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Abstract
Identifying topological relations between complex spatial objects,

such as polygons, is a fundamental problem with applications in

geo-spatial interlinking, spatial databases, image retrieval, and

more. The standard approach involves two steps: a filter step that

checks for overlapping minimum bounding rectangles (MBRs)

and a refinement step that computes the DE-9IM matrix to de-

termine the precise relationship between objects. We propose an

intermediate step that leverages precomputed raster represen-

tations of objects to reduce the need for costly DE-9IM matrix

computations. Experimental results show that our method im-

proves throughput by an order of magnitude for object pairs

passing the MBR filter. More importantly, our approach scales

efficiently, with its effectiveness increasing as object complexity

grows.

1 Introduction
Topological relations between geometrical objects, illustrated in

Figure 1(a) capture semantics that are unaffected by transforma-

tions of the data space, such as translation, rotation, and scaling.

In GIS [9], they can be used in urban and transportation planning

[18]. In environmental studies, detecting topological relations on

climate, sustainability, and energy data (such as data offered by

the European Environment Agency (EEA) [12]), can help un-

derstanding factors contributing to urban and global heating,

pollution, and biodiversity decline. In spatial databases [22], topo-

logical relations are often used as predicates in selection queries

and spatial joins [6]; besides, they have also been used in spatial

query optimization [19]. In geo-spatial interlinking [25, 31], they

are used to enrich and integrate knowledge graph databases with

links between spatial entities.

In image and multimedia databases, relations between detected

objects are valuable features, e.g., in medical image analysis

[32]. Besides, content-based image retrieval based on topological

queries [26, 36] finds interesting arrangements of objects in im-

ages. Proteins in large biological databases are also topologically

related [16].

The Dimensionally Extended 9-intersection model (DE-9IM)

[7, 37] is the de-facto standard for capturing the possible spatial

relations between shapes. DE-9IM has been widely used in GIS

(ArcGIS [11], QGIS [1]) and spatial DBMS (PostGIS [28], Oracle

Spatial [24]), while it has been implemented in popular geometry

libraries (JTS [21], GEOS [15], boost [3]). A typical approach

to detect whether two arbitrary spatial objects (e.g., polygons)

intersect, or their topological relation in general, is to apply a

cheap filter step using the minimum bounding rectangles (MBRs)

of the objects [6, 31]. If the MBRs do not intersect, then the two

objects are definitely disjoint. Otherwise, computing the DE-9IM

matrix for the object geometries is necessary to determine their

precise topological relation. This requires 𝑂 (𝑛 𝑙𝑜𝑔(𝑛)) time (the
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Figure 1: Topological relations and proposed workflow

same as the complexity of polygon-polygon intersection test),

where 𝑛 is the number of vertices of the two shapes [8].

Contribution We propose an intermediate step in the pipeline

of topology detection, after the MBR filter step, which takes

advantage of precomputed spatial object approximations as lists

of raster intervals [14]. We define a set of relations (e.g., overlap)

between lists of raster intervals, which can be evaluated in linear

time by merge-joining the lists. Then, depending on how the

MBRs of two objects intersect, we propose specialized filters,

which verify a sequence of list relations to potentially confirm the

topological relation between the objects, without having to access

and process their exact geometries. Hence, compared to previous

work which uses raster object approximations [13, 14, 42] to

detect spatial intersection only, we exploit such approximations

in full for the detection of the most specific topological relation

between two objects. When applied on benchmarking datasets

(Tiger, OSM), our approach boosts the overall throughput of

spatial topology joins up to one order of magnitude compared

to state-of-the-art geo-spatial interlinking methods [25, 31] and

up to several times compared to using raster approximations for

intersection detection [14].

The workflow of our approach is illustrated in Figure 1(b). For

each pair of objects whose MBRs intersect (i.e., pairs produced

by an algorithm handling the filter step [27, 39]), we perform

merge-join operations on their APRIL approximations, modeled

as interval lists, to potentially determine their topological rela-

tionship. If the raster approximations are insufficient, we compute

the DE-9IM matrix as a fallback. A key advantage of our method

is its scalability—its effectiveness improves with increasing object

complexity, enabling the detection of hundreds of thousands of

topological relations per second for complex object pairs. Addi-

tionally, for most comparisons, our approach avoids loading full

object geometries, significantly reducing data access costs.

