Algorithmica (2001) 30: 188-215 . .
DOI: 10.1007500453-001-0005-y Al go rithmica

© 2001 Springer-Verlag New York Inc.

Constraint-Based Processing of Multiway Spatial Joink
D. Papadiag,N. Mamoulis? and Y. Theodoridi$

Abstract. A multiway spatial join combines information found in three or more spatial relations with respect

to some spatial predicates. Motivated by their close correspondence with constraint satisfaction problems
(CSPs), we show how multiway spatial joins can be processed by systematic search algorithms traditionally
used for CSPs. This paper describes two different strategies, window reduction and synchronous traversal, that
take advantage of underlying spatial indexes to prune the search space effectively. In addition, we provide cost
models and optimization methods that combine the two strategies to compute more efficient execution plans.
Finally, we evaluate the efficiency of the proposed techniques and the accuracy of the cost models through
extensive experimentation with several query and data combinations.

Key Words. Spatial databases, Spatial joins, Constraint satisfaction, R-trees.

1. Introduction. Spatial DBMSs and GISs store large amounts of multidimensional
data, such as points, lines, or polygons. Popular indexing methods used in relational
databases (e.g., B-trees) are not directly applicable for spatial data due to the fact that
there is no total ordering of objects in space that preserves proximity. As a result, a
number ofmultidimensional access methdd4] have been successfully employed in
several domains, including medical information systems [44] and time series databases
[10]. The predominant access method for multidimensional data is the R-tree [14] and
its variations, which are currently used in many commercial systems (e.g., Informix,
Postgress, Maplnfo). R-trees have been applied for processing several types of spatial
selections such as window [14], relation-based [36], and nearest neighbor queries [47].
In addition, they are effective for (pairwise) spatial joins [5].

This paper deals with processing and optimization of multiway spatial joins using
R-trees. A multiway spatial join can be defined as follows: Given a set gatial
relations{Ry, ..., R,.... R, ..., Ry}, whereR = {uy, ..., ul}, and a set of binary

spatial predicatefC;; | 1 <i, j < n}, find alln-tuples{(ui, ..., u‘k, R u,j, UM |

Vi, j,1<i,j <n,Gj (uL, u,j)}. In most cases the spatial predicateverlap(intersect
crosse¥but alternatively any predicate, suchreesar northeastmeet could be used. As

1 A short version of this paper appears in Breceedings of the ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Syste(®ODS9, Philadelphia, PA, pp. 44-55, 1999. Dimitris Papadias and Nikos
Mamoulis were supported by Grants HKUST 6198E, HKUST 609099E and HKUST 6070/00E from

Hong Kong RGC. Yannis Theodoridis was supported by the EC funded project “Chorochronos” under the
TMR Programme.

2 Department of Computer Science, Hong Kong University of Science and Technology, Clearwater Bay, Hong
Kong.

3 Computer Technology Institute, P.O. Box 1122, Patra 26110, Greece.

Received December 21, 1998; revised September 29, 1998. Communicated by M. van Kreveld.
Online publication March 9, 2001.

Constraint-Based Processing of Multiway Spatial Joins 189

an example of a multiway spatial join consider the content-based query “find all cities
crossed bya river whichcrossesan industrial area.” The query can be thought of as a
case of image similarity retrieval, where similarity is based on spatial predicates and not
visual characteristics.

If nis the number of query variables ahtis the size of their domain, then in the
worst case alh-combinations (on-permutations if all variables have the same domain)
of N objects have to be searched to find configurations that satisfy the query constraints.
In order to avoid the large cost of processing, previous image similarity techniques
that do not use indexing (e.g., [13] and [30]) have focused on a specific instance of
the problem where small images consist of the same set of known (labeled) objects.
Petrakis and Faloutsos [44] employ R-trees to solve such queries for images that contain
a constant number of labeled objects (e.g., lungs) and a small number of unlabeled ones
(e.g., tumors). Although their method is efficient for domains involving numerous small
images with few unlabeled objects (e.g., medical databases of X-rays), itis not applicable
to large images of unlabeled objects.

