
Extended Characteristic Sets: Graph Indexing for
SPARQL Query Optimization

Marios Meimaris1,2, George Papastefanatos1, Nikos Mamoulis3, Ioannis Anagnostopoulos2

1ATHENA Research Center, Greece, 2University of Thessaly, Greece
3University of Ioannina, Greece

[m.meimaris, gpapas]@imis.athena-innovation.gr, nikos@cs.uoi.gr, janag@dib.uth.gr

Abstract—SPARQL query execution in state of the art RDF
engines depends on, and is often limited by the underlying storage
and indexing schemes. Typically, these systems exhaustively store
permutations of the standard three-column triples table. However,
even though RDF can give birth to datasets with loosely defined
schemas, it is common for an emerging structure to appear in
the data. In this paper, we introduce a novel indexing scheme
for RDF data, that takes advantage of the inherent structure of
triples. To this end, we define the Extended Characteristic Set
(ECS), a schema abstraction that classifies triples based on the
properties of their subjects and objects, and we discuss methods
and algorithms for the identification and extraction of ECSs.
We show how these can be used to assist query processing, and
we implement axonDB, an RDF storage and querying engine
based on ECS indexing. We perform an experimental evaluation
on real world and synthetic datasets and observe that axonDB
outperforms the competition by a few orders of magnitude.

I. INTRODUCTION
The Resource Description Framework1 (RDF) and

SPARQL2 are W3C recommendations for representing and
querying graph data on the web. In recent years, the Web of
Data has been established as a vast source of data from diverse
domains, such as biology, statistics, finance, and health. As
these data become larger and wider in range, complex queries
start to emerge, calling for improvements in the performance
of RDF storage and querying engines.

In the case of indexing and query processing, traditional
approaches often rely on permuting a single table with three
columns, representing the subject, predicate and object (SPO)
of a triple, in order to store the triples with different relative
orderings. For example, the high-performance store RDF-3x
[1] uses all six permutations of the SPO table, namely SPO,
SOP, PSO, POS, OSP, and OPS, and maintains interesting
orders on the index attributes in order to allow for as many
merge joins as possible in a given query plan. In a similar
way, the open source version of Virtuoso 7.2 relies on full
and partial permutations, also catering for named graphs.
Query planning and execution on these systems rely on the
data independence assumption, which ignores any inherent
structure in the data. Thus, optimizers mostly rely on first-
level statistics, such as the number of distinct triples with a
particular property, and heuristic estimations on join cardinali-
ties. While these techniques are efficient for evaluating queries
with small numbers of unbound variables and short paths, their
performance degrades when adding complex, multi-join query
patterns with potentially low selectivity and large intermediate
results between joins. This shortcoming is more evident in

1https://www.w3.org/RDF/
2https://www.w3.org/TR/sparql11-overview/

TABLE I: Runtimes in seconds

axonDB RDF-3x Virtuoso 7.2 TripleBit
Reactome 0.016 4.7 8.1 2.6

LUBM 0.23 8.2 timeout timeout

Table I, where we present the running times from the execution
of two queries requiring multiple joins3 on the Reactome
and the LUBM100 datasets using three state of the art RDF
query engines, namely RDF-3x, Virtuoso Opensource 7.2[2],
and TripleBit[3]. Even though the datasets are relatively small
(∼16m triples in Reactome, ∼17m triples in LUBM100 with
transitive closure), the engines fail to produce results fast.

Specifically, these approaches tend to be problematic when
answering queries that contain long paths (chains) in the
data and descriptive star patterns around the chain nodes,
i.e., queries with an abundance of subject-object, and subject-
subject joins, which we call multi-chain-star queries herein.
Such an example is shown at the top of Fig. 1; its evaluation
on the RDF graph is marked with bold edges at the left of
the figure. In fact, these types of joins are very frequent in
real world data, making up for 35% of all joined patterns4

in empirical studies [4]. Recent approaches [5], [6], [7], [8]
attempt to speed up the query performance over very large
datasets by distributing data and scaling out joins into mul-
tiple nodes; still, their query processing, although distributed,
relies on the data independence assumption, thus moving the
aforementioned limitations to a distributed setting.

In this paper, we focus on the limitations of the core
modules (i.e., indexing schemes) of RDF systems to answer
complex queries even in relatively small datasets. We present
a novel indexing scheme, the ECS index, that aims at accel-
erating query processing for conjunctive queries with multi-
chain-star patterns. The ECS index is based on the notion
of Extended Characteristic Set (ECS), which captures the
inherent structure of subject-object relationships in an RDF
graph. An ECS corresponds to a different type of subject-
object relationship by comprising the different types of triples
(i.e., properties) of the adjacent nodes. We construct an index
that maps a triple to an ECS, and we present an efficient
approach that evaluates conjunctive SPARQL queries with
multi-chain-star patterns based on this index. An example
RDF graph with four ECSs is shown in Fig. 1. ECS E1

corresponds to the type of relationship between the nodes

3Query Q9 from the LUBM experiments and Q8 from the Reactome
experiments

4In the same study, 60% of the join types are subject-subject joins, thus
subject-subject and object-subject joins make up for 95% of all join types.

Fig. 1: An RDF graph (left), its Characteristic Sets (top right), and Extended Characteristic Sets (bottom right). The evaluation
of the query shown on the top of the figure is marked with bold nodes and edges on the graph.

John and RadioCom, as well as Bob and RadioCom; it
comprises the properties (name,origin,birthday,worksFor) and
(address,label,managedBy, registeredIn), respectively. In the
same way, all ECSs of Fig. 1 are constructed and all triples in
the RDF graph are partitioned based on the ECS they belong
to. ECS are defined as an extension of Characteristic Sets [9]
to represent the structure of triples, as opposed to nodes, in
the data.

This partitioning requires less storage overhead, compared
to the permutation approaches, by not relying on excessive
replications, and decreases the effects of bad estimates by
quickly accessing triples that collectively participate in mul-
tiple joins. In short, the contributions of this work are the
following:
• We define Extended Characteristic Sets (ECS) as a

schema abstraction for collections of triples, based on
the work in [10],

• we present an algorithm for efficient extraction of
ECSs in RDF datasets, as well as extraction of ECS
graphs that represent paths in the data,

• we present an algorithm for query processing on top
of an ECS index,

• we implement the approach in axonDB, a reference
engine for ECS indexing and query processing that
handles conjunctive multi-chain-star queries, and

• we evaluate its performance on one synthetic and two
real datasets with respect to storage and querying, and
we compare it with three widely used systems; our tool
outperforms the competition by 1-3 orders of mag-
nitude, both in the case of selective and unselective
queries.

The rest of this paper is organized as follows. Section 2
provides preliminary definitions for RDF and SPARQL, and
defines Extended Characteristic Sets (ECSs) and ECS graphs.
Section 3 presents algorithms for extracting characteristic sets
and extended characteristic sets, and for constructing the index.

In Section 4, we discuss query processing based on this
index, and in Section 5 we present an experimental evaluation
on synthetic and real-world data. Finally, Section 6 presents
related work, and Section 7 concludes the paper.

II. PRELIMINARIES
RDF and SPARQL. RDF models facts about entities in

a triple format consisting of a subject s, a predicate p and
an object o. A collection of triples is usually represented as
a directed labelled graph with subjects and objects being the
nodes, and predicates being the edges of the graph. Formally,
let I , B, L be infinite, pairwise disjoint sets of IRIs, blank
nodes and literals, respectively. Then, an RDF triple t is
represented by a triple (s, p, o) ∈ (I ∪B)× (I)× (I ∪B ∪L)
and a collection of triples {t1, t2, . . . , tn} is represented by an
RDF graph, in which every node n ∈ T = (I ∪ B ∪ L) and
every edge e ∈ I .

