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Abstract Top-k joins have been extensively studied when numerical valued
attributes are joined on an equality predicate. Other types of join attributes
and predicates have received little to no attention. In this paper, we consider
spatial objects that are assigned a score (e.g., a ranking). Give two collections
R, S of such objects and a spatial distance threshold ε, we introduce the top-
k spatial distance join (k-SDJoin) to identify the k pairs of objects, which
have the highest combined score (based on an aggregate function γ) among
all object pairs in R × S with a spatial distance at most ε. State-the-of-art
methods for relational top-k joins can be adapted for k-SDJoin, but their focus
is on minimizing the number of objects accessed from the inputs; however,
when spatial objects are joined, the computational cost can easily become the
bottleneck. In view of this, we propose a novel evaluation algorithm, which
greatly reduces the computational cost, without compromising the access cost.
The main idea is to access and efficiently join blocks of objects from each
collection, using appropriate bounds to avoid computing the entire spatial ε-
distance join. As the performance of our solution heavily relies on the size of the
input blocks, we devise an approach for automated block size tuning enhanced
by a novel generic model for estimating the number of objects to be accessed
from each input. Contrary to previous efforts, our model employs cheap-to-
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compute statistics and requires no prior knowledge of data distribution. Our
extensive experimental analysis demonstrates the efficiency of our algorithm
compared to methods based on existing literature that prioritize either the
ranking or the spatial join component of k-SDJoin queries.

Keywords Top-k join · spatial join

1 Introduction

Ranking has been widely considered by the data management community in
the context of top-k queries [8,14,23,20] and top-k joins [7,25,27,36,37,41,
45]. In the latter, ranked inputs are joined to derive objects or tuple pairs
which maximize an aggregate function on scoring attributes. For instance, the
following SQL query joins relations Customers and Suppliers to return the
top-10 (i.e., k = 10) retail sales of a company that maximize the associated
profit defined as the amount paid by a customer plus the discount offered by
a supplier:

SELECT *

FROM Customers C, Suppliers S

WHERE C.productID = S.productID

ORDER BY (C.price + S.discount) DESC

LIMIT 10;

Essentially, the evaluation of top-k joins has been studied only for relational
data objects with join attributes of primitive data types such as numerical
values, and for an equality join predicate. Other data types and join predicates
have received no attention.

With the rapid advances in location sensing technologies, spatial data are
nowadays ubiquitous. The spatial join operator retrieves pairs of objects that
satisfy a spatial predicate. Although spatial joins have been extensively stud-
ied during the last two decades [1,3,16,22,26,29,34,44], due to their appli-
cability and high execution cost, this query type focuses solely on spatial at-
tributes, while in many applications spatial objects have additional attributes.
For instance, restaurants shown in websites like TripAdvisor and Yelp are as-
signed user-generated ratings or spatial objects on emerging scientific fields
like atmospheric, oceanographic, and environmental sciences are associated
with measurements varying from temperature and pressure to earth’s gravity
and seismic activity. In other words, despite the vast availability of spatial
objects associated with such numerical (for simplicity, say scoring) attributes,
to our knowledge, there exists few join operator that considers both location
and scoring attributes at the same time.1

On an attempt to fill this gap, we introduce the top-k spatial distance join
(k-SDJoin). Given two collections of spatial objects R and S that also carry

1 An exception is the work of [21] which, however, is restricted to a specific type of
attributes (probabilities) and a specific aggregation function (product).
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Fig. 1 Example of a top-k spatial distance join

a scoring attribute score, a k-SDJoin query retrieves a k-subset J of R × S
such that for every pair of objects (r, s) ∈ J , r is spatially close to s based on
a distance threshold ε (i.e., dist(r, s) ≤ ε, where dist denotes the distance be-
tween the location attributes loc of r and s), and for every (r′, s′) ∈ R×S \J
with dist(r′, s′) ≤ ε, γ(r, s) ≥ γ(r′, s′) holds, where γ is a monotone aggregate
function (e.g., SUM) which combines the scoring attributes score of two ob-
jects. As an exemplary application, k-SDJoin could recommend to the visitors
of a city the k pairs of closely located restaurants and hotels with the highest
combined ratings. Figure 1 shows collection R of four restaurants {r1, . . . , r4}
and S of four hotels {s1, . . . , s4}; every object carries a score shown next to its
location. Assuming that qualifying pairs should have an Euclidean distance at
most ε = 0.3 and γ = SUM , 2-SDJoin returns (r2, s3) with aggregate score
7 and (r2, s2) with score 6. Notice that although dist(r4, s4) < ε, pair (r4, s4)
is not included in the query result as γ(r4, s4) = 4 < γ(r2, s2) < γ(r2, s3).
Further, while being the restaurant with the highest score, r3 is not included
in any result pair, as there is no hotel at a distance to r3 smaller than 0.3.
k-SDJoin also finds application in emerging scientific fields such as bioinfor-
matics; e.g., for investigating protein stability. For instance, bioinformaticians
could employ k-SDJoin to identify amino acid pairs that are close to each other
with respect to their 3D location, while having good properties which can be
quantified as scores, e.g., the solvent accessibility [30].

To evaluate k-SDJoin, we first consider existing literature for rank and
spatial joins. On one hand, state-of-the-art methods for top-k joins assume
that objects from the input collections R and S can be accessed in decreasing
order of their score attribute; hence, k-SDJoin can be evaluated by accessing R
and S only partially, using bounds for the non-examined objects to terminate
[14,25,37]. In this spirit, Section 2.2 presents the Score-First Algorithm (SFA);
each time r ∈ R (or s ∈ S) is accessed by SFA, the object is joined with
previously accessed objects from S (or R). The accessed objects are buffered
and indexed on their spatial location attribute loc. On the other hand, if data
are centralized (the case we focus on this paper), an alternative evaluation
approach for k-SDJoin is to primarily focus on the join component of the query,
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i.e., compute the R ./ε S spatial ε-distance join entirely, and then identify the
k object pairs with the highest aggregate score. This Distance-First Algorithm
(DFA) is presented in Section 2.3.

Previous work for top-k joins primarily focused on minimizing the number
of objects accessed from the input collections, which corresponds to I/O cost
in a centralized setting (assuming unlimited memory for buffering/indexing
the accessed objects) [14,20,23,25,37] or to network cost when inputs (or
parts thereof) reside on different machines [7,41,45]. For the relational top-k
equijoins studied by these works, the computational cost is very low because
buffered objects are indexed by hash tables, which support search and updates
in constant time. However, in the case of k-SDJoin, our analysis in Section 6.2
shows that the computational cost of SFA is up to several times higher than
the access cost, due to the increased overhead of searching and incrementally
updating spatial indexing structures, e.g. R-trees. In view of this, we propose
the Block-based Algorithm (BA) for the efficient evaluation of k-SDJoin, in
terms of the CPU cost.

BA processes spatial objects in decreasing order of their scoring attribute
similar to SFA but in a block-wise fashion, and joins blocks of the input col-
lections similar to DFA but uses score bounds to avoid computing the entire
R ./ε S join. Despite focusing on binary top-k join under one scoring attribute
per input, BA can incorporate the pulling strategy and the bound scheme from
[10] for multiple scores (discussed in Section 3.4), and handle multiple inputs
either in a multi-way fashion [37] or as a hierarchy of binary k-SDJoin operators
[20] (discussed in Section 5).

The performance of BA is strongly related to the size λ of the blocks ac-
cessed from the inputs; i.e., the number of contained objects. Under this, we
introduce the objective cost function C(λ) to capture the total cost of comput-
ing k-SDJoin with BA, and model the selection of the most appropriate block
size as an optimization problem. We also devise a novel model for estimating
the number of objects accessed from each input collection which, in contrast
to previous models of [7,15,20,38], employs cheap-to-compute statistics and
requires no prior knowledge of the join/scoring attribute distribution. In fact,
due to employing expensive statistics, i.e., multi-dimensional histograms, the
models of [7,38] can be employed only for relational top-k joins.

Contributions. In brief, the key contributions of our work are summarized
as follows:

– We introduce k-SDJoin for spatial objects with scoring attributes. The
k-SDJoin query can be used either as a standalone operation or participate
in complex query evaluation plans. For this purpose, we assume that the
input collections are not indexed in advance.

– We present SFA and DFA for evaluating k-SDJoin based on existing lit-
erature; the algorithms prioritize either the ranking or the spatial joining
component of the query, respectively.

– We propose BA, which performs block-wise evaluation, combining the ben-
efits of SFA and DFA, without sharing their shortcomings.
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– We optimize all three algorithms by employing aR-trees [28] as spatial
indexing (albeit in different fashions) in order to combine spatial search
with score-based pruning.

– We elaborate on the instance optimality of BA building upon the analysis
in [37] for relational top-k joins.

– We devise an approach for automated block size tuning, which effectively
guarantees the performance of BA.

– We devise a novel generic model for estimating access depth from the input
collections; besides the block size selection for BA, our model can be applied
to all depth estimation tasks of rank join queries.

– We conduct an extensive experiment analysis using both real-world and
synthetic collections to investigate the efficiency of the evaluation methods,
and the effectiveness and the accuracy of our proposed models.

Comparison to previous publication. This article is an extension of our
preliminary work presented in [32]. The additional technical contributions in-
clude the performance analysis of BA, the automated block size tuning ap-
proach for BA, and the model for access depth estimation. Besides, we in-
clude a more detailed and comprehensive description of the algorithms and
their pruning techniques, and prove their correctness. Finally, we extend our
experimental study (i) using real-world datasets, (ii) including new tests to
investigate the effectiveness of automatic block size tuning and the accuracy
of our depth estimation model, and (iii) repeating all tests on BA as its block
size is now automatically set. The results are consistent with our preliminary
tests in [32].

Outline. The remainder of this article is organized as follows. Section 2
presents the SFA and DFA algorithms for k-SDJoin evaluation based on exist-
ing literature, while Section 3 presents our novel algorithm BA. Next, Section 4
details our models for automatic block size tuning on BA and estimating the
number of accessed objects, while Section 5 elaborates on the multiple in-
puts setup of k-SDJoin. Our experimental analysis is reported in Section 6.
Last, Section 7 reviews related work, and Section 8 concludes the article and
discusses future work.

2 Evaluation Based on Existing Literature

According to the definition in Section 1, k-SDJoin identifies pairs of objects
(i) positioned in nearby locations (ii) with a high aggregate score based on a
monotone aggregate function γ. Hence, k-SDJoin comes as a combination of a
spatial distance join and a top-k query. We next present two evaluation meth-
ods inspired by existing literature that prioritize either of the two k-SDJoin
sub-queries/components. Section 2.2 primarily considers the scoring attribute
and ranking while Section 2.3 prioritizes the distance join predicate. Table 1
summarizes the notation used throughout the rest of this article, while Fig-
ure 2 illustrates our running example with the collections of spatial objects
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id loc score

r1 (0.20, 0.78) 1.0
r2 (0.30, 0.64) 0.8
r3 (0.20, 0.45) 0.8
r4 (0.40, 0.90) 0.6
r5 (0.63, 0.12) 0.6
r6 (0.91, 0.63) 0.4
r7 (0.79, 0.20) 0.3
r8 (0.76, 0.42) 0.1

Object collection R

id loc score

s1 (0.69, 0.85) 0.9
s2 (0.81, 0.71) 0.9
s3 (0.24, 0.38) 0.8
s4 (0.15, 0.52) 0.7
s5 (0.40, 0.22) 0.6
s6 (0.25, 0.70) 0.4
s7 (0.58, 0.50) 0.4
s8 (0.68, 0.42) 0.2

Object collection S

Fig. 2 Running example of collections R and S with 8 objects each.

