
An End-to-End Deep RL Framework for Task
Arrangement in Crowdsourcing Platforms

Caihua Shan † Nikos Mamoulis § Reynold Cheng † Guoliang Li # Xiang Li † Yuqiu Qian ‡

† The University of Hong Kong, § University of Ioannina, # Tsinghua University, ‡ Tencent Inc.

{chshan, ckcheng, xli2}@cs.hku.hk, nikos@cs.uoi.gr, liguoliang@tsinghua.edu.cn, yuqiuqian@tencent.com

Abstract—In this paper, we propose a Deep Reinforcement
Learning (RL) framework for task arrangement, which is a
critical problem for the success of crowdsourcing platforms.
Previous works conduct the personalized recommendation of
tasks to workers via supervised learning methods. However, the
majority of them only consider the benefit of either workers
or requesters independently. In addition, they do not consider
the real dynamic environments (e.g., dynamic tasks, dynamic
workers), so they may produce sub-optimal results. To address
these issues, we utilize Deep Q-Network (DQN), an RL-based
method combined with a neural network to estimate the expected
long-term return of recommending a task. DQN inherently
considers the immediate and the future rewards and can be
updated quickly to deal with evolving data and dynamic changes.
Furthermore, we design two DQNs that capture the benefit
of both workers and requesters and maximize the profit of
the platform. To learn value functions in DQN effectively, we
also propose novel state representations, carefully design the
computation of Q values, and predict transition probabilities
and future states. Experiments on synthetic and real datasets
demonstrate the superior performance of our framework.

Index Terms—crowdsourcing platform, task arrangement, re-
inforcement learning, deep Q-Network

I. INTRODUCTION

Crowdsourcing is an effective way to address computer-hard
tasks by utilizing numerous ordinary humans (called workers
or the crowd). In commercial crowdsourcing platforms (i.e.,
Amazon MTurk [1] or CrowdSpring [2]), requesters first pub-
lish tasks with requirements (e.g., collect labels for an image)
and awards (e.g., pay 0.01 per labeling). When a worker
arrives, the platform shows him/her a list of available tasks
(posted by possibly different requesters), which are ordered
by a certain criterion, e.g., award value or creation time. The
worker can select any of the tasks in the list based on summary
information for each task, such as the title, the description and
the award. Finally, s/he clicks on a task, views more detailed
information and decides whether to complete it or not.

As shown in Fig. 1, the current platforms only provide
a simple sorting or filtering function for tasks, i.e., sort-
ing by creation time, filtering by category, etc. Due to the
large number of available tasks, previous work [22], [34]
pointed out that manually selecting a preferred task is tedious
and could weaken workers’ enthusiasm in crowdsourcing.
Some supervised learning methods (e.g., kNN classification
or probabilistic matrix factorization) are proposed to conduct

personalized recommendation of tasks to workers. However,
these approaches have several shortcomings.

First, previous works only consider the recommendation
and assignment of tasks, aiming at optimizing the individual
benefit of either the workers or requesters. If we only consider
the workers’ preferences or skills, we may not find a sufficient
number of workers for tasks in domains of rare interest. On the
other hand, if we only consider the benefit of the requesters,
i.e., collecting high-quality results by a given deadline, the
assignment of tasks might be unfair to workers, lowering their
motivation to participate. The goal of a commercial platform
is to maximize the number of completed tasks, as they make a
profit by receiving a commission for each such task. To achieve
this, crowdsourcing platforms should attract as many tasks
as possible by requesters and as many as possible workers
to complete these tasks. Hence, it is necessary to balance
the benefit of both workers and requesters by satisfying the
objectives of both parties to the highest possible degree.

Second, previous works are not designed for handling real
dynamic environments. New tasks are created and old tasks
expire all the time. The quality of a given task (e.g., accuracy
of labeling) also keeps changing as it gets completed by
workers. Besides, we do not know which worker will come at
the next moment, and the workers’ preferences are evolving
based on the currently available tasks. The models based on
supervised learning cannot update the preferences of workers
quickly. We show by experimentation that, even if we update
supervised learning-based models every day, their performance
is still not satisfactory.

Further, the majority of existing works are designed for
maximizing the immediate (short-term) reward, i.e., select
the task with the maximum predicted completion rate for the
coming worker, or choose the task that yields the maximum
quality gain. They disregard whether the recommended tasks
will lead to the most profitable (long-term) reward in the
future; hence, they may generate suboptimal suggestions.

To address the above issues, we propose a Deep Rein-
forcement Learning framework for task arrangement in this
paper. We model the interactions between the environment
(workers and requesters) and the agent (the platform) as a
Markov Decision Process (MDP). We apply Deep Q-Network
(DQN), a widely used reinforcement learning method, training
a neural network to estimate the reward for recommending
each task. DQN naturally considers the immediate and future

Figure 1: Sorting or Filtering Functions

reward simultaneously in the online environment (i.e., continu-
ously coming workers and changing available tasks). Besides,
DQN can be updated quickly after each worker’s feedback,
seamlessly handling dynamic and evolving workers and tasks.

Despite the advantages of DQN in crowdsourcing plat-
forms, it cannot be directly applied into our task arrangement
problem. A typical DQN for recommendation systems only
models the relationship between users and items, i.e., workers
and tasks in our context. Here, we should also take into
consideration the relationships among all available tasks. To
capture all the information of the environment, we design a
novel state representation that concatenates the features of
workers and currently available tasks, as well as a particular
Q-Network to handle the set of available tasks with uncertain
size and permutation-invariant characteristics.

Besides, workers and requesters have different benefits, and
we choose to use two MDPs to model them. If we only
consider to recommend tasks of interest for workers, the
actions decided by the MDP for a worker are independent
to those for other workers. However, the assigned tasks and
the corresponding feedback of previous workers do affect the
action assigned to the next worker and the quality of tasks
(i.e., the benefit of requesters). Thus, we design two separate
DQNs to represent these two benefits and then combine them.

Furthermore, DQN is a model-free method which computes
the transition probability of (future) states implicitly. Since
each (future) state is composed of the (next) coming workers
and the available tasks, these workers and tasks could gen-
erate a large number of state representations and thus very
sparse transitions between states. This further leads to possibly
inaccurate estimation of the transition probability and slow
convergence. To address such problem, we revise the equation
of computing Q values and predict transition probabilities
and future states explicitly, after obtaining worker feedback.
Specifically, we utilize the worker arrival distribution (which
will be discussed in Sec. III-D and Sec. IV-D) to predict when
the next timestamp will be, who the next worker is, and how

many tasks will be available.
Our contributions can be summarized as follows:
1) To the best of our knowledge, we are the first to propose a

Deep Reinforcement Learning framework for task arrangement
in crowdsourcing platforms.

2) We apply a Deep Q-Network (DQN) to handle both
immediate and future rewards, aiming at optimizing a holistic
objective from the perspectives of both workers and requesters
in the long term.

3) We design a novel and efficient state representation,
revise equations for computing Q values and predict transition
probabilities and future states explicitly.

4) We use both synthetic and the real datasets to demonstrate
the effectiveness and efficiency of our framework.

The rest of the paper is organized as follows. We present our
system in Sec. II and describe the main modules in our system
in Sec. III and IV. Experiments on synthetic and real data are
conducted in Sec. V. We discuss related work in Sec. VI and
conclude in Sec. VII.

II. DEEP REINFORCEMENT LEARNING FRAMEWORK

A. Problem Definition

The goal of the proposed task arrangement system is to
assign a task or recommend a sorted list of tasks to a
coming worker. Because the profit model of the platform is to
charge a commission fee of each completed task, the system
should satisfy workers and requesters simultaneously – (1)
each worker can find more relevant tasks to complete and
(2) requesters publish as many tasks as possible while making
each task obtain high-quality results. Moreover, since the tasks
and workers are dynamically changing, the system should cope
with these dynamic changes and assign tasks in real-time.

B. Problem Formulation as MDPs

We model the task arrangement problem as a reinforcement
learning problem. While the crowdsourcing platform (the
agent) interacts with requesters and workers (the environment),
requesters influence the pool of available tasks in the agent by
setting the start date and a deadline of tasks and obtaining the
result of each task after its deadline. The agent recommends
tasks to coming workers, and workers influence the agent by
task completions.

