B. Handling insertions

1) Complete self-driven (CS): The complete self-driven
(CS) insertion strategy processes each insertion fully upon
arrival, positioning new data in the appropriate place in the
tree structure, reorganizing the static array as necessary (see
Sec. IV).

3

2) Complete query-driven (CQ): The complete query-
driven (CQ) insertion strategy appends each received insertion,
temporarily, in a log structure, separate from the index. Each
query scans the log, retrieves query-relevant objects, and fully
inserts them into the tree in the same manner as the CS
strategy does. Insertion is conducted while traversing the
tree for query-answering purposes; at each internal node we
assign each insertion item to the appropriate child by the tree
insertion heuristic, ultimately placing each new object to ts
corresponding leaf node.

3) Gradual self-driven (GS): The gradual self-driven (GS)
strategy, like CS, introduces each data insertion directly into
the tree upon arrival. However, instead of immediately placing
new data objects to leaves by completely traversing the tree,
GS lets them gradually trickle down the tree, allowing internal
tree nodes to temporarily store data objects, called spares,
up to an empirically determined size threshold θs. When
the amount of spares in an internal tree node exceeds θs,
GS diffuses them to children nodes. Diffusion recursively
propagates downwards from children, if they lack the space to
accommodate the new items.

Algorithm 1 outlines the recursive gradual insertion method
for a batch of new items to be inserted tbi in a node. If there
is not enough space in node for its spares plus tbi, diffusion
takes place for all these items (Line 5). We create a tbi list of
items for each child node and recursive call Algorithm 1 for
each child (Line 12). This allows subsequently inserted items
to be assigned well and query-driven cracking to operate on
an up-to-date index. At a leaf that cannot fit the set of objects
to be inserted among its spares, we introduce all accumulated
spares and items to be inserted into the data array (Line 14),
a process to be discussed in Sec. IV.

Algorithm 1 Gradual insertion
1: procedure INSERT-GRAD(node, tbi)
2: if node.spares.size + tbi.size < θs then
3: place tbi in node.spares
4: return
5: if node is internal then
6: diffused tbi = [] for each node.children
7: for item in node.spares ∪ tbi do
8: b = PICKBRANCH(item, node.children) [17]
9: diffused tbi[b].append(item)

10: for child in node.children do
11: if |diffused tbi[child]| > 0 then
12: INSERT-GRAD(child, diffused tbi[child])
13: else
14: REORGANISE(node, node.spares + tbi)
15: return

We show an example of diffusion in a generic spatial-index
tree in Figure 5, assuming the tree has a θs threshold of 4 spare
items per node. At the outset, the root holds items {1, 2, 3},
node n1 holds {4, 5} and node n2 holds {6} as spares. First,
we try to insert item 7. As there is space in the root’s spares,
we keep it there. Then we try to insert item 8. Now, there is
no more space in the root’s spares, hence we diffuse each of
the root’s spares and the new item down the tree, based on
the tree insertion algorithm. For instance, we assign item 1

to node n2; as there is enough space among its spares, this
branch of the recursion ends here. Item 3 is assigned to one
of the other children. However, items {2, 7, 8} are assigned
to node n1, which has no spare space to accommodate them;
thus, we diffuse all its spares and let each of them find its
place in the next tree level.

GS requires extra precaution when processing a query.
During tree traversal, we need to scan the spares of each node
to retrieve any arising query results.

4) Gradual query-driven (GQ): As a fourth possible com-
bination of our design choices, the gradual query-driven
strategy lets insertions be triggered by queries, as CQ does
(Section III-B2), yet follows a gradual manner of insertion,
like GS does (Section III-B3). We store each arriving insertion
in the unstructured log of pending insertions and, upon the
arrival of a query, we scan the log to identify query-relevant
objects and insert them gradually into the tree. We let internal
nodes store a limited number of spare items and employ the
diffusion method of Section III-B3; diffusion occurs as a side-
effect of the query-driven tree traversal.

C. Deletions: complete self-driven
GLIDE handles deletions in a simple manner; it locates the

object to be deleted by tree search, swaps it with the first non-
empty slot in its leaf (or list of spares), and increments the
number of empty slots, creating space for future insertions.
We ignore underflows of the minimum capacity.

IV. REORGANIZING THE STATIC ARRAY

Any data item ingested into the index structure is stored ei-
ther in the spare space of a tree node or in the global, statically
allocated array. The entries of a leaf node occupy contiguous
memory blocks in the same array partition, facilitating efficient
query evaluation. Still, this leaf node design was intended for
static data. GLIDE caters to dynamic insertions and deletions at
arbitrary positions of the array while retaining the contiguity of
data within a partition. To this end, GLIDE adds the following
features to this basic design:

• the beginning of a leaf partition may have unused slots,
or holes, as in [22]; we keep a counter h of such holes
per leaf; hence, the contents of a leaf with range [s, e]
are at array positions s+ h to e.

• tree leaves keep linked-list pointers to their left and right
adjacent leaves in the array; we note that such adjacent
leaves do not necessarily have any spatial relation.

We devise two policies that deal with a set of items tbi that
are to be inserted to a leaf with insufficient space: (1) the ripple
and (2) the sling strategy. Rippling cascades excessive items
to neighboring leaves as necessary, while slinging moves the
entire overflown leaf to the end of the array. In addition, we
present an enhancement on the sling policy that cracks a large
leaf and moves one or both pieces to the end of the array.

A. The ripple strategy
The ripple strategy is driven by queries and presupposes

a log of pending insertions, hence can be used with query-
driven strategies that utilize such a log, i.e., CQ and GQ. When

4

1 2 3

4 5 6

insert 7

…

…

… … …

root

n1

n11 n12 n13

n2
4 5 6

…

…

… … …

Insert 8

diffuse
1 2 3 7 + 8)(rootroot

n1

n11 n12 n13

n2
4 5 6 1

…

…

… … …

diffuse

{2, 7, 8} {3}
root

n1

n11 n12 n13

n2

6 1

7 8 4 2 5

…

…

… … …

root

n1

n11 n12 n13

n2

Fig. 5: Diffusion example, tree structure.

processing a query, we denote leaves and items that overlap it
as hot and those who do not as cold. We aim to keep hot items
in the array but allow cold ones to leave the array to facilitate
an early termination of the process. In contradistinction to a
similar method proposed for indexing one-dimensional scalar
attributes in column stores [22], when indexing multidimen-
sional spatial data, array partitions corresponding to index leaf
nodes do not need to obey a particular order. Thus, we may
move leaves around liberally, taking in consideration their
current position in the array and data insertion requirements.

We consider that data is stored in a static array with
available space for new data on its end. Under this design, we
first outline the actions taken in some simple cases of inserting
k objects into a target leaf’s partition in the array:

1) If we insert data to the last leaf in the array, then we
append the data directly to the end of the array.

2) If the data to be inserted fits into the holes at the begin-
ning of the leaf, then we place the data there directly.