Table 1 Notation used throughout the article.

notation description

R/S Input object collection
k Number of required results
ε The spatial distance join threshold

dist(r, s) Euclidean distance between the spatial location of objects r and s
γ A monotone aggregate function

AR/AS aR-tree on an input object collection
C Candidate/result set of k-SDJoin
θ k-th highest aggregate score; i.e., lowest aggregate score in C

ri/sj The i-th/j-th object in a sorted collection
cR/cS Any-k depth; i.e., number of accessed objects to find the first k candidates
dR/dS Top-k depth; i.e., number of accessed objects to compute k-SDJoin
bR/bS A block of objects from an input collection
λ Size of a block; i.e., number of contained objects

buR/buS Upper score bound of a block; i.e., highest object score in the block
b`R/b`S Lower score bound of a block; i.e., lowest object score in the block

R = {r1, ..., r8} and S = {s1, ..., s8}. For simplicity, we consider the Euclidean
distance between two objects as dist(r, s) but our analysis can be extended to
other distance measures, e.g., shortest distance in spatial road networks.

2.1 Enhanced Spatial Indexing

The dominant indexing structure for spatial data is the R-tree [11]; however
both methods presented next perform better when employing (in a different
fashion each) an extension to the R-tree, called the aR-tree [28]. The aR-tree
has identical structure and update algorithms to the R-tree, however, each
non-leaf entry is augmented with the maximum score of all objects in the
subtree pointed by it. Figure 3 illustrates the aR-trees built for the collections
of Figure 4. Note that the entries are augmented with the maximum scores of
all objects in the subtrees indexed by them (e.g., R2 has score 0.6). The aR-tree
prioritizes k-SDJoin according to the aggregate score and allows for pruning
on both the spatial distance join predicate and the aggregate score. Our tests
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Fig. 3 aR-trees for collections R and S of Figure 2.

in Section 6.2 demonstrate the advantage of the aR-tree based evaluation over
the R-tree based and plane-sweep.

2.2 The Score-First Algorithm

Ilyas et al. [14] proposed the Hash-based Rank-JoiN (HRJN∗) binary operator
for top-k joins, which progressively accesses input collections R and S in order
of their score attributes, and incrementally produces results. HRJN∗ joins
the currently accessed object, e.g., from R, on join attribute with the buffered
(i.e., previous accessed) objects from S, which are indexed by a hash-table. Join
results are organized in a priority queue based on their aggregate score. Let
`R, hR (`S , hS) be the lowest and highest scores seen in collection R (S) so far;
all join results currently in the queue with aggregate score higher than threshold
T = max{γ(hR, `S), γ(`R, hS)} are guaranteed to have higher aggregate score
than every future join result and thus can incrementally be output as top-k
join results. To study the optimality of rank-join algorithms in more general
problems of multiple inputs with one or more scoring attributes, Schnaitter
and Polyzotis [37] introduced the Pull/Bound Rank Join (PBRJ) evaluation
framework; basically, HRJN∗ is an instantiation of PBRJ, denoted by PBRJ∗c ,
which applies the threshold-adaptive pulling strategy for accessing objects and
the so-called corner bound scheme for computing the threshold T .

We next discuss the Score-First Algorithm (SFA), which prioritizes the
ranking sub-query/component of k-SDJoin. Essentially, the algorithm adapts
binary HRJN∗/PBRJ∗c to work with a spatial ε-distance join predicate. Algo-
rithm 1 is a high-level pseudo-code of SFA, which takes as input two object
collections R and S, spatial distance join threshold ε, a monotone aggregate
function γ on their scoring attributes score, and an integer k, i.e., the number
of requested results. First, in Lines 1–2, the algorithm sorts (if needed) 2 inputs

2 Input collections R and S need not to be sorted on their scoring attribute for example,
if they stem from previous query operators which produce such interesting orders.
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Algorithm 1: Score-First Algorithm (SFA)

Input : object collections R, S, spatial distance join threshold ε, monotone
aggregate function γ, number of results k

Output : result set C = {(r, s) ∈ R× S : dist(r, s) ≤ ε}
Variables : aR-trees AR, AS , bound θ, termination threshold T , the lowest seen

scores `R, `S
1 initialize C ← ∅, θ ← −∞, AR ← ∅, AS ← ∅, `R ←∞, `S ←∞;
2 sort R and S in descending order of attribute score; . If not already sorted

3 while more objects exist in R and S do
4 i← S, if `S > `R; otherwise R ; . Determine current input

5 j ← R, if `S > `R; otherwise S;
6 oi ← GetNextObject(i); . Get next object from current input

7 `i ← oi.score; . Update the lowest seen score from current input

8 T ← max{γ(hR, `S), γ(`R, hS)} ; . Update HRJN∗ termination threshold

9 〈θ, C〉 ← ProbeAndUpdateResult(oi,Aj , T, ε, γ, k, θ, C);
10 if T ≤ θ then . Result secured

11 break;

12 insert oi to Ai; . Update aR-tree

13 return C;

R, S and initializes aR-trees AR, AS , min-heap C, bound θ and the lowest
seen scores `R, `S . Next, in Lines 3–12, SFA incrementally accesses objects
from collection R or S and evaluates the k-SDJoin query. At each iteration,
SFA first decides which collection should be accessed and consequently, which
object will be examined. Following the pulling strategy of HRJN∗, SFA reads
the next object from the collection with the higher lowest seen score3, i.e., the
higher between `R and `S . Without loss of generality, assume that the next
object to be examined is r from R (i.e., i = R, j = S and oi = r in Lines 4, 5
and 6, respectively); the other case is symmetric. With current object r, SFA
performs the following steps:

(i) It updates termination threshold T = max {γ(hR, `S), γ(`R, hS)} using
the corner bounding scheme of HRJN∗ in Line 8; hR and hS are the
highest seen scores from R and S, respectively, i.e., they equal the score
of the very first object in each collection. Note that the examination
order of the objects employed by SFA allows threshold T to decrease
faster and hence, SFA to terminate earlier.

(ii) It probes object r against aR-tree AS to retrieve objects s ∈ S, such that
pair (r, s) qualifies the spatial distance join predicate dist(r, s) ≤ ε, and
γ(r, s) > θ holds. To this end, SFA invokes the ProbeAndUpdateResult
procedure in Line 9. ProbeAndUpdateResult employs AS to identify every
qualifying (r, s) pair and then updates C, θ as follows. If |C| < k, pair
(r, s) is inserted into candidates set C regardless of its aggregate score.
Otherwise, (r, s) is inserted into C only if γ(r, s) > θ and in this case, it
replaces the k-th pair in C, such that set C always keeps the best k pairs
found so far. Finally, θ is updated to the k-th aggregate score in C.

3 When a dataset is sorted in descending order of its scoring attribute, the lowest seen
score is equivalent to the last seen score.
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(iii) It checks if the evaluation of the k-SDJoin query can terminate in Line 10.
Specifically, as soon as T ≤ θ, SFA terminates reporting C as the final
result.

(iv) It updates aR-tree AR on collection R inserting object r (Line 12) to be
probed by objects of S in future iterations.

We now elaborate on Step (ii). Procedure 1 is a pseudo-code for the
ProbeAndUpdateResult procedure. Given an object o (either r ∈ R or s ∈ S),
ProbeAndUpdateResult performs a search on the aR-tree A of the other collec-
tion (resp. AS or AR) as a score-based incremental ε-distance range query. The
aR-tree search is guided by a max-heap H of (o, e) pairs where e is an entry
of the aR-tree A. Max-heap H allows ProbeAndUpdateResult to examine (o, e)
pairs in decreasing order of their aggregate score γ(o, e). Note that γ(o, e) is
computed using the aggregate score for entry e in the aR-tree A and it is an
upper bound of the score of every object contained in the subtree pointed by
e. During the aR-tree search, an (o, e) pair is pruned if (i) the MBR of entry
e is farther than ε, i.e., dist(o, e) > ε (see footnote4), or (ii) γ(o, e) ≤ θ as it
would not be possible to find an object o′ in the subtree pointed by e with
γ(o, o′) > θ. Otherwise, pair (o, e) is inserted to the max-heap H. Finally, no-
tice that when ProbeAndUpdateResult examines an (o, e) pair where e is a leaf
node entry of the aR-tree A, i.e., e is an object (Lines 13–15), the procedure
updates the set of candidates pairs C and the θ bound which is the aggregate
score of k-th candidate pair found so far.

Example 1 Consider the collections of Figure 2, the aR-trees of Figure 3 and
a k-SDJoin query with k = 1, ε = 0.1, and γ = SUM . First, SFA accesses
r1 from R and as the aR-tree AS is currently empty, r1 is just inserted to
AR. Then, s1 is accessed from S and probed against AR, resulting in no
match as dist(r1, s1) > ε. Since `R = 1.0 > `S = 0.9, object r2 is next
accessed and joined (unsuccessfully) with AS. Similarly, s2 and s3 are pro-
cessed, still without producing any distance join results. When r3 is accessed
and joined with AS, which now contains {s1, s2, s3}, SFA inserts to C the
first result (r3, s3). As bound θ = γ(r3, s3) = 1.6 and termination threshold
T = max{γ(1.0, 0.8), γ(0.8, 0.9)} = 1.8 > θ, a possibly better pair can be found
and SFA cannot terminate yet. Next accessed object is r4, which gives no join
results. When s4 is accessed and probed against AR containing {r1, r2, r3, r4},
pair (r3, s4) qualifies the spatial distance predicate, i.e., dist(r3, s4) < ε = 0.1,
but it is discarded as γ(r3, s4) = 1.5 < θ. Then, s5 gives no new join pairs.
Finally, SFA retrieves object s6 but fails to produce any join pair with an ag-
gregate score higher than θ. At this stage, termination threshold T = 1.5 < θ
and SFA terminates returning C = {(r3, s3)}. �

Correctness analysis. Ilyas et al. proved in [14] that HRJN* correctly reports
the top-k join results when hash join is used for relational join attributes. To

4 In this paper, we define the dist function on non-leaf entries as the minimum distance
between the MBR of two tree entries bounding boxes or between the MBR of a tree entry and
an object, i.e., dist(e, e′) = MINDIST (e, e′) or dist(o, e) = MINDIST (o, e), respectively.



10 Shuyao Qi, et al.

Procedure 1: ProbeAndUpdateResult
Input : object o, aR-tree A, termination threshold T , spatial distance join

threshold ε, monotone aggregate function γ, number of results k,
k-th highest aggregate score θ, candidate set C

Output : updated bound θ, candidate set C
Variables : max-heap H of aR-tree entries, organized by aggregate scores

1 foreach entry e in A.root do . Initialize heap H
2 if dist(o, e) ≤ ε then
3 H.push(e);

4 while H 6= ∅ and T > θ do
5 e← H.pop();
6 if γ(o, e) ≤ θ then
7 break

8 if e is non-leaf node entry then
9 n← node of A pointed by e;

10 foreach entry e′ ∈ n do
11 if γ(o, e′) > θ and dist(o, e′) ≤ ε then
12 H.push(e′);

13 else
14 insert (o, e) to C, remove the k-th pair in C first if |C| = k ;
15 θ ← aggregate score of the k-th pair in C;

16 return 〈θ, C〉;

prove the same for SFA and k-SDJoin, it suffices to show the correctness of
Procedure 1 and in specific, the correctness of its two pruning criteria in Lines 2
and 6.

Lemma 1 Given an object o and an aR-tree entry e, if dist(o, e) > ε, all
objects in e can be safely pruned.

