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Abstract. Crowdsourcing can be used to determine a total order for
an object set (e.g., the top-10 NBA players) based on crowd opinions.
This ranking problem is often decomposed into a set of microtasks (e.g.,
pairwise comparisons). These microtasks are passed to a large number
of workers and their answers are aggregated to infer the ranking. The
number of microtasks depends on the budget allocated for the problem.
Intuitively, the higher the number of microtask answers, the more accu-
rate the ranking becomes. However, it is often hard to decide the budget
required for an accurate ranking. We study how a ranking process can
be terminated early, and yet achieve a high-quality ranking and great
savings in the budget. We use statistical tools to estimate the quality of
the ranking result at any stage of the crowdsourcing process, and termi-
nate the process as soon as the desired quality is achieved. Our proposed
early-stopping module can be seamlessly integrated with most existing
inference algorithms and task assignment methods. We conduct exten-
sive experiments and show that our early-stopping module is better than
other existing general stopping criteria.

1 Introduction

Crowdsourcing has been used to address a variety of problems, such as entity
matching [28], image labeling [14], and object ranking [12,16]. These problems,
which are typically hard for computers to solve, can be easier for humans. In
this paper, we study the use of crowdsourcing on ranking objects. This ap-
proach, which has received a lot of attention from different research communi-
ties [21,6,16], is particularly helpful when ranking cannot be done objectively.
For example, to determine the greatest athletes of all times or the best pictures
of a landmark, we could solicit opinions from the crowd and aggregate them
to a ranking that maximizes the consensus. In addition, crowdsourced ranking
can be used to filter data for subsequent machine learning tasks. For instance,
ranking answers to a question posted in a forum and selecting only the top ones
can ease the burden of natural language processing.
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To conduct crowdsourced ranking, existing solutions typically decompose the
ranking process into a set of small and easy-to-answer microtasks, such as pair-
wise comparisons [31]. The microtasks are then distributed via crowdsourcing
platforms, such as Amazon Mechanical Turk (AMT) [1] and FigureEight [2],
to crowd workers by offering incentives, e.g., money, reputation, etc. The final
ranking is computed by an inference algorithm based on the answers collected
from the crowd. Naturally, the ranking accuracy is proportional to the number
of collected answers to microtasks, i.e., the total budget paid by the requester.

Recent studies [8,12,6] attempt to improve the inference algorithm I and
fine-tune the task assignment T (i.e., by dispatching tasks to suitable workers),
in order to spend the budget more effectively. Typically, the microtask answers
are collected in batches. Let Ai be the ith batch of answers; Inference algorithm
module I infers the interim ranking from A1 ∪ ... ∪ Ai; Task assignment mod-
ule T is used to determine the next batch of microtasks and assign them to
crowdsourcing platforms.

According to a recent experimental survey on crowdsourced ranking [31],
there is no single winner method that outperforms all others in all performance
factors (accuracy, convergence rate, efficiency, scalability). In addition, most ap-
proaches require the budget to be set in advance, but they offer no guideline on
how to set this value. Hence, it is expected that the requester sets a large enough
budget, hoping that the ranking process will converge to a stable ranking. This
raises an interesting question: can we spend less and achieve approximately the
same ranking, as if we had spent all the budget?

To answer this question, we first investigate how much budget could be saved
when some representative inference algorithms are applied, i.e., Copeland [22],
CrowdBT [8], Iterative [12], and Local [12]. Details about these methods are
given in Sec. 4.1. We carry out the top-10 query tasks on two public datasets,
namely peopleAge [31] and peopleNum [15]. Fig. 1 shows how the accuracy of
these algorithms varies as the budget increases. As an accuracy measure, we
utilize Kendall’s tau distance between the rankings progressively inferred and
the ground truth ranking. All methods converge to a stable state4, where the
change of the distance induced by the inferred ranking is very small. In Fig. 1(a)
and (b), CrowdBT reaches a stable state after using just 40% of the budget,
whereas all other methods converge when 60% of the budget is used. Obviously,
we can stop early the crowdsourcing process when we reach a stable state. We
now face the following challenge: how do we know if the ranking process has
reached a stable state?

