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A Crowdsourcing Framework for
Collecting Tabular Data

Caihua Shan, Nikos Mamoulis, Guoliang Li, Reynold Cheng, Zhipeng Huang, and Yudian Zheng

Abstract—In crowdsourcing, human workers are employed to tackle problems that are traditionally difficult for computers (e.g., data
cleaning, missing value filling, and sentiment analysis). In this paper, we study the effective use of crowdsourcing in filling missing
values in a given relation (e.g., a table containing different attributes of celebrity stars, such as nationality and age). A task given to a
worker typically consists of questions about the missing attribute values (e.g., What is the age of Jet Li?). Although this problem has
been studied before, existing work often treats related attributes independently, leading to suboptimal performance. In this paper, we
present T-Crowd, which is a crowdsourcing system that considers attribute relationships. Particularly, T-Crowd integrates each worker’s
answers on different attributes to effectively learn his/her trustworthiness and the true data values. The attribute relationship
information is used to guide task allocation to workers. Our solution seamlessly supports categorical and continuous attributes. Our
extensive experiments on real and synthetic datasets show that T-Crowd outperforms state-of-the-art methods, improving the quality of
truth inference and reducing the monetary cost of crowdsourcing.

Index Terms—Crowdsourcing, Tabular Data, Truth Inference, Task Assignment.
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1 INTRODUCTION

Crowdsourcing is an effective way to address computer-
hard problems [8], [23], [36], [37], [43] by utilizing numerous
ordinary humans (called workers or the crowd). The general
workflow of crowdsourcing is as follows: at first a requester
proposes a problem, then the problem is transformed into
many tasks (i.e., questions), and finally the workers com-
plete the tasks assigned to them and they are given a
monetary reward. Crowdsourcing involves two interrelated
processes: truth inference and task assignment. Truth inference
refers to addressing noise and errors for inferring the correct
value (or truth) for each task from redundant answers [11]
[39]. Task assignment refers to selecting appropriate tasks to
assign to each incoming worker. Truth inference can be used
as a module in task assignment, to estimate the confidence
of estimated true values [5] [23].

In this paper, we focus on crowdsourcing tabular data, i.e.,
a collection of related items which are structured in a tabular
form and comply to a schema. Each column represents a
particular attribute or variable. Each row corresponds to an
entity and includes a value for each of the variables. Table 1
illustrates an example about data collection of celebrities;
given the name of a celebrity, the goal is to collect the
nationality, age, and notability (range from 1 to 5) of the
person from the crowd. The bold values shown in Table 1
are the unknown (ground) truth data to be collected from
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Table 1: Ground Truth about Celebrities

Name Nationality Age Notability
1 Leonardo DiCaprio United States 42 5
2 Jet Li China 54 4
3 James Purefoy Great Britain 53 3

Table 2: Answers to Questions about Celebrities

Worker Row Id Nationality Age Notability

u1
1 United States 40 5
2 China 45 3

u2
1 United States 42 5
3 Great Britain 53 3

u3
2 China 50 4
3 United States 35 2

the workers. Each cell of this table can be considered as a
task, i.e., a worker may be asked to provide a value for the
nationality of a celebrity given his/her name. Our target
is to complete an empty or partial-filled table by filling in
the cells effectively. Crowdsourcing tabular data finds direct
application in database cleaning and integration [15] [28]
[29].

Most crowdsourcing systems assume that the set of
tasks are homogeneous and independent. However, tasks in
tabular data can be heterogeneous and dependent to each other,
which makes effective crowdsourcing on them challenging.

First, the datatypes and domains of different attributes
may vary. For example, in Table 1, the task “the nationality
of Jet Li?” has a different datatype compared to the task “the
age of DiCaprio?” (i.e., categorical vs. continuous). Even
attributes of the same datatype may have different domains
(e.g., Age vs. Notability). As a result, approaches for inte-
grating the answers of a worker in different homogeneous
tasks are not directly applicable. These include the popular
EM algorithm [9] for categorical data and data integration
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models applied for continuous attributes (GTM [40] and
CATD [20]), to be discussed in Section 2. As we will show,
applying a different approach for each column does not
transfer the knowledge from one datatype to the other, i.e.,
the estimation of worker quality can be inaccurate due to
data sparsity.

Second, in tabular data, there are potential dependencies
between rows and columns. The difficulty of a task might
depend on the corresponding entity and attribute. As a
result, the quality of a worker on a particular task may
depend on her quality on other tasks in the same row or
column. Take Table 2 as an example, where bold values are
the answers of three workers on tasks from Table 1. Note
that worker u3 inputs a wrong nationality of James Purefoy,
meaning that she might mistake this celebrity for someone
else. Therefore, her answers for the age and notability of
the person have high chance to be unreliable, despite the
high quality of her input for the second row. This means
that when we assign a new task to the coming worker,
we should not only consider the worker’s inherent quality,
but also whether the worker is familiar with the entity (we
call it the worker’s structure-aware quality). Traditional task
assignment methods [7] [18] focus on capturing the former
but ignore the latter.

In this paper, we present T-Crowd, the first crowdsourc-
ing system that considers heterogeneous and dependent of
tabular data in both truth inference and task assignment. T-
Crowd processes the submitted answers by each worker to
infer a unified quality for him or her. T-Crowd seamlessly
integrates the worker’s answers to questions of different
datatypes and domains, addressing consistency and data
sparsity issues that would arise from the alternative ap-
proach of using different models for different columns. For
example, the overall quality of worker u2 can be regarded
better than that of worker u1 considering their answers to
both categorical and continuous values in Table 2. Unified
worker quality greatly improves truth inference and task as-
signment, reducing the total number of tasks to be assigned
to workers until all true values can be estimated with high
confidence.

T-Crowd captures the importance of tasks (i.e., how
confident we are about their value estimates) in the different
columns and rows, based on the collected data so far. We
also define an inherent information gain which is a uniform
measure for ranking tasks with respect to a given worker.
Then we choose to assign to the worker the tasks with the
highest anticipated benefit. In contrast, previous work [15]
[29] on crowdsourcing tabular data performs task assign-
ment based on only how many more answers are needed for
each task, disregarding worker quality. To further improve
performance, we utilize the potential correlations between
tasks. We define a structure-aware information gain which
extends the inherent information gain to also consider as
a parameter the previous answers given by the worker on
tasks that appear in the same row, when selecting new tasks
to assign to him or her.

A preliminary version of this work, which focused on
truth inference in crowdsourcing tabular data, appears in
[33]. In this paper, in addition to truth inference, we study
the task assignment problem. In addition, we evaluate the
performance of our proposed task assignment approach on

three real datasets and compare it with four competitors.
Besides, we add several new and recent competitors for
our proposed truth inference algorithms, such as CATD,
Zencrowd, TC-onlyCate and TC-onlyCont. The latter two
are the constrained versions of T-Crowd that apply only on
the categorical or continuous attributes. Finally, we expand
our case studies, add experiments with synthetic datasets,
and include a comparison to CrowdFill [29].

To summarize, our main contributions are as follows:

• To the best of our knowledge, we are the first to study
crowdsourcing tabular data with both heterogeneity
and dependency.

• We unify worker quality for all tasks in crowd-
sourced tabular data, improving the accuracy of truth
inference and the performance of task assignment,
compared to models that treat each attribute inde-
pendently.

• Given an incoming worker, we find suitable tasks for
him/her based on inherent information gain, including
the benefit of obtaining additional answers in tasks
and the worker’s inherent quality. We also extend
it to structure-aware information gain, which considers
the correlation of answer quality between tasks in the
same row.