2 Background and Related Work
2.1 DE-9IM
DE-9IM [7] breaks down each of the input geometries 𝑟 and 𝑠

into three parts: the interior, the boundary and the exterior. The

intersection between each pair of parts is computed to fill in a
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3 × 3 matrix, where each row corresponds to a part of 𝑟 and each

column to a part of 𝑠 . Each element of the matrix is a boolean

value (T, F) that indicates intersection between the corresponding

parts. A DE-9IM matrix can be flattened to a 9-element string

code, where the first 3 values are the first row, the next 3 values

the second row, etc. For example, the string code for the two

objects 𝑟 and 𝑠 in the disjoint relation shown in Figure 1(a) is

FFTFFTTTT. To compute the DE-9IM matrix, plane sweep [29]

or overlay of trapezoidal decompositions [8] can be used.

As shown in Table 1, each topological relation can be detected

by applying one or more DE-9IM masks, i.e., strings having T, F,

or * at each position, where * denotes any of {T, F}. If the DE-9IM

string code matches a mask, then the object pair satisfies the

corresponding topological relation. Figure 2 shows a Venn dia-

gram of the 8 topological relations and their relationships. The

generalization hierarchy of relations is reflected by the relation-

ships between their masks. For example, the covers masks are all

included in some the intersects masks.

Table 1: DE-9IM masks of topological relations.

DE-9IM mask
disjoint FF*FF****

intersects T******** *T******* ***T***** ****T****

covers T*****FF* *T****FF* ***T**FF* ****T*FF*

covered by T*F**F*** *TF**F*** **FT*F*** **F*TF***

equals T*F**FFF*

contains T*****FF*

inside T*F**F***

meets FT******* F**T***** F***T****

equals

intersects

meets

disjoint

inside

covered by

covers

contains

Figure 2: Venn diagram of the 8 topological relations.

2.2 MBR Filtering
The detection of spatial relations between objects (or the evalua-

tion of spatial joins) is typically conducted in two steps. At the

filter step, the MBRs of the objects are compared in 𝑂 (1) time,

to possibly filter the pair from further consideration. As MBRs

are conservative approximations [6], they can only be used to

detect disjointness. When a massive number of relations need

to be detected, as in geo-spatial interlinking [31], the filter step

can be evaluated efficiently as a spatial join between MBRs [39].

This problem has been well-studied with scalable solutions to the

number of objects for in-memory data [38, 39] and disk-based

[5, 27] or distributed data [10, 40]. Still, for the verification of

the exact relation between two objects whose MBRs intersect,

the current practice is to compute their DE-9IM matrix. In view

of the high cost of DE-9IM matrix computations, Papadakis et

al. [25] suggested to examine the intersecting MBRs pairs in an

order that would maximize the chances of detecting non-disjoint

relations. This work is orthogonal to our objective of reducing

the computational complexity of detecting topological relations.

Learning techniques have also been developed to improve the

efficiency of link completion in spatial knowledge graphs [41],

some through link prediction [20, 23, 30]. These methods are

approximate while having a high training cost.

2.3 Intermediate Filters for Spatial
Intersection

In spatial intersection joins [5], to defer the refinement step,

previous work [6, 13, 14, 42] suggests the pre-computation and

use of (finer than MBR) object approximations in an intermediate
filter, applied after the MBR filter, to determine whether (a) the

objects are definitely disjoint, (b) the objects definitely intersect,

or (c) we cannot decide and we need to apply a refinement step.

The approximations in [6] are simple shapes (e.g., convex

polygons) that cover the complex object. In [42] raster object

approximations have been suggested. The Raster Intervals (RI)

[13] technique builds upon [42] to define a fine-grained global

grid over the data space, whose cells are enumerated by a Hilbert

curve [17]. For each object, consecutive cells that overlap it are

modeled as intervals. Rasters have also been used for spatial

statistics [33–35].

We adopt APRIL [14], a space-economic, fast-to-construct and

fast-to-process approximation. Consider a fine-grained global

grid with Hilbert-enumerated cells. For each object 𝑜 , we define

two sorted interval lists. The Progressive (𝑃 ) list contains intervals

that include only the cells entirely inside 𝑜 (i.e. full cells); The

cells in 𝑃 always cover less space in the grid than 𝑜 , thus 𝑃 is a

progressive approximation [6] of 𝑜 . The Conservative (𝐶) list of 𝑜

has the intervals that include all cells partially or fully covered

by 𝑜 . Figure 3 shows the 𝑃 and 𝐶 interval lists of two example

polygons. The 𝑃 and 𝐶 interval lists of each object are generated

efficiently in a data pre-processing step (conducted once per

object).