This paper proposes a solution to the general problem of multiway spatial joins,
where large datasets contain arbitrary numbers of unlabeled objects. The next section
outlines the R-trees and the most common types of spatial query processing, i.e., spatial
selections and joins. Motivated by a close correspondence between multiway joins and
constraint satisfaction problems, we describe, in Section 3, techniques to process mul-
tiway spatial joins by integrating systematic search algorithms with R-trees. Section 4
discusses the selectivity of multiway spatial joins and provides analytical cost models.
Section 5 describes optimization algorithms based on exhaustive and local search in
the space of alternative execution plans. Section 6 evaluates the proposed techniques
with extensive experimentation using various datasets and join graph topologies, and
Section 7 concludes the paper.

2. Overview of Spatial Query Processing Using R-Trees. The R-tree data structure
is a height-balanced tree that consists of intermediate and leaf nodes corresponding to
disk pages in secondary memory (R-trees are extensions-tfe@s [7] to many dimen-
sions). The root is at levél — 1, whereh is the height of the tree, and the leaf nodes are
at level 0. The Minimum Bounding Rectangles (MBRSs) of the data objects are stored in
the leaf nodes and intermediate nodes are built by grouping MBRs of the lower level. We
make the distinction between an R-tree ndtlé] and its entriess,, which correspond
to MBRs included inNJi]; scref points to the corresponding nodéfk] at the next
(lower) level. Each R-tree node (except from the root) should contain at least a number
m of entries, called minimum R-tree node utilization. Figure 1 illustrates three relations
(covering the same workspace) and the corresponding R-trees assumimg=thiaand
maximum node capacit§ is three rectangles (in real two-dimensional applicatiGns
is normally 50—400 depending on the page size)tRees [48] and Rtrees [3] are im-
proved versions of the original method, proposed to address the problem of performance
degradation caused by the overlapping regions and excessive dead-space.

Selection and join queries are fundamental operations in any DBMS. In this section we
briefly present the techniques employed by query processors to support spatial selections
and joins using R-trees, and describe related analytical models.

190 D. Papadias, N. Mamoulis, and Y. Theodoridis

R,: Cities R,: Rivers R;: Industrial Areas
pom
]2 a] [afa] | Buba] | [bafba]] e | [efe]e]
i) "

. 2
&i az dsr [~ b\ : } ¢ i Cl L
el | A, bl = H‘% ‘
T
A B, B, <, C‘ﬂ c.rbz
Fig. 1. R-trees.

2.1. Selection Queries A spatial selection retrieves from a dataset, the entries that
satisfy some spatial predicate with respect to a reference afpjddte most common

type of spatial selections anendow querieswhere the predicate @/erlapandq defines

a rectangular window in the workspace. The processing of a window query using R-trees
involves the procedure of Figure 2: starting from the root node, exclude the entries that
are disjoint with the query window, and recursively search the remaining ones. If, for
instance, we are looking for all rivers that intersect cityvee retrieve the root entries of

the second tree that overlap @n this case B). Then we search inside;Bor potential
solutions (no objects in Bcan overlap aand the node is not accessed).

When the MBRs of two objects audisjoint, the objects that they approximate are
alsodisjoint If the MBRs however share common points, no conclusion can be drawn
about the spatial relation between the objects. For this reason, spatial queries involve the
following two-step strategy [33]: (i) Ailter stepuses the tree to eliminate rapidly objects
that could not possibly satisfy the query. The result of this step is a set of candidates
which includes all the results and possibly some false hits. (ii) Durirgfiaement step
each candidate is examined (by using computational geometry techniques) and false hits
are eliminated.

This paper, like most related spatial database literature, focuses on minimizing the
cost of filtering. Performance is usually measured in terms of the number of R-tree nodes
that should be accessed during the search processl hetthe dimensionality of the
data space and let[@)® be thed-dimensional unit workspace. Given an R-tRgwith
heighthg) and a windowg (with |q| average extent on each dimension), shéectivity

WQO(Rtree_Node N[{], window ¢)
FOR all s, € N[i] with s, ng =@ DO
IF N[i] is a leaf node
THEN output (s;)
ELSE /* intermediate nodes */
6. ReadPage(sy.ref)
7. WindowQuery(N[k], ¢)

G

Fig. 2. Window Query WQ) algorithm.