3) If k exceeds the size of the target leaf l, then we move
the leaf along with its new contents to the array’s end
in k+ l < 2k operations; for it would take 3k operations
to move k items from the array to the temporary log,
enter k items in the array, and later return the removed k
items from the log to the array.

The above cases notwithstanding, we apply the ripple
method when inserting a number of new items of size smaller
than the target leaf size. To make space for the items to be
inserted, we start from that target leaf and cascade across array
partitions as in [22] (Section II-D), occupying any available
holes and shifting items from the start of a partition to its end,
taking over space from the next partition. Once we arrive at
a cold leaf node, we halt the process and push a sufficient
amount of data to the log. The rationale for this measure is
that we are interested to keep hot data, relevant to the current
query, in the array, but may shift cold data out of it. Otherwise,
if we arrive at the end of the array and remain in the hot area,
we expand the last leaf as necessary.

Fig. 6 illustrates the ripple strategy, assuming that the
numbers are identifiers of spatial objects. Holes are denoted
by an X. Suppose that we insert items {15, 16, 17} into leaf i.
Consider that leaves i and ii overlap the current query (i.e.,
they are hot), while leaf iii does not (i.e., it is cold). Leaf i has
one hole, wherein we place object 15. Then, we use the hole
of the next leaf ii to accommodate {16}. Now only item 17
is to be placed. As leaf ii is hot, we ripple its contents, i.e.,
item 11 forward to the end of leaf ii and beginning of leaf iii
and adjust the range boundaries of leaves i and ii accordingly.
As leaf iii is cold, i.e., does not overlap the query, we cease

rippling, eject cold item 13 from leaf iii into the pending
insertions log (to stay there until some other query drives it
back into the tree structure). Notably, by this rippling method,
the size of the pending insertion log fluctuates.

X 2 3 11X109876541

insert into leaf i

initial state

leaf i leaf ii leaf iii

15

move to end of i/start of ii

fill holes

17

15 2 3 6541

move to end of i/start of ii

fill holes

leaf i
11move to end of ii/start of iii

ripple

13place in pending list

kick out

12 13 14

2 3 11X109876541

leaf i

12 13 14

leaf ii leaf iii

111610987 12 13 14

leaf ii leaf iii

15 2 3 6541

leaf i

171610987 12 13 14

leaf ii leaf iii

15 2 3 6541 171610987 12 11 14

leaf i leaf ii leaf iii

15 16 17

16 17

Fig. 6: Ripple reorganisation strategy.

B. The sling strategy

The ripple strategy does not fully exploit the lack of a
total order in a multidimensional index and therefore incurs
a substantial overhead. We propose an alternative approach
that makes space for insertions by deliberately leveraging the
flexibility to relocate leaves in the data array.

Algorithm 2 outlines our sling strategy. First, in case the
target leaf is the last leaf in the array, we append the inserted
data to its end (Line 2). Likewise, if there is enough available
space in a leaf’s holes, we avail of them for the insertion
(Line 4). Otherwise, the sling strategy ejects the entire leaf
to the end of the array alongside the new data and offers the
empty space created by the move as holes to the next leaf
(Line 8). For the sake of robustness, we endow the moved
leaf with a certain amount of default holes ∆H (Line 9).

Figure 7 illustrates the sling method with an example. We
insert items {15, 16, 17} into leaf i, which is not the last
leaf and does not have enough holes to accommodate the
new items. We then move leaf i along with the items to be
inserted tbi to the space available at the end of the array,
along with one default hole, and assign the available space
left behind as holes to leaf ii.

C. Sling with a crack

By the sling strategy, an insertion to a large leaf may cause
superfluous movement of data in the array and leave behind
a lot of empty space. To ameliorate this effect, we amend the
sling strategy with a stochastic cracking [18] step, replacing

5

X 2 3 11X109876541

insert into leaf i

initial state

leaf i leaf ii

Xsling

12

X X 11XXXXXXXXX 12

leaf ii

move i to the end
X 2 3 109876541… 15 16 17

X
med-crack

& sling
X X 11X1028741716X

leaf i

12

leaf ii

crack, move smaller piece to the end

X 9 3 561…

leaf i

leaf iv

15
quant-crack

& sling
17 3 11X1028765416

leaf i

12

leaf ii

crack, move smaller piece to the end

X 91…

leaf iv

15

15 16 17

Algorithm 2 Sling

1: procedure SLING(node, tbi)
2: if leaf is right-most then
3: append tbi to end of array
4: else if leaf.holes > tbi.size then
5: fill holes with tbi
6: reduce leaf.holes by tbi.size
7: else
8: set leaf.size holes at the start of leaf.right sibling
9: move leaf to array’s end with ∆H holes

10: append tbi to leaf’s end

Fig. 7: Sling reorganisation strategy: plain, with mediocre crack, with quantile crack.

Lines 8–10 in Algorithm 2 by Algorithm 3. When inserting to
a leaf larger than twice the regular leaf size threshold, 2Mℓ,
we crack it on a mediocre, i.e., the median of a small number
of samples [38], to split it into two approximately equal pieces
(Line 4); if at least one of those pieces leaves behind enough
space for the data to be inserted, we move the smallest such
piece to the array’s end; if none of them leaves behind enough
space, we move both to the array’s end, keeping in check the
amount of moved data and the memory space occupied by the
data including holes.
Algorithm 3 Crack Upon insertion
1: if leaf.size > 2Mℓ then
2: sca = longest axis of leaf area ▷ stochastic crack axis
3: scp = mediocre on sca ▷ stochastic crack pivot
4: lp, rp = crack leaf on scp value in sca axis ▷ left and right piece
5: if tbi.size > lp.size ∧ tbi.size > rp.size then ▷ neither fits
6: move lp with ∆H holes and tbi.size extra space to array’s end
7: move rp with ∆H holes to array’s end
8: else if (tbi.size ≤ lp.size ∧ lp.size ≤ rp.size) ∨
9: tbi.size > rp.size then ▷ lp is smallest fitting

10: move lp with ∆H holes to array’s end
11: else if (tbi.size ≤ rp.size ∧ rp.size ≤ lp.size) ∨
12: tbi.size > lp.size then ▷ rp is smallest fitting
13: move rp with ∆H holes to array’s end
14: scan tbi and place values in lp or rp using scp pivot
15: else
16: set leaf.size holes at the start of leaf.right sibling
17: move leaf to array’s end with ∆H holes
18: append tbi to leaf’s end

We also crack the items in tbi on the same pivot and
distribute them among the two leaf pieces. As they may all
be assigned to one of the two pieces, we need to ensure there
is adequate space to accommodate them. In the worst case,
neither of the pieces is big enough to accommodate tbi in
the space it leaves behind (Line 5); in that case, we move
both pieces to the array’s end. In the most fortuitous case, the
smallest piece we create is large enough to accommodate tbi in
the space it leaves behind; then we move the smallest piece to
the array’s end and safely distribute tbi among the two pieces
(Lines 8 and 11). If the smaller piece is not large enough to
accommodate tbi in the space it leaves behind, we move the
larger piece to the array’s end (Lines 9 and 12).