• We evaluate T-Crowd on real datasets; the results
demonstrate its superiority over existing alterna-
tives. Compared to previous work, T-Crowd has
better truth inference accuracy and converges to the
true values of the tasks using only about half of the
answers by the workers.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 defines the problem and
gives an overview of our system. In Section 4, we present
our methodology for truth inference. Our task assignment
policy is presented in Section 5. Section 6 includes our
experimental evaluation. Finally, we conclude in Section 7.

2 RELATED WORK

Related work falls into two categories: truth inference meth-
ods used to infer the truth and task assignment strategies for
an incoming worker.

Truth Inference. The most basic truth inference methods
are majority voting for multiple-choice tasks (i.e., categor-
ical data) and taking the median for numerical tasks (i.e.,
continuous data). These approaches regard all workers as
equal, disregarding any differences in their trustworthi-
ness. Methods such as D&S [9], [17] use a confusion ma-
trix to model a worker’s quality, and use an Expectation-
Maximization (EM) algorithm to infer the truth. More ad-
vanced approaches such as TruthFinder [39], Accusim [12],
and GLAD [38] improve accuracy using different worker an-
swering models or by considering more parameters, such as
a task’s difficulty. These methods focus on answering tasks
on categorical data. Other methods, such as GTM [40], are
designed for continuous crowdsourced data. CRH [21], [22]
and CATD [20] are two existing truth inference approaches
for both categorical and continuous data. CRH [21] incor-
porates different distance functions between the answers
and the estimated truth to recognize the characteristics of
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various data types. Specifically, CRH proposes an objective
function and minimizes it by updating the estimated true
values and source reliability (i.e., worker quality) in turns.
CATD [20] considers both source reliability and the confi-
dence interval of the estimation. Additional information of
tasks or workers has also been considered in truth inference,
such as the latent topics of the tasks [24] and the learn bias
of workers [44].

The aforementioned works do not consider tabular
data. In Section 4, we present an iterative Expectation-
Maximization (EM) truth inference algorithm, which im-
proves the accuracy of truth inference from the answers
compared to previous work. The novelty of our work is that
we use a probabilistic model for the answers of workers
wrt different data types and that we unify workers’ quality
on categorical data and continuous data explicitly, while
methods like CRH design different distance functions for
the different data types.

Task Assignment. Online task assignment selects which
tasks to assign to each incoming worker, in order to achieve
the maximum possible quality for the collected data. In
earlier crowdsourcing systems, such as CDAS [23], the
candidate tasks are randomly assigned to workers. AskIt [5]
is yet another crowdsourcing platform, which assigns the
tasks that have the highest uncertainty, again disregard-
ing the quality (or expertise) of the incoming worker for
these tasks. CrowdDB [15], Deco [28], and Qurk [25] are
extensions of relational database systems that incorporate
the crowd’s knowledge into query processing. They use
answers from the crowd to make up the missing values of
query operators. They are similar to our approach in that
they collect tabular data; however, they do not focus on
the assignment strategy and simply assign random tasks
to workers. CrowdFill [29] is a recent system for tabu-
lar data, which uses a non-conventional workflow that is
not supported by common crowdsourcing platforms such
as AMT. In CrowdFill, workers are asked to select and
perform tasks from a subset of the table given to them
and they can also vote for the answers to these tasks by
other workers. Besides, CrowdFill does not estimate worker
quality, and does not use properties of tabular data (e.g.,
attribute dependencies) to assign tasks to workers. Some
methods [14], [26], [41] consider the case where the tasks
are relevant to different domains and workers are given
the tasks that match their domain expertise. In recent work,
such as OptKG [7] and CrowdDQS [18], task assignment
is modeled by a Markov Decision process or solved by
using maximum potential gain, but the application of these
models is limited to only multiple-choice tasks (categorical
tasks). Other forms of online task assignment, which need
explicit workers’ collaboration, have been studied in [31],
[32]. Different from the above works, our method focuses
on crowdsourced tabular data, which is structured and
heterogeneous, presenting challenges and opportunities as
discussed in the Section 1.

3 PROBLEM DEFINITION

In this section, we formulate the problem and give an
overview of T-Crowd. Our goal is to perform crowdsourcing
on a two-dimensional table C , defined as follows.

Table 3: Table of Notations

Notation Description
cij cell (task) in the i-th row and j-th column
auij answer given by worker u for cell cij
A the set of all answers, i.e., A = {auij}
Tij distribution of estimated truth for cell cij

T ∗ij (T̂ij) ground truth (estimated truth) for cell cij
euij error of auij with respect to T̂ij

qu quality of worker u
αi (βj) difficulty of row i (column j)

Definition 1 (Tabular Data Model). We target the crowd-
sourcing of a two-dimensional table C = {cij}, where
i ∈ {1, ..., N} and j ∈ {1, ...,M}. C has an entity
attribute which is the key attribute of the table. Each
column is a categorical or a continuous attribute. Each
cell cij represents the value of the i-th entity in the j-th
attribute, whose true value (i.e., truth, or ground truth) is
denoted as T ∗ij .

Table 1 shows an example of tabular data about celebri-
ties that we want to crowdsource. Age and Notability are
continuous attributes, while Nationality is categorical. The
entity attribute is Name. To obtain the truth for the remaining
attributes, we ask the crowd to provide answers.

Definition 2 (Task, Worker, Answer). A task is related to a
cell cij and the workers are asked to answer the task, by
providing values for the cell. Let U be a set of workers.
A worker u ∈ U will submit an answer auij , if cell cij is
assigned to u.

For example, to get the age of the second entity, a task
provides the name of the second entity and asks workers
to input the age. Since workers may have different levels
of quality (e.g., some workers are experts, while some
are spammers), each task cij is often assigned to multiple
workers and all acquired answers for cij are aggregated to
infer the true value of cij . Next, we define the two problems
that we aim to address in this paper.

Definition 3 (Truth Inference). Given the set of answers
{auij}, by workers u ∈ U to cells cij , i ∈ {1, ..., N},
j ∈ {1, ...,M}, the problem of truth inference is to
compute an accurate estimate T̂ij for each cell cij ’s true
value T ∗ij .

Definition 4 (Task Assignment). When a worker u requests
for a task for C , decide the task to be assigned to u.

Note that existing crowdsourcing platforms, such as the
Amazon Mechanical Turk (AMT) [1], support the func-
tionality of dynamically assigning tasks to an incoming
worker (e.g., the ‘external-HIT’ feature in AMT [2]). Table
4 summarizes the notations used in this paper.

System architecture. Figure 1 gives an overview of T-
Crowd, our proposed system for crowdsourcing tabular
data. A requester (e.g., a lifestyle journal) first defines the
structure (i.e., schema) of the collected data, such as the
datatypes of the columns, and the key attribute. Then the
requester publishes tasks to a crowdsourcing platform, e.g.,
AMT [1]. For an incoming worker u, our Task Assignment
module determines one or more cells and assigns the cor-
responding task(s) to u. This is based on the anticipated
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Figure 1: System Architecture

information gain of the different cells by u’s answers. Intu-
itively, the information gain is an estimate of how much
more accurate the cells’ values become upon collection of
u’s inputs. When the worker submits an answer auij for a
cell cij to the system, the Truth Inference module infers the
estimated truth T̂ij . To facilitate task assignment and truth
inference, we also estimate the quality of worker qu and the
difficulty of cells αi and βj . Task(s) are assigned to workers
and answers are collected until T̂ij converges (or a budget
is exhausted).