Since workers and requesters have different optimization
goals, we first propose two Markov Decision Processes
(MDPs) to optimize them separately, and then combine them
together to optimize simultaneously.

MDP(w) (for the benefit of workers): Following the MDP
setup of a typical item recommendation system [37], [38],
our MDP considers the benefit of workers as follows. At a
timestamp i, a worker wi comes and there is a set of available
tasks {Ti} posted by requesters.
• State si is defined as the recent completion history of wi,

i.e., the representation of the state is the feature of the
worker wi, i.e., fsi = fwi .

• An action ai is to recommend some of the available
tasks to wi. There are two kinds of actions based on

2

the problem setup. If the problem is to recommend one
task, the possible actions are all available tasks, i.e., ai =
tj ,∀tj ∈ {Ti}. If the problem is to recommend a sorted
list of tasks, possible actions are all possible permutations
of available tasks, where ai = σ(Ti) = {tj1 , tj2 ...} and
σ is a ranking function.

• Reward ri is decided by the feedback of wi given (si, ai).
ri = 1 if wi completes a task. Otherwise ri = 0.

• Future State si+1 happens when the same worker wi
comes again. The worker feature fwi

is changed if ri > 0.
Thus fsi+1

is the updated worker feature fwi
by ri, i.e.,

the feature of worker wi when wi comes again.
• Transition Pr(si+1|si, ai, ri) is the probability of state

transition from si to si+1, which depends on the success
(ri) of completing a certain task of ai by wi.

• The discount factor γ ∈ [0, 1] determines the importance
of future rewards compared to the immediate reward in
reinforcement learning.

According to the MDP(w) definition, the global objective
is to maximize the cumulative completion rate of workers in
the long run. We explore and exploit the relationships between
workers and tasks, in order to learn the optimal strategy for
each worker, even when the interest of the worker is evolving.

MDP(r) (for the benefit of requesters): Again, each times-
tamp i is triggered by the coming worker wi and there exists
a set of available tasks {Ti}. However, as we now consider
the sum of the qualities of tasks posted by requesters, some
elements of the MDP are different:
• State si is defined as the previous completion history

of wi and currently available tasks {Ti}. The worker
quality qwi and the task quality qtj ,∀tj ∈ {Ti} are also
considered. fsi is the combination of all these features,
i.e., fsi = [fwi

, fTi
, qwi

, qTi
].

• Action ai is the same as in MDP(w).
• Reward ri is decided by the feedback of wi given (si, ai).
ri is the quality gain of the completed task by wi. If wi
skips all the recommended tasks, ri = 0.

• Future State si+1 happens when the next worker wi+1

comes, no matter whether wi+1 6= wi. The worker feature
fwi

and the quality qtj′ of a completed task may change
if ri > 0.

• Transition Pr(si+1|si, ai, ri) depends on the success and
quality gain (ri) of completing a certain task of ai by wi.
Moreover, it is related to the next worker wi+1.

• The discount factor γ is the same as in MDP(w).
Based on the definition of MDP(r), the global objective is

to maximize the cumulative quality gains of tasks in the long
run. This is similar to a matching problem. We consider the
worker-task relationships for all available tasks to obtain the
overall maximum sum of task qualities.

Unifying States. The main differences between MDP(w) and
MDP(r) are the definitions of states and rewards, and the
happening times of future states. Since they have different
global objectives, rewards should be defined and future states
should be triggered correspondingly. State(w) and state(r) have

Workers

 (Agent)
Crowdsourcing Platform

State

Q-Netwrok (R)

Memeory (R)

S1, A1, r1, S2

S2, A2, r2, S3
……

Available task Pool

……

……

Q-Netwrok (W)

Memeory (W)

S1, A1, r1, S2

S2, A2, r2, S3
……

Action

….

Create Expire

State Transformer

Come

Assign

Feedback

….

Future State

Worker Requests’
Statistic

(Environment)
Requesters & Workers

Learner(W)

 Explorer

Predictor(W)

Reward

Feedback
Transformer(W)

Learner(R)

Future State

Predictor(R)

Reward

Feedback
Transformer(R)

Requesters

Aggregator

give

Figure 2: DRL Framework

an inclusion relation, i.e., state(r) considers the relationship
among the currently available tasks, but state(w) does not. In
Sec. V, we empirically find that the performance of MDP(w) is
improved if we also consider the task relationships. Therefore,
we unify the state definition in two MDPs, where state(w) is
also composed by wi and Ti and its representation becomes
fsi = [fwi , fTi].

Integration of MDP(w) and MDP(r): We combine the two
MDPs to meet the two optimization goals. We adopt Deep
Q-Networks (DQN) to model the MDPs. In each MDP, DQN
is used to estimate the value Q(si, ai) of taking the action
ai in the state si. Thus, there are two values Qw(si, ai)
and Qr(si, ai) for MDP(w) and MDP(r) respectively. We use
weighted sum to balance them to a single value Q(si, ai) =
wQw(si, ai) + (1 − w)Qr(si, ai). The agent selects the ac-
tion based on combined Q(si, ai) while updating two DQNs
separately. We discuss the details of DQN in Section II-D.

C. System Overview

Fig. 2 illustrates the system framework. A worker wi comes
and sees a set of available tasks {Ti} posted by requesters at
timestamp i. The representation of a state includes the feature
of worker wi and the available tasks Ti through the State
Transformer, i.e., fsi = StateTransformer[fwi

, fTi
].

Taking Actions. Then, we input fsi into two Deep Q-
networks, Q-network(w) and Q-network(r), to predict Q values
for each possible action ai at si, considering the benefit of
workers Qw(si, ai) and requesters Qr(si, ai) separately. We
use the aggregator to combine two benefits and generate the
final action assigned to wi. The agent could select the action
ai = tj with the maximum combined Q(si, tj). If the agent
recommends a task list, the action is σ(Ti) = {tj1 , tj2 , ...}

3

where tj∗’s are ranked in descending order of Q(si, tj∗). An
explorer is also used to perform the trial-and-error actions, i.e.,
select a task or generate a task list randomly.

Obtaining Rewards & Future States. When wi is assigned
one task, s/he can decide to complete or skip it. If wi sees a
sorted list of tasks, we assume that workers follow a cascade
model [6] to look through the task list and complete the
first interesting task. The feedback is the completed task and
the uncompleted tasks suggested to wi. Since the reward
definitions are different in MDP(w) and MDP(r), we use two
feedback transformers to quantify the workers’ feedback. As
we said before, we explicitly predict transition probabilities
and future states to ensure stable convergence and real-time
behavior. Two future state predictors are utilized for Q-
Network(w) and Q-Network(r) separately to predict future
states, based on the historical statistics.

Learning models. If the action is to assign a task, we can
store one transition (si, ai, ri, si+1) (ai is the assigned task)
into the memory pool, which is used to store the training data.
When the action is to recommend a list of tasks, the feedback
includes the completed task and the uncompleted (suggested)
tasks. Thus, we store the successful transition (si, ai, ri, si+1)
where ai is the completed task, and the failed transitions
(si, ai, 0, si+1) where ai is an uncompleted task. Each time
we store one more transition into the memory pool, we use
learners to update the parameters of two Q-networks, obtain
a good estimation of Qw(si, ai) and Qr(si, ai) and derive the
optimal policy π. In the following sections, we will introduce
these parts of the system in detail.

D. Deep Q-Network

1) Q-Learning: Q-learning could learn an optimal policy
in MDP, i.e., π : S → A, which tells the agent what
action in A to take under what state in S and maximizes
the expected cumulative reward in a long run. It defines a
state-action value function Qπ(s, a) as the expected return
following the policy π given state s and action a, where
Qπ(s, a) = E[

∑inf
i=0 γ

iri|s0 = s, a0 = a, π]. Based on
Bellman’s equation [27], the optimal policy is related to the
optimal Q value function satisfying:

Q(si, ai) = Esi+1 [ri + γmax
a′

Q(si+1, a
′)|si, ai].