Constraint-Based Processing of Multiway Spatial Joins 191

S(R, q,1) ofgonthe entries oR, atlevell is defined athe ratio of the expected number
of entries overlapping q over their total numke., the probability that a random entry
intersectgy). Theodoridis and Sellis [52] provide the following formula for selectivity:

(2.1) S(R,a,1) = (Isr 11 + lgh°,

where|sg | is the average extent (on each dimension) of an esryof the R-treeR,

at levell. The above formula assumes (i) unit workspace, (ii) square node rectangles,
which is a desirable property for “efficient” R-trees [3], [21], (iii) uniformly distributed
centers of node rectangles, the so-called “uniformity assumption,” and (iv) independent
dimensions. These assumptions hold for the analytical formulas presented throughout
the paper.

The numbeNA(R, g, 1) of node accesses for retrieving entries at léwsjuals the
number of entries intersected loyin the upper level + 1, i.e., the total number of
entries at levell + 1 (denoted byNg 1+1) times the probability that an entry intersegts
(selectivity):

(2.2) NAR,Q,l) = Ngiy1-S(R,q,1 +1)
= Nr+1-(ISrial+1gD% O0<l<h-2

In the previous examples (rivers intersecting city, dhe number of node accesses
depends on how many root entries of the second tree intersantianot on the number
of river MBRs. The total cost of a window que@ostyq is the sum of node accesses at
each level, i.e., the number of entries that intersgeat all intermediate levels plus the
access of the root:

th—Z th—l

(2.3) Costw(R.a) =1+ Y NARR.q.H=1+ Y Ngi-(sril+IaD?.
1=0 1=1

This formula is based on the performance analysis of [35]. Theodoridis and Sellis [52]
define the R-tree propertidsy, , Ng |, and|sg | involved in (2.3) as functions of the
cardinality and densifyof the dataset, thus computidéNA(R;, g, 1) andCostyr(R;, Q)

by using only data properties, without extracting information from the underlying R-tree
structure. Pagel and Six [34] argue that window queries are representative for range
queries in general. Papadias et al. [37] show how the above formulas can be applied for
any spatial predicate including topological (e.g., inside, meets), direction (e.g., north),
and distance relations.

2.2. Spatial Joins A spatial join operation selects from two object sets, the pairs that
satisfy some spatial predicate, usuatitersect(e.g., “find all cities that arerossed by

river”). Previous work on pairwise spatial join queries can be classified in two categories.
The methods of the first category treat nonindexed inputs (e.g., when there is another op-
eration, such as selection, before the spatial join). If there is an R-tree for only one input,

4 The density of a set of rectangles is defined as the average number of rectangles that contain a given point
in the workspace. Equivalently, density can be expressed as the ratio of the sum of the areas of all rectangles
over the area of the available workspace.

192 D. Papadias, N. Mamoulis, and Y. Theodoridis

processing can be done by (i) index nested loops, (ii) building a second R-tree for the
nonindexed input using bulk loading [54] and then applying an R-tree-based algorithm
(see below), (iii) thesort and matctalgorithm [40], (iv) theseeded trealgorithm [24]
which works like (ii) but builds the second R-tree using the existing one as a skeleton
(seed), and (v) thelot index spatial joi§27] which is an improved version of (iv). If both
inputs are nonindexed, some methods partition the space either regularly [23], [43] or ir-
regularly [25], and distribute the data objects into buckets defined by these partitions. The
spatial join is then performed in a relational hash join fashion. Another method [1] first
applies external sorting to both files and then uses an adaptable plane sweep algorithm,
considering that in most cases the “horizon” of the sweep line will fitin the main memaory.
The methods of the second category are applicable when both relations to be joined
are indexed on the spatial attributes. The most influential technique in this category is
R-tree-based Joi(RJ) [5], which presupposes the existence of R-trees for both relations.
RJis based on thenclosure propertyif two intermediate R-tree nodes do not intersect,
there can be no MBRs below them that intersect. Assume that we want to retrieve all pairs
of overlapping cities and rivers in Figure 1. The algorithm starts from the roots of the two
trees to be joined and finds all pairs of overlapping entries inside them (&;9B1),
(A2, By)). These are the only pairs that may lead to solutions; for instance, there cannot
existany(a, by) & € Ay andb; € B, suchthata;, by) is a solution, because,Aloes not
overlap B. For each overlapping pair of intermediate entries, the algorithm is recursively
called until the leaf levels. Figure 3 illustrates the pseudocodBI@ssuming that the
trees are of equal height; the extension to different heights is straightforward.
Two optimization techniques can be used to improve the CPU spe&d. dfhe
first, search space restrictigmeduces the quadratic number of pairs to be evaluated
when two nodedN[i], N[j] are joined. If an entrys, € N[i] does not intersect the
MBR of NJ[j] (that is the MBR of all entries contained N[j]), then there can be no
entrys € N[j], such thats, ands overlap. In the example of Figure 1, entry af
node A does not intersect node,Bso it cannot intersect any entry inside. RJsing
this observation, space restriction performs two linear scans in the entries of both nodes
before starting th&J procedure, and prunes out from each node the entries that do not
intersect the MBR of the other node. The second technique, based platteesweep
paradigm [45], applies sorting in one dimension in order to reduce the computation time
of the overlapping pairs between the nodes to be joined. Huang et al. [17] ékfend
by introducing an on-the-fly indexing mechanism to optimize, in termg@©fdost, the
execution order of matching at intermediate levels. Papadias et al. [38] showRhow
and related heuristics can be applied for a variety of spatial predicates.