4 TRUTH INFERENCE

In this section, we explain how T-Crowd performs truth
inference on tabular data. The quality of truth inference
for a data cell cij depends on the quality of workers who
answer cij , and the difficulty of cij . We first discuss how
to model worker quality qu and cell difficulty αi(βj) if we
already know the truth T̂ij (Sections 4.1). Then, we show
how to infer the true values of cells T̂ij and these two factors
simultaneously by maximizing the likelihood of workers’
answers auij (Section 4.2).

4.1 Worker Model
4.1.1 Quality of a Worker
The challenge in modeling worker quality is that attributes
may have different datatypes; the answer set of a categorical
task is finite and nominal, while that of a continuous task is
an integer or a real number. Hence, it is not straightforward
to model the quality of a worker using a single parameter.
To address this problem, we propose a unified model for
both categorical and continuous attributes.

We model the truth of a categorical attribute l∗ as
an element in a finite unordered set of possible answers
L = {l1, l2, ..., l|L|}. An answer from a worker is either
correct or wrong depending on whether it is the same as the
ground truth. On the other hand, for a continuous attribute,
the quality of the answer depends on how close it is to the
ground truth. For example, if the age of Jet Li is 54, and a
worker answers 53, which is close to the truth, the answer
is considered to be a good one.

As discussed, our goal is to use a single parameter qu
to represent the quality of a worker u. For the ease of

presentation, we first illustrate how the worker’s quality for
continuous datatypes can be modeled, and then show how
the model can be extended for categorical datatypes.
• For continuous datatypes, we model the distribution of
the answer given by worker u as a normal distribution:
auij ∼ N (T̂ij , φu):

P (auij = x) =
1√

2πφu
exp

(
− (x− T̂ij)2

2φu

)
, (1)

where T̂ij is the expected value of cij and φu is the variance
of u. Intuitively, the higher the quality of a worker is, the
smaller the variance will be, as his/her answer should have
smaller difference from the truth. Inspired by this, we model
qu ∈ [0, 1] as the probability that the answer from worker u
falls into a small range (ε) around the truth T̂ij :

qu = P ( auij ∈ [T̂ij − ε, T̂ij + ε] ) = erf(ε/
√

2φu). (2)

Intuitively, qu is the area under the normal distribution
curve, where ε is a general parameter that controls the shape
of the area and “erf” is the Gauss error function [4].
• For categorical attributes, qu ∈ [0, 1] indicates the proba-
bility that the worker u would correctly answer a task, i.e.,

P (auij = z) = (qu)
1{T̂ij=z} ·

( 1− qu
|L| − 1

)1{T̂ij 6=z} , (3)

where 1{·} is an indicator function which returns 1 if the
argument is true; 0, otherwise. For example, 1{5=5} = 1 and
1{5=3} = 0. Intuitively, worker u has probability qu to give
the correct answer and we evenly distribute the probability
(1 − qu) to the remaining (false) answers. Note that qu can
be expressed as in Equation 2, which means that we can
use the same quality measure for categorical and continuous
attributes.

4.1.2 Difficulty of a Cell
The answers from workers do not only depend on their
expertise, but they are also influenced by the difficulty
of tasks. Hence, in our model, the quality of answer auij
depends on the quality of worker u, the difficulty βj of
attribute (i.e., column) j, and the difficulty αi of entity (i.e.,
row) i.

To incorporate the difficulty of each cell cij into the
worker’s quality, we define the variance of his/her an-
swer to a cell cij as φuij = αiβjφu. Hence, the variance
is positively correlated to the difficulties αi and βj , and
the inherent variance (φu) of answers by worker u. Then,
following Equation 2, we represent the quality of worker
u answering cell cij as quij = erf

(
ε/
√

2αiβjφu
)
. To model

the worker’s answers on categorical and continuous data,
Equations 1 and 3 can be changed accordingly, i.e., by
replacing φu with φuij and qu with quij .

Note that T̂ij , αi, βj and φu are unknown and we discuss
how to compute them later. The worker quality qu (quij) can
be calculated directly if we know αi, βj , and φu.

4.2 Inference Process
The objective function of the truth inference problem is to
maximize the likelihood of workers’ answers, i.e.,

arg max
α,β,φ

P (A|α, β, φ) = arg max
α,β,φ

∑
T
P (A, T |α, β, φ),
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where A is the current set of answers by all workers on all
cells and T is a set of all hidden true values, i.e., T = {Tij}.
Tij denotes the estimated distribution of truth in cell cij . To
optimize this non-convex function, we use the Expectation-
Maximization (EM) algorithm [11], which takes an iterative
approach. In each iteration of EM, the E-step computes
the hidden variables in T , and the M-step computes the
parameters αi, βj and φu (qu). Next, we provide details
about the E-step and the M-step.

Expectation Step (E-step). In the E-step, we compute the
posterior probabilities of hidden variable Tij ∈ T given
the values of α, β and φ and the observed variable Aij =
{auij}, u ∈ Uij , i.e., the current answer set of cell cij .

P ( Tij = z|Aij , αi, βj , φ ) ∝∏
u∈Uij

P (auij |Tij = z, αi, βj , φu) · Prior(Tij = z).
(4)

Based on our defined worker model of P (Tij =
z|Aij , αi, βj , φ) for different datatypes, the distribution
is defined as follows.
(1) For cells cij of continuous type, we re-
gard that Prior(Tij = z) follows a nor-
mal distribution N (µ0

j , φ0
j ), and Tij ∼

N (Tµij , T
φ
ij), where Tµij and Tφij satisfy that

Tµij =
(∑

u∈Uij

auij
αiβjφu

+
µ0
j

φ0
j

)
Tφij ,

Tφij =
(∑

u∈Uij

1

αiβjφu
+

1

φ0
j

)−1
.

(2) For cells cij of categorical type, we have

P (Tij = z) =

∏
u∈Uij

[(quij)
1{au

ij
=z}(

1−quij
|Lj |−1 )

1{au
ij
6=z} ]∑

z∈Lj

∏
u∈Uij

[(quij)
1{au

ij
=z}(

1−quij
|Lj |−1 )

1{au
ij
6=z} ]

,

where quij is defined as erf
(
ε/
√

2αiβjφu
)

and Lj is the label
set of column j. Prior(Tij = z) is uniform so it disappears.

Intuitively, the answer given by high quality worker will
be trusted more, i.e., given higher weight. To be specific,
we estimate the truth distribution Tij by combining the set
Aij of workers’ answers for cij . (1) Tµij can be regarded
as a weighted average of answer auij based on the quality
αiβjφu. Tφij is a normalized term. (2) Similarly, P (Tij = z)
is a normalized product of the qualities quij of the workers
whose answer auij is z.

Maximization Step (M-step). In the M-step, we find the
values of parameters α, β and φ that maximize the expec-
tation of the joint log-likelihood of the observed variable A,
as shown below:

Q(α, β, φ) = ET [lnP (A, T |α, β, φ)]

=
∑
j

∑
i

ETij

[
lnPrior(Tij) +

∑
u∈Uij

lnP (auij |Tij , αi, βj , φu)
]
.

(5)
Formula ETij

[
∑
u∈Uij

lnP (auij |Tij , αi, βj , φu)] is calculated
for the different datatypes, as follows.
(1) For cells cij of continuous type:

∑
u∈Uij

[−1

2
ln(2παiβjφu)−

(auij − T
µ
ij)

2 + Tφij
2αiβjφu

].

(2) For cells cij of categorical type:∑
z∈Lj

P (Tij = z) ·
∑

u∈Uij

(
1{auij=z} ln erf(

ε√
2αiβjφu

)

+1{auij 6=z} ln
1− erf( ε√

2αiβjφu

)

|Lj | − 1

)
.

We apply gradient descent to find the values of α, β and
φ that locally maximize Q(α, β, φ).

