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Abstract Query reformulation, including query recommendation and query
auto-completion, is a popular add-on feature of search engines, which provide
related and helpful reformulations of a keyword query. Due to the dropping
prices of smartphones and the increasing coverage and bandwidth of mobile
networks, a large percentage of search engine queries are issued from mobile
devices. This makes it possible to improve the quality of query recommenda-
tion and auto-copmpletion by considering the physical locations of the query
issuers. However, limited research has been done on location-aware query re-
formulation for search engines. In this paper, we propose an effective spatial
proximity measure between a query issuer and a query with a location dis-
tribution obtained from its clicked URLs in the query history. Based on this,
we extend popular query recommendation and auto-completion approaches to
our location-aware setting, which suggest query reformulations that are se-
mantically relevant to the original query and give results that are spatially
close to the query issuer. In addition, we extend the bookmark coloring algo-
rithm for graph proximity search to support our proposed query recommen-
dation approaches online, and we adapt an A* search algorithm to support
our query auto-completion approach. We also propose a spatial partitioning
based approximation that accelerates the computation of our proposed spatial
proximity. We conduct experiments using a real query log, which show that
our proposed approaches significantly outperform previous work in terms of
quality, and they can be efficiently applied online.
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1 Introduction

Keyword search is the standard tool of Web search engines, allowing users to
express their search needs by typing a few keywords. Recently, there has been
a lot of interest by both research and industry in the subject of keyword query
reformulation. Besides ranking the Web pages according to their relevance to
the keyword query provided by the user, a search engine may provide several
alternative formulations of the query, which can be more focused and of in-
terest to the user. Query reformulation has two types: query recommendation
and query auto-completion. Query recommendation provides reformulations
after the query has been issued, while query auto-completion suggests possible
extensions to the query while it is being typed. Query reformulation, as an
add-on function to a search engine, has been proved to greatly improve user
experience [12].

Most of the existing work on query reformulation focuses on the analysis
of query logs, which contain large amounts of historical information of search
engine users, including what query was issued by whom at what time and
which URLs were subsequently clicked [6, 7, 9, 18]. The query logs are often
represented as graphs of queries and other related components, allowing graph
analysis techniques to perform relevance search on query logs. For example, [6]
built a graph of queries based on query logs. The weight of a graph edge that
connects two queries is proportional to the times that the two queries are
issued by the same user within a short period (i.e., the queries are in the same
search session). Query recommendation is performed by applying Personalized
PageRank proximity search on this graph starting from the original query. In
another example, [8] builds a prefix-tree of queries, and query auto-completion
is performed by applying A* search on the prefix-tree.

Nowadays, as mobile devices are ubiquitous, many keyword search queries
are expressed by mobile users and have spatial intent, i.e., the users require
results related to entities that are physically close to their locations. However,
very few studies have considered location information when performing query
reformulation. A recent piece of work [23] proposes a solution based on a
bipartite graph that connects queries to their clicked documents (or URLs).
The edges of the graph are adjusted based on the location of the query issuer
and then Personalized PageRank proximity search is applied to obtain the
recommendations. The work of [23] only considers the locations of documents
to derive the proximity between queries. In this paper, we propose a more
sophisticated approach that generates a spatial distribution for each query
(based on its clicked URLs) and uses it to directly measure the proximity
between each query and the query issuer.

The main technical challenge is efficiency; search engines should provide in-
stant responses to users; hence, query reformulation should also be conducted
in sub-seconds. However, differently from the traditional location-agnostic set-
ting, which ignores user locations, we need to consider the spatial proximity
between queries and the user, which can only be obtained online after the user
issues her query. For query recommendation, we first adopt Bookmark Color-
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ing Algorithm (BCA) [5], a classic method for online Personalized PageRank
based proximity search, to support our recommendation method. Then, we
design an approximate spatial proximity measure, which is based on a spatial
partitioning and can be computed fast without sacrificing the quality of the
results.

In a preliminary version of this paper [19], we studied location-aware query
recommendation and extended two popular approaches, i.e., query-flow graph
[6] and term-query-flow graph [7], to the location-aware setting. In this paper,
we also consider the problem of location-aware query auto-completion, which
aims at finding queries that are essentially extensions of the input query and
are spatially close to the user. We formulate this problem by combining the
original frequency-based ranking score and our location-based ranking score.
We also propose an A* search algorithm that supports our proposed auto-
completion model, providing query suggestions instantaneously.

We perform extensive experiments on a real query log from to verify the
performance of our methods. We first conduct a user study, which shows that
the users prefer recommendations generated by our proposed spatial proxim-
ity measure compared to four alternatives. Then, we compare our proposed
location-aware query recommendation approaches with previous work, and
show that our approaches achieve significantly better recommendations in
terms of both semantic relevance and spatial proximity. Our experiments on
efficiency show that our proposed algorithms on both recommendation and
auto-completion can provide online query reformulations.

The contributions of this paper are summarized as follows:
– We consider the spatial proximity between a query and a search engine

user in location-aware query reformulation. We propose an effective spatial
proximity measure, shown to outperform alternatives in our user study.

– We extend two popular query recommendation approaches to support
location-aware recommendation.

– We extend an A* search algorithm to support location-aware query auto-
completion.

– We evaluate our proposed methods, demonstrating that our methods out-
perform previous work significantly and that they can suggest query refor-
mulations instantaneously.
The rest of the paper is organized as follows. Section 2 presents defini-

tions and background on the problem. Sections 3 and Section 4 introduce
our location-aware query auto-completion model and our location-aware query
recommendation model, respectively. Section 5 outlines our practical, approx-
imate spatial proximity measure. Section 6 includes our experimental results.
Section 7 reviews related work and Section 8 concludes the paper.