As shown in [14], for two objects 𝑟 and 𝑠 , merge-joining their

𝑃 (𝑟𝑃 , 𝑠𝑃 ) and𝐶 (𝑟𝐶 , 𝑠𝐶 ) lists can help to identify whether the two

objects intersect. If there is no pair of intervals (𝑖𝐶 ∈ 𝑟𝐶 , 𝑗𝐶 ∈ 𝑠𝐶 )
such that 𝑖𝐶 and 𝑗𝐶 overlap, as in the example of Fig. 3, 𝑟 and 𝑠 are

definitely disjoint. Otherwise, we join 𝑟𝐶 with 𝑠𝑃 to potentially

find a pair (𝑖𝐶 ∈ 𝑟𝐶 , 𝑗𝑃 ∈ 𝑠𝑃 ); if such a pair exists, then 𝑟 definitely

intersects 𝑠; if not, we repeat with 𝑟𝑃 and 𝑠𝐶 . Failing all tests

renders the object pair inconclusive, to be handled at a refinement

stage.
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Figure 4: The candidate and definite (bold) topological rela-
tions of two polygons, based on how their MBRs intersect.

3 Fast detection of topological relations
This section describes our methodology for efficiently determin-

ing topological relations. Formally, given two objects 𝑟 and 𝑠

whose MBRs intersect (i.e, 𝑟 and 𝑠 pass the filter step of spatial

join), the find relation problem aims to identify their most specific

topological relationship. We assume that the 𝑃 and 𝐶 approxi-

mations [14] of 𝑟 and 𝑠 have been precomputed. Depending on

how the MBRs of 𝑟 and 𝑠 intersect, we apply a tailored sequence

of binary merge-join operations on 𝑃 and𝐶 interval lists to solve

the find relation problem without having to compute the DE-9M

matrix.

3.1 MBR Filter
The possible topological relations between a pair of shapes, 𝑟

and 𝑠 , can be constrained based on how their MBRs intersect.

For example, consider Figure 4(a), where the MBR of 𝑟 is fully

contained within the MBR of 𝑠 . From this, we can infer that 𝑟

and 𝑠 cannot be equal, because if they were equal, their MBRs

would also be equal. Additionally, 𝑟 cannot contain or cover 𝑠 ,

eliminating 3 out of the 8 possible relations. Figure 4 illustrates,

for each type of MBR intersection, the possible topological rela-

tions between the corresponding objects. Relations marked in

bold font are certain to hold. A notable case is Figure 4(d), where

the only valid relation is intersects, and no refinement step is

necessary to specialize it.

3.2 Intermediate Filter
Our enhanced MBR filter (Sec. 3.1) allows for more specialized

handling in the intermediate filter and refinement. A pair of ob-

jects with intersecting MBRs is forwarded to the appropriate

intermediate filter that focuses only on the possible relations,

minimizing the computations that need to be performed. The

intermediate filters perform merge-join operations on the ob-

jects’ sorted 𝐶- and/or 𝑃-lists based on the candidate relations.

We present the workflows of the intermediate filters using the

following relations between two interval lists𝑋 and𝑌 taken from

{𝑟𝑃 , 𝑟𝐶 , 𝑠𝑃 , 𝑠𝐶 }.
‘X,Y overlap’ At least one pair of intervals 𝑥 ∈ 𝑋 ,𝑦 ∈ 𝑌 intersect;

i.e. 𝑥 and 𝑦 include at least one common cell identifier.

‘X,Y match’ The two interval lists 𝑋 and 𝑌 are identical; i.e., for

each 𝑥 ∈ 𝑋 there is a 𝑦 ∈ 𝑌 , such that 𝑥 = 𝑦 and vice versa.