To tackle this challenge, we develop a novel Early-Stopping (ES) module that
attempts to predict the next batch of answers by probabilistic analysis. We then
use Monte Carlo simulation [19], based on the prediction model, to construct
the distribution of the final answer and, in turn, derive the expected accuracy
of the final state. This helps us to assess when the ranking process reaches its
stable state, subject to a budget B. To early-stop the process, our ES module
requires an accuracy tolerance θ parameter, i.e., the acceptable accuracy that we

4 A formal definition of the stable state is provided in the Sec. 2.2.
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can afford to lose when compared to the ranking that will be obtained if all the
budget is used up.

Our ES module can seamlessly be used by most ranking processes with min-
imal effort. The only requirement is that the process provides interfaces for the
inference and task assignment modules, and accepts a programming call to termi-
nate the crowdsourcing process, when our module determines that the expected
accuracy already satisfies tolerance θ.

The main contributions of this paper are summarized as follows:

– To the best of our knowledge, we are the first to propose a general Early-
Stopping (ES) module for crowdsourced ranking.

– Our ES module is orthogonal to any inference algorithm or task assignment
method, and does not interfere with the flow of the crowdsourced ranking
process.

– We thoroughly evaluate our ES module with subjective and objective tasks,
different inference algorithms and task assignment methods, varying budgets
and accuracy tolerances. Our module can save even half of the budget given
to the ranking processes.

The rest of the paper is organized as follows. We formulate the problem and
provide definitions and notations in Sec. 2. Our ES module is described in detail
in Sec. 3. The experimental evaluations are shown in Sec. 4. We discuss related
work in Sec. 5 and conclude in Sec. 6.

2 Preliminaries

We first define crowdsourced ranking and top-k queries as follows.

Definition 1 (Crowdsourced Ranking). Given a set of n objects O = {o1, ..., on},
use human workers to decide a total order σ = {oi ≺ oj ≺ ...}.

Definition 2 (Crowdsourced Top-k Query). Given a set of n objects O =
{o1, ..., on}, use human workers to find a ranked list σk = {oi ≺ oj ≺ ...} of size
k, such that for any oi ∈ σk ∧ ol /∈ σk, oi ≺ ol.
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Note that the operator ≺ is a conclusion drawn from the crowd’s answers.
For instance, given some replies to a question posted in a forum, we can ask
the crowd to conduct pairwise comparisons between the replies, and then use
existing inference algorithms to process the crowd’s input and find the top-5
replies. Note that comparing two replies is not machine friendly since it not
only requires strong natural language processing techniques but also a good
understanding of the question, i.e., domain expertise.

2.1 Distance Between Rankings

In our solution, we need to measure the distance (i.e., difference) between the
ranking inferred at an intermediate state and the ranked list at the final state.
To measure the distance between two rankings, a common practice is to use
Kendall’s tau distance, i.e., the number of inverse pairs of objects.

We use the normalized Kendall’s tau distance for complete rankings and
top-k ranked lists as defined in Eq. 1 and Eq. 2, respectively:

D(σ1, σ2) =

∑
(oi,oj)∈O×O,i<j 1(oi ≺ oj , σ1)× 1(oi � oj , σ2)

n(n− 1)/2
(1)

D(σk
1 , σ

k
2 ) =

∑
(oi,oj)∈O×O,i<j 1(oi ≺ oj , σk

1 )× 1(oi � oj , σk
2 )

k2
(2)

where 1 is the indicator function that equals to 1 when its predicate is true,
or 0 otherwise. When σ1 and σ2 are reversed, the numerator of Eq. 1 takes its
maximum possible value n(n − 1)/2, and Eq. 1 reaches the highest value of 1.
As for Eq. 2, the numerator takes its maximum value k2 when objects in σk1 and
σk2 have no intersection.

2.2 Stable State & Optimal Stopping Point

Publishing a batch of microtasks into the crowdsourced platform is a common
strategy to accelerate the speed of collections. Let pi be the state after collecting
the ith batch of answers Ai and σi = I(A1 ∪ ... ∪ Ai) is the ranked list at pi.
The stopping module should check whether to stop at each pi. Without loss of
generality, we assume that the budget B is the total number of microtasks we
plan to publish and the number of microtasks, nbatch, is the same in each batch.
B/nbatch is the total number of batches needed to collect all answers. We then
give a formal definition of the stable state that we mentioned in the Introduction:

Definition 3 (Stable State). Given the whole collection process {A1, A2, · · · ,
AB/nbatch

} and an accuracy tolerance θ ∈ [0, 1] from the requester, pl is called as
a stable state of the process if:

1. ∀pi, pj ∈ [pl, pfinal], D(σi, σj) ≤ θ 2. @ pi < pl, pi is a stable state
where l ∈ [1, B/nbatch] and pfinal = B/nbatch.