I. RJ(Rtree_Node Nil, Nij1)

2. FOR all 5, e N[j] DO

3. FOR all s; € N{i] with s, ~ 5,# @ DO

4 IF N[i] is a leaf node /* N[j} is also a leaf node */
5. THEN output (s, 57)

6. ELSE /* intermediate nodes */

7 ReadPage(s,.ref); ReadPage(s;.ref);

8 RJ(N[K], NUID

Fig. 3. R-tree-based spatial joifR() algorithm.

Constraint-Based Processing of Multiway Spatial Joins 193

Initially, RJtakes the roots of the trees to be joined as parameters. Then it performs a
synchronous traversal of both R-trees, with the entries of the two structures playing the
roles of data rectangles and query windows, respectively, in a series of window queries.
According to Theodoridis et al. [53], (2.2), which calculates the number of node accesses
at R when a windowq is considered, can be modified to calculate the cost of a join
guery by using the corresponding node entrieRjods a series of query windows &.

Thus, the cost for each R-tree at levés the sum of costs dflr |1 different window
queries orR;:;

(2.4) NAR, R, NAR;, R, 1)

NR.i+1- Nrusa- (ISRasal +Isgu41D? 0<l<h-2

For R-trees with equal heighi, the total cosCosk (R, R;) of a spatial join between
R andR; usingRJis the sum of node accesses for each level:

hR—2
(25) Cosky(R,R) = 2+ Y {NARR,R,,1)+NAR;, R, 1)}
=0

hR—l
= 2+) {2-Ng. - Nry - (Isr.l +Isr.D%).
=1

The cost shown in (2.5) is an upper bound where no buffer is considered and every
node access iR, corresponds to a node accessRj) according to line 7 of th&kJ
algorithm. Theodoridis et al. [53] provide a detailed description of cost formulas for
RJ, including the case of R-trees with different heights. In correspondence to window
guery analysis, all the involved parameters can be expressed as functions of dataset
properties, namely cardinality and density. Experimental results suggest that the above
cost models are accurate for uniform data (where the density remains almost invariant
through the workspace). In order to deal with nonuniform data distributions, they propose
the maintenance of a grid with statistical information about cardinality and density per
cell. This approach, applied with a reasonably sized grid X580), provides good
estimations for real datasets with highly skewed data distributions [27].

The basic symbols describing the concepts presented in this section are listed in
Table 1. In what follows we show how these concepts are applied for multiway spatial
joins.

3. Algorithms for Multiway Spatial Joins. A multiway spatial join can be repre-
sented by a graph Q wherei}[j] denotes the join condition betwe&andR; . Follow-

ing the standard approach in the spatial join literature, we consider only MBRs, i.e., the
filter step, anaverlapas the default join condition, i.e., if for somej, Q[i][j]is TRUE,

then there is aintersection-join betweRrandR; (Q is notdirected: Q[j] = Q[j1[i]).

We assume that Q is connected; nonconnected graphs can be solved as independent sub-
problems. Furthermore, we focus on two particular types of multiway joins: acyclic

194 D. Papadias, N. Mamoulis, and Y. Theodoridis

Table 1.List of symbols.