Thus, Q-learning learns Q(si, ai) iteratively by choosing the
action ai with the maximum Q(si, ai) at each state si.
Then it updates Q(si, ai) ← (1 − α)Q(si, ai) + α(ri +
γmaxa′ Q(si+1, a

′)) where α ∈ [0, 1] is the learning rate.
2) Deep Q-Network: In practice, we may have huge state

and action spaces, making it impossible to estimate Q(s, a)
for each s and a. Besides, it is hard to store and update a
huge number state-action pairs. To alleviate this, we can use
a highly nonlinear and complex function to approximate, i.e.,
Q(s, a) ≈ Q(s, a; θ). Based on this, Deep Q-Network [28]
is proposed, which uses a neural network with parameters θ

as the Q-network. The network is learned by minimizing the
mean-squared loss function as follows:

L(θ) = E{(si,ai,ri,si+1)}[(yi −Q(si, ai; θ))
2]

yi = ri + γmax
ai+1

Q(si+1, ai+1; θ) (1)

where {(si, ai, ri, si+1)} is the historical data, stored in a large
memory buffer sorted by occurrence time. By differentiating
the loss function with respect to θ, the gradient update can be
written as:

∇θL(θ) =E{(si,ai,ri,si+1)}[(ri + γmax
ai+1

Q(si+1, ai+1; θ)

−Q(si, ai|θ))∇θQ(si, ai|θ)]
(2)

In practice, stochastic gradient descent can be used to effi-
ciently optimize the loss function.

III. MODULES FOR MDP(W)

We introduce the modules related to MDP(w) in the section.
We first describe the feature of tasks and workers. Then we
design State Transformer to construct the state in MDP(w).
Next we discuss how to transform the reward from the worker
feedback, and how to predict future state from the statistic
data. Finally, we revise the equations in DQN to update the
model based on predicted future states.

A. Feature Construction

1) Feature of a task tj: According to previous studies
[13], the top-3 motivations of workers in crowdsourcing are
the payment, the task autonomy and the skill variety. Task
autonomy is the degree of freedom given to the worker for
completing this task, e.g., open tasks (e.g., collecting some
entities) and close tasks (e.g., labeling some entities). Skill
variety is the diversity of skills that are needed for solving and
fit with the skill set of the worker. Thus, we construct the task
features using award, task category and skill domain, which
correspond to the top-3 three motives. Award is a continuous
attribute which needs to be discretized. Category and domain
are categorical attributes, and we use one-hot encoding to
encode them. Then, we can concatenate them together to
obtain the feature vector of task tj .

2) Feature of a worker wi: The features of a worker are
determined by the distribution of recently completed tasks by
him/her (e.g., in the last week or month). This information can
be used to model the probability of a worker to complete a
task in the near future. Hence, the feature of a worker is the
average feature vector of completed tasks recently.

B. State Transformer and Q Network

1) Challenges: We define the state si to be composed of
the set of available tasks {Ti} and the worker wi at timestamp
i. However, it is hard to represent the set of available tasks.
First of all, tasks are dynamic and their number is not fixed. We
need to design a model can process input of any size. Secondly,
the model should be permutation invariant (i.e, it should not be
affected by the order of tasks). Simple forward neural networks
violate both requirements. Methods like LSTM [11] or GRU

4

Worker wi

A
vailable task Pool ……

tj1

tj2

tj3 ……

0

fwi

fwi

fwi

ftj1

ftj2

ftj3

A
ttention Layer

Cancat

row-wise Linear Layer

A
ttention Layer

row-wise Linear Layer

row-wise Linear Layer

h=
4

……

0

Q(si,tj1)
Q(si,tj2)
Q(si,tj3)

A
ttention Layer

Figure 3: Q Network

Matmul

Matmul

Scale

Softmax

X1 X2 X3

Figure 4: One Attention Layer

[5] that process a variable-length sequence of data, are relative
sensitive to the order.

Some approaches in recommender systems based on DQN
[37], [38] input the features of each task and worker into a
forward neural network independently to estimate the value
of each task. However, they ignore the relationship among all
available tasks. The value of a task is the same no matter
which other tasks are available. This is not true in our setup
because tasks are ‘competitive’ and influence the value of
other tasks. For the above reasons, we need to design a novel
representation for a set of available tasks.

2) Design: Inspired by [35] and [14], we design our State
Transformer and Q-Network to obtain the state si and values
of each available task Q(si, tj), as shown in Fig. 3. Firstly,
we concatenate the features of each task ftj∗ in the pool of
available tasks with the features of the worker fwi . To fix the
length, we set the maximum value of an available task maxT
and use zero padding, i.e., add zeros to the end of fsi and set
its dimension to [maxT , |ftj∗ |+ |fwi

|].
Then we use row-wise Linear Layers and (multi-head)

Attention Layers to project fsi into Q values, which keeps
permutation-invariance. Row-wise Linear Layer is a row-wise
feedforward layer which processes each row independently
and identically. It calculates function

rFF(X) = relu(XW + b)

where X is the input, W and b are the learnable parameters
and relu is an activation function.

The structure of the Attention Layer is shown in Fig. 4. Its
input are three matrices X1, X2, X3 and it calculates

Att(X1, X2, X3) = softmax(
X1X

T
2√
d

)X3.

The pairwise dot product X1X
T
2 measures how similar each

row in X1 and X2 is, with a scaling factor of 1√
d

and softmax
function. The output is a weighed sum of X3. Multi-head At-
tention Layer is proposed in [29]. It projects X1, X2, X3 into
h different matrices. The attention function Att is applied to
each of the h projections. The output is a linear transformation
of the concatenation of all attention outputs.

MultiHead(X1, X2, X3) = Concat(head1, ..., headh)WO

where headi = Att(X1W
X1
i , X2W

X2
i , X3W

X3
i)

We have to learn the parameters {WX1
i ,WX2

i ,WX3
i }hi=1 and

WO. Here we use multi-head Self-Attention layers, where
X1 = X2 = X3 = X . When X ∈ Rn×d, a typical choice
for the dimension of WX

i (resp. WO) is n× d
h (resp. n× d).

We can prove that row-wise Linear Layer and multi-
head Self-Attention Layers are both permutation-invariant. The
stack of these layers are also permutation-invariant. Please see
the Appendix for details.

We now summarize the design of our Q-network. Each row
in the input fsi is the pair of features of tj and wi. The first two
rFF layers are used to transform the task-worker features into
high-dimensional features. Next, we use the multi-head self-
attention layer to compute the pairwise interaction of different
task-worker features in the set. Adding to the original features
a rFF layer helps keeping the network stable. Thirdly, we use
a self-attention layer again, which gives the Q-network the
ability to compute pairwise as well as higher-order interactions
among the elements in the set. The final rFF layer reduces the
feature of each element into one value, representing Q(si, tj).
Because of permutation-invariance, no matter the order of tj ,
Q(si, tj) is the same. Besides, Q(si, tj) is decided by not only
the pair of wi and tj , also the other available tasks tj′ ∈ Ti.

C. Action A, Feedback and Reward R
The workers of a crowdsourcing platform aim at achieving

a good experience. Payment-driven workers aim at finding
high award per unit of time tasks while interest-driven workers
hope to answer tasks that match their interest. Mixed-interest
workers decide by balancing these factors. Our goal is to help
them in finding tasks interesting to them as soon as possible,
i.e., at maximizing the completion rate of recommended tasks.

If the agent is to assign one task, it selects the action ai = tj
with the maximum Q(si, tj). We assume workers follow a
cascade model to look through the list of tasks, so if the agent
recommends a task list, the action is σ(Ti) = {tj1 , tj2 , ...}
where tj∗’s are ranked in descending order of Q(si, tj∗).

As for the feedback and reward, the feedback is completed
or skipped when the action is one task. Thus, the immediate
reward is 1 if the worker completes the task or 0 if the worker
rejects it. When the action is a list of k tasks, the immediate
reward is 1 if the worker finishes one of the tasks or 0 if the
worker never finishes any of them.