The first condition secures that the distances between the rankings at any
two states (from pl to the final) do not exceed θ. The second condition secures
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the maximality that no earlier (better) stable state can be found in the entire
process. It is obvious only one stable state exists in each collection process.

The stopping point psc is the moment decided by a stopping criterion (SC)
to early stop the ranking process. Based on the stable state definition, we can
say that

Corollary 1 (The Optimal Stopping Point). The optimal point poptimal to
early stop a ranking process is when the process turns into the stable state, i.e.,
poptimal = pl.

The optimal stopping point guarantees the optimality because it saves up as
much as possible the budget and ensures the distances from the ranked list at
the stopping point to the final are always smaller than the accuracy tolerance θ.

For example, Fig. 2 shows the distance between the current and the final
ranking at all states of the process. We show two optimal stopping points with
θ = 5% or θ = 2%. Basically we may save more budget with larger θ. Here we
save 50% budget for θ = 5%, and 10% budget for θ = 2%.

One may wonder whether some simple method, e.g., Moving Average and
Weighted Moving Average [3], can find poptimal. We also show two kinds of
intervals in Fig. 2. The first purple rectangle is an interval that tends to be
stable during a certain time but descends gradually as more budget consumes.
The second one also tends to be stable but the change of rankings is larger than
θ as more budget consumes. Given a current point pi, moving average uses the
previous rank lists in a certain window size to represent the inferred rankings in
the future. It is easy to drop out into these intervals and cause the process to
stop earlier than it should. Besides, it is hard for users to set the best parameter
values for them, such as the window size. Bad parameters lead to the worst
stopping position. To avoid stopping at these intervals, we propose a novel ES
module that attempts to discover the optimal stopping point.

3 Early-Stopping Module

3.1 Predicting the Next Answer Set

Consider a crowdsourcing rank process R, based on an inference module I and
a task assignment module T , that has already collected the ith batch answer
set (Ac = A1 ∪ ... ∪ Ai). We predict the next batch of answers by a three-stage
process, including (1) determining new tasks tnew, (2) predicting the answers
anew of tnew, and (3) estimating the influence of worker reliability.

Determining new tasks, tnew Recall that the microtasks of crowdsourced
ranking are pairwise comparisons (oi, oj). Given the collected answer set Ac, the
task assignment module T decides the importance of tasks. The most important
nbatch tasks are distributed to crowdsourcing platforms as the next batch. We
predict answers for these tasks in our subsequent prediction model.
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Predicting the answer, anew Given the collected answer set Ac and a chosen
task tnew = (oi, oj), we want to predict the answer to tnew. We assume that the
workers are reliable since they have to obey the crowdsourcing platform policy,
e.g., gain reputation via user feedback. Thereby, we can regard the answer anew
of the task tnew = (oi, oj) as a Bernoulli distribution of the probability of oi ≺ oj ,
denoted as Pij . Formally, it can be written as anew ∼ Bernoulli(Pij) where Pij is
the probability of oi ≺ oj . Several models for Pij has been suggested in previous
crowdsourcing studies [18,5,26]. For instance, the Bradley-Terry (BT) model [5]
defines Pij = esi

esi+esj
, where si is the latent score of object oi. The Thurstonian

model [26] defines Pij = Φ(si−sj), where Φ is the normal cumulative distribution
function. However, some inference modules [11,10] do not build on the latent
scores of objects.

We attempt to design a new estimation model that is suitable for most in-
ference modules. We estimate the probability Pij independently, i.e., Pij only
based on the previous answer set of the task (oi, oj). Suppose that the current
answer set is Ac; we build an observed matrix M , where Mij is the number of
answers reporting oi ≺ oj in Ac. Pij depends on Mij and Mji.