2 Preliminaries and Definitions

In this section, we introduce some necessary preliminaries and definitions,
including query logs (Section 2.1), how we model and obtain the relevance



4 Zhipeng Huang† et al.

of queries to locations (Section 2.2), and two popular location-agnostic query
recommendation methods (Sections 2.3 and 2.4). Then we introduce prefix-
tree, a commonly-used data structure for efficient query auto-completion in
Section 2.5.

2.1 Query Log

The query log of a keyword search engine is typically modeled as a set of
records (qi, ui, ti,Ci), where qi is a query submitted by user ui at time ti, and
Ci is the set of clicked URLs by ui after qi and before the user issues another
query.

Following common practice [6,7,18], we can partition a query log into task-
oriented sessions, where each session is a contiguous sequence of query records
from the same user. Two contiguous queries are put in the same session if
their time difference is at most tθ (typically, tθ is 30 minutes). Within the
same session, we can assume that the user’s search intent remains unchanged.

2.2 Obtaining Locations from a Query Log

Location Distribution of URLs. A webpage, corresponding to a URL,
may contain information about one or more spatial locations. The location
distribution of a URL d is a probability distribution pd over a set of locations
L = {(lat, lon) | lat, lon ∈ R}, where

∑
l∈L pd(l) = 1. For the purposes of this

paper, for each URL in the query log, we fetch the document and parse the
content using GeoDict1, a simple library/tool for pulling location information
from unstructured text. This provides us with the location distribution for
each URL. Alternatively, other methods for extracting locations from text can
be applied [10].

Location Distribution of Queries. We also model the location distribution
of a query qi as a probability distribution pqi , and we can obtain it from a
linear combination of the distributions of the clicked URLs for qi. Formally,

pqi (l) =

∑
d j ∈Cqi

pd j (l)∑
l′∈L

∑
d j ∈Cqi

pd j (l ′)
,

where Cqi is the set of clicked URLs for query qi. In this paper, we use the
location distributions of the queries to facilitate the problem of recommending
queries to a search engine user u, that are not only semantically relevant to
the query issued by u, but also are spatially close to the physical location of
u.

1 https://github.com/petewarden/geodict
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2.3 Query-Flow Graph

One of the most promising directions for performing query recommendation
relies on the extraction of behavioral patterns in query reformulation from
query logs. The query-flow graph (QFG in short) [6] is a graph representation
of query logs, capturing the “flow” between query units. Intuitively, a QFG is a
directed graph of queries, in which an edge (qi, qj) with weight w indicates that
query qj follows query qi in the same session of the query log with probability
w.

More formally, QFG is defined as a directed graph Gq f = (Q, E,W), where
Q is the set of nodes, with each node representing a unique query in the log,
E ⊆ Q×Q is the set of edges, and W is a weighting function assigning a weight
w(qi, qj) to each edge (qi, qj) ∈ E. In Gq f , two queries qi and qj are connected
if and only if there exists a session in the query log where qj follows qi. Figure
1 illustrates a QFG with three query nodes.

Recommendation via QFG. Given a query q ∈ Q, the top-k recommenda-
tions for q can be obtained by a random walk with restart (RWR) [15] process
starting from q, as suggested in [6]. At each step of the RWR, the random
walker moves to an adjacent node with probability 1 − α via the transition
matrix W , or teleports to the original node q with probability α. In this way,
a RWR process defines a Personalized PageRank score PPR(q, q′,W) for each
node q′ as the probability that the RWR starting from q reaches node q′.
In this way, the top-k recommendations can be the set of k nodes q′ in Q,
which have the maximum PPR scores w.r.t. q in QFG. In other words, the
recommendation score recq(q′) for each q′ ∈ Q is defined as:

recq(q′) = PPR(q, q′,W), (1)

where W is the transition matrix for the PPR, and queries having the top-k
scores are recommended.

However, QFG has an obvious disadvantage for query recommendation;
that is, it cannot make any recommendation to an input query q, if q < Q. In
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other words, if a query has not appeared in the query log before, QFG fails to
generate any recommendation.

2.4 Term-Query-Flow Graph

Another popular method for query recommendation is the term-query-flow
graph (TQGraph) [7], which basically extends the QFG method by considering
a center-piece subgraph induced by terms contained into queries.

Formally, a TQGraph is a directed graph Gtqg = Gq f ∪ Gtq, where Gq f is
the QFG as described in Section 2.3, and Gtq is a bipartite graph of term nodes
and query nodes. Specifically, the set of nodes in the TQGraph is Vtq = Q ∪T ,
where Q is the set of queries and T is the set of terms. Edge (t, q) exists in
Etq, if the term t is contained in query q. Figure 2 illustrates a TQGraph with
three query nodes and three term nodes.

Recommendation via TQGraph.Given a query q ∈ Q, the top-k TQGraph
recommendations for q are obtained by ranking all q′ ∈ Q based on their ag-
gregate PPR scores w.r.t. each term t ∈ q. In other words, the recommendation
score recq(q′) for each q′ ∈ Q is defined as follows:

recq(q′) =
∏
t∈q

PPR(t, q′,W ∪ Etq) (2)

We can see that TQGraph can generate recommendations for query q, as
long as all the terms within q appear in the query log. Empirically, TQGraph
has a much better query coverage compared to QFG, because it can also be
used for queries that are asked for the first time.