D. Future State, Memory Storer, and Learner

1) Challenges: The future state si+1 is the time when
the same worker wi comes again. Thus, the times of ri and
the future state si+1 are different. Besides, it may take a
long time for the same worker to come again (the median
value of the time gap is one day in our data) and for the
transition (si, ai, ri, si+1) to be stored and used to update the
Q-network(w).

5

 0

 50

 100

 150

 200

 0 30 60 90 120 150 180

between two consecutive worker arrivalsbetween two consecutive arrivals from the same workerbetween two consecutive arrivals from the same worker

#
 o

f
a
rr

iv
a
ls

Time Gap (mins)

(a) 0 - 180 mins

 0

 10

 20

 30

 40

 50

 0 1440 2880 4320 5760 7200 8640 10080

#
 o

f
a
rr

iv
a
ls

Time Gap (mins)

(b) 0 - 7 days

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 30 60 90 120 150 180 210

#
 o

f
a
rr

iv
a
ls

Time Gap (mins)

(c) 0 - 210 mins

Figure 5: Time Gap between Two Consecutive Arrivals of Workers
However, parameters in Q-network(w) are shared by all

workers. (si, ai, ri) includes information on whether the
worker with feature fwi

likes the task with feature fai . Even
when the task is new and few workers complete it, the infor-
mation in (si, ai, ri) is very important. Therefore, we predict
si+1 in order to update Q-network(w) using (si, ai, ri, si+1)
immediately. Q-network(w) will have a better estimation for
ai and decide whether assigning ai to the workers who are
similar to wi.

Therefore, we design a predictor(w) to predict the transition
probability Pr(si+1|si, ai, ri) and the feature of the future
state fsi+1

after we obtain the feedback and reward ri for
(si, ai). This helps our framework to satisfy the requirement
of handling online changes and achieving real-time interaction.

2) Design: First, the worker feature fwi
, i.e., the distribu-

tion of recently completed tasks, needs to be updated by ri.
Based on the MDP(w) definition, wi+1 = wi and the worker
feature fwi+1

at si+1 is the updated feature fwi
. Second,

we consider Ti+1 and its feature fTi+1
at si+1. The change

between Ti and Ti+1 comes mainly from the expired tasks.
We need to check whether tj ∈ Ti has expired at Timei+1

(i.e., the happening time of si+1) and remove expired tasks
from Ti+1. Timei+1 is stochastic and we need to learn its
distribution from the environment. From the history, we find
that there is a pattern of the same worker arrivals, i.e., a
worker comes again within a short time, or comes again after
1 day, 2 days, etc. up to one week later (see the distribution
of the time gap between two consecutive arrivals from the
same worker in Fig. 5(a) and 5(b)). To capture the pattern, we
maintain a function φ(g), where g is the time gap, and φ(g =
CurrentTime−TimeOfLastArrivalw) is the probability whether
the worker w comes again currently. We set g ∈ [1, 10080]
minutes since the probability of φ(g) > 0, g > 10080 is small
and can be ignored. Note that φ(g) is initialized by the history
and iterative updated when we have a new sample.

Finally the distribution of Timei+1 is Timei + φ(g), g ∈
[1, 10080]. Given a possible Timei+1, predictor(w) checks
whether tasks are expired and generates si+1 and fsi+1

.
For learner(w), we use the method introduced in Sec. II-D

to update the parameters of Q-Network(w) by transitions stored
in the memory. Our loss function can be written as

L(θ) = E{(si,ai,ri)}[(yi −Q(si, ai; θ))
2]

yi = ri + γ
∑
g

Pr(si+1|g) max
ai+1

Q(si+1, ai+1; θ) (3)

where Pr(si+1|g) = φ(g) and g ∈ [1, 10080]. Actually, we do

not calculate maxai+1
Q(si+1, ai+1; θ) for all possible g. The

value maxai+1
Q may change when a task tj′ ∈ Ti expires.

Thus, the maximum times we compute maxai+1 Q is maxT .
Here, we also use the double Q-learning algorithm [28] to

avoid overestimating Q values. The algorithm uses another
neural network Q̃ with parameters θ̃, which has the same
structure as the Q-Network Q, to select actions. The original
Q-Network Q with parameters θ is used to evaluate actions:

yi = ri+γ
∑
g

Pr(si+1|g)Q̃(si+1, arg max
ai+1

Q(si+1, ai+1|θ)|θ̃).

Parameters θ̃ are slowly copied from parameters θ during
learning. Accordingly, the gradient update is

∇θL(θ) = E{(si,ai,ri)}[ri + γ
∑
g

Pr(si+1|g)

Q̃(si+1, argmax
ai+1

Q(si+1, ai+1|θ)|θ̃)−Q(si, ai)]∇θQ(si, ai).

(4)
Prioritized experience replay [24] is used to learn efficiently.

IV. MODULES FOR MDP(R)

Same as the previous section, we describe the modules
related to MDP(r). We first supplement the quality of tasks
in the task feature. Then, we introduce the modules, state
transformer, feedback transformer(r) and learner(r) one by
one. Besides, we also detail the module explorer to perform
trial-and-error actions.

A. Feature Construction

In addition to the features of tasks and workers introduced
in Sec. III-A, we also use the quality of workers qwi

∈ [0, 1]
and the quality of tasks qtj ∈ R to predict the benefit of
requesters. We assume that we already know the the quality of
workers from their worker answer history or the qualification
tests with the ground truth. The quality of tasks is decided
by all the workers who completed it. We assume that workers
who come at timestamps i ∈ Itj , complete the task tj . We
use the Dixit-Stiglitz preference model [8] to calculate task
quality qtj based on the law of diminishing marginal utility:

qtj = (
∑
i∈Itj

(qwi)
p)1/p, p ≥ 1. (5)

where p controls how much marginal utility we can get with
multiple workers.

Let us explain the above equation using two typical ex-
amples. The first is AMT, where each task has multiple

6

independent micro-tasks and each micro-task is only allowed
to be answered by one worker. The quality of mirco-tasks
is equal to the quality of the answering worker. Since the
micro-tasks are independent, the quality of the task is the
sum of the qualities of the micro-tasks which comprise it,
where qtj =

∑
i∈Itj

qwi
, p = 1. The second example is

competition-based crowdsourcing platforms, where tasks can
be answered by many workers, but only one worker is selected
to be awarded after the deadline. The quality should be defined
as qtj = maxi∈Itj qwi

, i.e., p is set to infinity.

B. State Transformer and Q Network

The State Transformer and the Q-Network are as defined in
Sec. III-B; we only need to add the two dimensions (qwi

and
qtj) to the input.

C. Action A, Feedback and Reward R
Same as before, the action ai = tj with the maximum

Qr(si, tj) is recommended, if the agent assigns one task to wi.
To recommend a list, the action is ai = σ(Ti) = {tj1 , tj2 , ...},
where tj∗’s are ranked in descending order of Qr(si, tj∗).

From the requester’s perspective, the goal is to obtain the
greatest possible quality of results before the deadline of tasks.
Thus the immediate reward is qnew

tj − qold
tj if the worker is

assigned to the task tj and finishes it. The reward is 0 if the
worker skips the task. When the action is to recommend a list
of k tasks, the immediate reward is qnew

tj∗ − q
old
tj∗ if the worker

selects the task qtj∗ and completes it. The reward is 0 if the
worker does not finish any task.

D. Future State, Memory Storer and Learner

1) Challenges: Different from MDP(w), the next worker in
MDP(r) arrives fast as the platforms have many active workers.
However, we find that when we use the real worker wi+1 to
combine si+1, it is hard for Deep Q-network to converge.
The reason is that there are too many possibilities between
wi in si and wi+1 in si+1, leading to very sparse transitions
between si and si+1. It is hard for Q-network(r) to estimate the
accurate transition probability P (si+1|si, ai, ri). Hence, we
use the expectation of the next worker instead of the real next
worker, to construct future state si+1 and update Q-network(r).

2) Design: After we obtain the feedback and reward ri for
(si, ai), the first thing is to update the worker feature fwi when
ri > 0. Besides, we also need to update the quality in the task
feature ftj which is completed.