The third row in Figure 7 shows an instance of the sling
method with cracking in action. Considering leaf i as larger
than 2Mℓ, we choose a spatial axis and pivot as the median
of 3 samples taken from the leaf, and crack items in the leaf’s
partition thereby. Assume items {1, 9, 3, 6, 5} fall on the one

(left) side of the pivot and items {4, 7, 8, 2, 10} on the other
(right) side by our spatial cracking criterion. As the two pieces
have equal size and the tbi items fit in it, we move the first
of the two pieces to the array’s end. We then crack tbi items
on the same pivot. Let item {15} fall on the left side and
the rest on the right side. We leverage the holes created by
slinging {1, 9, 3, 6, 5} to the array’s end to place tbi alongside
each cracked partition, creating the new leaf iv, which we
add to the tree structure with one initial hole (∆H = 1). We
experimented with more sophisticated choices for the cracking
pivot, but did not find a better option.

We combine the designs of Section III with the reorga-
nization strategies discussed here to create indexing meth-
ods. Standard methods use the sling strategy (Section IV-B)
without extra cracking, denoted with the suffix -sling. We
refer to combinations with the ripple reorganization strategy
(Section IV-A) by the suffix *-ripple and to those with the
sling strategy (Section IV-B) with a mediocre crack by the
suffix *-crack.

V. THEORETICAL ANALYSIS

We analyse the cost of insertions and queries separately,
and combine results. An analysis of adaptive indexing in 1D
is available in [38]; its results are applicable, mutatis mutandis,
to the multidimensional case. In adaptive tree indexes, the
query response comprises index traversal and index exten-
sion. In the 1D case, traversal is done on a binary search
tree with logarithmic complexity. In balanced trees, queries
need O(logN+T) operations for N data objects and T query
results. As GLIDE is implementable on top of any adaptive tree
index, let the expected tree traversal operations be Ψ(N, d, T)
for queries on N d-dimensional data objects, each yielding up
to T results. Also, let the expected total number of operations
for index adaption be Γ(N, r, d). Then the expected number
of operations is λ(N, r, d, T) = Γ(N, r, d) + rΨ(N, d, T).

The complete self-driven (CS) design follows the same
querying strategy, and will therefore perform the same amount
of query operations. For the GS design, scanning the spares
in each accessed node will add some overhead resulting
in λ(N, r) = Γ(N, r, d) + r θs

2 Ψ(N, r, d) operations in the
expectation, where θs is the space available for spares in a
node, assuming half the spares are occupied when visited.

Insertions in the CS design comprise tree traversal as well
as array reorganisation efforts. For the array reorganization,

6

we need to move pieces of size N/2i on average in the ith
insertion. For a total of ω insertions, we then need to per-
form Φ(N,ω) = ωΨ(N, r, d) + N(1 − 1

2

ω−1
) operations

in expectation. In the GS design, these expressions capture
the worst case, as traversals terminate early and some items
never get inserted into the array. The traversal cost for some
items is amortized over several insertions, but the accumulated
cost remains the same. Adding the extra stochastic crack
upon insertion to the methods, i.e. CS-slingCrack and GS-
slingCrack, would only add a small constant factor to the
second term, as the moved pieces go through a partitioning
but the amount of copying may become smaller. Therefore the
total cost of a workload of r queries and ω insertions on N
shapes adds up to λ(N, r)+Φ(N,ω) operations in expectation.

VI. EXPERIMENTAL ANALYSIS

A. Implementation

AIR. We implemented1 all different design options on top of
a query-adaptive R-tree, AIR [39]. We tailored the GLIDE
module to this particular structure as follows.

First, by all candidate designs (§III-A), new data do not
enter not only the data array, but also the tree structure.
Regarding leaf-splitting, if the leaf that receives the inserted
data is irregular (§II-C), then we simply allow the index to
accommodate the new data. If the leaf is regular, i.e., has
size below the cracking threshold, and in effect exceeds that
threshold, then we switch the leaf to irregular, allowing it to
be cracked again by future query-driven cracking operations.
Thereby, the index structure accepts updates with little over-
head. As we trickle down the tree on the path to the location
where newly inserted data is to be introduced, we extend the
MBB of each encountered node to accommodate that data.

Second, when cracking a leaf node by AIR [39] procedures,
we disperse its spares among the ensuing pieces by the R-tree
insertion heuristic [17], always choosing the cracked piece that
undergoes the least area enlargement.

Third, regarding deletions, we deliberately do not tighten
MBBs to reflect deletions, to make the procedure more
lightweight, in the same spirit as lazy-update R-trees [25]. As
deletions are relatively rare compared to queries and insertions,
we anticipate that eschewing the tightening of MBBs benefits
overall GLIDE performance; node MBBs subjected to dele-
tions are eventually tightened due to queries and insertions.

AV-tree. To evaluate the generality of the proposed meth-
ods, we apply them on the Adaptive Vantage Tree (AV-
tree) [26], an adaptive index structure designed for indexing
high-dimensional data in metric spaces. The AV-tree partitions
the space around query centers into units defined by hyper-
spheres, utilizing distance bounds. It supports both range and
k-nearest neighbor (kNN) queries. Since we evaluate range
queries on AIR, we focus on kNN queries on the AV-tree to
cover more of the spectrum of query types.

The query-driven design presumes an absolute criterion of
query relevance, such as belonging to a given range, to guide

1Code available at https://github.com/fatemeh-zardbani/GLIDE

query-driven insertion. Such a criterion does not apply to
kNN queries, where one object’s query relevance depends on
other data objects being near neighbors to the query center.
Therefore, we have only implemented the self-driven designs
for this index. Inserting items in to an AV-tree is inherently
simpler when compared to AIR, as no changes are required to
be made to the tree structure, and the tree grows top-down.

B. Experimental setup

We conduct an extensive experimental study to evaluate
GLIDE using real and synthetic data on realistic workloads.
We implemented GLIDE and competitors in C++ and compiled
them in g++ 7.4.0 with the -O3 switch; experiments ran on
a 10-core Intel Xeon machine at 3.10GHz with 396G RAM
running Ubuntu 18.04.3 LTS.

Performance measures. Following the common practice in
prior work [19], [34], [20], [21], [22], we measure the progres-
sively evolving response time during the workload. In terms
of response times, we measure: (i) the cost per query over a
workload, averaged over 5 runs; and (ii) the cumulative cost,
which aggregates the cost per query over a workload; including
the creation time for static indices. For the sake of fairness, all
methods perform identical count range queries. Insertion times
inevitably fluctuate, as some trigger cascading diffusion; to
visualize results comprehensibly, we add a continuous moving-
average line in those plots, with window size 30. In cases
where the full workload progression offers no new insights,
we show only the time to evaluate the entire workload.