2.5 Query Auto-Completion using a Prefix-Tree

Fig. 3: An example of prefix-tree.
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Query auto-completion is another important feature of search engines,
which aims at providing instant useful query suggestion while the user is typ-
ing his/her query. Due to the nature of query auto-completion, the suggested
query q′ should have the input query q as its prefix. For example, if the input
is q = “new yo”, the suggestion can be q′ = “new york” as “new yo” is a prefix
of “new york”.

To rank the feasible suggested queries, existing work [3] proposes using
most popular completion. Specifically, given a prefix query q, let C(q) denote
the set of feasible suggested queries having q as a prefix. Then, MPC applies
the following maximum likelihood estimation for ranking:

MPC(q) = argmax
q′∈C(q)

f (q′)∑
q′′∈C(q) f (q′′)

, (3)

where f (q′) is the frequency of q′ in the query log.
To support efficient online retrieval of the most popular completion, a

prefix-tree [13, 16] is used to organize the queries in a hierarchical structure.
Formally, given a query log L, a prefix-tree T is a tree, with each internal
node vit corresponding to a common prefix of queries, and each leaf node vl f
denoting a query q ∈ L.

Figure 3 illustrates an exemplary prefix-tree. We can see that each leaf node
(shaded) corresponds to a query in the log, and each internal node corresponds
to the common prefix of all queries in its sub-tree. Note that ε here denotes
the empty string.

To retrieve top-k completions according to Equation 3, we can perform an
A* search on the prefix-tree. The basic idea is to derive an upper bound of
the MPC score for each internal node by storing in it the maximal frequency
of all leaves in its sub-tree. The reader can refer to [16] for more details.

3 Location-aware Query Recommendation

In this section, we present our location-aware query recommendation approach.
We first introduce how we model the spatial proximity between a query and a
user in Section 3.1. Then we introduce our query recommendation models in
Section 3.2.

3.1 Spatial Proximity

Our recommendation goal is to provide query alternatives that are spatially
close to the query issuer. For this, we should first define spatial proximity
between a user located at lu and a query with location distribution pq. Some
of the alternatives are:

– (i) Expected Distance (ED). Formally, ED(pq, lu) =
∑

l∈L(q) pq(l) × dist(l, lu).
– (ii) Min Distance (MinD). Formally, MinD(pq, lu) = minl∈L(q)dist(l, lu).
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– (iii) Max Distance (MaxD). Formally, MinD(pq, lu) = maxl∈L(q)dist(l, lu).
– (iv) Mean Distance (MeanD). Formally, MeanD(pq, lu) = dist(mean(pq), lu).

However, these four distance-based measures are not fully consistent with
our goal of finding spatially close queries to the user. For example, suppose we
have two queries q1 and q2 with the following location distribution:

q1 Hong Kong : 0.6, New York : 0.3, Los Angeles : 0.1
q2 Beijing: 0.8, Los Angeles : 0.2

One would argue that q1 is more spatially relevant to a user u1 located
in Hong Kong, compared to q2, as a great portion of q1’s distribution is very
close to u1, which means that the majority of URLs related to query q1 contain
information that is spatially relevant to u1. However, using ED, MaxD or
MeanD might not select q1, because after considering all locations of q1, its
overall distance to Hong Kong is quite large. At the same time, MinD does
not distinguish q1 and q2 for a user u2 located in Los Angeles, because MinD
neglects the support probability of each location. Hence, we should define a
more appropriate spatial proximity measure that better captures the distance
between a query and a search engine user. In this direction, we propose the
following measure:

Definition 1 Spatial Proximity sims. Given the location lu ∈ L of a user
u, a range threshold r, and a location distribution pq of a query q, the spatial
proximity between lu and q is the portion of pq within distance r from lu, i.e.,

sims(q, lu) =
∑

dist(lu,l′)<r

pq(l ′)

The range threshold r models the distance that the user is willing to
travel in order to use a service offered by the query results. In the exam-
ple above, assuming that we select r as a within-city travel distance, we will
have: sims(q1, lu1 ) = 0.6, sims(q2, lu1 ) = 0, sims(q1, lu2 ) = 0.1, sims(q2, lu2 ) = 0.2.
This is consistent with the intuition that u1 is more related to query q1, and u2
is more related to query q2. In our experiments, we use r = 100km by default
and compare the performances of our methods for different values of r.

3.2 Location-aware Query Recommendation Models

After obtaining the spatial proximity between the user and the queries, we can
adjust the weights on the edges of QFG to give higher preference to queries
that have larger sims to the user.

Definition 2 Spatially Adjusted Weights. Given a query q ∈ Q issued at
location lu, the spatially adjusted weight for an edge of a QFG (qi, qj) ∈ E is
defined as:

w̃(qi, qj) = β × w(qi, qj) + (1 − β) × sims(qj, lu)),
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where β is a parameter that controls the relative importance of spatial prox-
imity and w(qi, qj) is the original weight of the edge (qi, qj) in the QFG.

With the linear function in Definition 2, we obtain a location-aware tran-
sition matrix W̃ from the original matrix W . Then, we can perform location-
aware query recommendation based on W̃ . In other words, the recommendation
processes for spatial QFG (SQFG) and spatial TQGraph (STQGraph) are the
same as their location-agnostic counterparts, except that we use W̃ instead of
W .

Recommendation via SQFG. Given a query q ∈ Q issued at location lu,
the top-k SQFG recommendations for q can be obtained by a location-aware
Personalized PageRank (PPR) w.r.t. node q, i.e.,

recq(q′) = PPR(q, q′, W̃), (4)

where recq(q′) is the recommendation score for query q′ and W̃ is the location-
aware transition matrix for the PPR.