Following this notation, a SPARQL query defines a set of
triple patterns of the form (T∪V)×(I∪V)×(T∪V), where V
is the set of variables that can be bound to T . Triple patterns
can be recursively combined via AND, OPTIONAL and
UNION operators.

Extended Characteristic Sets (ECS). One of the benefits
of RDF is that it is loosely structured; one can extend and
modify the schema at will, by adding or deleting new triples for
properties and classes. Neumann and Moerkotte [9] introduced
the notion of characteristic sets as a means to capture the
underlying structure of an RDF dataset. A characteristic set
CS identifies node types based on the set of properties they
emit. Formally, given a collection of triples D, and a node s,
the characteristic set Sc(s) of s (or simply Ss) is:

Sc(s) = {p | ∃o : (s, p, o) ∈ D} (1)

and the set of all Sc for a dataset D is:

Sc(D) = {Sc(s) | ∃p, o : (s, p, o) ∈ D} (2)

Characteristic sets provide a node-centric partitioning of
an RDF dataset, based on the structure of a node, and they
have been used effectively in the characterisation of joins
and cardinality estimation [9]. However, they cannot capture
the different relationships of nodes in a dataset, i.e., how
triples, instead of nodes, can be partitioned based on their
characteristics. For this reason, we introduce the Extended
Characteristic Set (ECS), the triple-level analogue of the
node-based characteristic set. An ECS captures the inherent
schema of triples, based on the properties of their adjacent
nodes, i.e., the characteristic sets of the subject and the object.
Formally, given a triple (s, p, o), the ECS Ec(s, o) is an ordered
set containing the characteristic sets of s and o:

Ec(s, o) = {Sc(s), Sc(o) | ∃p : (s, p, o) ∈ D} (3)

which is shortly denoted as Es,o. The set of all ECS in D is:

Ec(D) = {Ec(s, o) | ∃p : (s, p, o) ∈ D} (4)

An ECS helps to quickly identify the largest superset of
graph patterns that contain a star pattern around s, a star
pattern around o, and an edge from s towards o. In the
example of Fig. 1, where nodes John and RadioCom are
present in the same triple 〈John,worksFor,RadioCom〉 as
subject and object respectively, and descriptive star patterns
are present for each of the two nodes. In a similar manner,
an ECS is formed between Bob and RadioCom, Jack and
RadioCom, RadioCom and Mike, as well as RadioCom
and UKRegistry . Note that, by definition, if two nodes n1 and
n2 are linked with multiple properties, these are part of the
same ECS, which is defined by all the properties from n1 to
n2, along with the rest of the properties emitting from n1 and
n2.

Each triple (s, p, o) corresponds to one and only one ECS,
i.e., E(s, o). The upper bound for |Sc(D)| is the distinct
number of subject nodes, i.e., nodes that emit property edges,
however, the existence of an inherent structure in RDF data
makes the distinct set of Characteristic Sets that appear in
real-world data small [9]. Similarly, the maximum number of
ECSs in a given dataset is |Sc(D)|2, that is, one ECS for each
pair of characteristic sets. However, in practice, we observe
that triples are partitioned in tractable numbers of ECSs, as
it can be seen in Table II for several real-world and synthetic
datasets.

ECS Graphs and ECS Query Graphs. ECSs can be
combined to form a directed graph that captures transitive
relationships between characteristic sets in an RDF dataset.
This is useful for representing paths between types of s, o pairs.
An ECS graph is a directed graph GE = (VE , EE) where
VE ∈ Ec(D), and EE ∈ (VE × VE) are the nodes and edges
of the graph, respectively. A node in GE corresponds to an
ECS of the RDF dataset. A directed edge e = (En1,n2

, En2,n3
)

exists when there is at least one triple ta with ECS En1,n2 ,
whose object is the subject of a triple tb with ECS En2,n3 .
In other words, an edge between two ECSs represents two
sets of triples whose schemas form subject-object joins in the
dataset. An ECS chain cE is a path formed by consecutive
edges between ECSs in an ECS graph. An example of an ECS
graph for a given RDF graph is depicted on the right of Fig.
1, where we show the object-subject joins between ECSs of
the RDF graph. Consider the query q listed at the top of the
figure. The query defines a chain from n1 to n4 through n2,

along with star patterns around n1, n2 and n4. Its evaluation
can be seen with bold edges in both the RDF and the ECS
graph.

An ECS graph provides a suitable abstraction for traversing
long paths in the RDF graph efficiently, without spending
computational resources in the execution of subject-subject
self-joins that usually have low selectivity and generate large
intermediate results [11]. Instead, it treats subject-object joins
as first-class citizens. With the help of ECS-based prepro-
cessing and indexing, queries can be evaluated on top of the
dataset’s ECS graph, by (i) quickly assessing the existence of
one or more ECS sub-graphs that are super-sets of the query
graph, and (ii) finding a minimal set of triples that contribute
to the evaluation of the query. The first point is important
for determining whether large, complicated queries have non-
empty results, while the second point allows us to access and
process a small subset of the data that is sure to contribute
to the query processing stage. The latter point is of particular
interest when handling complicated queries of long paths with
many unbound variables, and helps avoid large intermediate
results.

Given the above, we propose to extract the ECSs out of a
query graph and map them to the dataset’s ECS graph space. A
query pattern q is mapped to the ECS query graph QE based
on the identification and extraction of the ECSs of the triple
patterns in q. Formally, a small modification to the ranges in
the original definition of characteristic sets [9] is needed in
order to allow variable nodes to instantiate characteristic sets
as well. Specifically, a characteristic set Sc(sq) of a node sq in
a query pattern is allowed to be defined over unbound, as well
as bound instances of sq , and unbound or bound instances of
predicates and objects in the triple patterns with sq as subject,
i.e., Sc(sq) = {pq | ∃oq : (sq, pq, oq) ∈ q} , (sq, pq, oq) ∈
(I ∪B ∪ V)× (I ∪ V)× (I ∪B ∪ L ∪ V).

We have implemented all aforementioned concepts in a
native RDF engine, called axonDB. Its overall architecture is
shown in Fig. 2. There are three core modules, responsible
for a) loading a new RDF dataset and extracting the CS and
ECS, b) constructing and storing the CS and ECS indexes and
c) processing a SPARQL query and fetching the results. Next
sections present the technical details for each module.

III. LOADING AND INDEXING
In this section, we provide methods and algorithms for

efficient extraction of CS and ECS from datasets, and show
how the ECS structure is used for triple storage and indexing.

A. Data Loading.
In axonDB, triples are stored on disk as three consecutive

integers of 4 bytes, one for each triple component, namely
subject, predicate and object, as is typically done in RDF stores
[12], [1], [3]. The id assignment is performed during initial
parsing of the input, and the references are stored in memory
during the loading phase until they are flushed to disk in bulk.
During the loading phase, each triple is modelled as a vector
of size 4. The first three positions hold the subject, predicate,
and object ids, and the last position points to the CS of its
subject.

Notice that we reserve 4 bytes (32-bit integers) for each
component during the loading phase, instead of maintaining
an encoding of varying size. The usefulness of this verbosity
will become clear later as we use this structure in order to sort
the triples both by subject and CS. Furthermore, it is relatively

TABLE II: Observed cardinalities of properties, CS and ECS in synthetic and real data.