TABLE II: Data sets.
Name Synth ROADS EDGES BUILD’S TLC MNIST
Size 64M 19M 70M 115M 153M 70k
Dim. 2 2 2 2 3 50

Datasets. In experiments where GLIDE is applied on AIR,
our focus is on the adaptive indexing of spatial objects. We
generated a large 2D synthetic dataset of 64M rectangular
shapes using SpiderWeb [24]. The location, as well as the
width and height of these objects adhere to a uniform dis-
tribution within the [0, 1] and [0,0.01] range, respectively.
We also experiment with publicly available 2D and 3D real
datasets:2 ROADS and EDGES from the US Census Bureau
and BUILDINGS from OpenStreetMap. The ROADS data
feature shapes of U.S. roads and the EDGES data comprise
of lines on the U.S. map, including roads, rivers, and borders.
The BUILDINGS dataset is comprised of the boundaries of all
buildings worldwide. We also use a real-world 3D data set of
taxi cab trip records3 from year 2010 normalising pick-up and
drop-off longitudes, latitudes, and timestamps to represent 3D
boxes. Finally, we use the popular MNIST[10][1], database
of handwritten digits, to test the application of GLIDE on AV-
tree. We used UMAP [31] to reduce their dimensionality down
to 50. Table II summarizes data characteristics.

2http://spatialhadoop.cs.umn.edu/datasets.html at the University of Minnesota [13]
3https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

7

CS-sling CS-slingCrack CQ-sling CQ-slingCrack CQ-ripple GQ-sling GQ-slingCrack GS-sling GS-slingCrack

10-90 25-75 50-50 75-25 90-10
0

2

4

6

8

10

Query-to-Insertion Ratio

To
ta

l
W

or
kl

oa
d

Ti
m

e(
se

c)

(a) ROADS

10-90 25-75 50-50 75-25 90-10
0

5

10

15

20

Query-to-Insertion Ratio

To
ta

l
W

or
kl

oa
d

Ti
m

e(
se

c)

(b) BUILDINGS

10-90 25-75 50-50 75-25 90-10
0

2

4

6

8

10

12

14

16

Query-to-Insertion Ratio

To
ta

l
W

or
kl

oa
d

Ti
m

e(
se

c)

(c) Synthetic

Fig. 8: Ablation study on range workloads.

GS-sling GS-slingCrack omniscient AIR R-Tree

100 101 102 103 104 105

10−3

10−2

10−1

Number of queries

A
ve

ra
ge

L
ea

f
A

re
a

(a) Synthetic, Leaf Areas

100 101 102 103 104 105
10−5

10−4

10−3

10−2

10−1

100

101

102

Number of queries

A
ve

ra
ge

L
ea

f
A

re
a

(b) ROADS, Leaf Areas

Fig. 9: Average Leaf Areas on range workloads

TABLE III: Query workloads.
Location distribution Size distribution Source Size
Uniform Uniform Synthetic 100k
Zipfian Uniform Synthetic 100k

C. Workloads

We measure time per query and cumulative time over
workloads of queries intertwined with insertions. For the
range workloads, we use query workloads consisting of at
most 100K rectangular queries placed according to either a
Uniform distribution or a Zipfian distribution with α = 4 using
Python’s scikit-learn [35] module. Table III summarises work-
load characteristics. As the default option, with the ROADS
and EDGES datasets, we tailor each query extent so that it has
a result size in the order of 0.001% (e-3%) of all data objects.
With the BUILDINGS dataset, which features locations and
shapes of buildings, to create queries of the desired selectivity
on built areas, we select at most 100K random objects from the
data and extend their width and height. While we use a default
query selectivity of e-3%, we also look into the effect of the
query result size by investigating other values: e-4%, e-2%,
and e-1%. We interleave queries with insertions as follows.

Each workload performs 100K actions encompassing a
shuffled combination of insertions and range queries, with a set
ratio between the amount of queries and insertions. We draw
the inspiration for this class the YCSB benchmark workload
type E [9], a well-established Yahoo! data management system
benchmark. The default ratio of queries to insertions is 75%
range queries to 25% insertions (i.e., 75K queries and 25K
insertions). To draw data for insertion, we set aside a properly
sized subset of the data set at hand apart from the fixed

data set sizes reported in Table II. Moreover, as the query-to-
insertion ratio is seldom known a priori. To affirm robustness
with respect to variations in that ratio, we examine a range of
query-to-insertion ratios other than the default one. We dub
these query-and-update workloads, action ratio workloads.

For the kNN workloads on the MNIST data, the queries
are samples of the dataset. As the dataset is fairly small, we
could not set aside part of it to add later; and as it is clustered
and in a meaningful distribution, we could not synthetically
generate new data to insert. So, we insert a sample of the data
as duplicates. The interleaving of the actions are done in the
same manner as described for the range workloads but the size
of the workload is kept to 10k given the dataset size.

TABLE IV: Parameters, uniform 2D shape data, 25% inserted.
Q-to-I ratio 25-75 50-50 75-25

∆H

θs 8 16 32 8 16 32 8 16 32

0 3.47 3.62 3.75 5.106 5.29 5.41 6.53 6.68 7.01
32 3.53 3.64 3.70 5.22 5.20 5.35 6.613 6.92 6.88
64 3.53 3.59 3.65 5.04 5.14 5.47 6.47 6.81 6.94

D. Parameter Tuning

We use the range workloads on AIR to investigate the
parameter values. Firstly, we investigate the choice of values
for GLIDE parameters: regular leaf size threshold Mℓ, tree
fan-out f , default number of holes ∆H , and limit of spare
items stored in nodes θs. For the first two, we use the values
found best in [39], i.e., Mℓ = 64 and f = 16. Regard-
ing ∆H and θs, Table IV shows the total time (in seconds)
spent by GLIDE on the whole Uniform workload of queries
and insertions of various ratios with different configurations.
Following these results, we choose to allow 64 holes on moved
leaves (∆H = 64) and to up to θs = 8 spare items in each
internal node, by virtue of the dependability of these values.
We stress that the performance of GLIDE is not overly sensitive
to parameter values. For the kNN workloads in the AV-tree we
use the same ∆H and θs values, and let the cracking threshold
parameter, θ, to be set as 128 as suggested in [26].

E. Ablation study

We perform analysis of the designs on the range workloads
implemented on the adaptive R-tree. We compare GLIDE vari-
ants differentiated by the trigger and manner of insertions and

8

GLIDE R*-tree R-tree Quad-tree AIR+Scan

100 101 102 103 104 105

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Number of queries

Ti
m

e(
se

c)

(a) 75-25, e-3%: per query

100 101 102 103 104
10−8

10−7

10−6

10−5

10−4

Number of insertions

Ti
m

e(
se

c)

(b) 75-25, e-3%: per insert

100 101 102 103 104 105

10−1

100

101

Workload Progress

Ti
m

e(
se

c)

(c) 75-25, e-3%: cumulative

10-90 25-75 50-50 75-25 90-10

100

101

Query-to-Insertion Ratio

Ti
m

e(
se

c)

(d) Total workload time

0.1% 0.01% 0.001% 0.0001%
100

101

102

Action selectivity

Ti
m

e(
se

c)

(e) Total workload time

Fig. 10: ROADS dataset, Uniform range queries.