‘X inside Y’ Every interval in 𝑋 is contained in one interval of

𝑌 ; i.e., for each 𝑥 = [𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑥𝑒𝑛𝑑 ) ∈ 𝑋 , there exists an interval

𝑦 = [𝑦𝑠𝑡𝑎𝑟𝑡 , 𝑦𝑒𝑛𝑑 ) ∈ 𝑌 , such that 𝑥𝑠𝑡𝑎𝑟𝑡 ≥ 𝑦𝑠𝑡𝑎𝑟𝑡 ∧ 𝑥𝑒𝑛𝑑 ≤ 𝑦𝑒𝑛𝑑 .

‘X contains Y’ is defined inversely to ‘X inside Y’; every interval

in 𝑌 is contained in one interval of 𝑋 .

Note that each of the above relations takes linear time to

evaluate, as the intervals within each list are disjoint. Moreover,

the number of intervals per list is expected to be low (in the

order of square root of the number of cells that intersect with

the object) [14].

Algorithm 1 Evaluation of find relation.

Require: 𝑟 ,𝑠

1: functionMBRFilter(𝑟 ,𝑠)

2: if 𝑀𝐵𝑅 (𝑟 ), 𝑀𝐵𝑅 (𝑠 ) are disjoint then
3: return disjoint
4: else if 𝑀𝐵𝑅 (𝑟 ) = 𝑀𝐵𝑅 (𝑠 ) then
5: 𝑟𝑒𝑠𝑢𝑙𝑡 ← IFEqals(r,s)
6: if 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑏𝑦, 𝑐𝑜𝑣𝑒𝑟𝑠 then
7: return 𝑟𝑒𝑠𝑢𝑙𝑡

8: else
9: return 𝑅𝑒𝑓 𝑖𝑛𝑒 (𝑐𝑜𝑣𝑒𝑟𝑠, 𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑏𝑦, intersects)

10: end if
11: else if 𝑀𝐵𝑅 (𝑟 ) inside 𝑀𝐵𝑅 (𝑠 ) then
12: 𝑟𝑒𝑠𝑢𝑙𝑡 ← IFInside(r,s)
13: if 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡, 𝑖𝑛𝑠𝑖𝑑𝑒, 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 then
14: return 𝑟𝑒𝑠𝑢𝑙𝑡

15: else if 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑒 𝑓𝑖𝑛𝑠𝑖𝑑𝑒 then
16: return 𝑅𝑒𝑓 𝑖𝑛𝑒 (𝑖𝑛𝑠𝑖𝑑𝑒, 𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑏𝑦, intersects)
17: else
18: return𝑅𝑒𝑓 𝑖𝑛𝑒 (𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡, 𝑖𝑛𝑠𝑖𝑑𝑒, 𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑏𝑦,𝑚𝑒𝑒𝑡𝑠, 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 )
19: end if
20: else if 𝑀𝐵𝑅 (𝑟 ) contains 𝑀𝐵𝑅 (𝑠 ) then
21: 𝑟𝑒𝑠𝑢𝑙𝑡 ← IFContains(r,s)
22: if 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡, 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠, 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 then
23: return 𝑟𝑒𝑠𝑢𝑙𝑡

24: else if 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑒 𝑓𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 then
25: return 𝑅𝑒𝑓 𝑖𝑛𝑒 (𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠, 𝑐𝑜𝑣𝑒𝑟𝑠, intersects)
26: else
27: return𝑅𝑒𝑓 𝑖𝑛𝑒 (𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡, 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠, 𝑐𝑜𝑣𝑒𝑟𝑠,𝑚𝑒𝑒𝑡𝑠, 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 )
28: end if
29: else if 𝑀𝐵𝑅 (𝑟 ), 𝑀𝐵𝑅 (𝑠 ) cross then
30: return intersects
31: else
32: 𝑟𝑒𝑠𝑢𝑙𝑡 ← IFIntersect(r,s)
33: if 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡, 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠] then
34: return 𝑟𝑒𝑠𝑢𝑙𝑡

35: else
36: return 𝑅𝑒𝑓 𝑖𝑛𝑒 (𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡,𝑚𝑒𝑒𝑡𝑠, 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 )
37: end if
38: end if
39: end function

Algorithm 1 describes our proposed approach for solving find
relation problems using MBRs and 𝐶/𝑃 raster approximations.