From the benefit of requesters, the qualities of tasks are
influenced by all workers. Thus the future state si+1 happens
when the next worker wi+1 (no matter whether wi+1 = wi)
comes. Here the future state predictor(r) not only needs to
estimate the next timestamp and check for expired tasks, but
also has to predict the next worker.

We first explain how we predict Timei+1. Fig. 5(c) shows
the distribution of the time gap between two consecutive
arrivals, no matter whether these two arrivals are from the
same or different workers. It is a long-tail distribution, which
means that workers come to the platform and complete tasks

frequently. We also maintain a function ϕ(g), where g is the
time gap, and ϕ(g = Timei+1−Timei) is the probability that
a worker comes at Timei+1 if the last worker comes at Timei.
We set g ∈ [0, 60] minutes because 99% of time gaps in the
history are smaller than 60 minutes. Same as φ(g), ϕ(g) is
also built from the history and iteratively updated at each new
sample. Then the distribution of Timei+1 is Timei + ϕ(g).

After we know Timei+1, we compute the distribution of
the coming workers. For each worker w ∈ W old who already
came before, we know the feature of worker fw and the time
gap between his/her last arrival time and Timei+1 (i.e., gw =
Timei+1 − TimeOfLastArrivalw). From function φ(g) defined
in Sec. III-D, we obtain probability φ(gw). Besides, we also
consider the probability that a new worker comes. From the
history, we also maintain the rate of new workers pnew, and
we use the average feature of old workers f̄w to represent the
feature of new workers. Finally, we normalize, integrate and
obtain the probability for a coming worker w:

Pr(wi+1 = w) =

{
(1− pnew)

φ(gw)∑
w′∈W old φ(gw′)

when w ∈W old

pnew when w is new

Given g and wi+1, we use the method described in Sec.III-D
to calculate Ti+1 and si+1.

For learner(r), our loss function is

L(θ) = E{(si,ai,ri)}[(yi −Q(si, ai; θ))
2]

yi = ri + γ
∑
g

∑
wi+1

Pr(si+1|g, wi+1)

Q̃(si+1, argmax
ai+1

Q(si+1, ai+1|θ)|θ̃)
(6)

where Pr(si+1|g, wi+1) = ϕ(g)Pr(wi+1|g) and g ∈ [0, 60]
while wi+1 ∈W old or wi+1 is new.

Accordingly, the gradient update is

∇θL(θ) = E{(si,ai,ri)}[ri + γ
∑
g

∑
wi+1

Pr(si+1|g, wi+1)

Q̃(si+1, argmax
ai+1

Q(si+1, ai+1|θ)|θ̃)−Q(si, ai)]∇θQ(si, ai).

(7)
However, computing Q̃(si+1, arg maxai+1

Q(si+1, ai+1))
for all possible g and wi+1 may take a long time. Here are
two possible methods to speed this up. One method is to limit
the number of possible workers. We can set a threshold to dis-
regard workers with low coming probability. Another method
is to use the expectation of the feature of all possible wi+1

instead of computing them. The expectation of the feature
of the next worker is f̄wi+1 =

∑
wi+1

Pr(wi+1|g)fwi+1 , the
expectation of future state feature is f̄si+1 = [f̄wi+1 , fTi+1] and
the loss function and updating equation are given by Eq. 3 and
Eq. 4, respectively.

E. Explorer

Exploration is an important step to find the relationship
between workers and tasks or the correlation among currently
available tasks. The most straightforward strategy to conduct
exploration is ε-greedy [20]. This approach randomly selects
a task or sorts tasks with a probability of ε, or follows

7

 100

 120

 140

 160

 180

 200

 220

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

#
 o

f
ta

s
k
s

(a) New and Expired Tasks

New Tasks
Expired Tasks

 3600

 3800

 4000

 4200

 4400

 4600

 4800

 5000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
 40

 45

 50

 55

 60

 65

 70

 75

#
 o

f
a

rr
iv

a
ls

#
 o

f
ta

s
k
s

(b) Avg. Available Tasks and # of Worker Arrivals

Avg. Available tasks
of Worker Arrivals

Figure 6: New/Expired/Available Tasks and Worker Arrivals

Q(si, tj) to recommend a list of tasks with probability 1− ε.
This is suitable for recommending one task but does not
perform well in recommending a list of tasks because it is
too random. Instead of ignoring Q(si, tj) totally, we add a
random value v into Q(si, tj) with a probability of ε. We
generate v as a normal distribution where the mean is zero
and the standard deviation is the same as that of the current Q
values (Q(si, tj),∀tj ∈ {Ti}). Besides, we also use a decay
factor to multiply the standard deviation, in order to reduce
randomness when the Q-network is relatively mature.

V. EXPERIMENTS

A. Experimental Setup

1) Dataset: We conduct experiments on a real dataset
collected from the commercial crowdsourced platform Crowd-
Spring [2]. This platform helps requesters publish tasks to
obtain high-quality custom logos, names, designs, etc. Most
of the tasks are public, i.e., we can see all the information
including start date and deadline, category, sub-category, do-
main and the relationship of workers who completed it. We
use a web crawler to obtain all the information about public
tasks ranging from Jan 2018 to Jan 2019. There are totally
2285 tasks created and 2273 tasks expired. There are about
1700 active workers during the entire process. We show the
number of new and expired tasks per month in Fig. 6(a), which
are around 180. Besides, Fig. 6(b) shows that there are about
4200 arrivals of workers per month. When a worker comes,
s/he can see 56.8 available tasks on average.

We also generated a synthetic dataset, simulating the real
dataset using factors considered in [32]. We consider the
arriving density of workers, the distribution of qualities of
workers and scalability of updating time.

2) Settings: We restore the process of the arrival of work-
ers, creation or expiration of tasks as time goes by. The
collected dataset records each timestamp i when a worker wi
completes a task. We assume that one completion corresponds
to one worker arrival. The completed task is considered to be
interesting to wi. The remaining available but uncompleted
tasks are assumed not to be interesting to wi at timestamp i.

During the experiments, we run different algorithms to
recommend a task tj from the currently available tasks for
wi at timestamp i. Considering the benefit of workers, the
reward/label (for reinforcement/supervised learning) is 1 if
the recommended task is the completed task. For the benefit
of requesters, the reward/label is the quality gain of tj . We
set p = 2 and utilize Eq. 5 to compute: qnew

tj − qold
tj =

((qold
tj)p + (qwi)

p)1/p − qold
tj . For each worker wi, there is a

score in ∈ [0, 100] in CrowdSpring. We extract this value and
divide it by 100 to derive a normalized (in [0, 1]) quality qwi

for each worker.
When we consider the action to recommend a list of tasks,

we assume that the worker looks through the list in order
until s/he finds the completed task. The reward/label for the
skipped tasks which are in front of the selected one is 0. The
reward/label for the completed task is 1 or the quality gain.
The skipped and the completed tasks are considered to be the
feedback when updating/training the model.

3) Evaluation Measures: Depending on whether the agent
recommends one task or a list of tasks, and considering
the benefit of workers or requesters, we use the following
measures to evaluate the performance of methods.

For the benefit of workers:
• Worker Completion Rate (CR). At timestamp i the

worker wi comes, the agent recommends a task tj .
We compute the cumulative number of completions rate
where yij = 1 means that the task is completed and
yij = 0 means that the task is skipped.

CR =

∑
i yij

number of total timestamps
(8)

• nDCG-CR. Instead of one task, the agent recommends a
list of tasks. We apply the standard Normalized Discount
Cumulative Gain proposed in [12] to evaluate the success
of the recommended list L = {tj1 , tj2 , ..., tjni

} for all
available tasks at timestamp i. r is the rank position of
tasks in the list, ni is the number of available tasks.
We assume that wi looks through the tasks in order and
completes the first task tjr s/he is interested in. yijr = 1
indicates that tijr is completed; all other yijr′ are 0.

nDCG− CR =

∑
i

∑ni

r=1
1

log(1+r)yijr

number of total timestamps
(9)

• Top-k Completion Rate (kCR). We limit the length
of the list to k, i.e., the agent recommends k tasks
{tj1 , tj2 , ..., tjk} for the worker wi. We assume that k
tasks also have an order and that wi looks through the
tasks in order and completes the first interesting task tjr .

kCR =

∑
i

∑k
r=1

1
log(1+r)yijr

number of total timestamps
(10)

For the benefit of requesters:
• Task Quality Gain (QG). At timestamp i, worker wi

comes and the agent recommends a task tj . We compute
the cumulative gain of the qualities of tasks. If the task
is skipped, gij = 0. Otherwise, gij is the difference of
the task quality qtj before and after wi finishes tj .