GLIDE R*-tree R-tree AIR+Scan

100 101 102 103 104 105
10−6

10−5

10−4

10−3

10−2

10−1

Number of queries

Ti
m

e(
se

c)

(a) 75-25: time per query

100 101 102 103 104
10−8

10−7

10−6

10−5

10−4

Number of insertions

Ti
m

e(
se

c)

(b) 75-25: time per insertion

100 101 102 103 104 105

10−1

100

Workload Progress

Ti
m

e(
se

c)

(c) 75-25: cumulative time

10-90 25-75 50-50 75-25 90-10

10−0.5

100

100.5

Query-to-Insertion Ratio

Ti
m

e(
se

c)

(d) Total workload time

Fig. 11: ROADS dataset, Zipfian range queries.

GLIDE R*-tree R-tree AIR+Scan

100 101 102 103 104 105

10−6

10−5

10−4

10−3

10−2

10−1

100

Number of queries

Ti
m

e(
se

c)

(a) 75-25, e-3%: per query

100 101 102 103 104
10−8

10−7

10−6

10−5

10−4

Number of insertions

Ti
m

e(
se

c)

(b) 75-25, e-3%: per insert

100 101 102 103 104 105
100

101

Workload Progress

Ti
m

e(
se

c)

(c) 75-25, e-3%: cumulative

10-90 25-75 50-50 75-25 90-10

101.2

101.4

101.6

Query-to-Insertion Ratio

Ti
m

e(
se

c)

(d) Total Workload time

0.1% 0.01% 0.001% 0.0001%

101.5

102

Action selectivity

Ti
m

e(
se

c)

(e) Total Workload time

Fig. 12: BUILDINGS dataset, Uniform range queries.

the array reorganisation strategy. We use each on a synthetic
dataset of 8M objects, the ROADS data, and the BUILDINGS
data, with workloads of varying action ratios represented on
the x-axis. We use a shuffled mix of queries and insertions as
described in § VI-C with ratio of 75 to 25 respectively. We
compare the total workload runtime of the variants presented
in Section III, including CQ-sling, CQ-slingCrack, CQ-ripple,
GQ-sling, GQ-slingCrack, GS-sling, GS-slingCrack, CS-sling,
and CS-slingCrack.

Figure 8 presents our results. Observe that GS-slingCrack
achieves the best cumulative time in insertion-heavy workloads
and proves to be robust against various action ratios. Query-
driven methods are all burdened with keeping an extra array
for pending new items, which they need to scan with each
query, whereby query-driven GLIDE variants fully or gradually
insert the related items into the index. In such query-driven
approaches, insertions are cheap whereas range queries can
be expensive. One might intuitively expect such variants to
perform worse on insertion-heavy workloads, as they need to
scan through more inserted items; however, such workloads
invoke fewer queries that warrant those expensive scans,
causing performance to deteriorate as the query-to-insertion
ratio tilts towards the query-heavy side; performance relapses
after the unsorted list becomes small enough that its scans

are less burdensome. Still, GS-slingCrack presents the most
dependable performance regardless of workload arrangement.

We observe that the extra stochastic crack upon insertions
drastically improves the performance of GS-sling. To under-
stand this phenomenon, we perform the following experiment:
We measure the average area of tree leaves as the workload
progresses vs. those of an R-tree receiving insertions using
the Superliminal4 R-tree implementation, which allows setting
fan-out 16 and leaf size threshold 64, as in GLIDE, and, for
reference, a version of AIR with all data pre-loaded, denoted
as omniscient AIR, which does not face data insertions.
Figures 9a and 9b show our results on the synthetic shape
data and ROADS data, respectively. Notably, in both datasets
GS reaches large leaf areas after the 100th action, while GS-
slingCrack keeps leaf sizes checked, as it mostly cracks leaves
that receive insertions, and reaches average leaf size as small
as the R-tree, and slightly larger than AIR, which is privileged
in this comparison.

Summary. In insertion costs, the query-driven design with
gradual insertion (GQ) is best. In query time, the self-driven
design with complete insertion (CQ) is best. The gradual
self-driven design with an extra crack upon insertion (GS-

4Code available at https://superliminal.com/sources/

9

GLIDE R*-tree R-tree AIR+Scan

100 101 102 103 104 105

10−4

10−3

10−2

10−1

Number of queries

Ti
m

e(
se

c)

(a) 8M : per query

100 101 102 103 104
10−8

10−7

10−6

10−5

10−4

Number of insertions

Ti
m

e(
se

c)

(b) 8M : per insertion

100 101 102 103 104 105

10−1

100

Workload Progress

Ti
m

e(
se

c)

(c) 8M : cumulative time

10-90 25-75 50-50 75-25 90-10

100.2

100.4

100.6

100.8

Query-to-Insertion Ratio

Ti
m

e(
se

c)

(d) Total workload time

8m 16m 32m 64m

101

101.5

Dataset size

Ti
m

e(
se

c)

(e) Total workload time

Fig. 13: Uniform 2D shape data, uniform 75-25 range workload.

GLIDE R*-tree R-tree Quad-tree AIR+Scan

100 101 102 103 104 105
10−6

10−5

10−4

10−3

10−2

10−1

Number of queries

Ti
m

e(
se

c)

(a) 8M: per query

100 101 102 103 104
10−8

10−7

10−6

10−5

10−4

Number of insertions

Ti
m

e(
se

c)

(b) 8M: per insertion

100 101 102 103 104 105

10−1

100

101

Workload Progress

Ti
m

e(
se

c)

(c) 8M: cumulative

10-90 25-75 50-50 75-25 90-10

100

100.5

Query-to-Insertion Ratio

Ti
m

e(
se

c)

(d) Total workload time

8m 16m 32m 64m

100.5

101

101.5

Dataset size

Ti
m

e(
se

c)

(e) Total workload time

Fig. 14: Uniform 2D point data, uniform 75-25 range workload.

slingCrack) is the most robust option, performing best in terms
of total throughput in the plethora of experimental settings we
have tried.

F. Range workloads comparative study

As our main baseline, we include a naive extension of AIR
with a simplistic array, denoted as AIR+Scan, which appends
inserted data to a separate log-like structure without an index.
When we evaluate a query, we also scan this auxiliary data
structure to retrieve results from the inserted data. Besides
AIR+Scan, we compare GLIDE against implementations of the
following methods:

• A static in-memory R-tree with quadratic split;
• A static in-memory R∗-tree;
• A static in-memory Quad-tree.
Both static tree implementations were taken from the Boost5

library. We set the leaf size of R-tree variants at 16, as recom-
mended, and conduct the comparison on different workloads of
queries and updates applied to our synthetic and real datasets.
The Quad-tree [15] implementation is provided in [36].