The algorithm only handles candidates whose MBRs intersect

(line 2). Depending on how the MBRs of 𝑟 and 𝑠 intersect, one of

the individual intermediate filters (IF), shown as flow diagrams

in Figure 5 is applied. Each IF returns either the most specific

relation, in which case a refinement step that would compute the

DE-9IM matrix is unnecessary, or a set of possible relations. In the

latter case, the DE-9IM matrix is computed and then compared

against the masks of possible relations in a specific-to-general

order, to find the most specific topological relation between 𝑟

and 𝑠 . We now elaborate on each MBR intersection case.

Equal MBRs If the MBRs are equal (Figure 4(c)), then the pair is

forwarded to the IFEquals intermediate filter, shown first in Figure

5. This filter is able to detect exactly, i.e., without refinement, the

covers and covered by relations. If the𝐶 lists of the two objects are

identical, then the pair is forwarded to refinement for the most

specific of equals, covered by, covers, and intersects. Although the

objects definitely intersect, this might not be their most specific

relation. If the 𝐶 lists do not match, the algorithm proceeds to

check all possible relations. In general, if the most specific relation

cannot be detected from the 𝐶 and 𝑃 lists of the two objects, the

pair if forwarded to selective refinement, where the not definite

relations are verified after the DE-9IM matrix computation.

One MBR inside the other When one of the MBRs is contained

inside the other (Figure 4(a) or 4(b)), Algorithm 1 forwards the
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Figure 5: The intermediate filters for the different cases of intersections between the MBRs of 𝑟 and 𝑠.

candidate pair to IFInside or IFContains intermediate filters, re-

spectively, based on which MBR is inside the other. The two filters

work in the same way, with the difference being that the first one

looks for 𝑟 inside 𝑠 or 𝑟 covered by 𝑠 , whereas the second looks

for 𝑟 contains 𝑠 or 𝑟 covers 𝑠 , besides disjoint, meets, and intersect.
The check to determine whether an interval list 𝑟𝐶 is completely

contained in a list 𝑠𝑃 has 𝑂 ( |𝑟𝐶 | + |𝑠𝑃 |) time complexity.

Other cases If the two MBRs cross each other, as in Figure 4(d),

we definitely know that the most specific relation is intersects and

no intermediate filter or refinement is necessary. All other cases,

shown in Figure 4(e) are handled by the IFIntersect intermediate

filter, which detects disjoint, meets and intersects relations.

Complexity of Algorithm 1 Up to four relations between the

𝑃 and 𝐶 interval lists of 𝑟 and 𝑠 are evaluated in each of the flow

diagrams of Figure 4, until we can conclude about the topological

relation(s) between 𝑟 and 𝑠 . For each relation, the cost is linear to

the lengths of the two merge-joined lists, because the intervals in

a list are disjoint to each other. Hence, the overall cost of the IF

applied on a given pair of objects 𝑟 and 𝑠 is 𝑂 ( |𝑟𝑃 | + |𝑟𝐶 | + |𝑠𝑃 | +
|𝑠𝐶 |).

3.3 Relate
In certain scenarios, instead of looking for the most specific

topological relation between two objects, we need to quickly

check if a given relation is satisfied. For example, spatial joins

may take a topological relation as a predicate. Formally, given a

pair (𝑟, 𝑠) of objects such that 𝑀𝐵𝑅(𝑟 ) intersects 𝑀𝐵𝑅(𝑠) and a

topological relation 𝑝 (e.g., 𝑝=meets), the 𝑟𝑒𝑙𝑎𝑡𝑒𝑝 problem finds

whether 𝑟 and 𝑠 satisfy 𝑝 . Figure 6 (left) shows the intermediate

filter’s flow diagrams for relate predicates that are specializations

of intersects. The figure is self-explanatory; for a given predicate a

sequence of merge-join operations are applied on the𝐶 and/or 𝑃

lists to potentially verify if the corresponding relation definitely

holds or not. For instance, for a pair (𝑟, 𝑠) of objects, if not 𝑟𝐶
inside 𝑠𝐶 , then definitely 𝑟 is not inside 𝑠; if 𝑟𝐶 inside 𝑠𝑃 , then

definitely 𝑟 is inside 𝑠 . In all other cases, (𝑟, 𝑠) is sent to the

refinement step.

4 Experimental Analysis
We evaluated the performance of our topological relation detec-

tion approach, compared to the current practice and the use of

intermediate filters for intersection detection [14]. We compare

the following approaches:

ST2: standard 2-phase This method applies the current MBR

filter+refinement practice used in most previous work that detect

topological relations [25, 31]. If the object MBRs do not intersect,

then the pair is disjoint, otherwise we compute the DE-9IM matrix

to determine the topological relation.
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Figure 6: Intermediate filter flow diagrams for 𝑟𝑒𝑙𝑎𝑡𝑒𝑝 tests.