Intuitively, a worker will be of high quality if his/her
answers are close to the estimated truth. Thus, we compute
a value φu that maximizes the expectation of the log-
likelihood of worker u’s answers au∗∗. Similarly, we also find
an αi (resp. βj) that maximizes the expectation of the log-
likelihood of answers a∗i∗ in row i (resp. a∗∗j in column j).

Algorithm. By combining the two steps above, we can
iteratively update the parameters until convergence. Each
Tij is initialized by following the distribution in Prior(Tij).
At each iteration, the M-step applies gradient descent to
find αi, βj and φu by maximizing Equation 5 and the E-
step applies Equation 4. We identify convergence if the
differences between the parameter values in subsequent
iterations are below a threshold (e.g., 10−5).

Finally we estimate the truth T̂ij of each cell cij as:

T̂ij =

{
Tµij , cij is continuous,
arg maxz∈Lj P (Tij = z) , cij is categorical.

Time Complexity. The total cost of the E-step is O(l · |A|),
where A is the set of all obtained answers and l =
maxj(|Lj |). In the M-step, one gradient descent needs
to compute the gradient of each parameter which takes
O(l · |A|). If the gradient descent takes v iterations to
converge, this step takes O(vl · |A|) time in total. Assuming
that the algorithm needs w iterations to converge, the total
time complexity is O(wvl · |A|). In practice, l is constant,
and v and w are smaller than 20, thus the time complexity
is linear to the number of answers.

Algorithm 1: Truth Inference Method
Input: workers’ answers auij ∈ A, prior distribution of truth Prior(Tij)
Output: truth distribution Tij ∈ T , worker’s quality φu, difficulty of

row αi and column βj

1 Initialize Tij using Prior(Tij)
2 while true do
3 // Step 1: Estimate Worker Quality and Cell Difficulty
4 Compute αi, βj and φu maximizing Eq. 5;
5 // Step 2: Infer the Truth
6 for 1 ≤ i ≤ N do
7 for 1 ≤ j ≤M do
8 Obtain Tij by Eq. 4;

9 // Check for Convergence
10 if Converged then
11 break;

12 return Tij , αi, βj and φu;

5 ONLINE TASK ASSIGNMENT

In this section, we discuss how we select tasks for a worker
u. Section 5.1 defines an inherent information gain function
to measure the utility of assigning a task to the worker,
which can handle both categorical and continuous data. The
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function considers the quality of the worker, the need to
obtain more answers for the task, and the task’s difficulty.
Intuitively, we prefer to assign tasks whose gain of infor-
mation will be improved the most if the incoming worker
answers them. In Section 5.2, we extend this to a structure-
aware information gain function, which also considers the
correlations in the qualities of answers given by the same
worker to different cells of the same row.

5.1 Inherent Information Gain
We need a uniform measure for the utility (or benefit)
of assigning a task (either categorical or continuous) to a
worker u with quality qu. For this purpose we define an
inherent information gain function, following the steps below.
(1) For a categorical cell cij , the distribution of truth Tij has
been computed by P (Tij = z) in Equation 4, which is the
probability that label z is correct. Thus, Shannon Entropy [3]
can be used to define the uncertainty of task cij :

Hs(Tij) = −
∑

z∈Lj

P (Tij = z) lnP (Tij = z).

(2) For a continuous cell cij , note that for a continuous
distribution, the Differential Entropy [27] is defined as:

−
∫
X
f(x) ln f(x) dx,

where f(x) is a probability distribution. Recall that we
also define the distribution of truth Tij ∼ N (Tµij , T

φ
ij) of a

continuous cell cij in Equation 4, so its Differential Entropy
can be computed as:

Hd(Tij) =
1

2
ln
(

2π e Tφij

)
.

Given the above, we define the uniform entropy for task
cij :

H(Tij) =

{
Hd(Tij), if cij is continuous,
Hs(Tij), if cij is categorical.

A straightforward approach for task assignment to a
worker u is to select the task cij with the largest uniform
entropy. However, this is problematic, as Differential En-
tropy and Shannon Entropy are not comparable; hence,
task assignments may be biased toward one datatype. For
example, as pointed out in [27], Differential Entropy can
be negative while Shannon entropy is always non-negative.
Alternatively, we use Delta Entropy to measure the informa-
tion gain. Suppose AC is the current set of answers we have
collected, we can obtain the estimated truth distribution
(denoted as Tij,AC

) for each task cij by the truth inference
method presented in Section 4. Specifically, for an incoming
worker u, we define the inherent information gain of assigning
task cij to her as:

IGq(cij) = H(Tij,AC
)− Eauij [H(Tij,AC∪{auij})], (6)

where Tij,AC∪{auij} is the updated distribution of the esti-
mated truth for task cij after receiving a new answer auij
from u.

By using the inherent information gain measure defined
in Equation 6, we alleviate the problem that the domains
of the two entropy types are different. If we discretize the
range of a continuous random variable X using bins of

Algorithm 2: Online Task Assignment Method
Input: Budget B
Output: truth distribution Tij ∈ T

1 Initialize each task with several answers from workers
2 while Budget B is not exhausted do
3 // Step 1: Analyze current situation
4 Run truth inference to obtain Tij , αi, βj and φu

5 // Step 2: Find task c∗ with highest benefit for incoming worker u
6 for 1 ≤ i ≤ N do
7 for 1 ≤ j ≤M do
8 Compute information gain IG(cij) by Eq.6
9 if IG(cij) > IG(c∗) or c∗ is not defined then

10 c∗ = cij

11 // Step 3: Collect answers
12 Publish task c∗ and collect worker u’s answer

13 Run truth inference to obtain the final Tij

14 return Tij

width ∆, we can compute the Shannon entropy for this new
discretized random variable X∆, and we have the following
formula if X’s pdf is Riemann integrable:

Hs(X
∆) + ln ∆→ Hd(X), as ∆→ 0.

Hence, if ∆ is small, Hd(X1) − Hd(X2) ≈ Hs(X
∆
1 ) −

Hs(X
∆
2 ), which means that the subtraction of two dif-

ferential entropies can be transformed into subtraction of
two Shannon entropies. As a result, for cells of different
types, IG(cij) is comparable. Algorithm 2 describes the task
assignment algorithm in detail.

Computing the distribution of Eauij [H(Tij,AC∪{auij})]. The
distribution of an answer auij follows the worker model
in Equations 1 and 3 for continuous and categorical tasks,
respectively. For a categorical task cij , the domain of auij
is a finite label set, so we use all possible values auij to
obtain Tij,AC∪{auij} using the inference method described
in Section 4. For a continuous task, since the the domain of
auij is R, we apply sampling to approximate the value of
Tij,AC∪{auij}. However, it is expensive to run the inference
method for each possible answer. To alleviate this problem,
we limit the number of iterations per answer, by only up-
dating the parameters related to the answer and keeping the
other parameters unchanged. Specifically, for a new answer
auij , we locally update the truth distribution Tij , and the
qualities of workers who have answered task cij .
Time Complexity. To compute the benefit for each task
cij (Equation 6), we should first iterate through the possi-
ble answers given by the incoming worker and compute
a new distribution of truth Tij . The number of possible
answers for a categorical task cij is |Lj | and for a contin-
uous task is the fixed sampling number scont. Because we
approximate the inference method, it only takes O(l · |P |)
where P is the set of parameters we need to update. Let
s = max(maxj(|Lj |), scont); the total cost of considering one
task for a certain worker is O(sl · |P |). Then, computing the
information gains of all tasks takes O(NMsl · |P |). Since P
includes the truth distribution Tij and the qualities of work-
ers who have answered task cij , P mainly depends on the
average answers per task. Thus,O(NMsl·|P |) ≈ O(sl·|A|).