Recommendation via STQGraph. Given a query q ∈ Q issued at location
lu, the top-k STQGraph recommendations for q can be obtained by ranking
all q′ ∈ Q based on their aggregate PPR scores w.r.t. each term t ∈ q. In other
words, the recommendation score recq(q′) for each q′ ∈ Q is defined as follows:

recq(q′) =
∏
t∈q

PPR(t, q′, W̃ ∪ Etq) (5)

3.3 BCA with Online Transition Matrix W̃

We extend the popular Bookmark Coloring Algorithm (BCA) [5] to compute
the top-k PPR results based on the location-aware transition matrix W̃ on
query time as our basic method. The basic idea of BCA is to model the RWR
process as a bookmark coloring process, in which some portion of the ink in a
processed node is sent to its neighbors, while the remaining ink is retained at
the node.

Specifically, starting from the query node q with 1.0 units of ink, BCA keeps
α portion in q and distributes the remaining 1 − α portion to q’s neighbors in
the graph using the weights of the outgoing edges to determine the percentage
of ink sent to each neighbor. The process is repeated for each node that receives
ink, until the residue ink to be redistributed becomes a very small percentage
of the original 1.0 units. Different from traditional PPR computation using
BCA, our transition matrix W̃ can only be obtained online by Definition 2,
after we know the location of the query issuer lu.

In our implementation, the spatially adjusted weights of each edge (qi, qj)

are also computed online based on lu, at the time when the query node qi is
distributing ink. This means that the computation of W̃ is done during BCA
simulation. A node distributes ink only if the quantity of the ink exceeds a
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Algorithm 1: BCA
Input: Transition matrix W , starting node q, user location lu
Output: Apprximated PPR vector recq

1 PriorityQueue que← ∅
2 Add q to que with q.ink ← 1.0
3 R ← ∅;
4 Cache← ∅;
5 while que , ∅ and que.top.ink ≥ ε do
6 Deheap the first entry top from que;
7 R[top] ← R[top] + top.ink × α;
8 for q′ ∈ top.neighbors do
9 if q′ ∈ Cache then

10 sims (q
′, lu ) ← Cache[q′];

11 else
12 Compute sims (q

′, lu ) using Definition 1;
13 Cache[q′] ← sims (q

′, lu );

14 Compute w̃(top, q′) using Definition 2;
15 q′.bu f ← top.ink × (1 − α) × w̃(top, q′);
16 if q′.bu f ≥ ε then
17 Add q′ to que with ink q′.bu f ;
18 q′.bu f ← 0;

19 return R

threshold ε (typically, ε = 10−5). BCA terminates when there are no more
nodes to distribute ink.

We adopt the following two optimizations in our BCA implementation.

– Lazy Updating Mechanism. In the original BCA, a node distributes its
ink aggressively, i.e, each neighbor q′ of node top will be pushed into the
priority queue que after receiving some portion of top.ink. On the other
hand, we only care about the nodes with ink greater than ε . Based on
these two observations, a lazy updating mechanism can reduce the number
of non-necessary pushing without changing the final results; the pushing
a node q′ into the priority queue que is delayed until the ink it receives
is greater than ε . If the amount of received ink is less than ε , q′ only
accumulates it in in a buffer; as soon as the buffer’s ink exceeds ε , q′ is
pushed into que.

– Spatial Proximity Caching. Every time when we need to distribute ink
to a query node q′, we need to compute the spatial proximity between q′

and the location of the user lu. However, the same query node may be
processed multiple times in a single BCA call. In view of this, we cache the
spatial proximities between the location of the user lu and the query nodes
that have been computed so far. By doing this, we only need to compute
the spatial proximity for a query q′ once during a BCA call.

Algorithm 1 details our implementation of BCA, including the two op-
timizations mentioned above. Priority query que maintains the nodes to be
processed in descending order of their ink (Line 1). que initially contains only
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one node with ink amount 1.0 (Line 2), i.e., the starting node of the PPR.
The nodes that have some retained ink are kept in a dictionary R, which is
initially empty (Line 3). Termination conditions are checked at each iteration
(Line 5). Within each iteration, we first dequeue from que the node with the
most ink to distribute (Line 6). Then we leave α portion to its result (Line
7), and distribute the rest to its neighbors with weights w̃ (Lines 8-18). We
first check the spatial cache whether q′ has been computed before (Line 9).
If so, the spatial proximity between q′ and lu can be directly got from the
cache (Line 10). Otherwise we need to compute sims(q′, lu) (Line 12) and save
to the cache (Line 13). Finally, for each of the neighbors, if the received ink
is greater than a threshold ε (Line 16), the corresponding query node will be
pushed into que (Line 17) and the corresponding buffer is cleared (Line 18).
Finally, the dictionary R is returned. In SQFG, where a single RWR search is
applied, the k query nodes in R with the most retained ink are recommended.
In STQGraph, the Rs of the RWR searches from all terms are summed up at
each query node before computing and returning the top-k query nodes.

4 Location-aware Query Auto-Completion

In this section, we discuss how location-aware query auto-completion can be
performed, based on the spatial proximity measure defined in Equation 1.

Recall that location-agnostic auto-completion methods essentially rank the
candidate queries by descending order of the conditional probability:

simp(q′, q) =
f (q′)∑

q′′∈Pre(q) f (q′′)
, (6)

where Pre(p) is the set of candidate completion queries that have q as their
prefix.

For example, given the query log and prefix-tree in Figure 3, if the input
query q = “c”, the traditional location-agnostic method would suggest the
following top-2 completions: q1 = “caca” and q2 = “cbac”, because they have
the largest simp to q.