We organize the remainder of this section as follows: We
evaluate GLIDE under varying action-ratios (§VI-F1), different
dataset sizes (§VI-F2), and query selectivity (§VI-F3). Next,
we assess performance on point data (§VI-F4) and examine
how the system handles workloads that include deletions
(§VI-F5). We also investigate behavior when the order of
range queries is pathologically sequential (diagonal in space)
(§VI-F6). Lastly, we examine performance on 3D datasets
(§VI-F7).

1) Varying Query-to-Insertion ratio: We use shuffled
action-ratio workloads that contain 100K actions, as defined
in Section VI-C. To study the index robustness across dif-
ferent environments, we test a range of ratios between range
queries and insertions in the workload, intertwining insertions

5Code available at https://www.boost.org/users/history/version 1 61 0.html

into Uniform and Zipfian queries on the ROADS data-set.
Figures 10 and 11 show our results with the x-axes of 10d
and 11d representing action ratios. To illustrate workload
progression, Figures 10a, 10b and 10c display the trend of
action times for 75-25 action ratio workloads as an example,
and Figure 10d shows the total workload time across different
ratios. The observed decreasing per query times of AIR and
GLIDE are typical for adaptive indexes. As Quad-tree is a
space-partitioning index, it handles dynamic insertions better
than the data-partitioning R-tree variants. However, that minor
advantage does not counterbalance other costs in the overall
workload time; this behaviour persists across different action
ratios, as Figure 10d shows; given these results, we exclude
Quad-tree from subsequent shape-data experiments.

Figures 11a, 11b, and 11c present the progression of the
75-25 ratio workload with Zipfian queries, while Figure 11d
shows the trend of total workload times. In a Zipfian workload
certain areas are queried more often than others, hence GLIDE
builds a compact index with a few regular leaves thoroughly
indexing oft-queried areas and a few irregular leaves that
are rarely accessed. It achieves shorter times per query (Fig-
ure 11a) and hence cumulative times. The AIR index behaves
similarly, yet the extra work of scanning the newly-arrived data
eventually becomes cumbersome. The insertion performance
of GLIDE also outpaces classic R-tree methods (Figure 11b),
superseding their burdensome index creation time and slower
query times to result in a striking improvement in the total
workload time (Figure 11c). This effect remains unabated by
the ratio of the actions in the workload, as Figure 11d reveals.
The trend for AIR+Scan is similar to the one observed in the
ablation studies for the query-driven designs, as discussed in
Section VI-E, and exhibits the same trends across ratios for
Uniform and Zipfian queries. Figures 13d and 14d replicate
this study on synthetic shape data and point data (cf. Sec-
tion VI-F4), with analogous results.

10

Figure 12 illustrates that GLIDE preserves its advantages on
the BUILDINGS data, with a realistic workload and across
various ratios. To inspect the separate costs more thoroughly,
we present those times decoupled in Figure 15. Notably,
as Figure 15b shows, insertion times of GLIDE are lower
than those of the classic solutions. Moreover, the insertion
times for both static R-tree variants start at high values and
decrease as the workload progresses. To understand this front-
loaded behaviour, we measured the insertion time of pre-built
R-tree and R∗-tree variants that are initialized on the data
set by inserting data items one-by-one, instead of using the
default Sort-Tile-Recursive (STR) bulk-loading [27] method;
we denote these variants as CBI (created by insertion). As
Figure 15b shows, CBI variants exhibit stable, rather than
front-loaded, insertion cost. We infer that the STR bulk-
loading method builds packed trees that initially necessitate
intensive leaf-splitting to accommodate insertions, while the
space created by such initial splits suffices to absorb insertions
later in the workload, depicted in Figure 15c. Previous work
has used the term waves of misery [37] for this front-loaded,
in general oscillating, behavior of indexes.

GLIDE R*-tree R-tree R-tree CBI R*-tree CBI

100 101 102 103 104 105

10−6

10−5

10−4

10−3

10−2

10−1

100

Number of queries

Ti
m

e(
se

c)

(a) Query time

100 101 102 103 104

10−7

10−6

10−5

10−4

Number of insertions

Ti
m

e(
se

c)

(b) Insertion time

100 101 102 103 104 105

0

2

4

6

Number of splits

Ti
m

e(
se

c)

(c) Splits

Fig. 15: Buildings data, 75-25 per query decoupled time.

Summary. Inspecting the behaviour of GLIDE under various
distributions, i.e. different ratios between the count of inser-
tions and queries, we observe that it performs most robustly
with superior total workload time.

2) Varying data size: We also compared all methods, for
both shape and point data (cf. Section VI-F4), using different
synthetic data set sizes: 8, 16, 32, and 64 million. Fig-
ures 13a, 13b, 14a, and 14b plot the decoupled per query and
per insertion times for each case, for the 8M size experiment,
while Figures 13c and 14c show the respective cumulative
times to tackle the workload, which remain favorable to GLIDE
throughout the 100K actions. Other dataset sizes follow similar
trends. Most pertinently, as the results in Figures 13e and 14e
illustrate, GLIDE scales well with dataset size, indicated on the
x-axis, with both shape data and points. All methods display
a linear growth of cumulative time in response to dataset size.
AIR with linear scan has a less steep ascent, yet that is only
due to the fact that it always scans at most 25K insertion
items, while other methods manage growing indexes in their
insertions; this advantage is only an artifact of our specific
experimental design, which keeps the number of insertions
stable and only lets the initial data size grow. Naturally, it
does not scale with a growing insertion workload.

Exhibiting the typical behavior of indexes assembled by
adaptation to queries, GLIDE starts out with high per-query
cost that follows a descending trend. Eventually GLIDE

reaches the per-query performance of the R-tree while main-
taining a lower cumulative time even by 105 queries. Besides,
while the AIR index starts out with a performance similar
to GLIDE, in later stages of the workload the burden of
linearly scanning the inserted data escalates, raising the cost
per query. Regarding insertion costs, appending each new item
to an unordered list, i.e., the modus operandi of AIR with
linear scan, is the quickest insertion strategy. On the other
hand, R-tree variants present divergent insertion costs, as the
R*-tree is tailored to reduce node overlaps, yet that design
feature deteriorates its insertion performance compared to the
standard R-tree. By virtue of its gradual insertion scheme,
GLIDE achieves average insertion times almost one order of
magnitude lower than classic R-tree variants throughout the
workload. Moreover, the insertion cost of GLIDE descends,
because as the tree grows, it offers more spare spaces.

Summary. We find that GLIDE performs competitively in total
workload time under growing dataset size.

3) Varying query selectivity: We now study the robustness
of GLIDE to the size of query results using the real-world
ROADS and BUILDINGS data sets with 75% shuffled action
ratio workload. We tune selectivity to the order of magnitude
of 0.0001%, 0.001% (which is the default), 0.01%, and 0.1%.
As the size of the query results grows, all indexes register
longer total times, as Figures 10e and 12e show with the
x-axis representing selectivity. The higher the selectivity, the
smaller the difference in cumulative times; this behavior was
also observed in [16]. Still, under realistic query result sizes,
GLIDE has a clear advantage.