Table 2: Description of datasets.

Dataset Entity type # polygons Size (MB) MBRs (MB) 𝑃 +𝐶 (MB)
TL US Landmarks 123K 52.5 3.7 6.3

TW US Water areas 2.25M 1.2K 68.6 73.0

TC US Counties 3.04K 112.8 0.1 15.4

TZ US Zip Codes 26.1K 587 0.8 170.1

OBE EU Buildings 90.4M 10.9K 2.8K 2.3K

OLE EU Lakes 1.96M 1.1K 59.8 82.0

OPE EU Parks 7.17M 3.7K 218.8 389.0

OBN NA Buildings 9.38M 1.3K 286.3 201.0

OLN NA Lakes 4.02M 2.5K 122.7 133.0

OPN NA Parks 999K 767.4 30.5 60.0

OP2: optimized 2-phase This method uses the relation between

the MBRs, as described in Sec. 3.1 to limit the possible topological

relations and, in turn, reduce the number of DE-9IM masks to

compare with the DE-9IM matrix.

APRIL: optimized MBR filter + APRIL intermediate filter
+ refinement This method applies APRIL [14] to detect non-

intersection between two objects whose MBRs intersect, before

applying the refinement step. As the intermediate filter in this

case cannot detect more special relations than intersects, the

DE-9IM matrix computation is necessary even for pairs that are

found to definitely intersect, to detect a potentially more specific

relation.

P+C: optimized MBR filter + Progressive/Conservative filter
+ refinement This is our algorithm, presented in Section 3.

4.1 Datasets & Setup
We used popular benchmarking datasets from the TIGER 2015

and Open Street Map (OSM) collections [10], containing real-

world areas from the USA and the entire globe, respectively. As

the find relation problem makes sense for objects that exist in the
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Table 3: Semantically meaningful dataset combinations for
the find relation and 𝑟𝑒𝑙𝑎𝑡𝑒𝑝 problems.

Datasets TL-TW TL-TC TC-TZ OLE-OPE OLN-OPN OBE-OPE OBN-OPN

Candidate
pairs 63.3K 168K 65.7K 5.18M 2.77M 79.3M 2.17M

same region, we also split each OSM dataset to two parts, one

for Europe and one for North America (the continents with the

highest concentration of objects). Additionally, we cropped the

TIGER datasets to include only entities in the contiguous (lower

48) United States. Table 2 describes the datasets that we used, and

the space occupied by their polygons and their approximations.

T- and O- prefixes of datasets denote TIGER and OSM collections,

respectively.

Table 3 shows dataset combinations that we used in our exper-

iments. For each combination, the table also shows the number of

object pairs that pass the MBR filter. The dataset pairs represent

real-world scenarios where the detection of topological relations

between areas is meaningful:

• TL-TW: US landmarks (TL) may include parks, lakes, canyons,

buildings, etc., so geospatially interlinking pairs from TL

and TW may reveal unexpected relations and statistics

about all landmark and water areas in the US.

• TL-TC: As US counties (TC) are relatively large areas, it is

expected that most of the relations in this scenario will be

inside. However, unique cases can be found, such as cross-

county landmarks or even landmarks containing entire

counties.

• TC-TZ: This pair provides insights about the county and

zip code relations in the US.

• OBx-OPx(E/N): Topological relations in this scenario may

provide insight on the amount of human intervention

(buildings) in green areas (parks) in Europe and North

America.

• OLx-OPx(E/N): Interlinking entities between these datasets

provides information about the presence of water elements

(currents, lakes, marshes etc.) in the parks of Europe and

North America.

For each of the scenarios above, we run a spatial intersec-

tion join algorithm [39] that produces the pairs of objects whose

MBRs intersect. Each such pair was fed to our topological rela-

tion detection pipeline. For each of the evaluated methods, we

measured their throughput; i.e., the number of MBR-filtered pairs

that the method processed per second. We did not account for

the cost of the filter step (i.e., the time to produce the pairs of

MBRs that intersect), which is negligible compared to the cost of

identifying the topological relation for each such pair.