Location-aware Auto-Completion. To integrate our spatial proximity into
the auto-completion model, we consider a linear combination of simp and sims

as follows:

simc(q′, q) = γ × simp(q′, q) + (1 − γ) × sims(q′, lu), (7)

where γ is a parameter that controls the relative importance of spatial prox-
imity.

4.1 Query Auto-Completion Algorithm

In this section, we first propose an upper-bound of simc in Equation 7. Then
we present an A* search algorithm to support efficient retrieval of top-k query
auto-completion based on the upper-bound.
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Upper bound of simc. To derive an efficient pruning algorithm to retrieve
top-k completion, we need an upper-bound estimation of the ranking score
simc in Equation 7. For an internal node v of the prefix-tree, we define its
exaggerated location distribution as:

p̂v(l) = max
u∈L(v)

pu(l)

, where L(v) is the set of leaf nodes under v. Then we can define an upper
bound for an internal node as follows:

Lemma 1 Given an internal node v of prefix-tree T and the user’s location
lu, the maximal simc score of all leaf nodes under v is not larger than

UB(v) = γ · v.max (simp) + (1.0 − γ) · ˆsims(v, lu),

where v.max (simp) is the maximum simp score of leaf nodes under node v,
and ˆsims(v, lu) is the exaggerated spatial proximity using p̂v.

Proof UB(v) assumes the maximum possible simp with maximum sims, result-
ing in an upper bound of simc naturally.

Note that UB(v) is not sensitive to the location of the user lu, so it can be
computed offline after we build the prefix-tree. During the online phase, we
can direct access the upper-bound value UB(v) of any internal node v without
any additional computational cost.

Lemma 2 Assume that v1 v2 · · · vl is a path from the root v1 to a leaf node
vl of the prefix-tree T . We have:

UB(vi) ≥ UB(vj), ∀i < j .

Proof By definition, UB(v) derives the bound with two components, i.e., max-
imum simp and maximal sims, both of which come from its leaf nodes. Hence,
we have UB(v) = maxv′∈child(v)UB(v′), which means UB(vi) < UB(vj) for i < j
is not possible.

AC-Pruning Algorithm. Based on Lemmas 1 and 2, we can design an A*
algorithm for efficient top-k completion. The basic idea of AC-Pruning is to
use UB(v) value as a heuristic for pruning non-promising sub-trees.

Algorithm 2 shows the details of the algorithm. We first initialize the result
set Q and a priority queue que (Line 1-2). Then we locate the internal node
v for prefix q (Line 3). We push v into the priority queue with UB(v) as the
priority. We maintain a variable b as the k-th largest simc score so far, and
initialize it as 0.0 (Line 5). During each iteration, we first get the top node in
que (Line 7). If top is a leaf node, we compute its simc score and update the
result set Q and b if needed (Lines 8-11). Else, for each child node of top, we
push it into que with its UB value as priority key (Lines 12-14). We repeat
this process until either que is empty or the largest priority value is no more
than b.

Note that we can use another priority queue to efficiently maintain the
result set Q and b at the same time.
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Algorithm 2: AC-Pruning
Input: Query q, user location lu , prefix-tree T
Output: Completion queries Q

1 PriorityQueue que← ∅
2 Q ← ∅
3 Find v ∈ T for prefix query q
4 Add v to que with priority key UB(v)
5 b ← 0.0
6 while que , ∅ and que.top.priority ≥ b do
7 top ← pop(que);
8 if top is leaf node then
9 s ← simc (top, q);

10 if s ≥ b then
11 Update Q and b;

12 else
13 for q′ ∈ top.children do
14 Add q′ to que with priority UB(q′)

15 return Q

5 Approximate Spatial Proximity

Both our query recommendation and auto-completion methods require fre-
quent computation of the spatial proximity sims (see Definition 1). To com-
pute sims, we need to enumerate all locations of the query q′ in order to
accumulate the distribution. To reduce this high cost, we propose to compute
a partitioning based approximation of sims(q, l) as follows:

ˆsims(q, l) =
∑

cir(lu ) intersects c

pq(c), (8)

where c is a spatial partition of locations, cir(lu) is the circle with lu as center
and r as radius, and pq(c) =

∑
l′∈c pq(l ′) is the location distribution of q that

falls into partition c.
We use a grid to partition the space. Hence, locations that fall into the same

cell belong to the same partition. If the length of each grid cell is a, to compute
ˆsims, we only need to accumulate pq(c) for at most d2ra + 1e2 partitions. In

our experiments, we use a = r, so the computational cost is much lower than
computing the exact sims, which requires enumeration of all locations.

Figure 4 illustrates an example of our partitioning based approximation.
The dots with number next to them represent the location distribution of a
query q. Suppose a user is located at the starred location and the circle is
defined by that location and the range threshold r. The shaded cells are those
which intersect the circle and according to Definition 1, sims(q, lu) = 0.2+0.05+
0.3 = 0.55. After using our spatial partition, we can obtain an approximation of
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lu

0.15

0.10.2

0.05

0.1

0.1

0.3

c1 c2 c3

c4 c5

c7 c8 c9

c6

Fig. 4: Example of partitioning

Table 1: Location distribution approximation

cell pq (c) cell pq (c) cell pq (c)

c1 0.1 c2 0.1 c3 0
c4 0 c5 0.25 c6 0.1
c7 0.15 c8 0 c9 0.3

the location distribution as in Table 1. Then, an approximation of the spatial
proximity is computed as ˆsims(q, lu) = 0.25 + 0.1 + 0 + 0.3 = 0.65.2

6 Experimental Evaluation

This section reports the experimental results of our study. Section 6.1 and
Section 6.2 introduce our datasets and experimental methodology. Section 6.3
to 6.5 report the evaluation of query recommendation, while Section 6.6 reports
the evaluation of query auto-completion.