Symbol Definition
d Number of dimensions
hr Height of the R-treeR;
Nr Number of data MBRs indexed y;
NR,I Number of entries oR; at levell (Ny, 0 = Ng,)
ISR | Average extent of data rectangles indexedby
ISR Average extent of entries &% at levell (|Sr ol = ISr [)
o] Average extent of a query windogy
S(R,q,l) Selectivity of a query windowg on the entries oR; at levell

Costyo(Ri, Q) Number of node accesses for a window quggn R;
Coski(R, R)) Number of node accesses for a spatial join between two R-Reasd R;

(trees) and complete graphs (cliques). Figure 4 illustrates two query graphs joining three
datasets and two solution tupleg, , Sr,, Sr,) Such thasg is an object inR, . Figure 4(a)
corresponds to a chain query (e.g., “find all cite@sssed bya river whichcrossesan
industrial area”), while Figure 4(b) corresponds to a clique (“the industrial area should
also intersect the city”).

According to the relational database methodology, multiway spatial joins could be
processed by integration of pairwise join algorithms [27]. Solutions to the above queries
are obtained by computing the result of one pairwise join (e.g., re@ssingindus-
trial areas) using the corresponding R-trees and an appropriate (pairwise) spatial join
algorithm (e.g., [5]); then joining the resulting rivers with the relation cities employ-
ing a method (e.qg., [24]) applicable when only one R-tree (for cities) is available. An
efficient execution plan can be determined using cost models for pairwise spatial joins
and optimization methods for relational queries. This paper follows a different direction
and discusses processing of multiway spatial joins using systematic search algorithms,
traditionally used for constraint satisfaction problems.

3.1. Multiway Spatial Joins as Constraint Satisfaction Problemslumerous problems

in a variety of areas (e.g., spatio-temporal reasoning, planning, image processing) can be
modeled as constraint satisfaction problems (CSPs). Inthe context of relational databases,
Dechter [8] uses results obtained from the study of CSPs to decompose large relations
into trees of binary relations. In the opposite direction, Gyssens et al. [15] apply relational
database techniques to decompose a CSP in smaller subproblems whose solutions can be

R, R, Sk, R, R, 5t
SR] SRV? SRZ
R; R, !
(a) Tree query (b) Clique query

Fig. 4. Examples of multiway spatial join.

Constraint-Based Processing of Multiway Spatial Joins 195

combined to generate a solution to the original problem. A binary CSP [46] is defined by:

e A setofnvariablesyq, ..., vi, ..., vn.

e For each variable;, a finite domairD; = {u; 1, ..., Uj y,} Of potential values (where
N; is the cardinality ofD;).

e For each pair of variables, vj, a binary constrainCi; which is a subset db; x D;.

If (Ui x, uj,y) € Cij, thenthe assignmefiti <— Uj x, vj < Uj,y} iSconsistentA solution
is an assignmenfvy <= Uy, ..., 0 < Uix,...,V < Ujy,...,Un < Unz}, SUch
that, for alli, j, {vi < Ui x, vj < ujy} is consistent.

The example query: “find all citierossed by river which alsa@rossesn industrial
area” can be mapped to a CSP as follows: (i) There exists a vatiafie each input,

i.e., v, vz, andug, for cities, rivers, and industrial areas, respectively. (ii) The domain
of each variabley; consists of the objects in the corresponding relation (dg.js

the set of cities). (iii) Each join predicate (e.g., “crossed by") corresponds to a binary
constraint. An assignmeffit; <— Uy x, v2 < Uz y, V3 < Ug,} constitutes a solution of

the query in Figure 4(a), if city x iS crossed by riveu, , which also crosses industrial
areaus ;. Thus, the join graphs in Figure 4 can be alternatively considered as constraint
networks, and in what follows we use CSP and database terminology interchangeably
(e.g., variabl¢dataset, constraifjbin condition).

Since multiway spatial joins can be modeled as CSPs, CSP algorithms could be
employed for their processing. Such algorithms perform systematic search by applying
the basic idea of backtracking and trying to improve the backward {gagkjumping
anddynamic backtrackingor the forward step (e.gforward checkingsee [46] for a
survey). A nave backtracking algorithm for processing the query of Figure 4(a) (using the
datasets of Figure 1) would first instantiate the variable corresponding to cities to some
value (e.g.p1 < &) and then proceed to the next variahlg) for rivers. Assume that,
is first instantiated tofwhich overlaps @ The algorithm will then proceed another step
forward and will assigms (industrial area) with value,cBecause coverlaps b, the first
solution (ay, bz, ¢;) has been found. Then the algorithm would try all other industrial
areas before it determines that there is no other value that oveglagrsdowill backtrack
assigning a new value .