Proof dist(o, e) is defined as the minimum distance between object o and entry
e, i.e., dist(o, e) = MINDIST (o, e). Hence, for every object o′ ∈ e, we have
dist(o, o′) ≥ dist(o, e) > ε; therefore, e cannot contain any valid candidate to
join with o. ut

Lemma 2 Given an object o and an aR-tree entry e, if γ(o, e) ≤ θ, all objects
in e can be safely pruned.

Proof Based on the definition of the aR-tree, for every object o′ ∈ e, o.score ≤
e.score. Since γ is a monotone function, we have γ(o, o′) ≤ γ(o, e) ≤ θ. There-
fore, e cannot contain an object which paired to o will provide an aggregate
score higher than current k-th score θ. ut

Last, We introduce the following theorem for the correctness of SFA:

Theorem 1 SFA correctly computes k-SDJoin.

Proof The theorem follows naturally from Lemmas 1 and 2, and Theorem 4.2.1
in [14]. ut
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Algorithm 2: Distance-First Algorithm (DFA)

Input : object collections R, S, spatial distance join threshold ε, monotone
aggregate function γ, number of results k

Output : result set C = {(r, s) ∈ R× S : dist(r, s) ≤ ε}
Variables : aR-trees AR, AS

1 initialize C ← ∅;
2 AR ← CreateIndex(R); . Bulk-load aR-tree for R
3 AS ← CreateIndex(S); . Bulk-load aR-tree for S
4 C ← Join(AR,AS , ε, γ, k); . Spatial ε-distance join

5 return C;

2.3 The Distance-First Algorithm

The Distance-First Algorithm (DFA) prioritizes the spatial distance join sub-
query/component of a k-SDJoin query. A straightforward approach for DFA
would first produce all object pairs that qualify the join predicate, and then
identify the k pairs among them with the highest aggregate score. For this
purpose, we could apply algorithms either like the R-tree join in [3], assuming
that R and S are already indexed by R-trees, or methods that spatially join
non-indexed inputs, like the (external memory) plane sweep algorithm in [1],
which first sorts R and S based on one of their coordinates and then sweeps a
line along the sort axis to compute the results.

However, the above approaches do not provide a way to prioritize the join
result computation according to the aggregate scores of the qualifying distance
join pairs. Towards this direction, we present an optimized approach that
employs aR-trees and manages to avoid computing the entire R ./ε S spatial
ε-distance join. Algorithm 2 is a high-level pseudo-code of DFA. Different
from SFA, DFA makes no pre-assumptions about the order of the objects in
collection R and S. DFA also employs a min-heap C of size k to produce
the final k-SDJoin results. In Lines 2–4, the algorithm computes the R ./ε S
spatial distance join invoking the Join procedure. Join passes each (r, s) result
pair to heap C, which keeps track of the k pairs with the highest aggregate
score.

Procedure 2 is a pseudocode of the Join procedure. Given two aR-trees AR
and AS (for input collections R and S, respectively), Join spatially joins the
two trees by adapting the classic algorithm of [3] to traverse them not in a
depth-first, but in a best-first order, which (i) still prunes entry pairs (eR, eS)
with eR ∈ AR, eS ∈ AS for which dist(eR, eS) > ε (dist here denotes the
minimum distance between the MBRs of the two entries), but (ii) it also pri-
oritizes the entry pairs to be examined based on γ(eR, eS) (here, γ is applied
on the aggregate scores stored at the entries). In other words, the entry pairs
which have the maximum aggregate score are examined first during the join
and this order guarantees that the qualifying object pairs will be computed in-
crementally in decreasing order of their aggregate scores. To achieve this, Join
employs a max-heap H which initially contains all pairs of root entries within
distance ε from each other in the two trees (Lines 2–4). Pairs of entries from
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Procedure 2: Join (for DFA)

Input : aR-trees AR, AS , spatial distance join threshold ε, monotone
aggregate function γ, number of results k

Output : candidate set C
Variables : max-heap H of aR-tree entry pairs (eR, eS) organized by γ(eR, eS),

bound θ
1 initialize θ ← −∞;
2 foreach pair (eR, eS) in AR.root×AS .root do . Initialize heap H
3 if dist(eR, eS) ≤ ε then
4 H.push(eR, eS);

5 while H 6= ∅ do
6 (eR, eS)← H.pop();
7 if γ(eR, eS) ≤ θ then . Result secured

8 break

9 if both eR and eS are non-leaf node entries then
10 nR ← node of AR pointed by eR;
11 nS ← node of AS pointed by eS ;
12 foreach entry e′R ∈ nR and each entry e′S ∈ nS do
13 if γ(e′R, e

′
S) > θ and dist(e′R, e

′
S) ≤ ε then

14 H.push(e′R, e
′
S);

15 else
16 insert (r, s) to C as next k-SDJoin result; . Update result

17 return C;

H are examined (de-heaped) in priority of their aggregate scores γ(eR, eS) as
follows. The spatial distance join is evaluated for the corresponding aR-tree
nodes and the results are inserted to H if they are non-leaf entries (branching
condition at Line 9). Otherwise, if a leaf node entry pair (r, s) (i.e., an ob-
ject pair) is de-heaped, it is guaranteed that (r, s) has higher aggregate score
than any other object pair to be found later, since entry and object pairs are
accessed in decreasing order of their γ-scores from H. Therefore, the object
pair is included as the next result of the k-SDJoin query to the return set C
(Lines 15-16). Finally, Join and thus DFA, terminates after k results have been
computed.

Example 2 Consider the k-SDJoin query of Example 1. Initially, DFA builds
the aR-trees of Figure 3. Next, DFA performs the aR-tree based spatial ε-
distance join. The root nodes of the AR and AS aR-trees are first considered;
(R1, S1), (R2, S2) entry pairs are added to max-heap H while the other two
combinations (R1, S2), (R2, S1) are pruned by the ε-distance join predicate.
The next pair to be examined is (R1, S1) as γ(R1, S1) = 1.8 > γ(R2, S2) = 1.5;
the nodes pointed by R1, S1 are synchronously visited and their ε-distance join
adds pairs (R3, S4), (R4, S4), (R4, S3) to H. The next entry pair to be de-
heaped is (R3, S4) with γ(R3, S4) = 1.7; this results in object pair (r1, s6)
being added to H. Then, (R4, S3) is de-heaped while (r3, s3) is added to H.
The next pair to be popped from H is (r3, s3) which is guaranteed to be the
ε-distance join pair with the highest aggregate score, since it is the first object
pair extracted from max-heap H, and hence, DFA terminates as k = 1. �
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Correctness analysis. Similar to SFA, we prove the correctness of DFA by
establishing the correctness of its two pruning criteria, i.e., Lines 3 and 7 in
Procedure 2.

Lemma 3 Given two aR-tree entries eR and eS, if dist(eR, eS) > ε, every
pair of objects in eR × eS can be safely pruned.

Proof Based on the spatial property of aR-trees (inherited from R-trees), for
every pair of objects (r, s) ∈ eR,×eS , we have dist(r, s) ≥ dist(eR, eS) and
consequently, dist(r, s) > ε. Therefore, combining eR and eS cannot form any
valid join results and the entry pair can be safely discarded. ut

Lemma 4 Given two aR-tree entries eR and eS, if γ(eR, eS) ≤ θ, every pair
of objects in eR × eS can be safely pruned.

Proof Based on the definition of the aR-tree, for every pair of objects (r, s) ∈
eR,×eS , we have r.score ≤ eR.score and s.score ≤ eS .score. Given a mono-
tone function γ, we have γ(r, s) ≤ γ(eR, eS) ≤ θ. Therefore, combining eR and
eS cannot provide any join results with an aggregated score higher than the
current k-th score θ, and (eR, eS) can be safely discarded. ut

Last, we introduce the following theorem for the correctness of DFA:

Theorem 2 DFA correctly computes k-SDJoin.

Proof The theorem follows naturally from Lemmas 3 and 4. ut

3 The Block-Based Algorithm

Due to primarily focusing on the ranking or the join sub-query/component of
a k-SDJoin query, both SFA and DFA have particular shortcomings. SFA is
expected to be fast only if the k join results are found after a few accesses over
the sorted inputs R and S; otherwise, the overhead of repeatedly updating and
probing aR-trees AR and AS can be too high. DFA is expected to be slower
than SFA especially for large inputs and small k values. The entire spatial ε-
distance join of the input collections will not be computed, but the algorithm
still has to index all objects although part of them does not contribute to the
k-SDJoin result.

3.1 Description

Similar to SFA, BA examines the objects in decreasing order of their scores.
However, instead of probing each accessed object against the buffered objects
from the other collection, BA each time probes a block of objects against the
buffered blocks of objects. Moreover, before probing a new block of objects, BA
creates an aR-tree for this block, and thus, the block-level probe corresponds
to instances of DFA. Under this perspective, BA can be seen as an adaptation
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ALGORITHM 3: Block-based Algorithm (BA)

Input : object collections R, S, spatial distance threshold ε, monotone
aggregate function γ, number of results k

Output : result set C = {(r, s) ∈ R× S : dist(r, s) ≤ ε}
Variables : aR-trees AR and AS , thresholds θ and T , the lowest seen scores `R

and `S
1 initialize C ← ∅, θ ← −∞, `R ←∞, `S ←∞;
2 sort R and S in descending order of the score attribute; . if not already sorted

3 while more blocks of objects exist in R and S do
4 i← S, if `S > `R; otherwise R ; . Determine current input

5 j ← R, if `S > `R; otherwise S;
6 bi ← GetNextBlock(i, λ); . Get next objects block from current input

7 `i ← b`i ; . Update the lowest seen score from current input

8 Abi ← CreateIndex(bi); . Bulk-load aR-tree for bi
9 for each block bj of j do

10 if γ(bi
u, bj

u) > θ then
11 〈θ, C〉 ← Join(Abi ,Abj , T, ε, γ, k, θ, C); . Update current C and θ

12 T ← max{γ(hR, `S), γ(`R, hS)}; . Update termination threshold

13 if T ≤ θ then . Result secured

14 break

15 return C

of DFA at the block level. BA also avoids computing the entire R ./ε S join
employing the following bounds; each accessed block b is assigned a lower b`

and an upper score bound bu. Since the objects inside b are sorted in decreasing
order of their score, bu (b`) equals the score of the first (last) object in b.