We use maximum a posteriori probability (MAP) to calculate P̂ij :

P̂MAP(M) = arg max
P

Pr(P |M) = arg max
P

∏
i,j|i<j

Pr(Pij |Mij ,Mji)

= arg max
P

∏
i,j|i<j

Pr(Mij ,Mji | Pij)Pr(Pij)∫ 1

0

Pr(Mij ,Mji | pij)Pr(pij) dpij

∝ arg max
P

∏
i,j|i<j

Pr(Mij ,Mji | Pij)Pr(Pij)

(3)

If we assume the prior distribution of Pij as Beta(1, 1) which is the conjugate
prior for the Bernoulli distribution, the posterior distribution of Pij is Pr(Pij |
Mij ,Mji) ∼ Beta(Mij + 1,Mji + 1). The reason behind using Beta(1, 1) is that
we believe that we have equal probability to get either oi ≺ oj or oi � oj . It could
also be interpreted as Laplace smoothing to avoid some undefined calculation,
e.g., Beta(0, 0). The MAP of P̂ij equals the mode of the posterior distribution,
which is

P̂ij =
Mij + 1

Mij +Mji + 2
. (4)

Alternatively, we could also use maximum likelihood estimate (MLE) to cal-
culate P̂ij :

P̂MLE(M) = arg max
P

Pr(M | P ) = arg max
P

∏
i,j|i<j

Pr(Mij ,Mji | Pij)

=
∏

i,j|i<j

(Mij +Mji

Mij

)
Pij

Mij (1− Pij)
Mji = arg max

P

∏
i,j|i<j

Pij
Mij (1− Pij)

Mji

(5)

The MLE of P̂ij equals to
Mij

Mij+Mji
. Similarly, if we replace Mij and Mji by

Mij + 1 and Mji + 1, respectively, by the Laplace smoothing, then the MLE
equation will be identical to Eq. 4 (from MAP).

In summary, we estimate Pij from M based on Ac and then sample an answer
anew by Bernoulli(Pij) for the task (oi, oj).
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Estimating the influence of worker reliability In this section, we discuss
how worker reliability influences the predicting process of answer anew. As men-
tioned in Sec. 3.1, the posterior distribution Pij can be estimated based on the
collected answers Ac. The estimation framework is built on our underlying as-
sumption that every worker is reliable.

We attempt to add the effect of workers’ reliability (i.e., the probability of
answering correctly). Assume that we already know the average worker reliability
rel in Ac, the probability of a new answer anew should be revised as P ′ij =
Pij × rel+ (1−Pij)× (1− rel). It means that workers give reliable answers with
the probability rel while giving untrustworthy and opposite answers with the
probability 1− rel. The worker reliability can be provided by the platforms and
calculated based on workers’ answer history in other projects. If the platforms
do not provide this function, we could also set a lower bound of the required
quality of workers or do the qualification test to filter bad workers before the
actual assignments. This lower bound or qualified reliability is regarded as rel.

Generating answers in the next batch Ai+1 So far, we have discussed how
to predict the next task answer anew based on the collected answers Ac and
worker reliability. To predict the answers Ai+1 obtained in the next batch, we
apply an iterative process that generates answers one after another. Algorithm 1
shows the pseudo code of the iterative process. We first estimate Pij in line 2-6.
Then we utilize the assignment module T to get the importance of tasks. We
select the first nbatch important tasks, predict the answers respectively and add
into Ai+1 in line 7-12.

We can also predict a “complete” answer set A (obtained when we use up the
budget B). Based on Algorithm 1, we predict Ai+1 based on Ac = A1 ∪ ...∪Ai.
Similarly, Ai+2 is predicted based on A1 ∪ ...∪Ai+1, Ai+3 is predicted based on
A1 ∪ ...∪Ai+2 and so on. Finally, we can predict A = Ac ∪Ai+1 ∪Ai+2 ∪Ai+3...
until the size of A is equal to the given budget B.

3.2 Calculating Deviation

In the last section, we showed how to predict a “complete” answer set A. In this
section, we discuss how to judge whether the current point satisfies the definition
of the optimal stopping point.

Expected distance between rankings Given a “complete” and deterministic
answer set A, the inference module I can be used to compute each interim
ranking σi = I(A1∪ ...∪Ai) and the distance D(σi, σj) between each two interim
rankings (cf. Eq. 1 and 2). However, the probabilistic process may create many
possible worlds, i.e., many possible answer sets A = {A1, A2...}. If we know
the occurrence probability of each possible world Pr(A′) where A′ ∈ A, the
expected distance between the ith and jth batches can be defined as E[Dij ] =∑
A′∈A Pr(A