Parallel or distributed computation can be used to accel-
erate task assignment, as the consideration of the different
tasks are independent.
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Table 4: Table of Notations in Task Assignment

Notation Description

euij error of answer auij with respect to T̂ij

Ej distribution of error in column j

P (Ej |Ek)
correlation of error

between column j and k
wjk correlation coefficient between column j and k

5.2 Structure-Aware Information Gain

The task assignment approach based on inherent informa-
tion gain, described in Section 5.1, does not utilize the struc-
tural information of table C . We now propose a structure-
aware task assignment method. The basic idea is to estimate
correlation, i.e., the conditional distribution of the error on
a task cij , given the errors on other tasks ci∗ in the same
row. For this, we consider the answer history of all workers
and then use the conditional distribution to obtain a better
estimation of the target worker u’s error on task cij .

We have already shown how to estimate the truth
T̂ij for each cell cij in Section 4. Based on it, we can
transform answer auij into error euij . For a continuous at-
tribute, euij = auij − T̂ij , while for a categorical attribute,

euij =

{
0 , auij = T̂ij ,

1 , auij 6= T̂ij .
It is easy to regain answer auij from

error euij by reversing the according equation.
We regard P (Ej |Ek) as the correlation of error be-

tween column j and k. We estimate P (Ej |Ek) with
a maximum likelihood method considering all the an-
swers a∗∗j and a∗∗k we have collected, which is dis-
cussed later. If worker u has answered task cik before,
his/her error for task cij is recomputed as P (Ej |Ek = euik).
When worker u has answered multiple tasks Lui =
{k| worker u answered task cik on row i}, we need to con-
sider all the observed errors. However, it is not practical
to estimate the conditional distribution, given errors from
multiple attributes, due to data sparsity. Hence, we consider
a linear combination of the correlations, as follows:∑

k∈Lu
i
wjk · P (Ej |Ek = euik)∑

k∈Lu
i
wjk

(7)

where wjk is the correlation coefficient between attribute j
and k:

wjk =
(Mj −M j)(Mk −Mk)√

(Mj −M j)2

√
(Mk −Mk)2

, (8)

where Mj and Mk are the error vector on attribute
j and k combined by the pair data {(euij , euik)|
error of answers auij and auik when they are both existed}.
M j and Mk are also vectors, where each element is the
mean of vector Mj and Mk, respectively.

After obtaining the conditional distribution of error euij ,
we transform error euij into answer auij by reverse operations
described above. Then, we calculate Eauij [H(Tij,AC∪{auij})]
based on new answer distribution auij while H(Tij,AC

) is
not changed. Accordingly, the structure-aware information
gain IGc(cij) is calculated using Eq. 6.
Computing the Correlation P (Ej |Ek). Correlation is de-
fined as the conditional probability between column j and
k and it is derived from the known errors e∗∗j and e∗∗k.

(1) Marginal distribution P (Ej). A categorical column is
regarded as a Bernoulli distribution while a continuous
column is regarded as a normal distribution.
(2) Conditional distribution P (Ej |Ek). Since we have cat-
egorical and continuous columns, we have four cases in
total. For each case, we use the maximal likelihood method
to estimate the parameters in the assumed distribution. We
elaborate on these cases below:

i. both j and k are categorical: P (Ej = 1|Ek = 0),
P (Ej = 0|Ek = 0), P (Ej = 1|Ek = 1) and P (Ej = 0|Ek =
1) are counted based on the occurrences.

ii. both j and k are continuous: Because errors in
continuous columns follow normal distributions, joint dis-
tribution P (Ej , Ek) is a bivariate normal distribution. If

the mean vector is
(
µj
µk

)
and the covariance matrix is(

σ2
j ρσjσk

ρσjσk σ2
k

)
, the conditional distribution P (Ej |Ek) is

also a normal distribution

P (Ej |Ek = euik) ∼ N (µj +
σj
σk
ρ(euik − µk), (1− ρ2)σ2

j ).

iii. column k is categorical and column j is continuous:
We assume that the conditional distributions P (Ej |Ek = 0)
and P (Ej |Ek = 1) obey normal distributions. We obtain the
mean and variance when Ek = 0 or Ek = 1 separately.

iv. column j is categorical and column k is continuous:
Based on the same assumptions as in case (iii), we can
estimate P (Ek|Ej = 0) and P (Ek|Ej = 1). Because we
also know P (Ek) and P (Ej), the conditional distributions
can be calculated using Bayes’ theorem

P (Ej |Ek = euik) =
P (Ek = euik|Ej)P (Ej)

P (Ek = euik)

Time Complexity. To compute the correlation P (Ej |Ek),
we should iterate through each column and calculate the
corresponding conditional distribution. Because there are
M columns, the total cost is O(M · |A|). The same time
is needed to calculate the correlation coefficient Wjk. The
cost of computing the benefit of each task is the same as
that of computing the Inherent Information Gain, which is
discussed before. In total, the cost is O((M + sl) · |A|).

Assigning Multiple Tasks to Workers. So far we focused
on how to select one task to assign to the incoming worker.
This does not restrict the applicability of our approach
in the case that multiple tasks should be determined and
given to the worker as a batch (e.g., as in a HIT on
AMT [1]). Suppose that the worker is to be assigned a
set D = {ci1j1 , ci2j2 , · · · , ciKjK} of K tasks. From the set
AD = {aui1j1 , a

u
i2j2

, · · · , auikjk} of estimated answers to the
tasks by the worker, we can update the distribution of the
estimated truth Tij,AC∪AD for each task cij ∈ D. Then, we
can calculate the information gain for D as:

IG(D) =
∑

cij∈D

(
H(Tij,AC

)−EAD [H(Tij,AC∪AD
)]
)
. (9)

Because the search space of D is
(N ·M
K

)
, finding K tasks

which maximize IG(D) is expensive. To alleviate the cost,
we can apply a greedy approach that iteratively selects the
top-K tasks with the largest IG(cij).
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Table 5: Statistics of Real-world Datasets

Dataset #Rows #Columns #Cells # Ans. per Task (Avg)
Celebrity 174 7 1218 5

Restaurant 203 5 1015 4
Emotion 100 7 700 10

6 EXPERIMENTS

This section presents our experimental results. We present
the datasets used in Section 6.1. In Sections 6.2 and 6.3, we
compare different crowdsourcing solutions in terms of truth
inference and task assignment respectively. We perform
case studies in Section 6.4. Results on synthetic datasets
are shown in Section 6.5. We measure the efficiency in
Section 6.6 and do an extra comparison to CrowdFill in
Section 6.7. We have implemented a prototype of T-Crowd
and other crowdsourcing solutions in Python 2.7, on a
Ubuntu server with 8-core Intel(R) Core(TM) i7-3770 CPU
@ 1.60GHz cores and 16 GB memory.