Algorithm 3 is a pseudo-code of BA. First, in Lines 1–2, BA sorts inputs
R, S (if needed, similar to SFA) and initializes min-heap C for the candi-
date/result pairs, bound θ and the lowest seen scores `R and `S from R and
S, respectively. In Lines 3–14, BA evaluates the k-SDJoin query with an ap-
proach similar to SFA, but examining a block of objects at a time, instead of a
single object. The next accessed collection and block are selected according to
the highest last seen scores in Lines 4–6, similar to SFA; note that `R, `S are
updated to upper score bound inside current block (Line 7). Without loss of
generality, assume the next block bi is accessed from collection R, i.e., i = R,
bi = bR, j = S; the other case is symmetric. BA first constructs aR-tree AbR
for current block and then joins bR with every block accessed (buffered) so far
from collection S. The blocks of S are considered in decreasing order of their
score ranges (i.e., first bS1 , then bS2 , etc). A block pair (bR, bS) is joined simi-
larly to a DFA call of the Join procedure but with two major differences. First,
BA employs a novel block-based pruning technique based on the γ(buR, b

u
S) ag-

gregate score which represents an upper score bound for all object pairs in
bR ./φ bS . If we have already found at least k candidates, i.e., |C| = k, then
joining bR with bS is pointless when γ(buR, b

u
S) ≤ θ (recall that θ is the k-th

highest aggregate score so far). In other words, current block bR from R is
joined only with blocks bS from S for which γ(buR, b

u
S) > θ. Second, the Join

procedure of BA updates min-heap C and bound θ similar to SFA. Finally,
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PROCEDURE 3: Join (for BA)

Input : aR-trees AR and AS , termination threshold T , spatial distance join
threshold ε, monotone aggregate function γ, number of results k,
k-th highest aggregate score θ, candidate set C

Output : updated bound θ, candidate set C
Variables : max-heap H of aR-tree entries, organized by aggregate scores

1 for each pair (eR, eS) in AR.root×AS .root do . Initialize heap H
2 if dist(eR, eS) ≤ ε then
3 H.push(eR, eS);

4 while H 6= ∅ and T > θ do
5 (eR, eS)← H.pop();
6 if γ(eR, eS) ≤ θ then
7 break

8 if eR and eS are non-leaf node entries then
9 nR ← node of AR pointed by eR;

10 nS ← node of AS pointed by eS ;
11 for each entry e′R ∈ nR and each entry e′S ∈ nS do
12 if γ(e′R, e

′
S) > θ and dist(e′R, e

′
S) ≤ ε then

13 H.push(e′R, e
′
S);

14 else
15 insert (r, s) to C, remove the k-th pair in C first if |C| = k;
16 θ ← aggregate score of the k-th pair in C;

17 return 〈θ, C〉;

block id loc score

bR1

r1 (0.20, 0.78) 1.0
r2 (0.30, 0.64) 0.8

bR2

r3 (0.20, 0.45) 0.8
r4 (0.40, 0.90) 0.6

bR3

r5 (0.63, 0.12) 0.6
r6 (0.91, 0.63) 0.4

bR4

r7 (0.79, 0.20) 0.3
r8 (0.76, 0.42) 0.1

(a) collection R

block id loc score

bS1

s1 (0.69, 0.85) 0.9
s2 (0.81, 0.71) 0.9

bS2

s3 (0.24, 0.38) 0.8
s4 (0.15, 0.52) 0.7

bS3

s5 (0.40, 0.22) 0.7
s6 (0.25, 0.70) 0.4

bS4

s7 (0.58, 0.50) 0.4
s8 (0.68, 0.42) 0.2

(b) collection S

Fig. 4 Example of BA with λ = 2 on the collections in Figure 2.

after handling current block, BA updates termination threshold T and checks
the termination condition in Lines 12–14. Note that threshold T is the same
as in SFA with hR and hS being the highest score from R and S, respectively,
i.e., equal to the score of the very first object inside bR1

and bS1
.

Last, we elaborate on the Join procedure for BA. Procedure 3 illustrates
the Join procedure of BA. Notice that, different from Procedure 2 and DFA, (i)
the Join procedure for BA employs the termination threshold T in Line 4, and
(ii) when the procedure identifies object pair (r, s) that qualifies the spatial
ε-distance predicate with an aggregate score higher than bound θ, the pair is
treated as a candidate result similar to SFA and thus, min-heap C and bound
θ are updated accordingly in Lines 15–16.
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Example 3 Consider the k-SDJoin query of Examples 1 and 2. We illustrate
BA for λ = 2; Figure 4 shows the blocks to be accessed from each input col-
lection. First, bR1

is read and the AR1
aR-tree is built. Then, bS1

and bS2
are

accessed. The AS1
and AS2

aR-trees are built and joined with AR1
producing

no spatial join results. Next, the block bR2
is read and joined with bS1

and bS2

(in this order), to generate C = {(r3, s3)} and set θ = 1.6. The next block bS3

is joined with bR1 , but not bR2 , because γ(buR2
, buS3

) = γ(0.8, 0.7) = 1.5 < θ;
i.e., in the best case, a spatial distance join between bR2

and bS3
will produce

a pair of aggregate score 1.5, which is not higher than the score of the current
top pair (r3, s3). Next, the join between bS3

and bR1
does not improve current

k-SDJoin result. At this point, BA terminates because the termination thresh-
old T = 1.5 is not higher than θ = 1.6, and C = {(r3, s3)} is returned as the
final result. �

3.2 Correctness analysis

We first show the correctness of the block-based pruning criterion (Line 10
in Algorithm 3) and of Procedure 3; then, we prove the correctness of BA by
contradiction.

Lemma 5 Given blocks bR and bS, and the current candidate set C with k-th
score θ, if γ(buR, b

u
S) ≤ θ, every pair of objects in buR× buS can be safely pruned.

Proof For every (r, s) ∈ bR× bS , we have r.score ≤ buR and s.score ≤ buS which
means that for the monotone function γ, γ(r, s) ≤ γ(buR, b

u
S) ≤ θ also holds.

Thus, combining bR and bS cannot provide join results with an aggregate score
higher than θ. ut

Lemma 6 Procedure 3 determines all candidate results from a given block
pair (bR, bS).

Proof The two pruning criteria in DFA, dist(eR, eS) > ε and γ(eR, eS) ≤ θ,
are also applied in Procedure 3 and we have already proved their correctness
in Lemma 3 and Lemma 4, respectively.

To prove Lemma 6, we only need to prove that the new termination con-
dition, T ≤ θ, is correct. This is straightforward because T is defined as the
maximum possible aggregate score of any remaining (r, s) pairs, and θ is de-
fined as the lowest score of the current result set C. Therefore, if T ≤ θ, it is
impossible to find any better results and thus, Procedure 3 would never miss
a candidate result pair. ut

Theorem 3 BA correctly computes k-SDJoin.

Proof We proof the theorem by contradiction. First, assume that BA termi-
nates after accessing blocks bi ∈ R and bj ∈ S with result set C, score bound θ
(i.e., k-th score in C), `R = b`i and `S = b`j . Second, assume that there is a join
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combination (r, s) with γ(r, s) > θ not produced by BA; where r is contained
in block bm from R and s is inside block bn from S.

The termination of BA implies that θ ≥ T = max{γ(hR, `S), γ(`R, hS)}.
So we have

γ(r, s) > θ ≥ γ(hR, `S) (1)

and
γ(r, s) > θ ≥ γ(`R, hS) (2)

Given Equation 1, as r.score ≤ hR, s.score ≥ `S = b`j must hold. Fur-
ther, since the input collections are sorted in descending order of the scores,
s.score ≥ b`j with s ∈ bn imply that n ≤ j. In a similar manner, we can
also deduce m ≤ i from Equation 2. In other words, BA should have accessed
blocks bm and bn before terminating, which means that BA did not produce
(r, s) due to either of the following:

(1) Block pair (bm, bn) was discarded, which is disproved by the correctness
of Lemma 5, or

(2) Procedure 3 missed object pair (r, s) while joining blocks bm, bn, which is
also disproved by the correctness of Lemma 6.

Therefore, BA should have found (r, s), which contradicts the original assump-
tion. ut

3.3 Instance Optimality

We analyze the performance of BA based on the notion of instance optimal-
ity defined by Fagin et al. [8]. We first introduce the necessary notation and
then establish BA’s instance optimality building upon the analysis of [37] for
relational rank joins.

Definition 1 (k-SDJoin Instance) An instance of the k-SDJoin problem
is an (R,S, ε, γ, k) tuple such that input collections R and S are accessed in
decreasing order of their score attribute, ε is a spatial distance join threshold,
γ is a monotone aggregate function, and 1 ≤ k ≤ |R ./ε S|.

Note that Definition 1 defines a rank join instance of two inputs and one
scoring attribute, similar to I2−rel∩I1−dim in [37], extended though to a spatial
distance join predicate dist(·, ·) ≤ ε.

Let A denote the class of deterministic rank join algorithms that solve a
k-SDJoin instance with a behavior determined only by (i) the size of the input
collections R and S, (ii) the objects r ∈ R and s ∈ S already examined by
the algorithm, and (iii) the values of the aggregate function γ(r, s) on pairs of
these objects. In other words, an algorithm in A operates solely based on the
knowledge it has from the objects accessed so far and it does not have any prior
knowledge about the objects of the input collections. The cost of applying an
algorithm A ∈ A is defined in terms of the number of objects accessed from
each collection, denoted by topkdepth(A,R) and topkdepth(A,S).
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Definition 2 (Access Cost) Given a k-SDJoin instance (R,S, ε, γ, k) and
an algorithm A, the access cost of A equals the total number of objects accessed
from R and S:

acost(A,R, S) = topkdepth(A,R) + topkdepth(A,S)

In [37], HRJN∗/PBRJ∗c is proven to be instance optimal within the class
of algorithms A with an optimality ratio of 2, for all instances of relational
rank joins with equality join predicate. This finding can be straightforwardly
extended for k-SDJoin and thus, SFA is also instance optimal within class A
with an optimality ratio of 2, i.e., there exists a constant c, such that for any
top-k join instance and any A ∈ A:

acost(SFA, R, S) ≤ 2 · acost(A,R, S) + c

Finally, we establish the optimality of BA. Schnaitter and Polyzotis in [37]
present a variant of the PBRJ framework where a block of objects, instead of a
single object, at a time, is accessed from the input collections; in Section 7.2,
we discuss how BA differs from previous block-based methods including the
block variant of PBRJ. In this setup, the cost of applying a deterministic rank
join algorithm A is defined with respect to the total number of accessed blocks.

Definition 3 (Block Access Cost) Given a k-SDJoin instance (R,S, ε, γ, k)
and an algorithm A, the block access cost of applying A equals the total number
of λ sized blocks accessed from R and S:

bacost(A,R, S) =

⌈
topkdepth(A,R)

λ

⌉
+

⌈
topkdepth(A,S)

λ

⌉
The instance optimality analysis conducted in [37] for HRJN∗/PBRJ∗c , and
thus, also for SFA in case of k-SDJoin, can be directly extended to the bacost

metric in place of acost since the block variant of SFA processes an object
similar to the original method. In practice, BA extends and optimizes the
block variant of SFA with the purpose of reducing the computational cost of
k-SDJoin while employing the same bound scheme to determine termination
threshold T and the same pulling strategy. Thus, similar to the block variant
of SFA, BA is instance optimal within the class of deterministic ranked join
algorithms A for all k-SDJoin instances of Definition 1.

3.4 Discussion

Complexity. Evaluating k-SDJoin queries with BA is dominated by the tasks
of indexing blocks and performing block-joins. As shown in Section 6.2, the
accessing cost is several times lower than the computational cost, and so our
complexity discussion here focuses on the indexing and the block-join costs. 5

5 We briefly discuss the cost of automatically determining block size λ in the next section.
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In the worst case, BA needs to index all |R|λ blocks from input R and all |S|λ
from S. The indexing cost for a block is dominated by the O(λ · logλ) cost for
sorting its contents; hence, BA spends O((|R|+ |S|) · logλ) time for indexing,
overall. On the other hand, in the worst case when no pruning is effective, BA

has to evaluate every possible block-join, i.e., |R|λ ·
|S|
λ block-joins in total, each

of which costs O(λ2). Overall, BA spends O(|R| · |S|) time for joining.

Comparison to SFA. Despite the resemblance, BA has two major advantages
over SFA. First, performing joins at the block level is more efficient because
(i) each block of objects is indexed only once and efficiently, in a bulk-loading
manner, instead of iteratively inserting objects as in SFA, and (ii) the aR-
tree of a given block can be used for multiple block-level joins. Second, in
BA, the current block is joined only with a small number of blocks from the
other collection (thanks to the block bound based pruning), while in SFA the
current object is probed against all buffered objects. This is critical as the
costs of maintaining and querying an aR-tree depend on its size.