QG =
∑
i

gij =
∑
i

qnew
tj − q

old
tj (11)

• nDCG-QG. Same as nDCG-CR, we apply nDCG to
give different weights for rank positions of tasks. yijr

8

indicates whether tjr is completed, and gijr is the gain
in the quality of tjr .

nDCG−QG =
∑
i

ni∑
r=1

1

log(1 + r)
yijrgijr (12)

• Top-k Task Quality Gain (kQG). Similarly, we limit the
recommended list into k tasks {tj1 , tj2 , ..., tjk} for the
worker wi.

kQG =
∑
i

k∑
r=1

1

log(1 + r)
yijrgijr (13)

4) Competitors: We compared our approach with five
alternative methods. The worker and task features of all
these methods are updated in real-time. The methods using
supervised learning (Taskrec(PMF)/Greedy+Cosine Similar-
ity/Greedy+Neural Network) predict the completion proba-
bility and the quality gain of tasks and select one available
task or sort the available tasks based on predicted values. The
parameters of the models are updated at the end of each day.
For the reinforcement learning methods (LinUCB/DDQN), the
parameters are updated in real-time after one recommendation.
• Random. For each worker arrival, one available task is

picked randomly, or a list of tasks is randomly sorted and
recommended.

• Taskrec (PMF). Taskrec [34] is a task recommendation
framework for crowdsourcing systems based on unified
probabilistic matrix factorization. Taskrec builds the re-
lationship between the worker-task, worker-category and
task-category matrices and predicts the worker comple-
tion probability. It only considers the benefit of workers.

• SpatialUCB/LinUCB. SpatialUCB [10] adapts the Lin-
ear Upper Confidence Bound [17] algorithm in online
spatial task assignment. We adapt SpatialUCB in our
setting by replacing the worker and task features. Spa-
tialUCB selects one available task or sorts the available
tasks according to the estimated upper confidence bound
of the potential reward. For the benefit of requesters, we
add the quality of workers and tasks as features and then
predict the gain quality of the tasks.

• Greedy+Cosine Similarity. We regard the cosine sim-
ilarity between the worker feature and task feature as
the completion rate, and select or sort tasks greedily
according to the completion rate. For the benefit of
requesters, we use the actual value of the quality gain
by multiplying the completion probability of each task to
pick or rank the available tasks.

• Greedy+Neural Network. We input the worker and task
features into a neural network of two hidden-layers to
predict the completion rate. For the benefit of requesters,
we add the quality of workers and tasks as features and
then predict the gain quality of the tasks.

• DDQN. Double Deep Q-Network is our proposed frame-
work, In the first two experiments, we use a version
of DDQN that only considers the benefit of workers or
requesters when comparing it with the other approaches.

For the experiments regarding MDP(w), we test two
versions of DDQN with simple state(w) and complex
state(r) respectively, as described in Sec. II.

B. Experimental Results (real dataset)

1) Implementation details: We utilize the data in the first
month (Jan 2018) to learn initial parameters of the model.
The entire updating/testing process runs from Feb 2018 to Jan
2019. To solve the cold-start problem of a new worker, we use
the first five tasks s/he completed to initialize her/his features.

We use Pytorch to implement all the algorithms and used
a GeForce GTX 1080 Ti GPU. The dimensionality of output
features in each layer of Q-Network is set to 128. The buffer
size for DDQN is 1000 and we copy parameters θ̃ from θ after
each 100 iterations. The learning rate is 0.001 and the batch
size is 64. We set the discount factor γ = 0.5 for the benefit
of requesters and γ = 0.3 for workers. To do the exploration,
we set the initial ε = 0.9, and increase it until ε = 0.98 for
assigning a task. To recommend the task list, ε is always 0.9,
and the decay factor for standard deviations is set as 1 initially
and decreases into 0.1 with further learning.

2) Considering the benefit of workers: We show QR, kQR
and nDCG-QR for each method at the end of each month
in Fig. 7. Random performs the worst since it never predicts
the worker completion probability. The reason behind the bad
performance of Taskrec is that it only uses the category of
tasks and workers and ignores the domain or award informa-
tion. Because of the simple model to compute the similarity
of tasks for a certain worker, Greedy CS also performs badly.
Greedy NN uses the neural network to predict the relationship
between tasks and workers, and updates the parameters every
day. However, it only considers the immediate reward. Thus
it performs worse than LinUCB and DDQN. LinUCB utilizes
all information of features of workers and tasks, estimates the
upper confidence bound of the reward and updates parameters
after each worker feedback. So its performance is second
to DDQN. Our proposed model, DDQN, not only uses the
neural network to model the complex relationship between
workers and tasks, but also predicts the immediate and future
reward and updates the parameters after each worker feedback.
Since DDQN (complex state) considers the relationship among
the available tasks, DDQN (complex state) outperforms all
competitors, including DDQN (simple state).

The table lists the final value of CR, kCR and nDCG-CR
of each method; our approach is around 2% better than other
models.

3) Considering the benefit of requesters: We show the
separate quality gain of tasks in each month in Fig. 8. Note
that the gain is not consistently increasing but it is related to
the number of worker requests at each month in Fig. 6(b).
The random method again performs the worst. Although we
give the real value of the quality gain of each task, Greedy
CS still cannot recommend tasks with the high gain which
are completed by workers. Greedy NN and LinUCB perform
similarly (in kQR and nDCG-QR). Greedy NN achieves a
better estimation than LinUCB when aggregating the quality

9

 0.1

 0.2

 0.3

 0.4

 0.5

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

C
R

(a) CR

Random Taskrec Greedy CS Greedy NN LinUCB DDQN (simple state) DDQN (complex state)

 0.25

 0.35

 0.45

 0.55

 0.65

 0.75

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

k
C

R

(b) kCR

 0.4

 0.5

 0.6

 0.7

 0.8

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

n
D

C
G

-C
R

(c) nDCG-CR

CR kCR nDCG-CR
Random 0.154 0.325 0.460
Taskrec 0.212 0.384 0.501

Greedy CS 0.224 0.435 0.569
Greedy NN 0.405 0.651 0.733

LinUCB 0.417 0.668 0.752
DDQN (simple state) 0.423 0.664 0.752

DDQN (complex state) 0.438 0.677 0.768

Figure 7: Benefits of Workers

 160

 200

 240

 280

 320

 360

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

Q
G

(a) QG

Random Greedy CS Greedy NN LinUCB DDQN

 240

 280

 320

 360

 400

 440

 480

 520

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

k
Q

G

(b) kQG

 240

 280

 320

 360

 400

 440

 480

 520

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

n
D

C
G

-Q
G

(c) nDCG-QG

QR kQR nDCG-QR
Random 2697.96 3598.05 3733.52

Greedy CS 3017.46 4269.64 4929.46
Greedy NN 2854.58 4716.83 4998.76

LinUCB 3474.04 4731.97 4999.67
DDQN 3625.34 4943.29 5350.98

Figure 8: Benefits of Requesters

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 0.25 0.5 0.75 1
 2400

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 4000

C
R

Q
G

(a) CR / QG

QG
CR

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0 0.25 0.5 0.75 1
 3400

 3600

 3800

 4000

 4200

 4400

 4600

 4800

 5000

 5200

k
C

R

k
Q

G

(b) kCR / kQG

kQG
kCR

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 0.25 0.5 0.75 1
 3600

 3800

 4000

 4200

 4400

 4600

 4800

 5000

 5200

 5400

n
D

C
G

-C
R

n
D

C
G

-Q
G

(c) nDCG-CR / nDCG-QG

nDCG-QG
nDCG-CR

Figure 9: Balance of Benefits

Time (Sec)
Taskrec 3.193

Greedy NN 7.476
LinUCB 0.073
DDQN 0.042

Table I: Efficiency

gain and completion rate of each task, while LinUCB could
update the model more timely. Still, the performance of DDQN
is the best because it utilizes the nonlinear and complex Q-
network to approximate, predict and integrate the gain and
completion rate of tasks in the long term.