All raster approximations that we used for the experiments,

were created using independent 2
16×216 grids overlayed on each

data scenario’s dataspace. As shown in Table 2, the 𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒

and𝐶𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 interval lists occupy much less space compared

to the polygons. For the refinement, we use the boost geometry’s

relation function [4] that calculates the DE-9IM matrix for two

input geometries (boost’s implementation was found to be much

faster than GEOS [15]). We ran our experiments on a machine

with a 3.6GHz Intel i9-10850k and 64GB of RAM, running Linux.

The code was written in C++ and compiled with the -O3 flag.

4.2 Performance
Figure 7(a) shows the throughput of the compared methods on

the test dataset pairs. Observe that, in practice, there is no im-

provement when using an optimized MBR filter (OP2), compared

to directly moving the pair to refinement (ST2). This is because

the computation of the DE-9IM matrix is the bottleneck of the

entire process, so the savings of OP2 by reducing the number of

masks (relations) that are being checked are marginal. Using the

APRIL intermediate filter greatly improves the throughput, by

detecting many cases of object pairs that are disjoint. Our P+C

method (Sec. 3) guides the comparison between the 𝐶 and 𝑃 lists

of the objects, and detects more topological relations than APRIL

(on top of intersects [14]). Overall, our P+C approach improves

the throughput of find relation by one order of magnitude com-

pared to the current practice (ST2, OP2) [25, 31] and by a few to

several times compared to using the APRIL intermediate filter

[14].
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Figure 7: Throughput and Effectiveness for find relation.

The improvement in the throughput when transitioning from

2 stages in the pipeline (ST2, OP2) to 3 (APRIL, P+C) is related

to the effectiveness of the intermediate filters. For each pair of

datasets, we measure filter effectiveness in terms of undetermined

pairs, i.e. pairs that need to be refined using DE-9IM to detect

their topological relation. As shown in Figure 7(b), the introduc-

tion of the APRIL intermediate filter reduces the DE-9IM matrix

computations to around half compared to ST2, OP2, on average.

Our specialized intermediate filter workflows (Sec. 3) reduce the

object pairs to be refined even more, to about 25% on average.

4.3 Scalability
We tested the scalability of our approach (P+C) with respect to

the complexities of the object pairs whose topological relation

is being detected. For a pair of polygons 𝑟 and 𝑠 , we define com-

plexity as the sum of their vertices, as this determines the cost of

computing intersections between their parts [8], and in turn, the

cost of DE-9IM matrix computations. We selected a fairly large

scenario (OLE-OPE) and divided its post-MBR candidate pairs

into 10 groups of increasing complexity, shown in Table 4. The

ranges were selected, such that each complexity level contains

around the same number of object-pairs; hence, we test the scal-

ability of our method on similar data workloads per complexity

level.

Figure 8(a) shows P+C’s intermediate filter effectiveness in

detecting relations without DE-9IM matrix computations for

polygon pairs from the OLE-OPE scenario, having different com-

plexities. High complexity pairs are resolved more frequently

by the intermediate filters of P+C compared to low complexity

pairs. This is due to the fact that most of the intermediate filters
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Table 4: OLE-OPE post-MBR filter polygon pairs, grouped
by complexity level (sum of their vertex count).

Complexity level Sum of vertices Pair count
1 [8,41] 525K

2 [42,67] 518K

3 [68,104] 513K

4 [105,163] 520K

5 [164,265] 520K

6 [266,447] 517K

7 [448,786] 518K

8 [787,1354] 518K

9 [1355,2629] 518K

10 [2630,60398] 518K
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Figure 8: Find relation filter effectiveness and total cost for
polygons pairs grouped by complexity level.

of P+C utilize the polygons’ 𝑃 lists to detect early definite topo-

logical relations. Raster-based interval approximations of small

polygons usually result in very few, if any at all, full cells and

progressive intervals, rendering refinement necessary to detect

their topological relation. As shown in Figure 8(a), 4 out of 5

pairs of complexity level 1 in the OLE-OPE scenario need to be

geometrically refined, contrary to pairs of complexity level 10

where only around 5% are refined.