Multiple Scoring Attributes per Input. In this case, the objects of each
input, e.g., r ∈ R, are accessed in order of their aggregate score bound γ(r),
defined by applying γ on r’s scoring attributes while setting the attributes of
input S to their maximum value. BA can be directly applied in this setup,
but it is no longer instance optimal similar to the case of relational rank joins
studied in [37]. This is because of using the corner bounding scheme for ter-
mination threshold T (similar to HRJN∗/PBRJ∗c). BA extends and optimizes
PBRJ for k-SDJoin in an orthogonal direction and hence, we can employ the
FR∗ bound scheme for determining a tight threshold T and the PA pulling
strategy of the FRPA algorithm from [10] to provide both an instance optimal
and a computationally efficient evaluation method for k-SDJoin with multiple
scoring attributes. Note that FRPA corresponds to the PBRJPAFR∗ specializa-
tion of the PBRJ framework.

4 Models

An issue that remains open is how to determine an appropriate block size λ for
BA. Intuitively, there exists a trade-off between the response time of BA and
its block size: small λ values incur a high overhead in the indexing cost, and
hence, BA benefits less from the block-wise join evaluation; while with a large
λ, BA resembles an improved but still inefficient version of DFA, which over-
computes unnecessary part of the spatial ε-distance join R ./ε S. Selecting λ
for BA is an important yet challenging task, which is highly dependent on the
employed indexing structures, data distribution, etc. In Section 4.1, we model
automatic block size tuning as an optimization problem. Then, in Section 4.2,
we propose a novel model for estimating the number of objects to be accessed
from each input collection which as shown in Section 6 enhances the accuracy
of our model for selecting block size λ.
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4.1 Selecting Block Size for BA

The optimal block size minimizes the computational cost of BA, captured by
the objective cost function:

C(λ) = |Nindex(λ)| · Cindex(λ) + |Njoin(λ)| · Cjoin(λ) (3)

Intuitively, the |Nindex(λ)|·Cindex(λ) part of the C(λ) objective function equals
the overall indexing cost for BA with |Nindex(λ)| being the total number of
indexed blocks from the input collections, and Cindex(λ) being the cost of
indexing a block. The |Njoin(λ)| · Cjoin(λ) part equals the overall joining cost
for BA with |Njoin(λ)| being the total number of block-level joins performed,
and Cjoin(λ) being the cost of joining two blocks. In what follows, we elaborate
on each factor of the C(λ) objective function and then discuss how the value
of λ that minimizes C(λ), can be estimated.

Regarding Cindex(λ) and Cjoin(λ), both costs are determined by how a
block-level join is implemented. Under the aR-tree based evaluation of BA,
the indexing cost is dominated by the cost of sorting a block to bulk-load its
aR-tree, i.e., Cindex(λ) = α1 · λ · log λ+ α2, while the joining cost for two aR-
trees is quadratic to the block size λ, i.e., Cjoin(λ) = α3 ·λ2 +α4. In Section 6,
we derive α1, α2, α3, α4 by conducting a series of tests varying λ, and then,
employing regression analysis over the collected (λ, Cindex(λ)) and (λ, Cjoin(λ))
values.

Next, we consider |Nindex(λ)|. Let dR and dS be the total number of objects
examined from each input by SFA (also known as the top-k depth for collections
R and S). As BA and SFA employ the same bounding scheme to define the
termination threshold T , BA terminates after accessing blocks bRddR/λe and
bSddS/λe . Hence, BA will index in total

|Nindex(λ)| = ddR/λe+ ddS/λe (4)

blocks. Last, to determine the total number |Njoin(λ)| of block-level joins by
BA we adopt any-k depth cR, cS introduced in [15] as the minimum number
of objects examined from each input to identify the first k candidate pairs.
These first k pairs are not necessarily among the final k-SDJoin results, and by
definition cR ≤ dR and cS ≤ dS . With any-k depths cR and cS , the execution
of BA is divided in two parts.

First, until blocks bRdcR/λe and bSdcS/λe are accessed, BA cannot employ

the γ(buRi , b
u
Sj

) ≤ θ pruning because less than k candidate pairs are found and

threshold θ (i.e., the aggregate score of the current k-th best candidate is not
defined. Thus, all dcR/λe · dcS/λe block-level joins are to be computed. Sec-
ond, after blocks bRdcR/λe and bSdcS/λe are accessed, threshold θ = γ(rcR , scS )

and the γ(buRi , b
u
Sj

) ≤ θ pruning can be applied.6 To approximate the to-
tal number of block-level joins that qualify the pruning criterion, denoted by
|N cR,cS→dR,dS

join (λ)|, we need to estimate (i) the score of the rcR , scS objects

6 We denote by rcR and scS the cR and cS-th objects in the sorted inputs, respectively.
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Fig. 5 Score histograms for the collections in Figure 2.

to define threshold θ, and (ii) the upper score bound of every block, i.e., the
score of its very first object in the block. Then, without loss of generality,
fix a block bR from collection R. We consider every bS block of S in between
bdscSλe and bddS/λe; |N

cR,cS→dR,dS
join (λ)| is increased by one for each block bS

with γ(buR, b
u
S) > θ denoting that BA will perform the bR ./ε bS spatial ε-

distance block-level join.
Last, to address points (i) and (ii), we employ histogram statistics from the

inputs; equi-width histograms HR and HS summarize the score distributions
in collections R and S, respectively. Unlike the expensive multi-dimensional
histograms in [7,38], 1-dimensional HR, HS can be derived with low cost from
the collections based on an independence assumption or via sampling. Note
that in case the inputs are not pre-sorted on their score attribute (as required
by BA), histograms HR and HS can be computed during the sorting process.
Figure 5 illustratesHR andHS score histograms for the collections in Figure 2.
A single pass over HR suffices to identify which interval contains the score of
an object ri. Then, without loss of generality, we set the score of ri to the
upper bound of the score interval.

Example 4 Consider for instance HR in Figure 5(a) and assume that we want
to estimate the upper score bound of block bR2 in Figure 4 with λ = 2. By
definition, buR2

equals the score of the first object in bR2 , i.e., r3. The objects
in R are sorted in decreasing order of their scoring attribute, and so, r3 is
the 3rd object of collection R. As score intervals (0.8, 1.0] and (0, 6, 0.8] in HR
contain 1 and 2 objects, respectively, the score of r3 should fall inside (0, 6, 0.8]
which gives an estimation of 0.8. �

Summing up, BA will perform

|Njoin(λ)| = dcR/λe · dcS/λe+ |N cR,cS→dR,dS
join (λ)| (5)

block-level joins, in total.
With the objective cost function C(λ) defined using Equations (3)–(5), we

now focus on estimating the λ value that minimizes C(λ). Following the def-
inition of top-k depth, a block should contain at most max{dR, dS} objects
since no more than dR, dS objects are examined from the collections. To ef-
ficiently determine a good value for λ inside [1,max{dR, dS}], we employ the



22 Shuyao Qi, et al.

Fig. 6 Example of the golden section search.

golden section search technique [17]. The golden section search is an efficient
way to progressively narrow the range that contains the minimum of a func-
tion. Figure 6 exemplifies the procedure of determining the minimum λopt for
C(λ), operating in a divide-and-conquer manner; note that λopt is initially con-
tained inside interval [1,max{dR, dS}]. At each follow up iteration, the search
considers a triple of λ values; the current [λ`, λu] interval which contains λopt
and a split point λx ∈ [λ`, λu], determined such that the distances between
values λ`, λx and λu follow the golden ratio (hence the name of the method),

i.e., λu−λx
λx−λ` = φ = 1+

√
5

2 . We then determine a second split point λy (again

following the golden ratio) which according to the search strategy should lie
inside the largest between [λ`, λx] and [λx, λu]; in our example, [λ`, λx]. Since
C(λy) < C(λ`), the next iteration of the search should consider interval [λ`, λx]
and λy as the split point. The search terminates when |λx−λy| is smaller than

a preset threshold, and λest =
λx+λy

2 is returned as the estimated λ. The time
complexity of the golden section search is O(log(max{dR, dS})); in practice,
our experiments have clearly shown that the overall cost of determining block
size λ is negligible compared to the indexing and joining costs involved in BA.

4.2 Estimating any-k and top-k Depths

Next, we discuss how depths cR, dR, cS , dS are estimated. One option is to
adopt the model proposed in [15] for relational rank joins (note that in the
absence of multi-dimensional statistics, the model in [38] operates similar to
[15]). Specifically, assuming that cR · cS · σ ≈ k, any-k depths are set to cR =
cS =

√
k/σ, where σ is the join selectivity of the input collections (computed

via sampling), and top-k depths are set to dR = dS = 2 · cR = 2 ·
√
k/σ.

This model however is of limited applicability; both the join and the scoring
attribute need to follow a uniform distribution while there should exist no
correlation between these two attributes. First, with a uniformly distributed
join attribute a good estimation for join selectivity σ is achieved via sampling
and thus, also a good estimation of any-k depths cR, cS . Second, a uniformly
distributed scoring attribute is required for estimating dR, dS as twice the any-
k depth. In practice, however, either of these assumptions may not hold for
k-SDJoin. For instance, as pointed out even in [15], in a hierarchy of joins where
the output of one top-k join operator serves as input to another, the score
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distributions of higher level joins tend to be normal. Formulas for computing
cR, cS , dR, dS for the high level joins were provided, but the model in [15]
still requires knowledge of the hierarchy and the distribution of both join and
scoring attributes. Further, our analysis in Section 6 on real collections showed
that a correlation between the spatial location and the scoring attribute may
exist. For example hotels located close to important landmarks are usually
assigned higher scores compared to the rest. Last, this model sets cR = cS and
dR = dS , which in practice, rarely holds even if |R| = |S|.

To overcome these limitations, we devise a novel model for any-k and top-
k depths which uses cheap-to-compute and maintain statistics, and is able
to better cope with the special characteristics of the inputs. In Section 6, we
show the superiority of our model over [15]. We first discuss any-k depths. Our
analysis on real data showed that cR, cS are determined by the join selectivity
for the upper part of the sorted inputs, i.e., the highly scored objects, and
usually differs from the join selectivity of the entire collections. Hence, the
idea behind our approach is to repeatedly sample the upper part of the input
collections and compute their join selectivity until for the potential number
of join results denoted by k′, k ≤ k′ ≤ δ · k holds (k is the number of desired
results for top-k join and δ is a tuning parameter to avoid k′�k). We initially
focus on the first tR and tS objects from R and S, respectively, and estimate
their join selectivity σt via sampling. To initialize tuning parameters tR, tS ,
we use the following simple heuristic; the initial values are set such that the
tR : tS ratio follows the |R| : |S| ratio for the input cardinalities. Based on the
potential number of results k′ = tR ·tS ·σt, we distinguish between two cases. If
k′ < k, we need to join a larger part of the inputs to find the first k candidate
pairs, i.e., cR > tR and cS > tS , and so, we repeat the process increasing tR,
tS by ξ+ times. Otherwise if k′ > δ · k, although we have enough join results,
we repeat the process decreasing tR, tS by ξ− times to better estimate cR, cS
(tuning parameters ξ+, ξ− are selected such that ξ+>1>ξ−>0). The above
process terminates when k ≤ k′ ≤ δ · k, and cR, cS are set to current tR, tS ,
respectively. Regarding the initial values tR, tS , even when cR : cS 6= |R| : |S|
holds, our simple initialization heuristic still allows our model to converge to
different values of cR, cS which are very close to the real values, as shown in
Section 6. Note that the problem of estimating the join selectivity is essentially
orthogonal to our study; for example methods such as [2,9] can be used, but
for matters of simplicity and generality we choose to employ sampling. Overall,
the cost of estimating any-k depths cR, cS is O(n ·ψ2 · cR · cS), where ψ is our
sampling ratio and n is the number of joins computed on samples.