4) Point datasets: As mentioned, to demonstrate the gen-
erality of our methods, we conducted experiments with point
data sets. We use a synthetic 2D point dataset and validate
GLIDE’s robustness to workload distribution and dataset size.
We reinstate the Quad-tree in this experiment, as it is designed
for point data. Figure 14 shows the resulting trends, which are
similar to those obtained with shape data, with the Quad-tree
showing a slight improvement.

5) Effect of deletions: We apply expanded workloads that
also include deletions on the synthetic data set. We find the
object to delete in the index using its geometry; if the id
of the object is given, we use it to access its geometry. To
adhere to standard realistic workloads, we design a work-
load comprising 75% of range queries, 20% of insertions,
and 5% of deletions, in shuffled order. Figure 16 presents
our results, decoupling the query (16a), insertion (16b) and
deletion times (16c), and also displays the progression of the
overall workload time (16d). In all cases, GLIDE gracefully
integrates deletions in its operation.

6) A pathological workload: Adaptive indexing methods
are vulnerable to query workloads that explore the data space
in a skewed manner, especially by a sequential pattern [18],
[39]. Here, we study such a synthetic workload of queries
ordered across a diagonal line in the 2D space intertwined with
insertions; we let query extents follow a Uniform distribution
in the range of [0, 0.005] to create the default target selectivity
of 0.001%, and interleave them with insertions to create a

11

GLIDE R*-tree R-tree

100 101 102 103 104 105

10−4

10−3

10−2

10−1

Number of queries

Ti
m

e(
se

c)

(a) per query

100 101 102 103 104

10−7

10−6

10−5

10−4

Number of insertions

Ti
m

e(
se

c)

(b) per insertion

100 101 102 103 104
10−6

10−5

Number of deletions

Ti
m

e(
se

c)

(c) per deletion

100 101 102 103 104 105

10−1

100

101

Workload Progress

Ti
m

e(
se

c)

(d) cumulative time

Fig. 16: Synthetic shape data, 75-20-05, deletion

75% shuffled action-ratio workload. Figure 17 depicts our
results. GLIDE reaches a steady-state performance with per-
query time in the same order of magnitude as the R-tree in
fewer than 1000 queries, while maintaining a cumulative-time
advantage. This achievement is due to both the stochastic
cracks created upon range queries and the extra cracks created
upon insertions, as explained in Section IV-B. Other methods
follow the trends observed in preceding experiments.

GLIDE R*-tree R-tree AIR+Scan

100 101 102 103 104 105

10−5

10−4

10−3

10−2

10−1

Number of queries

Ti
m

e(
se

c)

(a) Time per query

100 101 102 103 104
10−8

10−7

10−6

10−5

10−4

Number of insertions

Ti
m

e(
se

c)

(b) Time per insertion

100 101 102 103 104 105

10−1

100

101

Workload Progress

Ti
m

e(
se

c)

(c) Cumulative time

Fig. 17: Uniform 2D shape data, 75-25, sequential queries

GLIDE R*-tree R-tree AIR+Scan

100 101 102 103 104 105

10−4

10−3

10−2

10−1

100

Number of queries

Ti
m

e(
se

c)

(a) Time per query

100 101 102 103 104
10−8

10−7

10−6

10−5

10−4

10−3

Number of insertions

Ti
m

e(
se

c)

(b) Time per insertion

100 101 102 103 104 105

101

102

Workload Progress

Ti
m

e(
se

c)

(c) Cumulative time

Fig. 18: TLC data, 75-25, Uniform queries.

7) 3D data: As in previous work [39], we focus on objects
with spatial extent, which naturally occur in two or three
dimensions. In the 3D space, we experimented with TLC.
Figure 18 depicts our results, which corroborate GLIDE’s
resilience with respect to dimensionality. Owing to the small
number of insertions relative to the data set’s size in this case,
AIR+Scan achieves performance close to GLIDE.

G. kNN workloads comparative study

We let the action ratio be 75-25 queries to insertions and
investigate the results of searching for 20 nearest neighbors.
As our main baselines, we include (i) a simple Linear Scan,
and (ii) a naive extension of AV-tree with a simplistic ar-
ray, denoted as AV-tree+Scan. We include the first as high-
dimensional indexes are susceptible to the curse of dimension-
ality, which a brute-force algorithm may avoid. The second
baseline appends inserted data to a separate log structure.
When evaluating a query, we also scan this auxiliary data

structure to retrieve results from inserted data. Figure 19
depicts these results.

The observed decreasing per query times of AV-tree and
GLIDE are typical for adaptive indexes. For the AV-tree,
the extra scanning of newly-arrived data eventually becomes
cumbersome, as evinced in the per-query and cumulative plots.
Overall, the GLIDE design of gradual insertion performs best.

We observe that the extra crack on gradual insertion with
sling has a negligible effect. We found that this is due to the
large tree height, which allows for many spare spaces in the
nodes and thus hardly lets insertions ever reach the leaf level
to be inserted in the array, where an extra crack could make a
difference. This is a result of the binary-ness, and hence tall
height of the tree. On the other hand, the declining trend in
the per-insertion CS-sling times is due to sling operations, as
initial insertions incur many slings and later ones exploit the
created holes. Still, due to the tree height, complete insertion
designs cost more than gradual insertion ones.

GS-slingCrack GS-sling CS-sling Linear Scan AV-tree + Scan

100 101 102 103 104

10−4

10−3

Number of queries

Ti
m

e(
se

c)

(a) Time per query

100 101 102 103
10−7

10−6

10−5

10−4

10−3

ŁNumber of queries

Ł
Ti

m
e(

se
c)

(b) Time per insertion

100 101 102 103 104

10−2

10−1

100

101

Number of queries
Ti

m
e(

se
c)

(c) Cumulative time

Fig. 19: MNIST data, 75-25, 20NN workload.

VII. CONCLUSION

We proposed GLIDE, an update mechanism applicable to
adaptive in-memory indexes for multi-dimensional objects.
While the index is built in response to queries, it absorbs
data insertions as they arrive, remaining up to date. We
investigated the design space and arrived at a design that
introduces insertions directly into the structure, allows them to
gradually progress down as they accumulate, and reorganizes
the underlying data array in response by moving and cracking
partitions; we extended the design to manage deletions as well.
Through a comprehensive experimental analysis on synthetic
and real multi-dimensional data, we validated that GLIDE
outperforms both patchwork extensions of previous adaptive
indexing solutions to accommodate updates and static indexes
when responding to the same workloads.

12

ACKNOWLEDGMENTS

Work supported by AUFF, DFF, and project MIS 5154714
of the National Recovery and Resilience Plan Greece 2.0
funded by the EU under the NextGenerationEU Program.

REFERENCES

[1] http://yann.lecun.com/exdb/mnist/. [Accessed 10-Mar-2023].
[2] D. Achakeev, B. Seeger, and P. Widmayer. Sort-based query-adaptive

loading of R-trees. In CIKM, pages 2080–2084, 2012.
[3] A. M. Aly, A. R. Mahmood, M. S. Hassan, W. G. Aref, M. Ouzzani,

H. Elmeleegy, and T. Qadah. AQWA: adaptive query-workload-aware
partitioning of big spatial data. Proc. VLDB Endow., 8(13):2062–2073,
2015.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree:
An efficient and robust access method for points and rectangles. In
SIGMOD, pages 322–331, 1990.