The table lists the final value of QR, kQR and nDCG-QR
of each method; our method is at least 4.3% better than its
competitors.

4) Balance of benefits: We integrate the two benefits
of workers and requesters using the weighed sum model
Q(si, tj) = wQw(si, tj) + (1 − w)Qr(si, tj) and show the
result in Fig. 9. We test the cases of w = 0, 0.25, 0.5, 0.75
and 1.0. From the trend of CR and QG in Fig. 9(a), we find
that the change of QG is small from w = 0 to 0.25 while the
shift in CR is small from w = 0.25 to 1. Thus, the weight that
achieves holistic maximization is around 0.25. This analysis
also holds for kCR / kQG and nDCG-CR / nDCG-QG.

5) Efficiency: We show the updating time of each method
in Table I. Random and Greedy CS are not included because
they do not have a model to update. Taskrec and Greedy
NN are supervised learning-based methods which update the
whole model with incremental data. During the entire process,
although we train them with newly collected data once at
the end of each day, the average updating time during the
whole process is still longer than 3s. LinUCB and DDQN
are reinforcement learning-based methods, which update the
existing model quickly after collecting every new feedback.
The average updating time is in the order of milliseconds.

C. Experimental Results (synthetic dataset)

1) Arriving density of workers: We change the number of
worker arrivals (50k) in the real dataset using sampling with
replacement. We range the sampling rate of worker arrivals
from 0.5 to 2.0, resulting in 25k to 100k arrivals. For the
same arrival which is sampled multiple times, we add a delta
time following a normal distribution where the mean and std
are 1 day, to make their arrival times distinct.

Fig. 10(a) and 10(b) show the change of CR / QG with
a different sampling rate of worker arrivals. Because CR is
divided by the number of timestamps (i.e., the number of
worker arrivals), the values of all the methods are similar
at different sampling rates. QG is the absolute value, so the
values of all the methods increase at a high sampling rate. The
performance of our algorithm DDQN is typically better than
that of others for both CR and QG in the different cases.

2) Distribution of qualities of workers: We change the
qualities of workers by adding noise. We generate the noise
from a normal distribution and add it to the original quality of
workers randomly. We tried four distributions: N (−0.4, 0.2),
N (−0.2, 0.2), N (0.0, 0.2) and N (0.2, 0.2). The result is
shown in Fig. 10(c). Since the quality of workers only affects
the quality gain of tasks, we show the change of QG for
various worker qualities. Obviously, the sum of qualities of
tasks becomes larger as the quality of workers increases.
Moreover, DDQN always performs better than its competitors,
no matter whether the worker qualities are low or high.

3) Scalability: There are two types of time in DDQN: one
is the time for deciding actions, and the other is the time for

10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0.5 1 1.5 2

C
R

sampling rate

(a) Arriving Density (workers)

Random Greedy CS LinUCB Greedy NN DDQN

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

0.5 1 1.5 2

Q
G

sampling rate

(b) Arriving Density (requesters)

 1000

 1500

 2000

 2500

 3000

 3500

 4000

N(-0.4, 0.2) N(-0.2, 0.2) N(0.0, 0.2) N(0.2, 0.2)

Q
G

distribution of noise of qualities

(c) Qualities of Workers

 0

 2

 4

 6

 8

 10

 12

 14

 16

100 1000 3000 5000 7000 9000

U
p

d
a

ti
n

g
 T

im
e

(s
e

c
)

of available tasks

(d) Scalability of Updating Time (multi-GPUs)

1 GPU
2 GPUs
4 GPUs
8 GPUs

Figure 10: Synthetic Results
updating parameters in the model. There exists a real-time
requirement for deciding actions. For updating the model, the
smaller the update cost is, the better the performance is. The
reason is that the updated model could be more accurate for
the following recommendations. DDQN can decide actions in
real-time (< 0.01s) even if there are 10k available tasks at a
time. To measure the update cost, we vary the number of the
currently available tasks from 100 to 9k on 1, 2, 4 and 8 GPUs
in Fig. 10(d). Generally speaking, the cost is approximately
linear to the number of available tasks. Besides, the running
time can be reduced by one third if we use twice as many
GPUs. DDQN updates 1k tasks in 0.5s using one GPU. Parallel
computation (8-32 GPUs) can be used for larger platforms.

VI. RELATED WORK

A. Reinforcement learning and deep reinforcement learning

Unlike supervised learning which requires labeled train-
ing data and infers a classification or a regression model,
reinforcement learning (RL) learns how agents should take
sequences of actions in an unknown environment in order to
maximize cumulative rewards. The environment is formulated
as a Markov Decision Process [4], and the agent makes a
tradeoff between exploring untouched space and exploiting
current knowledge. RL methods are mainly divided into three
categories, model-free, model-based and policy search, based
on the assumption of MDPs. In this paper, we utilize the
model-free method, Q-learning [31], which estimates a Q-
function iteratively using Bellman backups [27] and acts
greedily based on Q-functions until convergence.

Deep reinforcement learning is a combination of RL and
deep learning. Deep RL has experienced dramatic growth
recently in multiple fields, such as games (AlphaGo) [20],
[28], [30], robotics [9], natural language processing [21],
computer vision [18], finance [7], computer systems [16], [19],
[36] and recommender systems [37], [38]. Deep Q-Network
(DQN) is an improved version of Q-learning with a neural
network. [36] is the first work that applies DQN to solve
the database configuration problem. However, the definitions
of state, action, and reward in [36] are different and cannot
directly be transferred to our problem. The applications of
DQN in recommender systems [37], [38] are the most related.
Instead of recommending items to users, we arrange tasks to
workers. But recommender systems only consider the benefit
of users, which is just one objective of our framework.

In summary, to solve the task arrangement problem, we
integrate two MDPs, design a new representation of states and
revise Q-value computing equations with probabilistic future
states compared with other previous DQN works.

B. Task Recommendation and Assignment in Crowdsourcing

Crowdsourcing is an effective way to harness human effort
to address tasks which the machine cannot solve automatically
[15], [25], [26]. Some learning-based methods have been
developed to recommend or assign tasks into workers.

1) supervised learning: Content-based recommendation
methods [3], [23], [33] match task profiles to worker pro-
files. They use features of workers and tasks (e.g., a bag of
words from user profiles) and the task selection history or
worker’s performance history. They calculate similarity and
recommend based on these features. Collaborative filtering has
also been used in crowdsourcing. For example, [34] builds the
task-worker, worker-category and task-category matrices, and
applies probabilistic matrix factorization to capture workers’
preferences. [22] uses category-based matrix factorization and
kNN algorithms to recommend top-k tasks to workers.

2) reinforcement learning: Several studies have applied
reinforcement learning for spatial crowdsourcing [10], [32].
[10] proposes a multi-armed bandit approach for online spatial
task assignment. The task acceptance rate of the worker is
modeled as a linear model of the travel distance and task
type, and the goal is to maximize the cumulative success rate
of assignments. In [32], an RL-based algorithm is proposed to
solve a dynamic bipartite graph matching problem. However, a
simple state representation is used, i.e., the number of available
nodes in the bipartite graph, which limits the power of RL.