The above algorithm performs a large number of redundant consistency checks be-
cause it does not exploit the underlying index structures. Papadias et al. [38] combine
systematic search algorithms and R-trees for the retrieval of object combinations match-
ing (exactly or approximately) some input configurations. Mamoulis and Papadias [26]
employ these methods for a special case of multiway spatial joins where there exists a
join condition between all pairs of inputs. In what follows we apply and extend this work
to arbitrary query graphs. In addition, we propose optimization techniques that yield
significant improvement over the original algorithms.

3.2. Window Reduction Window reduction WR) performs systematic search by ap-
plying window queries to find the consistent values of uninstantiated variables. For
instance, after assigning <« &, & becomes the query window for rivers that will
constitute the domain af,, avoiding unnecessary consistency checks. In other words,
the forward phase aflVRworks in an index nested loops fashion, while the backtracking
phase can be based on various CSP algorithms. The overhead of algorithms (e.g., back-

196 D. Papadias, N. Mamoulis, and Y. Theodoridis

1. WR (Query Q[]{], Rtree R[]}

2. i:=1,

3. queryWindow[1] = U, /*universal window*/

4. WHILE (i>0) {

5. 1[i] == WQ(root(R[i]), queryWindowlil); /*apply window query to tree R; */

6. IF 1[i] = NULL /*empty domain for i" variable*/

7. THEN i := i-1; /*backtrack™®/

8. ELSE /* not empty domain */

9. FOR j=1 to i-1 DO /*check consistency of the value w.r.t other instantiated variables*/
10. IF (QIj1l{1=TRUE) AND (t{jlt[i]=0) /*1{:] is inconsistent-does not intersect tj]*/
11. THEN GOTO 5; /*select new value of v; ¥/

12. IF [= n /*last variable has been instantiated*/

13. THEN output_solution(t);

14. ELSE /*intermediate variable*/

15. i =i+1; /*go forward */

16. set query Window{i];

17. }/*end WHILE %/

Fig. 5. Window Reduction\\VR) algorithm.

jumping) that direct the backward step according to information about inconsistencies
does not pay-off for the current problem. This is because, due to the large domain sizes
and the limited tightness afverlap the instantiated variable that causes an inconsis-
tency with a value of the current one is almost certainly the last. Figure 5 illustrates a
nonrecursive version &/Rbased on chronological backtracking.

Initially the index to the current variable is setto = 1 and the query window far
is the whole workspace (the first variable will be instantiated to all values in its domain).
Array t holds the current instantiations[{] stores the current value af). A value
for v; is retrieved using a query window in the corresponding R-tree (line 5). If such a
value cannot be found, the algorithm will backtrack; it will terminate when it attempts to
backtrack fromw;. Line 8 will be reached only in the case of a successful instantiation.

If v; is the last variablei (= n), t contains a complete solution that is output to the user.
Otherwise]j is increased and the algorithm proceeds to the next variable.

The order of variables is predetermined according to some optimization method (see
Section 5), and is such that every variable after the first one should be directly connected
to some instantiated variable(s) (e.g., the orgdemws, v, is not valid for the query of
Figure 4(a), since there is no edge betwegandwv,). For acyclic queries, the current
variablev; is directly connected to a single instantiated variable whose value becomes the
query window for search iR, e.g., for the ordevs, vo, v3, Sg, is the query window for
V2, SR, for vs, and so on. For clique queries,is connected to all instantiated variables
that mutually intersect. In this case the query window Ryris the common area of
instantiated variables [26], since any set of MBRs that mutually overlap has a nonempty
intersection. In Figure 4(b), for instance; should overlap the common intersection
(gray area) o8, andsg,. For arbitrary queries, i.e., whenis connected to an arbitrary
number of instantiated variables, the value of one is chosen as the query window and
filtering with respect to the other variables takes place in main memory (lines 9-11).