LUBM BSBM WordNet Reactome EFO GeoNames DBLP
#properties 18 40 64 65 80 36 26

#CS 14 44 779 112 520 851 95
#ECS 68 374 7250 346 2515 12136 733

Fig. 2: Overview of system architecture.

affordable, as even for 1 billion distinct ids, the system needs 4
GB of RAM while loading the data. In any case, this structure
is held off-heap and is backed by a memory mapped file in
order to avoid overflows during data loading.

A dictionary is built during parsing, that holds values for
the node and predicate ids (IRIs), as well as for the literals.
IRIs are compressed based on their prefixes in order to avoid
tedious duplications of strings that occur frequently in RDF
datasets. The dictionary is then used during query parsing, in
order to map bound values from the query to the actual RDF
data in the system, as well as to generate the human readable
results.

B. Characteristic Set Extraction and CS Index.
A characteristic set Sc(s) is a a set of common properties

p1, . . . , pn that are emitted from a set of subject nodes. The
set of all CS Sc(D) can be easily retrieved with a linear scan
on the triples of a dataset [13],[9]. The algorithm is presented
in Algorithm 1. We sort the triples by subject and construct a
new CS each time a new combination of properties is found in
a subject, i.e., while we iterate through triples with the same
subject, we aggregate the properties of these triples, and when
the iteration moves on to the next subject, we hash the bitmap
of the aggregated properties and check if it already exists. If
not, we create a new CS with these properties. Each CS is
assigned a unique integer identifier, and holds a bitmap of
the properties that define it, where each bit corresponds to
the presence of a property5 in D (e.g., for k properties in D,
we construct a bitmap of length k; in typical datasets - see
properties row of Table II - k is small enough for the bitmap
to fit in a few bytes). This is useful for fast subset checking
during the query preprocessing phase, as will be discussed.

5The properties are ordered as they appear in the first iteration of the input
triples. We use this predicate ordering as a reference for all other stuctures
and indexes that use it.

During this iteration, we associate a triple to a CS, based on
the CS of the subject node, by setting the fourth element of
the triple’s vector to the integer identifier assigned to the CS.

We then sort the triples by their CS, maintaining the subject
as the secondary sort key, and iterate to construct a big triples
table in the SPO ordering for persistent storage. Algorithm 1
does not show this step, as it returns a mapping from CSs to
sets of triples. It is trivial to iterate through the keys of this
mapping (csMap) and flush each CS’s triples to the persistent
storage sequentially. The CS index is constructed on top of
this table as a B+-tree, where the keys are defined by the id
of the CSs. We can use this index to get the triples associated
with a specific CS, by maintaining the start and end indexes
of each CS in the SPO table. This way, the CS Index partitions
all triples based on their subject’s CS and allows us to easily
evaluate properties in star patterns around a given node or
variable, with simple range scans. For our running example,
the SPO table and its CS index can be seen in Fig. 3. The CS
id’s refer to the characteristic sets that were shown in Fig. 1.

Algorithm 1 extractCharacteristicSets
Input: triples: A N×4 table of ids, where N is the number of
triples in the input. The first three columns are used for subject,
predicate and object ids, and the fourth column is used for CS
ids.
Output: csMap: An inverted index, with CS ids as keys, and
sets of triples as values.

1: sort(triples) by subject
2: properties← new Set()
3: previousSubject← triples[0][0]
4: lastIndex← 0
5: for each i = 1; i ∈ triples do
6: subject← triples[i][0]
7: if previousSubject 6= subject then
8: cs← newCharacteristicSet(csId, properties)
9: for each j = lastIndex; j < i; j ++ do

10: triples[j][3]← csId

11: csId++
12: properties.clear()

13: properties.add(triples[i][1])
14: previousSubject← subject

15: sort(triples) by CS
16: triplesToAdd← newSet()
17: lastCS ← triples[0][3]
18: for each i ∈ triples do
19: if lastCS 6= triples[i][3] then
20: csMap.put(lastCS, triplesToAdd)

21: triplesToAdd.add(triple[i])
22: lastCS ← triples[i][3]

return csMap

Analysis. Identification and extractions of CSs comprises
sorting the triples once by subject, and scanning. This costs
O(nlogn + n) for n triples. Furthermore, we sort the triples

a second time, and iterate over them once more in order to
store them on disk at the order of the CS’s appearance, i.e.,
O(nlogn + n). Not counting the cost of disk I/O, the time
complexity of this step is O(2nlogn+ 2n).

C. Extended Characteristic Set Extraction and ECS Index.
The next step is to extract the ECSs, and build the ECS

index. A naive way of extracting the ECSs is to perform an
object-subject join on the whole dataset, scan the resulting
rows and create a new ECS for each different combination of
the subjects’ and objects’ CSs. A more efficient way is to take
advantage of the previously computed CS Index.

Specifically, we utilize the CS Index and iterate through all
pairs of CSs looking for subject-object joins in their chunks
of triples that are held in csMap (see Algorithm 1). When the
result of the join between the triples of S1 and S2 is non-
empty, we construct a new ECS E(S1, S2), based on the CSs
of the triples’ subjects. This join process enables us to identify
an ECS and retrieve all triples associated with that ECS at the
same step. In other words, given two characteristic sets S1 and
S2, and two sets of triples T1 and T2, whose subjects belong to
S1 and S2 respectively, the object-subject join between T1 and
T2 will be non-empty when there exist triples that belong in S2,
whose subjects are objects in triples of S1. We can then store
the ECS E(S1, S2) along with references to the identifiers of
its subject and object CSs, as well as the triples contained in it.
As with CSs, each ECS is assigned a unique integer identifier.
In contrast to the CS Index that partitions all of the triples in
a dataset, the ECS Index partitions only the triples that pertain
to a valid ECS, i.e., whose subject and object have non-empty
CSs. These are triples that describe paths between resources.
We store these triples as a PSO table, and build the ECS Index
as a B+-tree on top of this table, where each ECS defines a
range of consecutive triples that belong to it. This way, fetching
the triples of a specific ECS requires a simple range scan over
the PSO table. In our running example, the PSO table and ECS
Index can be seen at the bottom of Fig. 3. Note that the size
of the PSO table is smaller than the SPO table, which contains
all triples of the input data. This is due to the fact that many
triples do not belong to a valid ECS. These are either triples
with literal objects, or triples with objects that do not have any
emitting edges, and are thus described by an empty CS.

Algorithm 2 shows how ECSs are extracted and mapped
to triples. The algorithm takes as input the csMap and results
in two outputs: (i) a mapping of ECSs to sets of triples, and
(ii) and a graph in the form of adjacency lists that represents
the links between joinable ECSs. It iterates through all pairs
Si, Sj of CSs (lines 2-4), performs an object-subject hash-join
of their triples Ti, Tj , (line 5) and if the result is not empty,
it creates a new ECS and maps the triples to it, sorted in
the PSO order (lines 6-8). This ordering is useful for early
filtering of triples with properties not in the query pattern.
After retrieving the ECSs, the algorithm finds directed links
between ECSs (lines 11-15) to construct the ECS graph. It
first populates the subjectCSMap and objectCSMap that
link CSs to ECSs based on their position in the ECSs (lines 9-
10). Then, it looks for CSs that are both objects and subjects in
different sets of ECSs, and links these together. The resulting
adjacency list represents the ECS graph, and is stored as part of
the indexing scheme in axonDB. This is essential in the query
preprocessing stage, in which an incoming query is matched
to existing ECS paths in the data.

Fig. 3: Example instantiation of the CS (top) and the ECS
(bottom) indexes. The CS contains the bitmap of a set of
properties pi..pk, while the ECS is a composition of a subject
CS and an object CS.