6.1 Dataset

We use AOL in all our experiments. AOL is a well-known public query log
from a major commercial search engine, which consists of Web search queries
collected from 657k users over a two months period in year 2006. This dataset is
sorted by anonymous user ID and sequentially arranged, containing 20M query
instances corresponding to around 9M distinct queries. After we sessionize the
query log with θt = 30min, we obtain a total of 12M sessions.

6.2 Methodology

Query Recommendation. We adopt the automatic evaluation process de-
scribed in [18], to assess the performance of the tested methods. In a nutshell,
we use part of the query log as training data to generate recommendations
for a kept-apart query log fragment (the test data). In the test query log, we

2 We do not further refine to get an exact result by looking into the locations within the
cells, because we believe that those locations near the range r from the user are still spatially
relevant (see the location in cell c6 of Figure 4).
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denote by qi, j the jth query in session si. We assume that all {qi, j | j > 1} are
good recommendations for query qi,1, in accordance to previous work [18].

Specifically, we use 90% of the query log for training, which contains 11M
sessions and 8.4M distinct queries. We use the remaining 10% of the query log
to generate testing queries. We first extract sessions with at least two queries,
and randomly sample 10K queries as our testbed. We take the first query of
each session as input and the queries that follow as the ground truth recom-
mendations. Formally, the ground truth for input query qi,1 is {qi, j | j > 1},
where qi, j is the jth query appearing in the ith session. While the objective
of this evaluation approach may not necessarily be aligned with what a good
recommendation could be for particular instances, by being entirely unsuper-
vised and applied on a large number of sessions, it is a strong indicator of the
techniques’ performance. Note that we randomly assign the location of the
query issuer lu, as the dataset does not contain the location information of
about the users.

We use the following three metrics to evaluate the performance of each
method:

– coverage. This is the percentage of input queries that can be served with
at least one recommendation.

– precision@k. This is the percentage of recommended queries in the top-
k lists that are in the ground truth as described previously. Formally,
precision@k = #HIT

k ·#query , where #HIT is the total number of recommended
queries that are part of the ground truth, and #query is the number of
input queries.

– sims@k. This is the average spatial proximity (see Definition 1) between
the recommended queries in the top-k lists to the location of the query
issuer lu.

Query Auto-Completion. We randomly sample a set of 5000 queries from
our query log, and use them as query inputs to test the performance of our
query auto-completion. There are 1.577 words within each query on average.
By default, we set γ = 0.95 and k = 10 (Google uses k ≤ 10).

6.2.1 Competitors

For query recommendation, we compare the following approaches:

– LKS [23]. LKS is the most recently proposed location-aware keyword sug-
gestion approach. It first builds a bipartite graph of queries and URLs
using the query log, and then performs location-aware random walk over
the graph during online recommendation. We use the default settings of
LKS, i.e., the restart probability αLKS and the edge weight adjustment
parameter βLKS are both set to 0.5.

– SQFG. SQFG is our spatial QFG method as described in Section 3. By de-
fault, we set the spatial radius threshold r = 100km, the restart probability
α = 0.5, and the spatial adjustment factor β = 0.5.
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– STQGraph. STQGraph is our proposed spatial TQGraph approach as
described in Section 3. We use the same default settings as in SQFG.

– STQGraph*. STQGraph* is our spatial partitioning based approximation
approach. By default, we use 100km as the length of each grid cell, and all
the other parameters are same as STQGraph.

For query auto-completion, we compare the following three methods:

– Basic. It is a straightforward solution, which enumerates all leave nodes
under the input query, computes their simc scores and finally finds the
top-k out of them.

– AC-Pruning. It is out proposed approach in Algorithm 2.
– AC-Pruning*. It is an approximated version that uses ˆsims in Section 5

for spatial proximity.

6.3 User Study

We first conducted a user study to compare our proposed spatial proximity
sims in Definition 1 with the four alternatives mentioned in Section 3. We
first used our STQGraph to generate top-1 recommendations for 100 random
queries with different spatial proximity measures. Then, for each of the rec-
ommended queries, we showed its location distribution as well as the location
of the query issuer lu to the participants. They were asked to rate the spatial
relevance between the recommended query and the query issuer, using one
of the following rating levels: 0 for not related at all, 1 for somehow related
and 2 for very related. The recommended queries were shuffled before given to
the participants, so that they could not know which spatial proximity measure
was used to generate the recommended query. We asked 15 participants (HKU
students) to rate the recommended queries, and each of the queries were given
at least 3 ratings.

The results are shown in Figure 5. We can see that our sims has the largest
percentage of 2s, which means that sims is acknowledged to be the best mea-
sure of spatial proximity. Out of the four alternatives, ED and MeanD received
relatively better user feedback. This is because a smaller ED or MeanD implies
smaller overall distance to the query issuer. MinD got the worst user feedback
because MinD only considers the location l which is the closest to lu, but not
the probability pq(l), which could be too small.

From this user study, we can conclude that users prefer sims over the other
four proximity measures. In the rest of our experiments, we use sims to evaluate
the spatial quality of recommended queries.

6.4 Effectiveness

We first compare the four tested methods. Then we test the parameter sensi-
tivity of our STQGraph method to different parameter values.
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Fig. 5: User Study on Different Spatial Proximity Measures
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6.4.1 Comparison Results.