6.1 Datasets
We use three real datasets to perform our experiments. Their
statistics are shown in Table 5.

Celebrity [6]. This dataset contains information about
celebrities. Given a celebrity’s picture, workers are re-
quested to provide the following attribute values: name,
age, height, nationality, ethnicity, notability, and sentiment
of the celebrity in the picture. Name, nationality, and ethnic-
ity are categorical, age, height, notability, and sentiment are
continuous. For each entity, the ground truth for name and
age are obtained from [6], while that of height, nationality
and ethnicity is extracted from IMDb. Notability and Senti-
ment are the subjective attributes. Our marked ground truth
for subjective questions is the answer that agrees with most
persons’ opinion. The ground truth of sentiment is labeled
by three movie experts ranging from 1 to 5 based on facial
expressions. The experts followed the measurement of the
facial action coding system (FACS) and the emotional facial
action system (EMFACS) [13], [16], [35]. This includes 44 ac-
tion units and combinations of FACS action units represent
prototypic expressions of emotion. The positive expressions
(happy or relaxed) take 5, the neutral take 3 and the negative
ones (sad, fear or angry) take 1. This measurement has been
researched in field of facial expression analysis in many
years and it can be regarded as objective. Notability is also
a value in the range of 1-5 and is obtained from the person’s
rank in IMDb, i.e., we map 1-200 as 5, 201-400 as 4, 401-600
as 3, 601-800 as 2 and >800 as 1. Since ratings in IMDb are
solicited from numerous people, we believe it represents the
opinions of the majority.

Restaurant [30]. This dataset contains information about
restaurants. Given a review about a certain restaurant,
workers are asked to specify the aspect (e.g., food or lo-
cation), attribute (e.g., price or style), and sentiment (e.g.,
negative or positive) of the review. They are asked to iden-
tify the target (i.e., the restaurant referred by the review) by
the starting and end position of its first occurrence in the
text. Here, aspect, attribute, and sentiment are categorical;
the starting and end positions are continuous. The reviews
and the ground truth are obtained from [30].

Emotion [34]. This dataset collects scores for different emo-
tions from a small piece of text. Each worker is asked to give
a number in [0,100] for each of the following six emotions:
anger, disgust, fear, joy, sadness, and surprise, and a single
numeric rating in the interval [-100,100] for her overall
(positive or negative) sentiment about the text. Here, all the
7 attributes are continuous. The workers’ answers and the
ground truth are provided by [34].

For the Celebrity and Restaurant datasets, we collected
the workers’ answers using AMT [1]. The average number
of answers for each task in Celebrity and Restaurant is 5
and 4, respectively, by different workers. We spent $0.05
per HIT where the number of tasks put in a HIT is the same
as the number of columns (total cost $43.5 and $40.6, re-
spectively). For Emotion, we use the workers’ answers from
[34]; each task is answered 10 times. We observed that for all
continuous attributes the collected values (excluding spam
answers) follow a normal distribution, which is consistent
with our assumption in Section 4.1.

6.2 Truth Inference

We select some important other existing solutions based on
the guidance from [42], [19] and study the effectiveness of
our truth inference approach:
(1) For both categorical and continuous data:

• T-Crowd is our method proposed in Section 4. TC-
onlyCate and TC-onlyCont are the constrained ver-
sions of T-Crowd that apply only on the categorical
or continuous attributes.

• CRH [21] detects truth from heterogeneous data
types by minimizing a loss function.

• CATD [20] detects truth from multi-source data that
follows a long-tail distribution along with confidence
intervals.

(2) For categorical data only:

• Majority Voting (MV) determines the correct labels
based on the majority of answers from workers.

• D&S [9] iteratively estimates each worker’s confu-
sion matrix, which is used to infer the correct labels.

• GLAD [38] is a probabilistic approach for crowd-
sourcing categorical data.

• Zencrowd [10] is a variant of D&S.

(3) For continuous data only:

• Median uses the median of workers’ answers as the
estimated true value.

• GTM [40] is a truth-finding method specially de-
signed for continuous data.

Effectiveness Measures. We adopt the following measures,
proposed in [21], for evaluating the effectiveness of truth
inference on categorical and continuous data items:

• Error Rate: For categorical data, we measure the Er-
ror Rate by computing the percentage of mismatched
values between each method’s predicted truth and
the ground truth.

• MNAD (Mean Normalized Absolute Distance): It is
the root of mean squared distance (RMSE) between
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Table 6: Effectiveness of Truth Inference

Celebrity Restaurant Emotion
Method Error Rate MNAD Error Rate MNAD MNAD

T-Crowd 0.0441 0.6339 0.1855 0.5607 0.5961
CRH 0.0460 0.6737 0.1921 0.5835 0.7224

CATD 0.0498 0.7113 0.1954 0.7234 0.6648
Maj. Voting 0.0573 / 0.2003 / /

EM 0.0620 / 0.2463 / /
GLAD 0.0498 / 0.1905 / /

Zencrowd 0.0479 / 0.1872 / /
TC-onlyCate 0.0498 / 0.1986 / /

Median / 0.6998 / 0.6784 0.7026
GTM / 0.6516 / 0.5871 0.6792

TC-onlyCont / 0.6400 / 0.5682 0.5961

each method’s estimated truth and the ground truth.
Since different attributes have different scales, we
normalize each attribute’s RMSE by its own standard
deviation and average them.

Effectiveness Comparison. In Table 6, we summarize the
effectiveness of truth inference by all methods in terms of
Error Rate and MNAD on the three real-world datasets. We
observe that our proposed approach T-Crowd is better than
all other methods both on categorical data and continuous
data. On Celebrity, our method reduces the error rate by 4%
on categorical data and the MNAD by 2.7% on continuous
data compared to the best result of other methods. The cor-
responding reductions on Restaurant are 2.6% and 4%. On
Emotion, we outperform previous work by 10%. CRH does
not have stable performance as it is effective on Celebrity
and Restaurant, but ineffective on Emotion. Similarly, CATD
is good in terms of error rate but not good in terms of
MNAD. Overall, our method is more robust than them.

We also test constrained versions of T-Crowd that apply
only on the categorical or only on the continuous attributes.
Note that the effectiveness of T-Crowd is better than that of
its constrained versions and that the constrained versions
are competitive compared to other methods in their class. In
summary, T-Crowd outperforms truth inference approaches
applied on categorical and continuous data separately. This
result demonstrates the benefit of modeling worker qual-
ity by a probabilistic model in a unified manner for all
datatypes.

6.3 Task assignment
We compare the effectiveness of task assignment by our
approach against other crowdsourcing methods.

Competitors. We compare T-Crowd, which uses the truth
inference method of Section 4.2 and the task assignment
method in Section 5.2 with the following approaches:

• CDAS [23] measures the confidence of the currently
estimated values of all tasks based on a quality-
sensitive answering model. Each task for which we
are already confident is “terminated” and no longer
assigned to workers. At each step, CDAS selects
at random a non-terminated task to assign to the
incoming worker.

• AskIt! [5] uses an entropy-like method to define the
uncertainty of each task, and infers the truth by Ma-

jority Voting. The task with the highest uncertainty is
the next one to be assigned to the incoming worker.

• CRH [21] is an inference method suitable for hetero-
geneous data. It does not focus on task assignment,
hence, tasks are randomly assigned to the incoming
workers.

• CATD [20] is an inference method suitable for het-
erogeneous data, which does not focus on task as-
signment. Similar to CRH, we collected answers by
randomly assigning tasks.

Effectiveness Measures. As in the evaluation of truth in-
ference, we use Error Rate and MNAD to measure task
assignment quality. Specifically, for each tested method, we
measure the Error Rate and MNAD as a function of the
average number of answers collected by task so far. A good
method would be able to converge fast with fewer answers
per task(i.e., by performing fewer assignments and hence
spending less money). Besides, it should achieve a lower
true value estimation error when it converges.

End-To-End Comparison. To perform a fair comparison
with existing work, we performed experiments on AMT [1]
by using the same settings for the different methods (i.e.,
each task costs the same). We use the ‘external-HIT’ [2]
feature provided by AMT to dynamically assign tasks for
the incoming worker. To assess the effectiveness of task
assignment, we vary the budget and compare the Error Rate
and MNAD of each method under the same budget. To
be specific, for each budget, we record the error rate and
MNAD on all real datasets as more answers are collected.