′)× D(I(A′1 ∪ ... ∪A′i), I(A′1 ∪ ... ∪A′j))
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Algorithm 1: Predicting the Next Answer Set
Input: Current answer set Ac, Inference module I, Task assignment module T , the number

of tasks in a batch nbatch

1 Initialize Ai+1 = ∅
2 // Step 1: Build the matrix M and P
3 Built matrix M based on the answer in Ac

4 for all possible (i, j) do

5 Estimate Pij =
Mij+1

Mij+Mji+2 by Eq. 4

6 Calculate P ′ij by Pij with worker reliability rel

7 // Step 2: Getting the next nbatch important tasks from T
8 T = T (Ac)
9 for each tnew in T do

10 // Step 3: Predict the answer of tnew = (oi, oj)

11 Sample a ∼ Bernoulli(P ′ij)

12 Ai+1 = Ai+1 ∪ {a}
13 return Ai+1;

However, it is difficult to calculate the occurrence probability because it is
impossible to conduct a brute-force search for all possible worlds. To tackle this
problem, we apply the Monte Carlo method, that allows an estimation of the
sampling distribution of almost any statistic using random sampling method.
The Monte Carlo method helps to generate a list of possible worlds, i.e., “com-
plete” answer sets {A1, A2, ..., As, ...|s ∈ [1, nsample]}. Given a pair (i, j), we
are able to compute a list of pairs of rankings (σsi , σ

s
j ) and the corresponding

distances Dsij . By the law of large numbers, the expected distance E[Dij ] can

be approximated by taking the sample mean Dij = 1
nsample

∑nsample

s=1 D(I(As1 ∪
... ∪ Asi ), I(As1 ∪ ... ∪ Asj)). If pcurrent is the earliest point satisfying ∀pi, pj ∈
[pcurrent, pfinal], Dij ≤ θ, pcurrent is the stopping point decided by our ES module.

The number of required samples In the Monte Carlo method, it is impor-
tant to decide the number of required samples such that the quality is secured.
Following common practice, we use Hoeffding’s inequality[13] to decide it.

Hoeffding’s Inequality. LetX1, ..., Xn be independent random variables bounded
by the interval [0, 1] : 0 ≤ Xi ≤ 1. Define the mean of these variables as

X = 1
n (X1 + ...+Xn). Then we have Pr(E[X]−X ≥ t) ≤ e−2nt2 where t ≥ 0.

We regard a possible world answer set As as a sample. The distance Dsij can be
regarded as an independent random variable given (i, j). Based on Hoeffding’s

Inequality, we have Pr(E[Dij ] − Dij ≥ t) ≤ e−2nt2 . This inequality could be
transformed into a confidence interval of E[Dij ]:

Pr(E[Dij ] ≤ Dij + t) > 1− e−2nt2 , (6)

where Dij is computed using Eq. 3.2. We require at least ln(1/α)
2t2 samples to

acquire (1− α)-confidence interval for E[Dij ] ≤ Dij + t.
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Given the targeted accuracy tolerance θ, if we find that Dij ≤ θ − t, we can

also derive Pr(E[Dij ] ≤ Dij + t ≤ θ) > 1 − e−2nt2 . We summarize it as the
following theorem.

Theorem 1. Given two points pi and pj, we secure that E[Dij ] ≤ θ with confi-

dence (1 − α) after we random sample ln(1/α)
2t2 “complete” answer sets and find

Dij ≤ θ − t, for some 0 < t < θ.

Here we set the confidence level α = 5% and the estimation error t as an
order of magnitude smaller than θ which secures enough samples to give a good
estimation. We need to sample nsample ≈ 104 for θ = 0.1, and nsample ≈ 106 when
we set θ = 0.01. The workload of sampling can be accelerated by multithreading
or distributed computation.

We then analyze the number of samples to secure all E[Dij ] ≤ θ with high
probability from the current to the final state, i.e., judge whether the following
formula holds: ∀pi, pj ∈ [pcurrent, pfinal], E[Dij ] ≤ θ.

Assume that number of batches for remaining budget is m = B−|Ac|
nbatch

, there

are (m+ 1)m/2 different expected distances needed to compute and check. If we
acquire confidence (1−α′) for all the expected distances, the confidence (1−α)
and the number of samples for each expected distance can be set as

α =
α′

(m+ 1)m/2
and nsample =

ln((m+ 1)m/2) + ln(1/α′)

2t2
. (7)

We utilize the union bound to prove them. Let E[Dij ] ≤ Dij + t for a pair
(pi, pj) be an event. The confidence (1−α) means the probability that one event
fails is α. Then based on the union bound, we derive that the probability that at
least one of the events fails is no greater than the sum of the probabilities of the

individual events, which is
∑(m+1)m/2
i=1 α = α′. In other words, the probability

that no event fails is at least α′, which satisfies our requirement.