Table 2: coverage results

method LKS SQFG STQGraph STQGraph_P
coverage 36.8% 27.9% 37.1% 37.1%
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Fig. 6: Comparison.

Table 2 compares all methods in terms of their coverage. We can see that
SQFG has relatively low coverage compared the other three approaches. This
is expected, because SQFG has the same disadvantage as QFG, i.e., it cannot
provide recommendations to any previously unseen queries. STQGraph and
LKS have similar coverage, much higher than that of SQFG. Note that STQ-
Graph and STQGraph* have the same coverage, since our spatial partition
based approximation only affects the ranking of the recommended queries.

Figure 6(a) shows the precision@k of all methods. Since typical search
engines (e.g. Google and Yahoo!) show eight recommendations, we test val-
ues of k from 1 to 8. Observe that our STQGraph and STQGraph* methods
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have significantly larger precision@k compared to LKS. As k becomes larger,
precision@k becomes smaller. This means our recommendation methods rank
the recommended queries reasonably, as those with smaller ranks are more
precise. STQGraph* has almost the same precision@k as STQGraph, which
means that our spatial partition based approximation does not harm the rec-
ommendation quality in terms of semantic quality. The precision of SQFG is
lower than that of STQGraph for small values of k.

Figure 6(b) shows the results of sims@k. Similar to the case of precision@k,
sims@k drops as k increases. LKS has very poor sims@k result compared with
our approaches. This is because LKS tends to recommend queries that share
the same clicked URLs with the input query, without directly considering the
location distribution of the recommended queries. SQFG, STQGraph* and
STQGraph achieve almost the same sims@k.

6.4.2 Parameter Sensitivity.

We now test the sensitivity of our STQGraph approach to the values of its
parameters. As coverage result is only related to the connectivity of STQ-
Graph and is not sentitive to the parameters, we only show the precision@k
and sims@k results.
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Fig. 7: Varying α

• Varying α. Figure 7 shows the quality of STQGraph for various values of α.
Observe that α does not influence precision@k very much. In addition, larger
α leads to smaller sims@k. This is because a larger α gives higher weight to the
adjacent queries to the input query in the graph, whereas potentially better
queries exist at a larger distance.

• Varying β. Figure 8 shows the quality of STQGraph for various values of β.
We can see that larger β values lead to slightly higher precision@k. However,
larger β values lead to smaller sims@k. This is because a larger β gives higher
weight to the semantic relevance between queries and lower weight to the
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Fig. 8: Varying β

spatial proximity. Overall, a value of β close to 0.5 strikes a balance between
the two factors giving good precision@k and sims@k at the same time.
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Fig. 9: Varying r

• Varying r. Figure 9 plots the quality of STQGraph for various values of r.
A larger r leads to a smaller precision@k. This is because a larger r will result
in larger spatial proximity in general, which eventually puts less emphasis to
the original weights on the edges of QFG. From Figure 9(b), we observe that
too large and too small r values lead to worse spatial proximity results. When
we use a very small r, we get very small spatial proximity in general, leading
to a worse sims@k result. When we use a very large r, we cannot distinguish
queries that are actually close to the user, also leading to a worse sims@k.
This result shows that we should choose an appropriate r for our method.
Empirically, r = 106 (100 km) gives good results.
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Fig. 10: Running time of query recommmendation.

6.5 Efficiency of Query Recommendation

Now we test the efficiency of our optimizations and the approximation tech-
nique. We compare the overall running time of our STQGraph recommenda-
tion method, implemented with four versions of BCA for this purpose:

– BCA. The basic BCA algorithm without any optimizations.
– BCA_L. The BCA algorithm with the lazy update mechanism.
– BCA_LC. The BCA algorithm with the lazy update mechanism and

spatial caching.
– BCA_LCP. The BCA algorithm with the lazy update mechanism, spa-

tial caching and spatial partitioning based approximation. Note that this
method corresponds to our STQGraph* method, which returns slightly
different recommendations to STQGraph.

• Varying α. Figure 10(a) shows the average running time of STQGraph
using the different versions of BCA for different values of α. We can see that
all four versions terminate faster for larger values of α, which is consistent with
our intuition. BCA_LCP is significantly faster than all other versions. When
α = 0.5, it takes only 0.3s for a query, which indicates that our STQGraph*
can provide instant query recommendations.

• Varying β. Figure 10(b) shows the running times for different values of β.
A first observation is that the cost of the different versions of BCA is not much
sensitive to β, as β only determines how much importance we put to spatial
proximity. For the default values of α and r, BCA_LC takes around 1.0s for
each query, while BCA_LCP needs only 0.3s. Considering that STQGraph*
achieves similar effectiveness to STQGraph, as shown in our previous exper-
iments, STQGraph* (which uses BCA_LCP) is more suitable for real-time
applications.

• Varying r. Figure 10(c) shows the running times for different values of r.
Observe that the runtimes for all methods are not sensitive to the change of
r. This is because r only influences the values of spatial proximity sims.
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Fig. 11: Running time of query auto-completion.
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Fig. 12: Percentage of nodes being pruned.

Table 3: #candidates v.s. #words

#words 1 2 3
#candidates 362.8 49.0 29.7

6.6 Efficiency of Query Auto-Completion

Varying #words. Figure 11(a) reports the running time of the methods as
a function of the number of words in the input query q. We can see that
the cost is lower for longer queries. This is because a longer prefix query
corresponds to a node which is deeper in the prefix-tree which has a smaller
number of descendants. We can also see that our approximated method boosts
the efficiency. Both AC-Pruning and AC-Pruning* terminate within 0.01s,
being able to provide instantaneous reformulations.