Figure 2 shows the experimental results. Naturally, the
error rate and MNAD of all assignment policies decrease as
more answers are received from the workers and converge
to good results after a large number of answers. Askit!
uses an entropy-like method, which makes it to prefer
continuous tasks first. Thus its MNAD drops fast while the
error rate remains high. After selecting all continuous tasks,
its error rate starts to drop. Since no task is terminated in
the first few iterations, CDAS converges slowly. In addition,
since its inference method is simple, the final inferred result
is not good compared to that of other methods. CRH and
CATD are not probabilistic, which do not use metrics, like
entropy or information gain, as the objective for task assign-
ment, so they do not perform as well as T-Crowd. They are
superior to Askit! and CDAS because they are more effective
in inferring the true values of tasks.

We observe that T-Crowd converges much faster to a low
error rate and MNAD compared to the other policies. Specif-
ically, T-Crowd converges to low values before the average
number of answers per task is 3 on Celebrity and Restaurant
and 6 on Emotion, which shows the effectiveness of our
structure-aware information gain measure as an assignment
criterion. In addition, due to our superior truth inference
method, the values eventually inferred by our framework
are better compared to those inferred by the other methods.

6.4 Case Studies
We performed several case studies in order to assess the
quality of our system. Due to space constraints, we only
report the results on Restaurant. Similar observations can
be derived by experimentation on the other datasets.
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Figure 2: End-To-End System Comparison (Effectiveness)

Figure 3: Uniform Worker Quality
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Figure 4: Estimated and Actual Worker Quality

6.4.1 Worker Quality

Our first study’s goal is to show that (1) each worker’s actual
quality (computed based on the ground truth) is consis-
tent among different attributes; (2) each worker’s estimated
quality can be well calibrated to the worker’s actual quality.

Consistent Quality for Different Attributes. We collected
statistics from the Restaurant dataset to support our as-
sumption in truth inference: a worker has consistent quality
over different datatypes of attributes. In Figure 3, we plot
a heat map, with the x-axis representing the 25 workers
who have given the largest number of answers and the y-
axis representing categorical attributes ‘Aspect’ and ‘Sen-
timent’ and continuous attributes ‘StartTarget’ and ‘End-
Target’. Different colors are aligned to standard deviation
values (above the colorbar) for continuous attributes and
error rates (below the colorbar) for categorical attributes.
The color of each pixel represents the average error of
answers given by worker u to the tasks on attribute j.
For a categorical attribute j, the error is the percentage of
wrong answers. For a continuous attribute j, the error is the
standard deviation of the differences between the answers
and the ground truth. The red color (far right) implies larger
error and lower worker quality, while the blue color (far
left) means smaller error and better worker quality. Note
that the workers have consistent performance for categorical
and continuous attributes. In addition, the colors for the
same worker are similar regardless the attribute type, i.e.,
each worker’s actual quality is consistent among different
attributes.
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Figure 5: Effectiveness of Assignment Heuristics

Calibration to the Actual Quality. Figure 4 shows that our
estimated quality of a worker is close to the actual quality.
Each point represents a worker and the x-axis value is the
quality estimated by our method while the y-axis value is
the actual worker’s quality. We also show the result of a
linear regression. Observe the strong correlation between
our estimation and actual quality; the correlation coefficient
is 0.844 for categorical and 0.841 for continuous attributes.

6.4.2 Assignment Heuristics

We evaluate the performance of different assignment heuris-
tics. Note that for all of them, we use our inference approach
(Section 4.2). The tested heuristics are listed as follows:

• Random: it randomly chooses the task assigned to
the worker.

• Looping: it selects the next task in a round-robin
manner.

• Entropy: it greedily chooses the next task which has
the highest uncertainty (defined as entropy).

• Inherent Information Gain: it proposed in Section 5.1.
• Structure-Aware Information Gain: it proposed in

Section 5.2.

Figure 5 presents the Error Rate and MNAD as a function
of number of tasks assigned to the workers on Restaurant.
The results on the other datasets are similar and omit-
ted for the interest of space. Random and Looping select
tasks without considering the answers collected so far, so
they converge slowly. Entropy is biased toward selecting
continuous tasks over categorical first; hence, this heuristic
reduces the MNAD fast, but not the Error Rate. Inherent and
Structure-Aware Information Gain consider the continuous
and categorical tasks fairly and decrease the Error Rate
and MNAD simultaneously. Besides, Structure-Aware In-
formation Gain converges faster than Inherent Information
Gain w.r.t. MNAD because it also considers the correlations
between attributes. Recall that we use Structure-Aware In-
formation Gain as our default method.
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Figure 6: Correlation Among Attributes

6.4.3 Correlation Among Attributes
We perform one more experiment to support our assump-
tion that there exist correlations among attributes, by ana-
lyzing the answers of workers.

Figure 6 shows the experimental results. In the left part
of the figure observe that attributes ‘Aspect’ and ‘Sentiment’
have strong correlation. Specifically, if a worker answers
‘Aspect’ correctly, the probability to answer ‘Sentiment’
correctly is 86%. However, if a worker answers ‘Aspect’
wrongly, the probability to answer ‘Sentiment’ correctly is
only 73%. In the right part of the figure, we plot a scatter
diagram, with each point representing a worker’s error on
attributes ‘StartTarget’ and ‘EndTarget’. We use maximum
likelihood estimation to obtain the joint distribution of errors
on these two attributes as described in Section 5.2. We
observe a positive correlation between errors on attributes
‘StartTarget’ and ‘EndTarget’, which justifies our proposed
Structure-Aware Information Gain method that considers
correlations among attributes. For example, if the error of
‘StartTarget’ is 0, the distribution of ‘EndTarget’ error is
N (0.28, 0.76). However, if the error of ‘StartTarget’ is 6,
the distribution of ‘EndTarget’ error is N (3.75, 0.76). In
other words, knowing the exact answer of a worker on one
attribute can help to predict his/her answer distribution for
other attributes better.

6.5 Synthetic Data

In this section, we use two types of synthetic data, in order
to test the performance of our truth inference approach in
cases not covered by the real data settings.

6.5.1 Tests on tables with different properties
We assess the performance of T-Crowd in terms of truth
inference effectiveness by changing the following parame-
ters of our data generator: the number of columns M , the
ratio of categorical to the total number columns R and the
average difficulty of tasks µ{αiβj}. The default parameters
are M = 10, R = 0.5 and µ{αiβj} = 1. The rest of the
settings are as follows:

Worker Sequence and Worker Quality: We use the same
number of workers as that in our real experiments for the
dataset Celebrity and assume that the workers arrive in the
same sequence and that they have the same quality as in the
real experiment.

Data and Ground Truth Generation: We implemented
a generator for a table that takes as input the number of
rows N and columns M , and the datatype and domain
range of each column. The number of possible answers in a
categorical column is generated from a uniform distribution
U(2, 10). The domain of a continuous column is [0, 1000].
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Figure 7: Effect of the Number of Columns

The ground truth T ∗ij of each cell cij is generated by selecting
a value in the corresponding domain randomly.

Workers’ Answers: For each worker in sequence, his
answer at each cell needs to be generated. The answer auij of
each worker u at each cell cij is created based on the ground
truth T ∗ij and his quality qu, based on Eq. 1 and 3.

For fairness to all methods , we simulate the assignment
strategy used in AMT, i.e., each task gets the same num-
ber of answers. For different parameters, we generate new
datasets one hundred times and average the results to obtain
the error rate and MNAD. We also run other inference
methods and found that our method is dominant both on
error rate and MNAD.