Putting it all together. We put all of these techniques together to finalize the
ES module, as shown in Algorithm 2.

4 Experimental Evaluation

In this section, we thoroughly evaluate our ES module on two real public datasets.
Based on the different inference algorithms and task assignment approaches, we
compare our ES module with some standard quality estimation methods.

4.1 Experimental Settings

Datasets. We use two real public datasets collected in AMT.

– PeopleNum [15] concerns 39 images taken in a mall, each of which includes
multiple persons. The goal is to find the images with the most people in them.
6066 answers were collected from 197 workers. Each pair of images is answered
by at least 5 workers.
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Algorithm 2: Early-Stopping module
Input: Current answer set Ac, Inference module I, Distance function D, Budget B,

accuracy tolerance θ, confidence interval α′

1 Calculate number of batches for remaining budget m =
B−|Ac|
nbatch

2 Estimate the number of samples nsample by Eq. 7

3 Initialize distance array d and D
4 for 1 ≤ s ≤ nsample do
5 Set a temporary answer set A = Ac

6 Create a temporary array of ranked lists σ and set σ[0] = I(Ac)
7 for 1 ≤ j ≤ m do
8 Predict a batch of answers Aj based on A by Alg. 1
9 A = A ∪ Aj

10 σ[j] = I(A)

11 for 0 ≤ i ≤ m− 1 do
12 for i+ 1 ≤ j ≤ m do
13 d[s][i][j] = D(σ[i], σ[j])

14 for 0 ≤ i ≤ m− 1 do
15 for i+ 1 ≤ j ≤ m do

16 D[i][j] = 1
nsample

∑
1≤s≤nsample

d[s][i][j]

17 if D[i][j] ≤ θ − t, ∀i, j then
18 Invoke a programming call to terminate the rank process R
19 else
20 Continue collecting the next batch of answers

– PeopleAge [31] has 50 human photos with ages from 50 to 100. The goal is
to find the photos that include the youngest person. There are 4930 answers
from 150 workers. Each pair of photos is answered 3 times at least.

PeopleAge is hard because it is relatively subjective and different workers may
have different opinions on age. The difficulty of PeopleNum is medium because
it costs some time to count the persons.

Inference Modules I. According to [31], we select some recommended infer-
ence algorithms and task assignment strategies to work with our ES module. For
rank inference algorithms, we choose 4 methods:

– Copeland is a basic election approach where the objects are sorted by the times
they win/lose in the comparisons.

– Local is a heuristic-based method based on a comparison graph, where nodes
are objects and edges are built based on the pairwise comparisons. The score
of an object is defined by the number of winning objects minus the number of
losing objects in its 1-hop and 2-hop neighborhood.

– Iterative is an extended version of local supporting top-k queries. It keeps
discarding the bottom half of the objects in the inference process and then
re-computes the scores of the surviving objects. It repeats these two processes
until k objects are left.

– CrowdBT is a representative method that uses the Bradley-Terry (BT) model
to estimate the latent score si of the object oi. It models the probability oi ≺ oj
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as esi

esi+esj
. Based on the crowdsourced comparisons A, it computes scores for

the objects by maximizing
∑
oi≺oj∈A log( esi

esi+esj
).

Task Assignment Modules T . We implemented 4 task assignment strategies
based on commercial systems and existing work.

– Random is the strategy used by Amazon Mturk; tasks are assigned to coming
workers at random and all tasks are answered the same number of times.

– Greedy chooses the pair of objects with the highest product of scores as the
next task.

– Complete finds the top-x objects with the highest scores, where x is the largest

integer satisfying x(x−1)
2 ≤ nbatch, and sets their pairwise comparisons as the

next tasks.
– CrowdBT is an active learning method which selects the pair of objects which

maximizes the information gain based on the estimated scores.

Based on the characteristics of the inference algorithms and the task as-
signment strategies, we form and test 7 rank processes R: Copeland-Random,
Iterative-Random, Local-Random, CrowdBT-Random, Local-Greedy, Local-Complete,
and CrowdBT-CrowdBT.
Competitors. In order to evaluate our ES module, we also investigate two
alternative stopping criteria based on statistical analysis.