When the number of words equals 1, our two approaches are significantly
faster than Basic, but AC-Pruning has similar performance as Basic when there
are more than one words. Figure 12(a) further shows the percentage of nodes
being pruned v.s. the number of words in the input query. Note that about
80% of nodes are pruned when #words = 1, and few can be pruned when there
are more than one words, which is consistent with our running time results.
This is because there are not many candidate queries when #words > 1 (as
shown in Table 3). Given that auto-completion is more useful when the input
query is shorter and the number of potential candidates is large, our pruning
technique can be considered effective.
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Varying k. Figure 11(b) shows the average running time as a function of k on
the whole set of 5000 input queries. As expected, the running time increases
for larger values of k. This is because larger k values lead to lower simc scores,
which delay the termination of the algorithm. When k is smaller, our pruning
techniques gain larger improvement compared to Basic. This is because more
nodes can be pruned with a smaller k, as shown in Figure 12(b).

Varying γ. Figure 11(c) shows the average runtime as a function of γ on the
whole set of 5000 input queries. Observe that γ does not affect the cost too
much, except when γ = 1.0. This happens because γ = 1.0 means that we
do not need to compute the spatial proximity sims at all. Figure 12(c) shows
the percentage of nodes being pruned. The results are consistent with Figure
11(c).

7 Related Work

Query recommendation and query auto-completion are two important add-
on functions of search engines; they both aim at providing accurate query
reformulation suggestions on-the-fly. In this paper, we focus on both problems,
and provide solutions to address there location-aware settings.

For query recommendation, there have been many works, and most of them
rely on analyzing query logs to extract useful patterns that model user behav-
ior. All these works boil down to modeling the similarity between queries,
often using random walk based proximity measures on graphs that may in-
clude users, terms, queries and URLs.

Early approaches rely on clustering similar queries [1, 26], where the simi-
larity is defined using the query-URL graph or the term-vector representations
of queries obtained from the clicked URLs. Later, [28] proposed the extraction
and analysis of search sessions from the query log that capture the causali-
ties between queries, and combined this with content-based similarity. In [2],
the authors introduced the concept of cover-graph, a bipartite graph between
queries and Web pages, where links indicate the corresponding clicks. [14]
proposes recommending queries in a structured way for better satisfying ex-
ploratory interests of users, and [27] proposes a context-aware query recom-
mendation model considering the relationship between queries and their clicks.

[6] and [7] are two of the most influential works in query recommendation.
Both of them exploit flow patterns in query logs, and use graph-based methods
to perform query recommendation. [6] builds a graph of queries, termed the
query-flow graph (QFG), in which the links model the transition probabili-
ties between queries. [7] further extends the QFG to a term-query-flow graph
(TQGraph), which also include nodes representing terms within queries. In
this way, TQGraph can provide recommendations even for queries that never
appeared in the query log. In both works, the top-k recommendations are
obtained by performing random walk with restart (RWR) in the graphs.

For query auto-completion, only the most relevant expansions of the input
query are shown, typically while the user is typing the query. Most existing
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works apply prefix-based recommendations and use trie-like index structures
[4,8,24,25]. These papers either consider a different ranking function, or focus
on improve the efficiency of the searching algorithm. [20] considers location-
sensitive query completion, but it assumes that each query belongs to a single
location, which is not practical in real application. [30] addresses a similar
problem to spatial query auto-completion, while the output of its problem is
spatial objects (e.g., POIs) instead of keyword queries. Recently, [17] studied
an auto-completion problem, which assumes a set of spatial objects. On the
other hand, we only have to consider the location information of queries.

Although many keyword search queries are sent from mobile users who
have spatial search intent, there is limited research on location-aware query
reformulation. In [22], the similarity between two queries is considered high
if there are groups of similar users issuing these queries from nearby places
at similar times. Google [21] keeps track of the locations where past queries
are issued and determines the similarity between queries by also considering
the proximity between the locations of the corresponding query issuers. [29]
apply a learning model on the tensor representation of the user-location-query
relations to predict the user’s search intent. Recently, [23] proposes a location-
aware keyword suggestion (LKS) method, which extends the idea of [11]. How-
ever, LKS only considers the location information for the documents (URLs),
without considering that of queries. As we argue in this paper, it is more im-
portant to consider the spatial proximity between the user and the queries
than the documents, because it is the queries we recommend to the user in
the task of query recommendation. We experimentally compare our proposed
methods with LKS and show that our methods provide better recommenda-
tions. A preliminary version of this paper [19] has addressed location-aware
query recommendation, while this paper also considers location-aware query
auto-completion.

8 Conclusion

We study the problem of location-aware query reformulation for search en-
gines, including query recommendation and query auto-completion. We first
propose a spatial proximity measure between a keyword search query and a
search engine user. For query recommendation, based on this proximity mea-
sure, we extend two popular query recommendation approaches (i.g., QFG
and TQGraph) to apply for the location-aware setting. In this way, we can
generate recommendations that are not only semantically relevant, but also
spatially close to the query issued by a user at a specific location. In addi-
tion, we extend the Bookmark Coloring Algorithm to support efficient online
query recommendation. For query auto-completion, we formulate the problem
by combining the original frequency-based ranking function and our location-
based ranking function. We further propose an A* search algorithm to effi-
ciently solve the problem. Furthermore, we propose approximate versions of
the algorithms that use spatial partitioning to approximate and accelerate the
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computation of our proposed spatial proximity measure. Experiments on a real
query log show that our proposed methods significantly outperform previous
work in terms of both semantic relevance and spatial proximity, and that our
methods can be applied to provide reformulations within only a few hundreds
of milliseconds.
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