Fig. 4: Property bitmaps of CSs S1 . . . S5

Analysis. For p CSs, the step of extracting ECSs contains
iterating p2 pairs of CSs. For each pair Si, Sj , the asymptotic
cost of a hash join over the triples Ti, Tj of Si, Sj respectively,
is O(|Ti| + |Tj |). Assuming an even distribution of |D| /p
triples per CS, where D is the input dataset, the total cost of
ECS extraction is O(p22 |D| /p), or O(p2 |D|). The compu-
tation of ecsLinks entails building the subjectCSMap and
objectCSMap, which in the worst case when all p2 pairs are
valid, costs O(p2) insertions. Then, we have to find object
CSs that are both in subjectCSMap and objectCSMap,
in order to ensure that an object CS of an ECS is also a
subject CS of another ECS. This can be performed by iterating
over objectCSMap, and for each CS iterating over pairs of
ECSs that have the current CS as key in both objectCSMap
and subjectCSMap. Thus, the total cost of this step is
O(p2 + p2 |D|).

Algorithm 2 extractExtendedCharacteristicSets
Input: csMap An inverted index that maps characteristic sets
to sets of triples based on the characteristic set that is defined
by a triple’s subject node.
Output: ecsMap: An inverted index that maps extended char-
acteristic sets to sets of triples, ecsLinks: A set of adjacency
lists with links between the retrieved ECSs.

1: ecsMap, subjectCSMap, objectCSMap← new Map()
2: for each Si ∈ csMap do
3: for each Sj ∈ csMap do
4: %Perform an object-subject join of triples in

Si, Sj%
5: triples ← (csMap.get(Si) ./
|o−scsMap.get(Sj))

6: if triples.size()! = 0 then
7: ecs← newECS(Si, Sj)
8: ecsMap.put(ecs, sort(triples))
9: subjectCSMap.get(Si).add(ecs)

10: objectCSMap.get(Sj).add(ecs)

11: %Find links between ECSs%
12: ecsLinks← newMap()
13: for each Si ∈ objectCSMap.keys() do
14: if Si 6∈ subjectCSMap.keys() then
15: continue;
16: for each ecsleft ∈ objectCSMap.get(Si) do
17: for each ecsright ∈ subjectCSMap.get(Si) do
18: ecsLinks.get(ecsleft).add(ecsright)

return ecsMap, ecsLinks

D. ECS Hierarchy.
ECSs pertain to a hierarchical structure that defines ances-

tral, parent-child relationships between them. We consider that
an ECS E1 is a specialization of another ECS E2 if it contains
all properties of E2, i.e., E1 � E2. As will be discussed
in the next section, a query is broken down to query ECSs,
derived from the query’s graph pattern. In order to match a
query ECS with an ECS from our index, we perform subset
checking between the query ECS and the ECSs in the index. As
a derivative, a query ECS is evaluated by all ECSs that contain
all properties of the query ECS, as they appear in the respective
subject and object CSs. As many of these matched ECSs in
the index are hierarchically related, because they contain at
least the same subset of properties, we can use this ECS
hierarchy to improve disk I/O and naturally group together
triples that belong to the same ECS families. In our running
example, Fig. 4 shows the bitmaps of the CSs, where each
cell denotes the presence (1) or absence (0) of a property pi.
The two ECSs E1 and E2 of Fig.3 are hierarchically related,
namely E1 � E2, because S1 ⊂ S2, and S3 is the same for
both. To take advantage of this observation, we implement an
optimization that sorts ECSs based on the pre-order traversal
of this hierarchy, and stores triples in the order defined by this
traversal. This means that the ECSs of consecutive chunks of
triples on the disk will often be hierarchically related, in an
attempt to minimize reading redundant pages from persistent
storage. For computing the hierarchy from ecsLinks, we sort
the ECSs based on the number of the properties they contain,
because the less properties it contains, the more generic and
higher in the hierarchy the ECS is. Then, we iterate through
the sorted ECSs, traverse their links from ecsLinks and build

paths for each one, taking care to add only one level of children
to each previous level of ancestors. This process results in
a graph lattice, where the root nodes are the most generic
ECSs (containing fewer properties), and the leaves are the most
specialized ECSs (containing more properties).

Metadata and statistics. During the loading phase, ax-
onDB computes and stores along with the ECS index, auxiliary
metadata and statistics in order to assist the pre-processing
stage of query evaluation. First, each ECS maintains pointers
to the first occurrences of each property in the indexed PSO
table. This helps us avoiding logarithmic searches in large
triple collections during query evaluation. Then, it extracts all
edges between ECSs in order to be able to traverse the ECS
graph using standard graph traversal algorithms. The algorithm
for extracting edges is based on finding ECSs that exhibit
object-subject joins on the CS level. This is shown in lines
10-17 of Algorithm 2. Finally, it computes the cardinality of
distinct properties in the triples of each ECS, as well as the
cardinalities of distinct subjects and objects per ECS. These
statistics are used by the query planner.

IV. QUERY PROCESSING
In this section, we discuss how query processing is per-

formed on top of the ECS Index. Our goal is to employ
the derived index structures in order to reduce the number
of scans over the triples, number of joins, and the amount
of intermediate results when evaluating SPARQL queries with
multi-chain-star graph patterns. Still, our approach is efficient
for simple query patterns as well. An overview of the query
processing steps is shown in Fig. 5, from top to bottom.
Given a query over our example dataset, we first parse the
query statement and identify the characteristic sets around
the chain variables, i.e., Sx, Sy , Sz , and Sw for ?x, ?y,
?z, and ?w respectively. Then, we extract the query ECSs
Qx,y, Qy,z, Qy,w, and identify the chains between them as well
as the type of joins to be performed; OS correspond to object-
subject joins where the triples of an object’s CS are joined
with the triples of the subject’s CS and SS denotes a subject-
subject join. Finally, we match each query ECS to ECSs in
the data and we generate the plan that retrieves and joins
triples to output the result. Note that we consider the union
of triples from E1 and E2 as Qx,y is matched to both ECSs.
For simplicity reasons, we have omitted the step of processing
the restriction of the bound ”Director” node. This is performed
when retrieving E3, by doing a semi-join with the triples of
its object CS and filtering out by the bound object.

A. Query parsing and ECS query graph extraction.
Incoming queries are first converted to ECS query graphs

by the query parser. This is achieved by first exracting the char-
acteristic sets of the query’s nodes, then applying Algorithm
2 to find the ECSs on the query pattern, to create adjacency
lists between the query ECSs. This procedure is identical to
the ECS extraction when loading the data, but this time it is
performed on the triple patterns of the query. During this step,
the dictionary is used for id resolution of predicates and any
other bound nodes in the patterns. Having identified the query
ECSs and the links between them, we traverse these links in
the order of their occurrence, in order to identify chains (i.e.,
series of object-subject joins) in the ECS query graph. This
results in a set of chain patterns c1 . . . cn. Finally, we remove
chains that are fully contained in other chains. Given that their

Fig. 5: Query processing for two chain patterns of three query
ECSs. Notice that Qx,y matches both E1 and E1.

number is rather small, this step is efficiently performed with
a single nested loop over the set of chains.