– Moving Average (MA) stops when the following equation is smaller than θ
at the first time. We calculate the distances between all pairs of consecutive
rankings or top-k lists, generated at the last w points before the current stage
and average them. Suppose we already collected i batches of answers:

MA(i, w) =

∑w
j=1 D(I(A1 ∪ ... ∪Ai−j), I(A1 ∪ ... ∪Ai−j+1))

w
(8)

– Weighted Moving Average (WMA) is similar to MA, except that we assign
different weights to the distances based on how far away they are from the
current stage. The distance between the latest two rankings has the largest
weight w, the second latest w − 1, etc, and so on.

WMA(i, w) =

∑w
j=1(w − j + 1)D(I(A1...Ai−j), I(A1...Ai−j+1))

w(w + 1)/2
(9)

Evaluation Metrics. We define the optimal stopping point poptimal in the
Sec. 2.2. To evaluate the effectiveness of different stopping criteria, we ana-
lyze the difference between poptimal and the stopping point psc predicted by a

stopping criterion. Mathematically, it can be written as ∆sc =
|poptimal−psc|
B/nbatch

.

4.2 Experimental Results

Implementation details We compare our ES module with two competitors,
MA and Weighted MA, on two datasets for ranking or top-k queries. The ob-
jective is to show the superiority and robustness of ES on top of different rank
processes R.
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(c)  Threshold = 0.03 

Fig. 3: ∆sc & Stopping Points in PeopleNum Dataset for Top-10 Lists
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Fig. 4: ∆sc & Stopping Points in PeopleAge Dataset for Top-10 Lists

The total budget is set to the number of answers in each original dataset.
The number of microtasks in a batch is set to 200. To get an answer of a pairwise
comparison (oi, oj), we randomly sample an answer from the answer set of (oi, oj)
without replacement. If some pairs are running out of answers, we will simulate
the next answer by a worker that has average reliability. To solve the cold-start
problem of some task assignment strategies, we pre-generate an answer to every
comparison. We also choose the best window size for MA and Weighted MA,
which is 20 for PeopleNum dataset and 10 for PeopleAge dataset, respectively.
Besides, a little change of initial answers for the cold-start problem will change
the next sequence of microtasks. Thus, we run the collection process 10 times,
and report the average performance.

We use two y-axes in Fig. 3 - 6. The left y-axis is ∆sc, which is defined in
Sec. 4.1. The right y-axis is the relative stopping point of MA, Weighted MA,
ES and the optimal stopping point, which divided by the maximum possible
stopping point, B/nbatch.

Top-k ranking Fig. 3 and 4 show ∆sc and the stopping point of our ES mod-
ule and the two alternative stopping criteria for top-k queries. Each stopping
criterion is evaluated with seven rank processes (cf. Sec. 4.1). We set k = 10
by default. The accuracy tolerance θ is set to {0.01, 0.02, 0.03}. For instance,
θ = 0.01 means the possible number of inverse pairs between the current ranked
list and the final state is smaller than 102 × 0.01 = 1.

ES outperforms the other two competitors for different rank processes and
different datasets in all settings. When we set θ to a larger value (accepting
higher accuracy loss), MA and Weighted MA tend to fall into the false states
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(b)  Threshold = 0.015 
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(c)  Threshold = 0.02 

Fig. 5: ∆sc & Stopping Points in PeopleNum Dataset for Rankings
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Fig. 6: ∆sc & Stopping Points in PeopleAge Dataset for Rankings
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Fig. 7: ∆sc in varied nbatch
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Fig. 8: ∆SC in varied B

mentioned in the Sec. 2.2 and stop much earlier than the optimal stopping point,
which results in high accuracy loss. According to the right y-axis, the position
of poptimal varies from 0.5 to 0.9. The stopping point of our ES module is very
close to poptimal when compared with the stopping points of MA and Weighted
MA. This reveals that ES is effective in finding poptimal.

Complete Ranking Fig. 5 and 6 show the performance for ranking queries.
The accuracy tolerance θ is set to {0.01, 0.15, 0.02}. Note that we exclude two
inference algorithms, Iterative and Complete, since they are designed for top-k
queries. Similar to top-k queries, our ES module is much better than the other
two competitions in terms of ∆sc. The curve of ES’s stopping point is very close
to that of poptimal compared with MA and Weighted MA.