Polygon pairs of low complexity are cheap to refine and, as

complexity increases, the refinement becomes more expensive,

with polygons of complexity level 10 being the bottleneck of the

entire pipeline. This is reflected in Figure 8(b), where the cost of

OP2 which refines almost all pairs increases superlinearly with

the complexity level. On the other hand, the cost of P+C is almost

insensitive to the complexity of the pairs due to the fact that

the increase in the refinement per pair is compensated by the

decrease of the number of pairs that need to be refined, as seen

in Figure 8(a). This experiment unveils an important value of our

approach, which achieves its highest filtering power on objects

that have the largest need for it. Besides saving computations,

our approach also manages to load less data compared to OP2.

For example, in the OLE-OPE scenario, the P+C approach ac-

cesses only 48.5% of the unique objects from OLE and OPE that

are accessed by OP2, as the topological relations involving the

remaining objects are detected by the P+C intermediate filters.

Figure 9 showcases a pair of objects at complexity level 10,

where their relation (inside) is identified by the P+C intermediate

filter and the DE-9IM matrix computation is avoided. This pair

is forwarded to refinement by ST2, OP2, and APRIL, as these

methods cannot detect the most specific relation (APRIL would

only be able to detect intersection). As a result, our P+C approach

is 50x faster than the other methods for this pair. The pair rep-

resents a lake residing inside a park; even though the park is a

lot bigger than the lake, they both have an adequate amount of

Lake Park
Vertices 2240 2616

MBR area 0.0616 0.5030

𝐶-intervals 498 1793

𝑃-intervals 481 1845

(a) Statistics (b) Illustration

Figure 9: A level-10 complexity pair of a lake (blue) residing
inside a park (green), from the OLE-OPE scenario.

Table 5: Throughput (pairs/sec) of find relation and 𝑟𝑒𝑙𝑎𝑡𝑒𝑝
methods using our P+C approach (OLE-OPE).

Method Equals Meets Inside
find relation 93160.2 93160.2 93160.2

𝑟𝑒𝑙𝑎𝑡𝑒𝑝 107265.6 7000989.2 565509.7

𝑃 intervals, due to the fine-grained grid (2
16

cells per dimension)

that was used to create their approximations.

4.4 Relate Performance
In the last experiment, we compare the effectiveness of our

𝑟𝑒𝑙𝑎𝑡𝑒𝑝 algorithms for specific topological predicates 𝑝 (Section

3.3) against our general find relation algorithm (Section 3.2). We

chose the OLE-OPE scenario because of the two datasets’ rela-

tive balance in terms of polygon size and complexity. For three

different predicates 𝑝 , Table 5 shows that the throughput for

find relation is independent of 𝑝 , as the algorithm does not con-

sider 𝑝 . On the other hand, the throughput of 𝑟𝑒𝑙𝑎𝑡𝑒𝑝 queries

is sensitive to the predicate, as a different intermediate filter is

used in each case. The more focused 𝑟𝑒𝑙𝑎𝑡𝑒𝑝 approach is faster in

all tested cases, due to the specialized steps it takes, depending

on 𝑝 . The difference is huge for some predicates (e.g., meets),
where non-satisfaction is fairly easy to identify using the object

approximations.

5 Conclusions
This paper presents a scalable technique for detecting topologi-

cal relations between complex spatial objects (i.e., polygons) by

leveraging raster approximations to minimize expensive DE-9IM

matrix computations. Our approach not only reduces the number

of object pairs requiring refinement but also becomes increas-

ingly effective as object complexity — and thus refinement cost

— grows.

In the future, we plan to integrate our method into existing

link discovery frameworks such as Silk [2] to enable faster user-

defined spatial link generation, contributing to the expansion

of geospatially linked data available online. Additionally, im-

plementing our approach in open-source spatial DBMSs (e.g.,

PostGIS [28]) could enhance the performance of topological rela-

tion queries, and, in turn the usability of systems and applications

that handle complex spatial data and, in turn, improve the us-

ability of systems and applications that handle complex spatial

data.

Acknowledgements
Work supported by project MIS 5154714 of the National Recovery

and Resilience Plan Greece 2.0 funded by the European Union

under the NextGenerationEU Program.



Scalable Spatial Topology Joins EDBT ’26, 24-27 March 2026, Tampere (Finland)

Artifacts
We provide full access to our open-source code on GitHub along

with the datasets we used and scripts to reproduce the experi-

ments of this paper. Detailed instructions can be found in the

repository’s README.

Link: http://github.com/ThanGeo/topology-detection
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