Finally, to estimate top-k depths dR, dS , we employ threshold θ = γ(rcR , scS )
defined after accessing blocks bRdcR/λe and bSdcS/λe . Specifically, dR equals the
number of objects in input R whose aggregate score γ with the highest scored
object in S, i.e., s1, is higher than θ:

dR = |{ri ∈ R : γ(ri, s1) > θ}|, dS = |{sj ∈ S : γ(r1, sj) > θ}| (6)

To evaluate Equation (4) we employ again the HR and HS score histograms.
For simplicity, we focus on dR. The goal is to find the last record ri in R with
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γ(ri, s1) > θ. Given threshold θ = γ(rcR , scS ) and the score of s1, we first
deduce a lower bound ψR for the score of such an object ri, and then identify
the score interval of HR that contains ψR. With this interval, we also get how
many intervals involve scores higher than ψR and hence, how many objects in
collection R have a score higher than ψR, i.e., top-k depth dR, as the aggregate
score of these objects with s1 is by definition higher than θ. Overall, the cost
of estimating top-k depths dR, dS is linear to the number of buckets inside
score histograms HR, HS .

Example 5 Consider Figure 5 and assume that we have already estimated
any-k depths cR = cS = 2. With monotone aggregate function γ = SUM , we
have threshold θ = γ(rcR , scS ) = SUM(0.8, 0.8) = 1.6. Hence, in order for
an object ri to have an aggregate score with s1 higher than θ, i.e., γ(ri, s1) =
γ(ri, 0.9) > 1.6, its score needs to be higher than ψR = 0.7. According to HR,
score bound ψR falls inside interval (0.6, 0.8]. Assuming again that all objects
whose score falls inside (0.6, 0.8] have a score equal to the upper bound 0.8,
collection R contains approximately 3 objects with score higher than ψR, i.e.,
2 from interval (0.6, 0.8] and 1 from (0.8, 1.0], and thus, we set dR = 3. �

5 The Case of Multiple Inputs

In the previous sections, we focused solely on a binary k-SDJoin operator.
We next discuss how BA handles the case of multiple input collections; note
that similar ideas can be employed for SFA, and DFA in the presence of special
optimizations which allow us to incrementally produce join results. Essentially,
there exist two approaches for evaluating a k-SDJoin with more than two
inputs. The first approach is to treat all inputs in a multi-way join fashion
(similar to relational rank joins discussed in [37]); a multi-way variant of BA
accesses the next block bi of λ objects from input Ri with γ({buRj |j 6= i}, b`Ri) >
maxj 6=i γ(b`Rj , {b

u
Rj′
|j′ 6= j}), and joins bi with the buffered blocks from all

other inputs. The second approach (similar to [14,20]) is to form a hierarchy
of k-SDJoin binary operators; in what follows, we elaborate on this approach.

Without loss of generality, we assume that two k-SDJoin operators are
applied on three inputs R1, R2 and R3; Figure 7 presents an execution plan for
this query. The evaluation is driven by the top level k-SDJoin operator which
incrementally joins R3 with the intermediate results of R1,2 = R1 ./ε R2,
i.e., object pairs from R1,2 are generated on-demand in decreasing order of
their aggregate score and pipelined to the top level operator. In practice, the
k-SDJoin between R1 and R2 is implemented as a GetNextBlock iterator which
pipelines the next λ object pairs. For the top-level k-SDJoin between R1,2 with
R3 we can directly apply Algorithm 3 and implement Join as in Procedure 3,
but for joining R1 with R2, we need to define an incremental variant of BA
(for simplicity denoted by incBA). Essentially, incBA progressively produces
the results of the R1 ./ε R2 join sorted by their aggregate score, in blocks of
λ objects; note that in practice, we do not need to fully compute R1 ./ε R2
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Fig. 7 Example of a 2-level execution plan for k-SDJoin on collections R1, R2, R3.

due to the termination condition of the top-level k-SDJoin operator which
consumes the R1,2 blocks. In this spirit, incBA defines and employs the T =
max{γ(hR, `S), γ(`R, hS)} termination threshold of Lines 12–14, Algorithm 3
in order to stop after producing the next λ objects, but cannot exploit the
γ(bui , b

u
j ) > θ block-join pruning (Line 10, Algorithm 3) and the γ(e′R, e

′
S) > θ

or distL(e′R, e
′
S) > ε aR-tree based pruning (Line 10, Procedure 3) in order to

ensure correctness.

A second challenge relates to the automatic selection of the block size
for the involved k-SDJoin operators. Consider again the query with inputs
R1, R2 and R3 and k-SDJoin’s execution plan in Figure 7. As discussed in
Sections 4.1 and 4.2, the process of selecting an appropriate block size relies
on estimating any-k and top-k depths from the input collections and hence
also on the number of required results k and on sampling the upper part of
sorted inputs. Under this, our model from Section 4 is not directly applicable
in either of the k-SDJoin operators of Figure 7. In particular, for the top-level
operator, the object pairs from R1,2 are incrementally produced which means
that theH1,2 histogram is not available in advance and sampling is limited. On
the other hand, for the bottom-level k-SDJoin, the number of required results
is unknown as the GetNextBlock iterator may be called multiple times. But,
we can address the above issues in a progressive manner, as follows.

Initially, we set the λ block size for the top-level k-SDJoin equal to a
predefined tuning parameter λ0. This initialization will allow us to call the
GetNextBlock iterator of the bottom-level k-SDJoin for the first time. Intu-
itively, the incBA will evaluate a λ0-SDJoin with R1 and R2 as inputs, thus
our model for binary k-SDJoin will now be able to automatically select a λ′

block size for this operator. With the first λ0 object pairs pipelined to BA
of the top-level k-SDJoin, we can now sample R3 and current R1,2, compute
any-k depths c3, c1,2 and top-k depths d3, d1,2, and appropriately update λ.
Regarding the required H1,2 histogram we identify two options; we can either
combine H1 and H2 with respect to the aggregate function γ, e.g., as in [19], or
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build it using current version of R1,2; this issue is left for future investigation.
Finally, at the top-level k-SDJoin, after BA finishes examining the first block
of λ0 object pairs, a new call on the GetNextBlock iterator of the bottom-level
k-SDJoin is issued demanding the next λ results from R1,2, i.e., based on the
updated block size for the top-level k-SDJoin. This process is repeated until
the termination condition on the top-level for the k required results is met.
Note that at each round, our depth estimation and block size selection models
will be able to improve c1, c2, d1, d2, c1,2, d1,2, c3, d3 and λ′, λ, respectively, and
hence, accelerate the overall evaluation of the query.

6 Experimental Evaluation

In this sections, we present an experimental evaluation of our techniques for
k-SDJoin. Section 6.1 details the setup of our analysis. Section 6.2 justifies
our focus on the efficient, in terms of CPU cost, k-SDJoin evaluation while
Section 6.3 our decision to use aR-tree as the indexing structure. Sections 6.4
and 6.5 demonstrate the effectiveness of our models for any-k / top-k depths,
and for selecting block size λ in BA, respectively. Section 6.6 conducts an
extensive comparison of the SFA, DFA and BA algorithms. All methods were
implemented in C++ and the tests run on a 2.3 GHz Intel Core i7 CPU with
8GB of RAM.

6.1 Experimental Setup

Our analysis involves both real-world and synthetic datasets. Regarding the
former, we used a collection of 645K hotels from Booking.com denoted by
HOTELS, and a set of 481K restaurants from TripAdvisor.com denoted by
RESTS. Join attribute loc stores the location of an object (hotel or restaurant)
in the 2-dimensional space and attribute score is the average user rating. For
the rest of this analysis, we denote this test by HOTELS-RESTS. We also
used collections of real spatial locations with synthetic scores. Specifically,
FLICKR contains 1.7M locations associated with photographs in the city of
London from Flickr.com, while ISLES is a collection of 20M POIs in the area
of the British Isles from OpenStreetMap.org. For our tests, each of the above
collections (with generated scores) is split into two disjoint partitions to avoid
result pairs involving the same object.

To generate scores for FLICKR and ISLES, we analyzed the real-world
datasets resulting in two observations. First, object scores usually follow a
normal distribution, as shown in Figure 8(a) for hotels in Paris from TripAd-
visor.com. Second, a correlation between join attributes and scores may exist.
In Figure 8(b), the rating of a hotel is denoted by how dark its red marker
is. Most of the highly rated hotels are close to each other, and conveniently
located next to an important landmark of Paris, the River Seine. Under these
observations, we distinguish between attribute score of type IND and CORR;
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Table 2 Experimental parameters.

description parameter values default value

Join selectivity ε 0.0001, 0.0005, 0.001, 0.005, 0.01 0.001
Number of results k 1, 5, 10, 50, 100 10
Number of seeds |Σ| 10, 20, 50, 100 20
(CORR)
Number of objects |R|+ |S| 2.5, 5, 10, 20 10
(×1,000,000)
Cardinality ratio |R| : |S| 1, 2, 3, 4, 5 1

similar to [41]. For IND, score values are normally distributed inside the [0, 1]
interval and independent to the values of the join attribute loc. In contrast,
for CORR, we first randomly generate |Σ| seeds, and assign to each of them a
score uniformly distributed inside the [0, 0.8] interval. The generated objects
are divided into |Σ| clusters based on their spatial distance to the seeds and
the score of each object equals the score of its closest seed plus a noise normally
distributed inside [0, 0.2].

To assess the performance of SFA, DFA and BA, we measure their response
time for γ = SUM (note that our analysis can be directly extended to any
monotone aggregate function), including any indexing and/or sorting costs,
while varying: (i) the join selectivity, captured by distance threshold ε, (ii) the
number of requested results k, and (iii) the number of seeds |Σ| for synthetic
collections of CORR scores. We also perform scalability and cardinality tests
over subsets of the synthetic collections varying parameters |R|+ |S| and |R| :
|S|. Table 2 summarizes all parameters involved in our study. On each test,
we vary one parameter; the rest are set to their default value. Note that as the
value of |Σ| increases the score generator produces more independent and less
correlated scores; for |Σ| = 100, the generated scores are uniformly distributed.
Last, also note that both the input collections and their created aR-trees (with
a 4KB page size) are stored in main memory. In Section 6.7, we discuss how
our analysis can be extended when all involved data do not entirely fit inside
the available main memory.

6.2 Focus on Computational Cost

We first justify our decision to focus on CPU efficient k-SDJoin evaluation,
instead of minimizing the object accesses from the input collections, which
has been the primary target of previous studies for relational rank joins. For
this purpose, we assume that inputs R and S reside on disk, already sorted
in decreasing order of their scoring attribute score, and SFA gradually ac-
cesses their objects to evaluate k-SDJoin queries. To calculate the number of
I/Os incurred by SFA, we consider a 16KB page (typical for modern database
systems) and the worst case scenario of performing only random accesses. To
measure the access cost of SFA, we charge 10ms for each page access (corre-
sponding to a 7200rpm HDD). Table 3 reports the number of I/Os, the access
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Fig. 8 Hotels in Paris from TripAdvisor.com.

and the CPU cost of SFA to compute k-SDJoin. The test clearly shows that
CPU cost overshadows access cost, being up to an order of magnitude higher;
an exception arises when the number of accessed objects is small, e.g., FLICKR
with IND scores. Note that in practice access cost can be even less important
as some pages are sequentially accessed (e.g. data prefetching [40]) or modern
disk hardware (e.g., SSDs) is used.