B. Matching of query ECSs to the ECS index.
Each query ECS Qi is matched to zero or more ECSs

in the ECS index. We say that there exists a match between
a query ECS Qi = {Sq,left, Sq,right} and an indexed ECS
Ej = {Sj,left, Sj,right}, when the following are true:

Sq,left ⊆ Sj,left (5)
Sq,right ⊆ Sj,right (6)

p(Qi) ∈ p(Ej) (7)

where p(Qi), p(Ej)) are properties of the triple patterns whose
subject and object CSs form ECS Qi and Ej , respectively. In
our running example, this is the set of properties that appear in
the P column of the PSO table for the same ECS. If we denote
the set of all ECSs that match Qi as matches(Qi), then when
(5)-(7) are true, it holds that Ej ∈ matches(Qi). Aggregating
the triples of all ECSs in matches(Qi), gives the evaluation
eval of Qi, which is given by the following:

eval(Qi) =

k⋃
n=1

T (En), En ∈ matches(Qi) (8)

T (En) corresponds to the triples associated with En.
Matching of the query ECSs to the ECS index is per-

formed through a depth-first traversal on the ECS graph.
As shown in Algorithm 3, we iterate over the edges of

ecsLinks (line 2), an adjacency list with the ECS graph,
and for each ECS as a starting point, we search for matching
ECSs. The DFS traversal is performed by the recursive method
matchDataPatterns (lines 2-4) as detailed in Algorithm 4.
The matchDataPatterns method takes as input a query ECS,
an indexed ECS (the starting/current node for the dfs traversal)
and the two ECS graphs (i.e., the query and the indexed ECS
graph) and returns a linked list of ECSs in the data that match
the query ECSs. It first evaluates whether the input query ECS
and the ECS in the data satisfy the conditions (5)-(7) (line
1-4), otherwise it returns an empty list. Subset checking is
performed with bitwise operations on the property bitmaps.
Specifically, a bitmap b1 is a subset of a bitmap b2 when it
holds that b1ANDb2 = b1. If all conditions are satisfied, it
checks whether the examined ECS has already been visited
or the query chain is empty (line 5) otherwise it marks the
matching ECS as visited and adds it to the matching list of
the input query ECS (Line 7-8). It then proceeds with the
dfs traversal on the ECS graph (Line 9), and evaluates the
matching ECSs for the rest of the chain starting from q1,
i.e., consecutive node in the query ECS chain. By performing
depth-first traversal on the ECS graph, it is guaranteed that
consecutively matched ECSs over the query are actually linked
in the data, because each reached ECS will be a child of the
preceding one. The output of this process is a set of ECS
chains in the ECS graph that match the query’s ECS chains.
If the property of the ECS is unbound, then we match it to all
properties found in the region of the PSO table that matches
the rest of the ECS restrictions.

Algorithm 3 matchQueryChainToECSIndex
Input: ecsLinks: The ECS adjacency list
Input: c(q0 . . . qn−1): A chain of query ECSs
Output: ecsMatches: A linked list of ECS sets that match
the ECSs in c

1: ecsMatches← newMap()
2: for each e ∈ ecsLinks.keySet() do
3: matchDataPatterns(e, ecsLinks, c(q0 . . . qn−1),
4: ecsMatches)

return ecsMatches

In our running example of Fig. 1, the query of Fig. 5 defines
three query ECSs, namely Qx,y , Qy,z and Qy,w, as can be seen
in Fig. 5. The algorithm will match E1, E2 to Qx,y because
the bitmap of Sx is a subset of both S1 and S2 that constitute
the subject CSs of E1 and E2 respectively, and the bitmap of
Sy is a subset of S3 which is the common object CS for both
E1 and E2. In a similar manner, E4 will be matched to to
Qy,z and E3 to Qy,w.

C. Query planning.
The query planner decides the join execution order for

the various sets of triples corresponding to the matched ECS
chains of the previous step. The planner distinguishes between
the outer ordering (evaluation of different chains) and the inner
ordering (evaluation of a specific chain). The outer ordering is
useful for filtering out triples as early as possible based on the
common attributes of the different chain patterns. The inner
ordering helps reduce intermediate results in object-subject
joins between ECSs, that do not contribute to the final result.

To get the outer order of chains, each chain’s cost is com-
puted. The general rule is to order chains based on ascending

Algorithm 4 matchDataPatterns
Input: ecsLinks: The ECS adjacency list
Input: e: The ECS of the current iteration
Input: c(q0 . . . qn−1): A chain of query ECSs
Input: ecsMatches: A linked list of ECS sets that match the
ECSs in c
Output: ecsMatches: A linked list of ECS sets that match
the ECSs in c

1: if q0.subjectCS.bitmap 6⊆ e.subjectCS.bitmap
2: OR q0.objectCS.bitmap 6⊆ e.objectCS.bitmap
3: OR q0.property 6∈ e.properties then
4: return null
5: if visited(e) OR c.size == 1 then
6: return ecsMatches
7: visited.add(e)
8: ecsMatches.get(q0).add(e)
9: for each echild ∈ ecsLinks.get(e) do

10: matchDataPatterns(echild, ecsLinks,
11: cq1...qn−1 , ecsMatches)

cost, i.e., cost(ci) ≤ cost(ci+1). The cost of evaluating a query
ECS Qi with unbound nodes (e.g. ?x, ?y for Qx,y in Fig. 5)
is the cost of reading all triples of eval(Qi), or its cardinality,
that is, cost(Qi) =

∑k
n=1 |T (En)|, with En ∈ matches(Qi).

If either or both of Qi are bound, we estimate the cost of its
evaluation as a constant 1. For consecutive ECSs in a chain
ck = Q1 ./ Q2 .// Qk, we estimate the cost of the
resulting series of joins with the following recursive formula:

cost(cQ1...Qk
) = cost(cQ1...Qk−1

)×mf,os(Qk) (9)

where mf,os(Qk) is the multiplication factor of Qk for an
object-subject join. The cost of a chain consisting of one ECS
is given as the cardinality of the ECS, which is the base case
of the recursion. The multiplication factor mf of an ECS Ei =
{S1,i, S2,i}, where S1,i and S2,i are the subject CS and object
CS of Ei respectively, is an estimation of how many rows will
be generated by performing an object-subject join with Ei at
the right side. We define it as the ratio of (distinct) objects per
subject in Ei, i.e., mf,os(Ei) = |oEi

| / |sEi
|, where |oEi

| and
|sEi
| are the distinct subject nodes of S1,i and S2,i respectively.

We can use mf instead of assuming independence between
consecutive ECSs, because it is guaranteed from Algorithm
3 that the consecutive ECSs will be joined on the same sets
of CSs, and not on the whole body of triples. We can afford
adopting this type of estimation, because the cardinalities of
the ECSs are generally bound to values much lower than the
total size of the dataset.

For queries with bound nodes in the CSs of Qi, we retrieve
the triples of eval(Qi) by first retrieving the respective CSs,
and scanning the regions of the SPO table that refer to the
matched CSs. This, however, may affect the cardinalities of the
ECSs; thus, the cost model adjusts the counts of distinct object
and subject nodes to the numbers derived by the retrieved
triples from the SPO table.

To get the inner ordering, we take into account the fact that
all ECSs in a chain are linked with an object-subject join. This
allows us to expand an existing node or sub-chain either left or
right, one ECS at a time. Based on this, we employ a simple
heuristic that starts from the ECS with the lowest cardinality,
and expands the chain selecting the ECS with the minimum

cardinality from the left or right.
While other approaches use Dynamic Programming algo-

rithms for finding the optimal join order based on the employed
statistics in order to reduce intermediate results, in axonDB a
large amount of the filtering of triples is already performed at
the pattern matching stage. Thus, the order does not heavily
affect the performance of the query processor, an observation
that is reflected in our experiments, where we tested the system
with the planner both disabled and enabled, and we found that
while there is indeed a speed-up factor of 2-3 when the planner
is enabled, the improvement is less than an order of magnitude
for all experiments.