Results. In the first experiment, we vary the number of
columns from 5 to 50. Figure 7 shows that the error rate
and MNAD decline gradually when the number of columns
increases, showing that T-Crowd infers the quality of each
worker and estimates truth more accurate if we have more
data. Besides our method is significantly better than the
other two approaches. Next, we vary the ratio of categorical
attributes from 0% to 100%. Figures 8(a) and Figure 8(b)
show that our method’s error rate and MNAD do not
change much when the ratio varies. Finally, we vary the
average difficulty of each cell cij (i.e., the average αiβj , as
defined in Section 4.1.2) from 0.5 to 3. High difficulty implies
that the probability that workers answer correctly decreases,
hence the error rate and MNAD increase as shown in Figure
9. For easier tasks, our method is significantly better than the
others, but when the average difficulty is high, which means
that the workers’ answers are not credible, all methods
perform badly.

6.5.2 Noise in Workers’ Answers
To further demonstrate the advantage of our proposed
approach T-Crowd, we conduct simulation experiments by
adding noise to the original data collected for Celebrity
dataset. We vary the percentage γ of altered original an-
swers by the workers from 10% to 40% (i.e., γ is the
percentage of answers with added noise).

For a categorical answer, we randomly select a new
label from its domain and replace the original label. For
a continuous answer, Gaussian noise is added. We first
preprocess this answer by transforming it into its z-score.
A new normalized answer is generated by adding the noise
which was generated by a Gaussian distribution N (0, 1).
We finally change it to the original scale and obtain the
new answer. We randomly choose NMγ answers with
replacement to add noise and keep the rest the same.
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For different levels of noise γ, we generate new datasets
one hundred times. For each method, we run experiments 3
times to smoothen out possible instabilities. Hence we run
in total 300 simulations for each method and average them
to obtain the error rate and MNAD for different levels of γ.

Figure 10(a) and 10(b) show the results. The error rate
increases while MNAD declines when γ increases. The
reason for the decrease of MNAD is that the normalization
denominator is the standard deviation of answers in each
column. The growth rate of standard deviation is higher
than that of RMSE which makes MNAD to decline.

T-Crowd performs well and stably when the level of
noise γ increases both in terms of error rate and MNAD.
T-Crowd has a very similar error rate and MNAD to CRH
and GTM, respectively.

6.6 Efficiency
We first investigate the truth inference cost on Celebrity
dataset and then show its running time on a single machine.
Figure 12(a) shows the change of the objective value in truth
inference at each iteration. Even iteration is the objective
value from M step while odd iteration is the objective value
from E step. Note that our inference model converges to

the estimated value, after only a few iterations.The curve
of objective function is different when initial parameters
(αi, βj , φu) are different. We random the parameters several
times, average the value and plot the line. We also draw the
error bar in the figure to show the minimum and maximum
value in each iteration.

Then, we confirm the low cost of truth inference by
measuring the throughput of T-Crowd, i.e., how many
answers it can process per second. For this purpose, we
use synthetic data used in Section 6.5 since the number of
answers collected for real data is limited. Figure 12(b) shows
that the runtime of T-Crowd is approximately linear to the
number of answers; T-Crowd can process approximately 100
answers per second on a single machine. This performance
is acceptable, given that the rate of incoming answers is
much lower in a real crowdsourcing system. The perfor-
mance is also consistent with our time complexity analysis
at the end of Section 4.2.

Finally, we measure the time required to assign a new
task to an incoming worker on the Celebrity dataset (Figure
11). We assume that we already obtained the estimated
truth using T-Crowd’s truth inference module. We show the
running time of computing the structure-aware information
gain for all candidate tasks each time a new worker arrives.
Because it is easy to parallelize task assignments, we run
eight processes on our machine. As shown in Figure 11, the
assignment cost increases linearly with the average number
of answers collected so far for each task. This is consistent
to our complexity analysis at the end of Section 5.1, which
suggests that the cost is linear to the total number |A| of
answers so far. Still, as the figure shows, new assignments
can be conducted in real-time, which is important for a real
crowdsourcing platform.
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6.7 Comparison to CrowdFill

CrowdFill [29] is a recent crowdsourcing system for tabular
data. In CrowdFill, each worker is shown a fragment of
a partially-filled table and asked to fill in empty cells, or
upvote/downvote the answers entered by other workers.
Compared to T-Crowd and the other methods that we have
examined, CrowdFill requires the crowdsourcing platform
to include additional functions (upvote and downvote oper-
ations), which are not currently supported by AMT. Hence,
we compare to CrowdFill independently.

Still, to compare the effectiveness of T-Crowd with
that of CrowdFill, we conducted an experiment, follow-
ing the experimental setup of [29]. We collected informa-
tion about 20 Olympic champions from 5 human workers.
Given the picture of an athlete, the objective is to col-
lect information about his/her attributes {name, isRetired,
#attendedOlympiads, #goldMedals, currentAge, ageInPic}. At-
tributes name and isRetired are categorical and the remaining
ones are continuous.

To be fair to both CrowdFill and T-Crowd, each worker
was requested to answer questions twice. In the first ex-
periment, workers give their answers independently fol-
lowing the T-crowd setting. The answers are collected and
aggregated by T-Crowd to get the final table. In the second
experiment, we use Google Docs to simulate CrowdFill’s
collaborative process. That is, workers can view other work-
ers’ answers, and they can choose between filling an empty
cell or upvoting/downvoting a completed row. When the
number of votes is larger than 2, a row is accepted if
its upvotes are more than its downvotes; otherwise, it is
rejected and it is offered again to workers to fill in their
answers. When all the rows are accepted, we obtain the final
table for CrowdFill.

Table 7 shows the error of these two methods. As in
the previous experiments, we show the Error Rate for cat-
egorical data and RMSE for continuous data. Observe that
T-Crowd is more accurate than CrowdFill for continuous
attributes and the two methods have similar accuracy for
categorical attributes. As opposed to T-Crowd, CrowdFill
does not compute and use the unified worker quality for
continuous and categorical attributes, which negatively af-
fects its performance on continuous attributes, for which the
collected answers are sparser.

Table 7: Error of CrowdFill

Name IsRetired #attended
Olympiads

#gold
Medals currentAge ageInPic

CrowdFill 0.25 0.2 1.24 1.04 4.40 3.22
T-Crowd 0.25 0.15 0.71 0.67 3.17 2.38

7 CONCLUSIONS

In this paper we design a crowdsourcing framework for
collecting multi-type tabular data. Most existing methods,
which are designed for simple tasks that are all of the same
datatype are not effective enough in terms of both truth
inference and task assignment. Based on the characteristics
of tabular data, we propose a probabilistic truth inference
model that unifies worker quality on both categorical and
continuous datatypes. Besides, we improve the accuracy of
truth inference by considering the variance in the difficulty

of different tasks. In addition, we design an information gain
function which we use for selecting the tasks to assign to
workers, based on the current answers and the workers’
quality. We extend this function to consider the correlation
in the quality of certain worker’s answers for the same
entity. Our experiments on three real datasets and synthetic
datasets confirm the superiority of our methods, both in
truth inference and task assignment compared to the state-
of-the-art.

In the future, we plan to conduct experiments with larger
tables compared to the ones we have used in Section 6. In
addition, we plan to extend our approach to apply on tables
for which entities are not known. In this case, entities should
also be collected from the crowd. A third direction is the
acceleration of truth inference and task assignment by paral-
lel and/or distributed computation. Finally, we will explore
the possible improvement of our approach by exploiting the
possible correlations between entities (not only attributes),
e.g., a worker may be more familiar to celebrities starring in
a certain category of films or shows.
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