4.3 Parameter Analysis

In this section, we test the effect of the total budget B and the number of
microtasks in one batch nbach. We evaluate these parameters with two rank
processes, Local-Random and Local-Greedy on PeopleNum dataset.
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Fig. 7 shows the effect of nbatch. In these experiments, we set the budget B
equal to the total number of answers in the original dataset and set θ = 0.02. ES
is the clear winner since its ∆sc is always less than or equal to 0.2 and outper-
forms MA and Weighted MA. In addition, MA and Weighted MA perform worse
when nbatch becomes small (i.e., fewer microtasks in a batch), which means that
the distance between two consecutive batches does not represent the distance
between the current state and the final state.

Fig. 8 evaluates the effect of the budget B. Note that we use the absolute
number of answers instead of a percentage in the y-axis. We set θ = 0.02 and
nbatch = 200 as default. We try {2.5, 5.0, 10.0, 20.0} ∗ 103. ∆sc of ES is always
smaller than the corresponding ∆sc of MA and Weighted MA. Particularly, er-
rors of MA and Weighted MA increase dramatically when B increases in Local-
Random. This is because increasing budget B improves the quality of the final
result and the position of the optimal stopping point moves backwards. But the
stopping points predicted by MA and Weighted MA do not change.

5 Related work

Crowdsourced ranking. The ranking problem has a long history and has been
studied in the past several decades. Simple traditional ranking algorithms, e.g.,
BordaCount [4] and Copeland [22], rank objects by the times they win/lose in
the comparisons. But these algorithms do not consider that the crowd may give
incorrect answers. How to deal with noisy answers and control worker qualities
is the key component in almost all crowdsourcing problems [17,24,25]. Several
inference algorithms and task assignment strategies are proposed to solve it.

Inference algorithms in raking problems can be divided into two categories:
heuristic-based solutions from the DB community approach the problem as a
top-k operation in databases, and machine-learning algorithms formalize it as a
leaning problem and maximize the likelihood of top-k objects. Heuristic score-
based algorithms [12,20,29,27] rank objects by estimating the underlying score
of objects. CrowdBT [8] and CrowdGauss [21] are ML algorithms, which set
the objective function based on the assumption and use maximum likelihood
to obtain the top-k object with the highest probability. Regarding task assign-
ment strategies, Amazon MTurk follows a random assignment strategy; i.e., mi-
crotasks are randomly dispatched to each coming worker. Random assignment
does not consider the difficulties of microtasks. Some heuristic assignment meth-
ods [12] aim at maximizing the probability of obtaining the top-k result, e.g.,
by selecting most promising object pairs (e.g., with the largest latent scores) to
compare. [6] avoids some unnecessary comparisons by setting a bound for the
object latent score. Active learning methods are also used in CrowdBT [8] and
CrowdGauss [21] to compare objects with the largest expected information gain.

According to a recent experimental study [31], different inference and assign-
ment methods have their own advantages and there does not exist a single best
one. Machine-learning methods typically have high quality. Still, global inference
heuristics that utilize global comparison results achieve comparable and even
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higher quality than ML methods. Local inference heuristics have poor quality,
but have higher efficiency and scalability. For task assignment, active-learning
methods achieve higher quality than heuristics, but they have low efficiency.

Stopping Criteria. Stopping criteria have been defined for various crowdsourc-
ing problems. [23] designs an early-stopping strategy for multiple-choice-question
problems (e.g., choosing the opinion positive, neutral, or negative in a sentence).
[30] uses Sequential Probability Ratio Test to decide when to stop for multi-
labeling tasks (e.g., labeling pictures as a portrait or a landscape). Besides, [7]
uses Chao92 estimator to evaluate the level of completion for entity collection
(e.g., collecting a set of active NBA players). The settings of all these problems
are quite different from crowdsourced ranking because microtasks are indepen-
dent in these problems while correlated in the ranking problem.

Some previous studies on crowdsourced ranking define their special stopping
conditions. For instance, [9] assumes that each object has a latent score and
answers to pairwise comparisons follow the Bradley-Terry model [5]. [16] asks
the crowd to give a numerical answer in [0, 1] for a pairwise comparison and
calculates the confidence interval of the result. However, these approaches are
based on special assumptions that cannot generalize to most situations.

6 Conclusion

In this paper, we proposed a general stopping criterion for crowdsourced ranking.
We demonstrated the robustness of our method in different situations, includ-
ing subjective or objective tasks, diverse inference modules or task assignment
modules and different budget and tolerance parameter values.
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