D. Query execution.
Each query chain pattern is executed individually, by

looking up the ECS index and joining the triples of each ECS
of the matched chains. Multiple chain patterns are joined in the
final step of the execution using hash joins on their common
attributes, the join tables of which are created dynamically
during the evaluation of individual chains. Note that, execution
of a chain pattern does not take into account the star pattern
variables when joining consecutive ECSs. Retrieval of the
attributes in the star pattern of the subject and/or object of an
ECS is instead achieved when retrieving the ECS from disk,
by performing a merge-join between the ECS’s triples and the
triples of the subject/object CS from the CS Index. In fact,
a merge-join is possible because the CS Index maintains the
interesting order of the subject node. However, this will not
happen in the case where none of these variables are part of
the query projection. In this case, as is the case for the queries
of Figures 1 and 5, the restriction for the chain nodes to emit
the bound properties is already enforced by the ECS definition.

For a query ECS Qj , assuming that Ei is the most generic
ECS that is matched to Qj , this entails that all supersets of Ei,
i.e., Ei � Ei′ � · · · � Ei′′ will also belong to matches(Qj),
thus the evaluation eval(Qj) must be the union of the triples
in the hierarchically related ECSs that match the pattern, i.e.,
T (Ei)∪T (Ei′)∪ · · ·∪T (Ei′′). Therefore, it is often expected
to read the evaluations of ancestors or children of an ECS in
the same evaluation process. This is the main reasoning behind
our approach to store the triples of hierarchically related ECSs
in close locality (see Section III), and essentially extend the
range scan of a match to all of its matching neighbours as
well.

V. EVALUATION
A. Experimental Setup

We have conducted an extensive experimental evaluation
on axonDB with both synthetic and real-world data, and a
comparative study with three high-performance RDF engines,
namely RDF-3x, Virtuoso opensource 7.2 and TripleBit. We
have selected three native, high-performance, and centralized
competitors that use different indexing approaches, in order to
perform a system-wide comparison. For axonDB, we exper-
iment with all four available optimization alternatives, i.e., a
base configuration with the ECS hierarchy and query planner
off (denoted with axonDB), two alternatives with one of them
on (axonDB-h and axonDB-qp, respectively), and an optimized
configuration with both features on (denoted with axonDB+),
and assess the effect of these components to the performance
of the system. All experiments were performed on a server
with Intel i7 3820 3.6GHz, running Debian with kernel version
3.2.0 and allocated memory of 16GB. For Virtuoso, we used

TABLE III: Size on disk (GB) and loading times (minutes)

triples input axonDB RDF-3x TripleBit Virtuoso
size time size time size time size time

LUBM2000 370m 54.2 8.12 68 16.54 58 10.88 45 14.6 45
Reactome 16m 2.8 0.71 3 1.07 2 0.74 2 0.91 2
Geonames 172m 18.8 8.24 81 12.48 34 8.6 20 8.56 27

the recommended tuning parameters given by Openlink, for
RDF-3x and TripleBit we used the default deployment, which
is non-tunable.

The aim of the experiments is to assess the performance
of axonDB in data loading, query execution and scalability
with synthetic data of increasing sizes. For the query runtime
experiments, we execute the queries 20 times and report the
best time. Furthermore, the experiments have been performed
with cold caches, each time dropping the cache with the use
of the sync; echo 1 > /proc/sys /vm/drop caches command
in linux. Our metrics are: query execution time, loading time
and disk storage size. For query execution time, we set an
upper timeout limit at 30 minutes.

Implementation. We have implemented axonDB as an
open-source project6, using Java 1.8 and the mapDB7 library, a
high-performance key-value engine with drop-in replacements
for sets, such as hash tables. axonDB uses mapDB for object
serialization/deserialization and disk I/O on native Java objects.
This is also the default way of serializing and deserializing
ECS and CS objects, as well as all auxiliary indexes. All data
structures except for the SPO and PSO tables, are stored as
serialized Java objects using mapdBD. For triple serialization
and persistence, axonDB uses byte arrays and random access
files and writes all data in a single binary file, similar to
RDF-3x and Virtuoso. The triples in the SPO/PSO tables
are serialized as contiguous arrays of integers, and can be
retrieved using range scans defined by the ECS/CS indexes.
This format carries the benefit of being easily partitioned,
while reducing disk reads to the number of matched ECSs per
query. The ID-to-String/URI dictionary, which holds values
for the compressed node and predicate ids, as well as the
literals, is stored in the form of a clustered B+-tree, with keys
being sorted in ascending order. For this release, axonDB only
supports conjunctive SPARQL queries with equi-joins.

Datasets and Queries. We employ one synthetic and
two real-world datasets, widely used in the literature [9], [7],
[3]. For synthetic data, we have used the Lehigh University
Benchmark (LUBM) data generator to create RDF datasets
of increasing sizes, from 15 (LUBM10) to 370 (LUBM2000)
million triples. LUBM uses an academic ontology of universi-
ties, with entities for departments, courses, members of faculty
and so on. Since axonDB does not support inferencing, we
extended the LUBM generator to add all superclasses of an
instance’s class, in order to generate the transitive closure
of the subclass relationships, as well as the memberOf and
hasAlumnus properties. For our real-world experiments, we
have chosen the Reactome8 dataset, which contains infor-
mation about biological pathways, and is rich in long paths
with branching components, and Geonames9, an ontology of
geographical features that contains a diverse schema of varying

6All code and queries are available in http://github.com/mmeimaris/axonDB
7www.mapdb.org
8http://www.ebi.ac.uk/rdf/services/reactome
9http://www.geonames.org/ontology/documentation.html

properties (i.e., large number of CS/ECS) among the same
types of entities, as shown in Table 2.

Regarding the queries, we create two sets of queries for
LUBM, one set for Reactome, and one set for Geonames.
LUBM defines 14 queries; most of them are simple, pertaining
to a range of 1 to 6 triple patterns. From these, we select 6
representative queries, namely 2, 4, 7, 8, 9, and 12, which are
the most challenging and have the largest numbers of triple
patterns, in order to assess the performance of the system on
traditional settings. To assess the performance on more com-
plex queries, we create a second set of queries, by modifying
7 of the original queries (2, 3, 4, 8, 10, 11 and 12), converting
all bound nodes to variables, and extending their characteristic
sets, and we also define 5 additional ones. The queries are
ordered by complexity10, and Q1-8 are highly selective, while
Q9-12 are low in selectivity. For the Reactome and Geonames
datasets, we construct 8 and 6 queries, respectively, with
increasing selectivity and numbers of chain patterns, i.e., 1-
3 chains and 3-6 query ECSs. These take advantage of the
long paths in the two datasets, and have progressively larger
result sizes. In what follows, we present the results.

B. Experimental Results
Loading. The size in GB and loading time in minutes for

the two real datasets and LUBM2000 can be seen in Table III.
Overall, axonDB exhibits the lowest space overhead for the
input data, along with TripleBit which comes second. This is
a derivative of the low degree of data replication imposed by
ECS indexing, and the fact that it only uses two triples tables
(SPO and PSO). However, axonDB suffers from longer loading
times compared to all three competitors, because of the added
complexity of retrieving the inherent schema of nodes (i.e., CS
index), and triples (i.e., ECS index). Especially for Geonames,
the loading time is significantly longer, because of the large
number of ECSs.