6.3 Selecting Index Structure for k-SDJoin

As discussed in Sections 2 and 3, although R-tree is the dominant indexing
structure for spatial data, SFA, DFA and BA, all employ the aR-tree for com-
puting k-SDJoin. In what follows, we justify this decision by comparing three
alternative implementations for the evaluation algorithms, termed:
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Table 3 Access and CPU cost of SFA (for default k, ε).

collection score number access cost CPU cost
type of I/Os (seconds) (seconds)

HOTELS-RESTS – 44 0.44 1.48

FLICKR
IND 2 0.02 0.02

CORR 128 1.28 3.13

ISLES
IND 9 0.09 0.19

CORR 704 7.04 29.16
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Fig. 9 Comparison of SFA alternatives: scoring attributes of type IND & CORR and ISLES.

1. the aR-tree, presented in Sections 2 and 3;
2. the R-tree, which uses R-trees instead of aR-trees to index the spatial join

attribute loc.
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Fig. 10 Comparison of DFA alternatives: scoring attributes of type IND & CORR and
ISLES (Log-Scaled).

3. the No-Index, which performs a scan against the buffered objects in case
of SFA, while sorts the objects and applies a spatial plane sweep join tech-
nique in case of DFA and BA.

Figure 9 reports the response time of SFA alternatives in case of IND and
CORR scoring attributes on ISLES, while varying the ε, k and |Σ| parameters.
We observe that the aR-tree alternative outperforms the other two as it is
able to prune object pairs in terms of both their spatial distance and their
aggregate scores. We also observe that the behaviour of the R-tree alternative
differs when increasing ε on IND or CORR scoring types. The reason is the
following. As ε increases, more object pairs qualify the spatial ε-distance join
predicate. Since the objects are sorted in descending order of their scores, a
smaller number of pairs needs to be examined. However, the increase of ε also
incurs a higher cost for the range queries performed by the R-tree alternative.
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Fig. 11 Comparison of BA alternatives: scoring attributes of type IND & CORR and
ISLES.

The effect of this cost is more obvious in case of CORR scoring attributes
compared to IND because an overall larger number of object pairs needs to be
examined. Another important observation is that the response time of the aR-
tree alternative is less affected by the varying parameters, due to its ability
to prune more object pairs. Finally, with the usage of more seeds for score
generation, i.e., increase of |Σ|, the response time of all alternatives decreases
since more object pairs have high aggregate scores.

Figure 10 reports the response time for a similar test on DFA. As expected,
the aR-tree implementation always outperforms the other alternatives, in some
cases for more than two orders of magnitude. This is due to the fact that the
R-tree and No-Index alternatives primarily focus on the spatial predicate of
k-SDJoin, and cannot fully employ the pruning power of bound θ and termina-
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Table 4 Estimation of any-k depths cR and cS .

collection score |R| : |S| depth real [15] our model
type values

HOTELS-RESTS – 4 : 3
cR 34,215 17,454 35,869
cS 28,461 17,454 26,749

ISLES IND

1 : 1
cR 322 262 435
cS 322 262 435

2 : 1
cR 431 283 367
cS 256 283 185

3 : 1
cR 479 304 540
cS 215 304 180

4 : 1
cR 666 308 772
cS 269 308 194

5 : 1
cR 837 327 920
cS 222 327 185

ISLES CORR

1 : 1
cR 348,295 262 300,038
cS 348,295 262 300,038

2 : 1
cR 570,376 283 551,177
cS 292,987 283 276,664

3 : 1
cR 683,732 304 671,374
cS 250,690 304 223,033

4 : 1
cR 765,469 308 792,565
cS 226,945 308 198,184

5 : 1
cR 905,738 327 886,609
cS 186,265 327 177,105

tion threshold T . On the other hand, due to its ability to use the score bounds
and θ, T , the aR-tree based implementation not only outperforms the other
two alternatives, but it is also very little affected by the increase of ε. In fact,
the overall cost of the aR-tree implementation is dominated by the indexing
time (over 95%). We also observe that all DFA alternatives perform similar on
IND and CORR scoring types and are oblivious to both the number of results
k and of seeds |Σ|; for the aR-tree alternative, this is because the response
time is dominated by indexing cost, while for the R-tree and No-Index alter-
natives, this is because of primarily focusing on the spatial joining component
of the queries.

Finally, we also experiment with the three alternatives for BA. The results
reported in Figure 11 confirm the bounding and pruning advantages of the
aR-tree evaluation compared to the R-tree and No-Index alternatives when
the join involves blocks of objects.

6.4 Estimating any-k and top-k Depths

We next study the effectiveness of our model for any-k and top-k depths
(Section 4.2). Tables 4 and 5 report the estimated values of cR, cS , dR, dS
for default ε, k, |Σ|, |R|+ |S| while varying |R| : |S|. For illustration purposes,
we present only the results of our tests on the ISLES collections for both IND
and CORR scoring attributes; similar observations are drawn for FLICKR.
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Table 5 Estimation of top-k depths dR and dS .

collection score |R| : |S| depth real [15] our model
type values

HOTELS-RESTS – 4 : 3
dR 50,271 34,908 50,271
dS 27,886 34,908 26,114

ISLES IND

1 : 1
dR 5,050 523 5,653
dS 6,319 523 7,208

2 : 1
dR 7,279 566 6,482
dS 5,150 566 3,551

3 : 1
dR 8,552 608 8,773
dS 4,982 608 4,569

4 : 1
dR 13,245 617 12,485
dS 4,994 617 3,697

5 : 1
dR 17,856 654 17,813
dS 3,941 654 2,567

ISLES CORR

1 : 1
dR 465,531 523 468,544
dS 495,041 523 470,963

2 : 1
dR 849,155 566 756,636
dS 415,484 566 407,091

3 : 1
dR 909,964 608 922,063
dS 339,361 608 308,974

4 : 1
dR 1,214,600 616 1,138,258
dS 314,421 616 303,024

5 : 1
dR 1,128,750 654 1,311,250
dS 244,226 654 254,108

When objects are assigned IND scoring attributes, any-k depth values are
solely related to the join selectivity of the input collections. Yet, the model of
[15] which always sets cR = cS , manages to accurately estimate any-k depths
only if |R| = |S|; in fact, notice how little the estimated values change while
varying the |R| : |S| ratio. In contrast, our model is able to cope with the
increase of the cardinalities ratio and accurately estimate cR, cS . Overall, the
average relative estimation error for [15] is 34% while for our model is 21%. On
the other hand, the top-k depth values are also related to the score distribution,
besides the join selectivity. As a result, the model of [15] cannot deliver good
results unless the scoring attribute follows a uniform distribution and/or prior
knowledge. Overall, the estimation of the [15] model has an 90% relative error
over the real values, while our model only 15%.

In case of CORR scores, the model of [15] is even less accurate. The es-
timated cR, cS , dR, dS values are orders of magnitude off the real values On
average, the relative error introduced by [15] in CORR is 100% for both cR, cS
and dR, dS , while by our model is only 7% and 6%, respectively. Different from
IND, with objects assigned CORR scores, a large part of the inputs is accessed
for a k-SDJoin query since similar objects may have similar individual scores
which also results in high aggregate scores. The model in [15] is unable to
capture this behavior and, so, the estimated values of any-k and top-k depths
are almost identical for both IND and CORR.

Lastly, for the HOTELS-RESTS real dataset, the model of [15] always
performs worse than ours, due to the correlation property of real-world ratings
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Fig. 12 Response time of BA varying λ.

as we discussed in Section 6.1. Specifically, the relative error introduced by [15]
is 44% for cR, cS and 28% for dR, dS , while by our model is only 5% and 3%,
respectively.

6.5 Estimating the Optimal Block Size

To investigate the accuracy of our model for estimating the optimal block size,
we run BA varying the λ value inside the [1,max{dr, dS}] interval. Figure 12
reports the response time of BA for both real-world and synthetic datasets;
in order to clearly demonstrate the effect of tuning λ, note that the reported
time in these figures does not include the cost of sorting the inputs by their
scoring attribute. To make the figures readable and clear we only show the time
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Fig. 13 Comparison of SFA, DFA and BA algorithms on scoring attributes of type IND.

around the optimal value λopt of block size and mark value λest estimated by
our model. Our experiments reveal the trade-off between the response time of
BA and the value of λ. Recall that for λ = 1 BA operates similar to SFA but
as the block size increases towards λopt the algorithm increasingly benefits
from the block-wise evaluation. However, when λ increases beyond optimal
value λopt, BA becomes less efficient as it resembles an improved version of
DFA which computes an increasing larger part of the spatial ε-distance join
R ./ε S join. Although our model is not able to find the exact λopt, the figures
show that employing λest the execution time of BA for IND and CORR score
types, and for the real dataset increases only 2%, 4% and 5% on average,
respectively. Note that this estimation procedure is very fast; our experiments
show that the time spend to compute λest corresponds to only the 1% of the
total response time of BA, on average.

Finally, we also experimented combining the model in [15] for cR, cS , dR
and dS with our model for estimating optimal block size. In this case the
average relative increase in the execution time of BA was 5% for IND but
19% for the real datasets and 723% for CORR, indicating that an accurate
estimation of depths is critical for selecting a good value of λ.
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Fig. 14 Comparison of SFA, DFA and BA algorithms on scoring attributes of type CORR.

6.6 Comparison of the Evaluation Algorithms

We next compare BA against SFA and DFA. 13 reports their response time for
k-SDJoin in case of IND scoring attributes while reducing the join selectivity
(i.e., increasing ε) and varying k. Similarly, Figure 14 reports the response
times in case of CORR scores while also varying the number of seeds |Σ|. BA
outperforms both SFA and DFA, in all cases. The advantage of BA is more
significant for CORR scores compared to IND since larger parts of the input
collections need to be accessed for computing a k-SDJoin query. Notice also
that BA is more robust to the variation of the involved parameters compared
to SFA and DFA. To better understand the effect of varying the join selectivity
recall that k-SDJoin intuitively comes as a hybrid of a join and a top-k query,
which introduces an interesting trade-off. Specifically, while increasing ε, the
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Fig. 15 Real-world HOTELS-RESTS collections.

spatial ε-distance join component of the query becomes less selective and thus,
more expensive. However, as more object pairs qualify the join predicate, the
best k results can be now identified faster, sometimes even among the highly
ranked objects. In other words, the top-k component of the query becomes
cheaper. In what follows, we discuss in detail how varying the query selectivity
affects the response time of the evaluation methods.

Our tests are consistent with our preliminary analysis in [32]. Still, there
exist two important differences. First, the block size for BA is not set by
hand through repeated tests; instead, the model presented in Section 4.1 and
evaluated in Section 6.5 is used. Second, we also experiment with IND scores for
a more comprehensive study. We observe that BA is always the most efficient
method for k-SDJoin and is very robust to the variation of the ε, k and |Σ|
parameters. Due to examining the objects in decreasing order of their score,
both BA and SFA are positively affected by the decrease of the join selectivity
(i.e., the increase of ε), although the benefit is more significant for SFA. It
is also important to notice that SFA is faster than DFA for IND scores but
slower for CORR. This is because the insert and update strategy employed
by SFA to build the aR-trees over the already examined objects is in practice
slower compared to the bulk loading used by DFA and BA when a large part
of the collections needs to be accessed and indexed, i.e., the case of CORR
scoring attributes.

When increasing parameter k, we observe that all three algorithms are
negatively affected as they need to examine and compute the aggregate score
for a larger number of object pairs, which qualify the distance join predicate.
In other words, the algorithms compute a larger part of the R ./ε S join
result. The effect of k is more obvious for SFA due to primarily focusing on
the ranking component of k-SDJoin. In contrast, the algorithms are positively
affected by the increase of |Σ| for CORR scores. This is because the scoring
and the join attribute (i.e., the spatial location) become less correlated, similar
to the collections of IND scores.