VII. CONCLUSIONS

We proposed a Deep Reinforcement Learning framework
for task arrangement in crowdsourcing platforms. We consider
the benefits of workers and requesters simultaneously, helping
platforms to maximize their profit. We used novel and effective
representations of state, action, reward, state transition and
future state, and new equations for deriving Q values.
Acknowledgement. We would like to thank the reviewers for
the insightful comments. Caihua Shan and Reynold Cheng
were supported by the Research Grants Council of HK
(RGC Projects HKU 17229116, 106150091, and 17205115),
HKU (Projects 104004572, 102009508, and 104004129),
and the Innovation and Technology Commission of HK

11

(ITF project MRP/029/18). Nikos Mamoulis has been co-
financed by the European Regional Development Fund, Re-
search–Create–Innovate project “Proximiot” (T1EDK-04810).
Guoliang Li was supported by NSF of China (61925205,
61632016), Huawei, and TAL education. Xiang Li is the
corresponding author.

APPENDIX

Definition 1: (Permutation-invariant Function) Let {σ} be
the set of all permutations of indices {1, .., n}. A function of
f : Xn → Y n is permutation-invariant iff for any permutation
in {σ}, f(σx) = σf(x).

Proof 1: (rFF function is Permutation-invariant.)

Let X =

x1

...
xn

, where each row is the feature of an item in

the set. Then, rFF(X) = relu(XW +b) =

relu(x1W + b)
...

relu(xnW + b)

.

The value in row i of rFF(X) only depends on xi and is
independent to xj where ∀j 6= i.

Proof 2: (MultiHead Self-Attention Layer is Permutation
-invariant.)
First of all, we prove that each headj =
Att(XWQ

j , XW
K
j , XW

V
j) is permutation-invariant.

Similarly, let X =

x1

...
xn

 and WQ
j (WK

j)T = W ′j , then

XWQ
j (XWK

j)T = XW ′jX
T =

x1W
′
jx

T
1 , · · · ,x1W

′
jx

T
n

...
xnW

′
jx

T
1 , · · · ,xnW

′
jx

T
n

. After multiplying XWV

j and scaling by ω(·), headj becomes
∑n
i=1 ω(x1W

′
jx

T
i)xiW

V
j

...∑n
i=1 ω(xnW

′
jx

T
i)xiW

V
j

. Each value in row i of headj

depends on xi and weighed sum of xj ,∀j, which is also
permutation-invariant.

Next we consider MultiHead(X,X,X). Because of
Concat(head1, ..., headh) and multiplying WO are both row-
wise, we can prove the permutation-invariance in the same
way as for the rFF function.

REFERENCES

[1] Amazon Mechanical Turk. https://www.mturk.com/mturk/.
[2] CrowdSpring. https://www.crowdspring.com/explore/.
[3] V. Ambati, S. Vogel, and J. Carbonell. Towards task recommendation

in micro-task markets. In AAAI Workshop, 2011.
[4] R. Bellman. A markovian decision process. Journal of mathematics and

mechanics, 1957.
[5] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio. Learning phrase representations using rnn
encoder-decoder for statistical machine translation. arXiv, 2014.

[6] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An experimental
comparison of click position-bias models. In WSDM, 2008.

[7] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai. Deep direct reinforcement
learning for financial signal representation and trading. IEEE transac-
tions on neural networks and learning systems, 2016.

[8] A. K. Dixit and J. E. Stiglitz. Monopolistic competition and optimum
product diversity. The American economic review, 1977.

[9] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates. In ICRA,
2017.

[10] U. U. Hassan and E. Curry. A multi-armed bandit approach to online
spatial task assignment. In UIC-ATC-ScalCom, 2014.

[11] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 1997.

[12] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir
techniques. TOIS, 2002.

[13] N. Kaufmann, T. Schulze, and D. Veit. More than fun and money.
worker motivation in crowdsourcing-a study on mechanical turk. In
AMCIS, 2011.

[14] J. Lee, Y. Lee, J. Kim, A. Kosiorek, S. Choi, and Y. W. Teh. Set trans-
former: A framework for attention-based permutation-invariant neural
networks. In ICML, 2019.

[15] G. Li, J. Wang, Y. Zheng, and M. J. Franklin. Crowdsourced data
management: A survey. TKDE, 2016.

[16] G. Li, X. Zhou, S. Li, and B. Gao. Qtune: a query-aware database tuning
system with deep reinforcement learning. PVLDB, 2019.

[17] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit
approach to personalized news article recommendation. In WWW, 2010.

[18] F. Liu, S. Li, L. Zhang, C. Zhou, R. Ye, Y. Wang, and J. Lu. 3dcnn-
dqn-rnn: A deep reinforcement learning framework for semantic parsing
of large-scale 3d point clouds. In ICCV, 2017.

[19] H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource manage-
ment with deep reinforcement learning. In HotNets, 2016.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al. Human-level control through deep reinforcement learning. Nature,
2015.

[21] K. Narasimhan, T. Kulkarni, and R. Barzilay. Language understanding
for text-based games using deep reinforcement learning. In EMNLP,
2015.

[22] M. Safran and D. Che. Efficient learning-based recommendation algo-
rithms for top-n tasks and top-n workers in large-scale crowdsourcing
systems. TOIS, 2018.

[23] B. Satzger, H. Psaier, D. Schall, and S. Dustdar. Stimulating skill
evolution in market-based crowdsourcing. In BPM, 2011.

[24] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience
replay. arXiv, 2015.

[25] C. Shan, N. Mamoulis, G. Li, R. Cheng, Z. Huang, and Y. Zheng. T-
crowd: Effective crowdsourcing for tabular data. In ICDE, 2018.

[26] C. Shan, N. Mamoulis, G. Li, R. Cheng, Z. Huang, and Y. Zheng. A
crowdsourcing framework for collecting tabular data. TKDE, 2019.

[27] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[28] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning
with double q-learning. In AAAI, 2016.

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. Attention is all you need. In NIPS, 2017.

[30] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas. Dueling network architectures for deep reinforcement
learning. ICML, 2016.

[31] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 1992.
[32] W. Yansheng, T. Yongxin, L. Cheng, X. Pan, X. Ke, and L. Weifeng.

Adaptive dynamic bipartite graph matching: A reinforcement learning
approach. In ICDE. 2019.

[33] M.-C. Yuen, I. King, and K.-S. Leung. Task recommendation in
crowdsourcing systems. In CrowdKDD, 2012.

[34] M.-C. Yuen, I. King, and K.-S. Leung. Taskrec: A task recommendation
framework in crowdsourcing systems. Neural Processing Letters, 2015.

[35] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov,
and A. J. Smola. Deep sets. In NIPS, 2017.

[36] J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng, J. Xing, Y. Wang,
T. Cheng, L. Liu, et al. An end-to-end automatic cloud database tuning
system using deep reinforcement learning. In SIGMOD, 2019.

[37] X. Zhao, L. Zhang, Z. Ding, L. Xia, J. Tang, and D. Yin. Recommenda-
tions with negative feedback via pairwise deep reinforcement learning.
In SIGKDD, 2018.

[38] G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N. J. Yuan, X. Xie, and
Z. Li. Drn: A deep reinforcement learning framework for news
recommendation. In WWW, 2018.

12

https://www.mturk.com/mturk/
https://www.crowdspring.com/explore/

	Introduction
	Deep Reinforcement Learning Framework
	Problem Definition
	Problem Formulation as MDPs
	System Overview
	Deep Q-Network
	Q-Learning
	Deep Q-Network

	Modules for MDP(w)
	Feature Construction
	Feature of a task tj
	Feature of a worker wi

	State Transformer and Q Network
	Challenges
	Design

	Action A, Feedback and Reward R
	Future State, Memory Storer, and Learner
	Challenges
	Design

	Modules for MDP(r)
	Feature Construction
	State Transformer and Q Network
	Action A, Feedback and Reward R
	Future State, Memory Storer and Learner
	Challenges
	Design

	Explorer

	Experiments
	Experimental Setup
	Dataset
	Settings
	Evaluation Measures
	Competitors

	Experimental Results (real dataset)
	Implementation details
	Considering the benefit of workers
	Considering the benefit of requesters
	Balance of benefits
	Efficiency

	Experimental Results (synthetic dataset)
	Arriving density of workers
	Distribution of qualities of workers
	Scalability

	related work
	Reinforcement learning and deep reinforcement learning
	Task Recommendation and Assignment in Crowdsourcing
	supervised learning
	reinforcement learning

	conclusions
	References