Comparison of different optimizations. Table IV com-
pares the four versions of axonDB (based on the employed op-
timizations). We experiment with all queries from the modified
LUBM and the two real-world datasets and we report the GM
of all queries as well as the performance for four representative
queries that exhibit the highest complexity in each dataset. The
numbers denote the ratio of runtime of each configuration w.r.t.
the runtime of the base implementation, which is shown at the
first line. Overall, the relative performance improvement with
all optimizations on is most cases better than its respective
counterparts. The effects of the planner are minimized when
the queries have only one chain, as the outer ordering and
thus the cost model are redundant in such cases (e.g., LUBM
Q5, Q12, Geonames Q6). The hierarchy optimization affects
most queries, as multiple related ECSs often differ by a small
number of properties in the data. Next, we only consider the
worst and optimal configurations to compare them with the
competitors.

10Calculated as the product of (#triple patterns)×(#chains)

http://github.com/mmeimaris/axonDB

TABLE IV: Comparison of different optimization settings for representative queries.

LUBM Reactome Geonames
Q1 Q5 Q8 Q12 GM Q2 Q3 Q7 Q8 GM Q1 Q2 Q4 Q6 GM

axonDB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
axonDB-h 0.97 0.79 0.83 0.82 0.79 0.76 0.56 0.73 0.99 0.82 0.73 0.81 0.75 0.70 0.74
axonDB-qp 0.77 1.01 0.86 0.98 0.83 0.85 0.57 0.53 0.61 0.73 0.71 0.56 0.65 1.05 0.72
axonDB+ 0.69 0.87 0.66 0.82 0.73 0.68 0.38 0.49 0.61 0.62 0.69 0.49 0.51 0.70 0.64

(a) Query runtimes for the LUBM dataset (original)

(b) Query runtimes for the LUBM dataset (modified)

(c) Query runtimes for the Reactome dataset

(d) Query runtimes for the Geonames dataset

Fig. 6: Query runtimes in seconds

Query performance - LUBM. All systems can address
quite efficiently the original LUBM queries . This can be seen
from the geometric means of the queries in Fig. 6(a), where
we experiment with queries 2, 4, 7, 8, 9 and 12, which are
the most challenging, and have more than one triple patterns.
Overall, the performance of all systems lies in the same order
of magnitude. Even though axonDB is designed to address
more complex queries, this experiment shows that it can handle
simple patterns efficiently as well.

The runtimes for axonDB and axonDB+ against the three
competitors for the modified LUBM queries can be seen in Fig.
6(b) along with their geometric mean (GM). The actual GM for

Virtuoso and TripleBit is equal to, or greater than the maximum
depicted in the figure, as we do not show running times above
30 minutes, or timed-out queries. As shown, both axonDB
configurations outperform the rest, with their geometric mean
improving the competition by at least11 1 order of magnitude.
Especially in the case of queries with complex patterns (Q7-
12), axonDB is better by several orders of magnitude, while
Virtuoso and TripleBit suffer several 30-minute timeouts. For
Q3, which does not yield any results, the preprocessor cannot
match the query graph to any ECS chains in the data, and thus

11In reality, it is more for the timeouts.

does not perform any joins, giving axonDB an advantage of up
to 4 orders of magnitude compared to RDF-3x and Virtuoso
(TripleBit timed out). In the more selective queries Q4 and Q5,
axonDB is outmatched by the rest of the systems, because it
does not have permuted indexes that quickly filter out triples
that do not contribute to the solution, and has to suffer a
full scan of the matched ECSs instead. However, in Q7, Q8
and Q9, both TripleBit and Virtuoso exhibited times over 30
minutes. These queries have long chains with up to 14 triple
patterns with all nodes unbound except the predicates. Thus,
the optimizers of these systems spend a lot of time dealing
with large intermediate results created by the abundance of
variables.

Reactome. The results are shown in Fig. 6(c). Again, both
axonDB and axonDB+ outperform the rest for all queries.
Even though the dataset is relatively small, the complexity of
the data can lead to queries with non-trivial patterns. This is
evident by the relatively large number of ECSs (346). For the
queries with the lowest selectivity (Q6, Q7 and Q8), axonDB
improves the competition by at least one order of magnitude,
while TripleBit fails to answer four queries within 30 minutes.
As in LUBM, these queries (Q1, Q3, Q5, Q6) exhibit a large
amount of unbound variables, in long chain patterns. This
provides an intuitive insight that the nature of ECS indexing
facilitates the evaluation of complex query patterns by isolating
smaller subsets of the data that contribute to the result, and thus
decreasing the intermediate results that would be present in
traditional indexing paradigms. Instead, an ECS graph matches
a query to smaller and more relevant subsets of the data,
and reduces the number of self-joins and the cardinality of
intermediate results.

Geonames. The results for Geonames are shown in Fig.
6(d). While axonDB and axonDB+ configurations outperform
in all queries but Q4 and Q6, the improvements against
RDF-3x and Virtuoso are not at the same scale with the
previous datasets. Geonames has over 10,000 different ECSs,
thus invoking costly disk reads even for ECSs with small
cardinalities. In fact, this reflects a drawback in the ECS
indexing approach, where partitioning of the triples by their
associated ECS can become a bottleneck when the partitioning
is volatile with respect to the triple cardinality of each ECS. In
any case, axonDB improves the competition by one order of
magnitude overall, based on the observed GM. While TripleBit
performs very fast on Q1, Q2 and Q6, it fails to answer three
queries under the 30-minute timeframe, because its vertical
partitioning storage scheme suffers from large intermediate
joins in queries with long chains. This is an indication that
such approaches that use inherent schema retrieval, are not
suited for highly versatile RDF datasets.

Scalability. We have experimented with increasing input
sizes of LUBM, starting from 15M triples, up to 370M triples.
In Fig. 7, we report the GM of Q1-Q12 (a), and the loading
time (b) for all four systems, in log-log scales. The query
performance of axonDB+ scales linearly and retains its relative
difference by 1-3 orders of magnitude with the rest of the
systems for all input sizes. Loading also appears to scale
linearly with respect to input size, however, due to the ECS
extraction of the loading phase, axonDB+ is outperformed by
Virtuoso and RDF-3x as the input size increases. In any case,
our experiments indicate that the methods presented herein are
indeed scalable for larger input sizes.

VI. RELATED WORK
RDF data management systems follow three storage

schemes, namely triples tables, property tables, and vertical
partitioning. A triples table has three columns, representing the
subject, predicate and object (SPO) of a triple. This technique
usually replicates data in different orderings of SPO in order
to facilitate sort-merge joins. For example, RDF-3X [1] and
Hexastore [14] build tables on all six permutations of SPO,
while RDF-3x also employs indexes for binary and unary
projections of the original SPO data. Similarly, Virtuoso [2]
uses a large 4-column table for quads, and a combination
of full and partial indexes, while Jena TDB relies on three
permutations. Other centralized RDF systems are built on
top of relational backbones, such as Jena SDB, Virtuoso,
and DB2RDF [15]. These methods have been established in
centralized systems and in fact work well for selective queries
with small numbers of joins, however, they tend to degrade
with increasing dataset sizes, large numbers of unbound vari-
ables and decreasing selectivity, as the required index scans
become larger. Furthermore, the storage overhead can become
a limiting factor when scaling for very large datasets.

In distributed settings, a growing body of literature exists,
with systems such as H2RDF+[5], S2RDF [6], SemStore [7],
and TrinityRDF [8]. H2RDF+ employs all six permutations
of the triples table, implemented over Hadoop and HBase.
S2RDF uses a vertical partitioning schema named ExtVP,
that takes into account the joins between vertical partitioning
tables, while SemStore focuses on the partitioning aspects of
data in different nodes, and uses TripleBit[3] in its reference
implementation. TrinityRDF is designed to work in memory,
and thus has no disk-based storage component. However, in
this paper, our focus is on the limitations of the core aspects
of centralized RDF systems to answer complex queries even in
relatively small datasets, such as Reactome in our experiments.
Thus, it is out of scope to perform a quantitative comparison
with distributed RDF engines, and we leave it as future work
to assess how ECS indexing can work on distributed settings.