We also compare BA against SFA and DFA on the real-world collections
of test HOTELS-RESTS while varying the number of results k and the join
selectivity (threshold ε). Figure 15 confirms our previous observations on the
synthetic datasets; BA always outperforms SFA and DFA.
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Finally, we conduct scalability and cardinality tests varying parameters
|R|+ |S|, |R| : |S| for ISLES with both IND and CORR scores; Figure 16 re-
ports the response time of the algorithms. We observe that (i) BA outperforms
SFA and DFA in all cases, with the advantage being more obvious for CORR
scores, and (ii) BA scales always better than DFA and in most of setups also
than SFA. This is because with larger datasets (on one side for the cardinality
tests or both sides for the scalability ones), it gets increasingly more expensive
for SFA to update the aR-tree indexes, and for DFA to build an index for the
full dataset. In those cases, the benefits of BA leveraging incremental accessing
and block-based indexing and pruning become more prominent.
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Fig. 16 Scalability and cardinality tests.

6.7 Discussion

As BA already operates in a block-wise fashion, the following three minor
changes are required when the available memory is limited. First, indices only
for the top blocks of the input collections are stored in main memory. These
blocks contain the highest scored objects and are the most frequently accessed
in practice. The remaining blocks are kept on disk and accessed only if neces-
sary. Second, to select a block size, at least two input blocks must fit inside the
available main memory. Third, the objective cost function C(λ) of Section 4.1
is extended to also consider the I/O cost for (i) reading the blocks, (ii) storing
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their indices, and (iii) joining them. Finally, SFA and DFA can be also ex-
tended to work as disk-based methods, using disk-based aR-tree for k-SDJoin.
However, since both algorithms use a single large aR-tree per input, additional
updating and accessing costs may incur.

7 Related Work

Finally, we review previous work on ranking queries, including top-k queries,
top-k joins (besides [14]), rank join depth estimation, and top-k joins on spatial
data. Last, we also briefly discuss previous work on spatial joins.

7.1 Top-k Queries

Fagin et al. [8] present an analytical study of various methods for top-k aggre-
gation of ranked inputs by monotone aggregate functions. Consider a collection
of objects (e.g., restaurants) which have scores (i.e., rankings) at two or more
different sources (e.g., different ranking websites). Given an aggregate function
γ (e.g., SUM) the top-k query returns the k restaurants with the highest ag-
gregated scores (from the different sources). Each source is assumed to provide
a sorted list of the objects according to their atomic scores there; requests for
random accesses of scores based on object identifiers may be also possible. For
the case where both sorted and random accesses are possible, the Threshold
Algorithm (TA) retrieves objects from the ranked inputs (e.g., in a round-
robin fashion) and a priority queue is used to organize the best k objects seen
so far. Let `i be the lowest seen score in source Si; T = γ(`1, ..., `m) defines
a lower bound for the aggregate score of objects never seen in any Si yet. If
the k-th highest aggregate score found so far is no less than T , the algorithm
is guaranteed to have found the top-k objects and terminates. For the case
where only sorted accesses are possible, [23] presents an optimized implemen-
tation of the No-Random accesses Algorithm (NRA), originally proposed also
in [8]. The top-k results are incrementally fetched based on their aggregate
scores. [43] presents a framework for top-k queries on top of relations having
multi-attribute indices. An index-merge paradigm is proposed to merge mul-
tiple index nodes progressively and selectively. Recently, there has also been
work that considers multiple attributes in top-k ranking criteria. For example,
[33] studies the semantic based spatial keyword querying, which finds the k
objects most similar to the query, subject to their spatial, textual and seman-
tic meaning properties. To this end, the authors propose hierarchical indexing
structures to integrate all types of involved information and devise appropriate
pruning techniques.



40 Shuyao Qi, et al.

7.2 Top-k Joins

Natsev et al. [25] first studied top-k join evaluation proposing multi-way join
operator J∗. Objects are accessed incrementally from the input streams (e.g.,
in round-robin) sorted by their scores. Partial join results are computed, and
at each step, the top partial combination is completed by filling the missing
values from the streams. J∗ incrementally outputs the top combinations in
the heap if they are complete join results. As a follow-up to [14], Li et al.
[20] applied HRJN∗ on multiple inputs with one or more scoring attributes
each. The rank join with multiple inputs and more than one scoring attributes
were also covered by PBRJ in [37]. As we discuss in Section 3.4, our BA can
directly employ [10] for multiple scoring attributes, while handle multiple in-
puts similar to [20] or [37]. Further, [7,41,36] addressed top-k joins where the
inputs originate from different physical locations. Wu et al. [41] model this
as a graph problem solved by a branch-and-bound algorithm that minimizes
the number of network accesses. In contrast, [7,36] determined the number of
objects to be accessed from each network input, through the depth estimation
procedure. Last, Ntarmos et al [27] studied top-k joins in NoSQL databases
employing statistical structures (similar to 2-dimensional histograms) to re-
duce object accesses in a distributed environment. In this paper, we focus on
the centralized scenario.

BA to previous work. In [37], the authors shortly discussed a variant of
PBRJ where a block of objects is accessed at a time, instead of a single ob-
ject. In practice however, this block-based variant significantly differs from our
BA. Although the objects are accessed in blocks, they are still processed one-
by-one as in the original HRJN∗ (and hence, also in SFA) and thus, current
object is still probed against all buffered objects. In contrast, current block
in BA is joined only with a small number of blocks from the other input.
Chakrabarti et al. [4] also discussed a block-based evaluation strategy in the
context of top-k keyword search where the join operator involves the inter-
section of compressed posting lists. The range of document ids is split into
intervals and an upper aggregate score bound is defined for each interval. List
intersection is performed at the interval level using score bounds to enable
interval-based pruning. Compared to BA, the work in [4] differs in two ways:
(i) it primarily focuses on minimizing the decompression cost for the posting
lists and (ii) the interval-based partitioning and join are strongly related to
the problem at hand, i.e., keyword search, and cannot be applied to other type
of join attributes and predicates such as k-SDJoin.

7.3 Rank Join Depth Estimation

Our work is also related to studies [7,15,20,38] on estimating the depth of rank
join operators, i.e., the number of objects accessed from each input. Compared
to our own study in Section 4.2, these works either make specific assumptions
about the objects or employ expensive statistics. Ilyas et al. [15] proposed
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a probability-based model assuming that the join and scoring attributes are
uniformly distributed and independent from each other. Li et al. [20] pro-
posed a sampling-based approach where the termination score is estimated by
a rank join on uniformly sampled data. Such a method usually overestimates
the depth, especially if both the number of results k and the sampling ra-
tio are small. Schnaitter et al. [38] addressed the above issues assuming that
the distributions of the scoring and the join attribute are known in advance,
and then used to determine the number of join results with a specific aggre-
gate score. To this end, the authors employ multi-dimensional histograms [31].
Similar statistics (2-dimensional histograms) are used in [7]. However, such ap-
proaches cannot be adopted for k-SDJoin as multi-dimensional histograms are
efficient to compute and accurate only for join attributes of small domains
and simple join predicates such as equality. Note that, in the absence of such
statistics, [38] assumes uniform and independent distributions similar to [15].

7.4 Spatial Top-k Joins

Previous work on top-k joins for spatial data significantly differs from our
k-SDJoin operator. Specifically, the “top-k spatial join” in [46] retrieves k
objects in collection R intersecting the maximum number of objects in S.
Thus, ranking is based on spatial intersections and not on the aggregation of
(non-spatial) scores as in k-SDJoin. Similarly, “top-k similarity join” in [18,
42] and “top-k spatio-textual similarity join” in [13] differ from a k-SDJoin,
as ranking is based on the similarity of join attributes. Last, “proximity rank
join” over objects that carry a feature vector and a scoring attribute in [24],
also differs from k-SDJoin as (i) it additionally involves a query object and (ii)
the ranking criterion combines the scoring attributes and the distance of the
objects to each other and to the query object.

To our knowledge, the only work closely related to k-SDJoin is [21], where
each object o (e.g., a biological cell) is assigned a set of probabilistic locations
and a confidence po for belonging to a specific cell class. The score of an (r, s)
pair is defined by their confidence probabilities pr, ps and the distance between
their uncertain locations. In contrast, the aggregate score function for k-SDJoin
does not involve the distance of the objects, but the distance is used as the
join predicate. Further, the solution proposed in [21] is of limited applicability
as it is bound to a specific aggregation function and can efficiently work only
with the L1 distance.

7.5 Spatial Joins

There has been ample research on spatial joins [16], due to their wide ap-
plicability and their high complexity compared to simpler operations such as
selections or nearest neighbor search. Most works focus on the evaluation of
spatial intersection joins, where the objective is to find pairs of objects from
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two input collections which share at least one common point in space. Early
research focused on developing algorithms for disk-based data which are either
raw [1,29] or indexed. More recently, the focus shifted to distributed and paral-
lel algorithms for spatial joins [34,44], as well as methods that take advantage
of the large memories in contemporary commodity hardware [26].

There exist two types of spatial distance join queries: the ε-distance and
the k-closest pairs join. Given two collections of spatial objects R and S the
ε-distance join identifies the object pairs (r, s) with r ∈ R, s ∈ S, such that
dist(r, s) ≤ ε. An ε-distance join can be processed similarly to a spatial in-
tersection join [3]. Specifically, assuming that each of the R and S collections
are indexed by an R-tree, the two R-trees are concurrently traversed by recur-
sively visiting pairs of entries (eR, eS) for which their MBRs have minimum
distance at most ε. Minimizing the cost of computing the distance between
an MBR and an object was studied in [5]. For non-indexed inputs, alternative
spatial join algorithms can be applied (e.g., the algorithm of [1] based on ex-
ternal sorting and plane sweep). The k-closest pairs join computes, from two
collections R and S, the k object pairs (r, s), r ∈ R, s ∈ S, with the min-
imum spatial distance dist(r, s). Two different approaches exist for k-closest
pairs. In the incremental approach [12,39] the results are reported one-by-one
in ascending order of their spatial distance. For non-incremental computation
of closest pairs, [6] extends the nearest neighbor algorithm of [35] achieving in
this way, minimum memory requirements and better access locality for tree
nodes.

8 Conclusions

In this paper, we introduced the top-k spatial distance join (k-SDJoin). For
its efficient evaluation, we first presented the Score-First (SFA) and Distance-
First (DFA) algorithms based on existing literature, which prioritize either the
score ranking or the spatial joining component of a k-SDJoin query, respec-
tively. Then, we proposed a novel evaluation method termed the Block-based
Algorithm (BA), which alleviates the weaknesses of SFA and DFA by operat-
ing in a block-wise fashion. We also devised a model to automatically select
an appropriate block size for BA, while as a side contribution, we proposed
a novel depth estimation model which considers arbitrary score distributions
and correlations between the score and the spatial location of the objects. We
optimized all three algorithms by employing aR-trees to allow both spatial
distance and score-based pruning. Our extensive experimental analysis on real
and synthetic data confirmed (i) the effectiveness of our automatic block size
tuning procedure, and (ii) the peformance superiority of BA over both SFA
and DFA.

In the future, we plan to investigate the efficient evaluation of k-SDJoin
in distributed environments and in the case of multiple inputs. As a different
direction, we also intend to study the application of the top-k join operator
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on other types of join attributes and predicates, e.g., overlap joins in temporal
databases or textual similarity joins.
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