[5] N. Beckmann and B. Seeger. A revised r*-tree in comparison with
related index structures. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’09, page
799812, New York, NY, USA, 2009. Association for Computing Ma-
chinery.

[6] L. Biveinis, S. Saltenis, and C. S. Jensen. Main-memory operation
buffering for efficient r-tree update. In Proceedings of the 33rd Inter-
national Conference on Very Large Data Bases, University of Vienna,
Austria, September 23-27, 2007, pages 591–602, 2007.

[7] H. Cha, X. Hao, T. Wang, H. Zhang, A. Akella, and X. Yu. Blink-hash:
An adaptive hybrid index for in-memory time-series databases. Proc.
VLDB Endow., 16(6):1235–1248, feb 2023.

[8] N. Chaudhry, M. M. Yousaf, and M. T. Khan. Indexing of real time
geospatial data by iot enabled devices: Opportunities, challenges and
design considerations. Journal of Ambient Intelligence and Smart
Environments, 12(4):281–312, 2020.

[9] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with ycsb. In SoCC, pages 143–
154, 2010.

[10] L. Deng. The MNIST database of handwritten digit images for machine
learning research [best of the web]. IEEE Signal Processing Magazine,
29(6):141–142, 2012.

[11] Q.-T. Doan, A. S. M. Kayes, W. Rahayu, and K. Nguyen. A framework
for iot streaming data indexing and query optimization. IEEE Sensors
Journal, 22(14):14436–14447, 2022.

[12] G. Dröge and H. Schek. Query-adaptive data space partitioning using
variable-size storage clusters. In SSD, pages 337–356. Springer, 1993.

[13] A. Eldawy and M. F. Mokbel. Spatialhadoop: A mapreduce framework
for spatial data. In ICDE, pages 1352–1363, 2015.

[14] Y. Fathy, P. Barnaghi, and R. Tafazolli. Large-scale indexing, discovery,
and ranking for the internet of things (iot). ACM Comput. Surv., 51(2),
2018.

[15] R. Finkel and J. Bentley. Quad trees: A data structure for retrieval on
composite keys. Acta Inf., 4:1–9, 03 1974.

[16] T. Gu, K. Feng, G. Cong, C. Long, Z. Wang, and S. Wang. The rlr-
tree: A reinforcement learning based r-tree for spatial data. Proc. ACM
Manag. Data, 1(1), 2023.

[17] A. Guttman. R-trees: A dynamic index structure for spatial searching.
In SIGMOD, pages 47–57, 1984.

[18] F. Halim, S. Idreos, P. Karras, and R. H. C. Yap. Stochastic database
cracking: Towards robust adaptive indexing in main-memory column-
stores. Proc. VLDB Endow., 5(6):502–513, 2012.

[19] P. Holanda, M. Nerone, E. C. de Almeida, and S. Manegold. Cracking
KD-tree: The first multidimensional adaptive indexing (position paper).
In 7th International Conference on Data Science, Technology and
Applications, DATA, pages 393–399, 2018.

[20] S. Idreos. Database Cracking: Towards Auto-tuning Database Kernels.
PhD thesis, CWI, 2010.

[21] S. Idreos, M. L. Kersten, and S. Manegold. Database cracking. In CIDR,
pages 68–78, 2007.

[22] S. Idreos, M. L. Kersten, and S. Manegold. Updating a cracked database.
In SIGMOD, pages 413–424, 2007.

[23] R. M. Karp, R. Motwani, and P. Raghavan. Deferred data structuring.
SIAM Journal on Computing, 17(5):883–902, 1988.

[24] P. Katiyar, T. Vu, A. Eldawy, S. Migliorini, and A. Belussi. Spiderweb:
A spatial data generator on the web. In SIGSPATIAL, pages 465–468,
2020.

[25] D. Kwon, S. Lee, and S. Lee. Indexing the current positions of moving
objects using the lazy update r-tree. In Proceedings of the Third
International Conference on Mobile Data Management (MDM 2002),
Singapore, January 8-11, 2002, pages 113–120, 2002.

[26] K. Lampropoulos, F. Zardbani, N. Mamoulis, and P. Karras. Adaptive
indexing in high-dimensional metric spaces. Proc. VLDB Endow.,
16(10):2525–2537, 2023.

[27] S. T. Leutenegger, J. M. Edgington, and M. A. López. STR: A simple
and efficient algorithm for r-tree packing. In ICDE, pages 497–506,
1997.

[28] M. Liu, D. Li, Q. Chen, J. Zhou, K. Meng, and S. Zhang. Sensor infor-
mation retrieval from internet of things: Representation and indexing.
IEEE Access, 6:36509–36521, 2018.

[29] H. Luo, J. Zhou, Z. Bao, S. Li, J. S. Culpepper, H. Ying, H. Liu,
and H. Xiong. Spatial object recommendation with hints: When spatial
granularity matters. In ACM SIGIR, pages 781–790. ACM, 2020.

[30] S. Luo, B. Kao, G. Li, J. Hu, R. Cheng, and Y. Zheng. Toain:
a throughput optimizing adaptive index for answering dynamic knn
queries on road networks. Proc. VLDB Endow., 11(5):594–606, jan
2018.

[31] L. McInnes, J. Healy, and J. Melville. UMAP: uniform manifold approx-
imation and projection for dimension reduction. CoRR, abs/1802.03426,
2018.

[32] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska. Learning multi-
dimensional indexes. In SIGMOD, pages 985–1000, 2020.

[33] M. A. Nerone, P. Holanda, E. C. de Almeida, and S. Manegold.
Multidimensional adaptive & progressive indexes. In ICDE, pages 624–
635, 2021.

[34] M. Pavlovic, D. Sidlauskas, T. Heinis, and A. Ailamaki. QUASII: query-
aware spatial incremental index. In EDBT, pages 325–336, 2018.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
Plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[36] D. Tsitsigkos, K. Lampropoulos, P. Bouros, N. Mamoulis, and M. Ter-
rovitis. A two-layer partitioning for non-point spatial data, 2021.

[37] L. Xing, E. Lee, T. An, B.-C. Chu, A. Mahmood, A. M. Aly, J. Wang,
and W. G. Aref. An experimental evaluation and investigation of waves
of misery in r-trees. Proc. VLDB Endow., 15(3):478–490, nov 2021.

[38] F. Zardbani, P. Afshani, and P. Karras. Revisiting the theory and practice
of database cracking. In EDBT, pages 415–418, 2020.

[39] F. Zardbani, N. Mamoulis, S. Idreos, and P. Karras. Adaptive indexing
of objects with spatial extent. Proc. VLDB Endow., 16(9):2248–2260,
2023.

13