Property Tables [16], [17] is a technique that places data in
one or multiple tables, the columns of which correspond to the
properties of the dataset. Each row identifies a subject node
and holds the value of each property in the corresponding cells.
However, this causes extra space overhead for null values in
cases of sparse properties for a given class[17]. Also, it raises
performance issues when handling complex queries with many
self-joins, as the amounts of intermediate results tend to be
significant, especially for increasing sizes of datasets [18].

Vertical partitioning is a technique that partitions data
in tables with two columns. Each table corresponds to a
property in the data, and each row to a subject node [17]. This
approach provides great performance when evaluating queries
with bound objects, but tends to suffer when the sizes of the
tables have large variations in size [19]. TripleBit [3] is an
RDF store that broadly falls under the vertical partitioning
type, but uses bitmaps to store the occurrence or absence of
predicate-object pairs in a table where rows represent subject
nodes. In TripleBit, the data is vertically partitioned in chunks
per predicate. While this approach is efficient for reducing the
amount of replication in the data, it suffers from the same
problems as property tables. It does not consider the inherent
schema of the triples in order to speed up the evaluation of
complex query patterns, as is the case for axonDB.

(a) (b)

Fig. 7: Query execution (a) and dataset loading (b) for increasing sizes of LUBM

Emergent schema extraction has been studied in [20], the
authors group together CSs based on semantics and structure,
in order to form a much smaller set of tables compared to the
entire set of CSs. Our work, although in the same direction, is
technically different, because we use the notion of ECS, and
focus on ECS-based methods. CSs have been introduced as
an abstraction of node types, and used for provision of better
estimates of join cardinalities [9]. In this regard, Brodt et al
[13] present their approach on how the SPO index can be used
to identify CSs and assist query processing by decreasing the
number of SS joins that are common in star patterns. We follow
this approach in axonDB with the use of the CS index, which
is an SPO permutation partitioned among all CSs of a dataset.
Our notion of the ECS is in fact inspired by the Characteristic
Set, but focuses on triples, rather than nodes. In [10] we have
presented a layout of similar indexing, without providing an
implementation or algorithmic contributions. To the best of
our knowledge, this is the first work to use such a structure
for RDF indexing and query processing.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented axonDB, a native RDF en-

gine that employs ECS indexing, and discussed its implications
on SPARQL processing. To this end Extended Characteristic
Sets, and ECS graphs were introduced, along with methods and
algorithms for ECS retrieval and querying. These have been
implemented with two optimizations, that take into account
query planning and hierarchical relationships between ECSs.
Finally, we performed an extensive experimental evaluation
against three high-performance RDF stores. The experimental
evaluation has shown that axonDB outperforms the state of
the art approaches, especially for answering complex query
patterns with low selectivity. As future work, we will address
data updates in existing ECS indexes, and study the application
of the approach in a distributed setting.

Acknowledgements. This work was partially supported by
the projects EU H2020 SlideWiki (#688095), H2020 LBSKQ
(#657347) and ”Computational Science and Technologies:
Data, Content and Interaction” (#5002437, EU Regional De-
velopment Fund - Greek national funds).

REFERENCES

[1] T. Neumann and G. Weikum, “The RDF-3x engine for scalable man-
agement of RDF data,” The VLDB Journal, vol. 19, no. 1, pp. 91–113,
2010.

[2] O. Erling and I. Mikhailov, Virtuoso: RDF support in a native RDBMS.
Springer, 2010.

[3] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu, “Triplebit: a fast
and compact system for large scale rdf data,” VLDB, vol. 6, no. 7, pp.
517–528, 2013.

[4] M. Arias, J. D. Fernández, M. A. Martı́nez-Prieto, and P. de la Fuente,
“An empirical study of real-world SPARQL queries,” arXiv preprint
arXiv:1103.5043, 2011.

[5] N. Papailiou, D. Tsoumakos, I. Konstantinou, P. Karras, and N. Koziris,
“H 2 RDF+: an efficient data management system for big RDF graphs,”
in SIGMOD. ACM, 2014, pp. 909–912.

[6] A. Schätzle, M. Przyjaciel-Zablocki, S. Skilevic, and G. Lausen,
“S2RDF: RDF querying with SPARQL on spark,” Proc. VLDB Endow.,
vol. 9, no. 10, pp. 804–815, Jun. 2016.

[7] B. Wu, Y. Zhou, P. Yuan, H. Jin, and L. Liu, “Semstore: A semantic-
preserving distributed RDF triple store,” in CIKM. ACM, 2014, pp.
509–518.

[8] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang, “A distributed
graph engine for web scale RDF data,” in Proceedings of the VLDB
Endowment, vol. 6, no. 4. VLDB Endowment, 2013, pp. 265–276.

[9] T. Neumann and G. Moerkotte, “Characteristic sets: Accurate cardinal-
ity estimation for RDF queries with multiple joins,” in ICDE. IEEE,
2011, pp. 984–994.

[10] M. Meimaris and G. Papastefanatos, “Double chain-star: an RDF
indexing scheme for fast processing of SPARQL joins,” in EDBT.
ACM, 2016, pp. 668–669.

[11] P. Tsialiamanis, L. Sidirourgos, I. Fundulaki, V. Christophides, and
P. Boncz, “Heuristics-based query optimisation for SPARQL,” in EDBT.
ACM, 2012, pp. 324–335.

[12] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler, “Matrix bit loaded:
a scalable lightweight join query processor for RDF data,” in WWW.
ACM, 2010, pp. 41–50.

[13] A. Brodt, O. Schiller, and B. Mitschang, “Efficient resource attribute
retrieval in RDF triple stores,” in CIKM. ACM, 2011, pp. 1445–1454.

[14] C. Weiss, P. Karras, and A. Bernstein, “Hexastore: sextuple indexing for
semantic web data management,” VLDB, vol. 1, no. 1, pp. 1008–1019,
2008.

[15] M. A. Bornea, J. Dolby, A. Kementsietsidis, K. Srinivas, P. Dantressan-
gle, O. Udrea, and B. Bhattacharjee, “Building an efficient RDF store
over a relational database,” in SIGMOD. ACM, 2013, pp. 121–132.

[16] K. Wilkinson, “Jena property table implementation,” 2006.
[17] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach, “Scalable

semantic web data management using vertical partitioning,” in VLDB.
VLDB Endowment, 2007, pp. 411–422.

[18] M. Janik and K. Kochut, “Brahms: a workbench RDF store and high
performance memory system for semantic association discovery,” in
ISWC. Springer, 2005, pp. 431–445.

[19] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and S. Manegold,
“Column-store support for rdf data management: not all swans are
white,” VLDB, vol. 1, no. 2, pp. 1553–1563, 2008.

[20] M.-D. Pham and P. Boncz, “Exploiting emergent schemas to make RDF
systems more efficient,” in ISWC. Springer, 2016, pp. 463–479.

	Introduction
	Preliminaries
	Loading and Indexing
	Data Loading.
	Characteristic Set Extraction and CS Index.
	Extended Characteristic Set Extraction and ECS Index.
	ECS Hierarchy.

	Query Processing
	Query parsing and ECS query graph extraction.
	Matching of query ECSs to the ECS index.
	Query planning.
	Query execution.

	Evaluation
	Experimental Setup
	Experimental Results

	Related Work
	Conclusions and Future Work
	References