3.3. Synchronous Traversal The second methodology, synchronous traverSa), (
can be thought of as the generalizationRaf for an arbitrary number of inputs. In

Constraint-Based Processing of Multiway Spatial Joins 197

particular,STstarts from the roots of the trees and attempts to find solutions, i.e., combi-
nations of entries that satisfy the input constraints. For the query of Figuré&atapuld

find all triplets(A;, B;, Cy) of entries atthe roots such th@;, Bj) and(B;, Cy) intersect.
Outofthe eight possible combinations (i@g, B1, C1), (A1, B1, Cy), (A1, B2, Cy), ...,

(Az, By, Cy)), only three(A4, B1, Cy1), (A1, By, Cp), and(A,, By, Cy), could potentially

lead to solutions. For each solution found the algorithm is recursively called, taking the
references to the underlying nodes as parameters, until the leaf level is reached.

The calculation of combinations of the qualifying nodes for each level is expensive,
as their number can be as highGs(whereC is the node capacity). Finding the subset
of node combinations that is consistent with the input query can be treated as a local CSP
at each level in order to avoid exhaustive search. SimilaNy ST can be applied with
a variety of search algorithms and optimization techniques. Here we erfgrlogrd
checking(FC) [16], a backtracking-based algorithm which prunes the domain of future
variables based on the current instantiations. Several studies [2], [31] have shown that
it performs very well for a variety of CSPs. Furthermore, we comBiGanith a space
restrictioryordering heuristic that minimizes the number of intersection checks.

A three-dimensionaln(- n - C) array keeps the versions of variable domains for
each instantiation stef@[i + 1][j] stores the potential values of variablg afterv; is
instantiated. Initially the domai1[1][j] of each variabley; consists of all entries of
a node Njf] (in the beginning, the root of the corresponding R-tree). A multivariable
variation of the space restriction heuristic (Figure 6) is applied before each execution of
FC, to reduce the size of domains. Every entry irf Nfhich does not intersect the MBR
of another node NJ where Q][j] = TRUE is pruned from the domain of . As
an example consider that the soluti@y, B1, C;) for the query of Figure 4(a) has been
found at the top level. The domains at the next cabdfconsist of the entries in these
nodes, i.e.D[1][1] = {a4, &, as}, D[1][2] = {by, by}, andD[1][3] = {ci1, C;}. Space
restriction will remove b from D[1][2] (because it does not intersect the MBR of)C
and ¢ from D[1][3] (because it does not intersect the MBR gf Brinally, the remaining
entries in the variable domains are sorted with respect to the bovgeordinate of their
MBR (x_low sorting.

After the application of space restrictioRC (Figure 7) retrieves solutions at the
current level. Each variable, is assigned values fro®[i][i]. If DJ[i][i] has been
exhausted the algorithm will backtrack to the previous variable (lines 6-7). A one-
dimensional array holds the current instantiations. After an instantiatipn— s, ©
(z[i] =) contains a solution where the constraints between thei firatiables are
satisfied. When a complete£ n) solution is found, it is either output (at leaf level) or
recursively followed at the lower level (lines 9-15).

space restriction(int j)
DI11[j] = all entries s,, € N[jl/* D{I][j] is the initial domain for v; */
FOR each entry s, € D[1][j] DO
FOR i:=1to n, i#j DO /* for each other variable v;*/
IF Q[i1[j/1=TRUE and s,"N[{].mbr = & THEN /*s,, does not intersect the MBR of N[i] */
D[1[1: = DUYIJT - sy /* remove s, from the domain of vi*/
BREAK; /* next s,, - go to line 3%
Sort remaining entries in D[1][j] w.r.t. the x_low point;

NN B WD =

Fig. 6. Multivariable space restriction.

198 D. Papadias, N. Mamoulis, and Y. Theodoridis

1. ST (Query Q[1[1, RTreeNode N{])

2. FOR j:=1to n DO space restriction(j); /* space restriction for all variables */
3. i:=1;/*index to the current variable */

4. WHILE (i >0) {

5. T{{] := next value from D[i}{z];

6 IF 2[i] = NULL /* D[i][i] has been exhausted */

7 THEN i := i -1, /* backtrack */

8 ELSE /* dilnot null*/

9. IF i = n /* last variable instantiated */

10. THEN

11 IF N[] arc lcaf nodes /*a solution was found for leaf R-tree nodes */
12. THEN output (1);

13. ELSE /* a solution was found for intermediate R-tree nodes */
14, FOR k:=1 to n DO ReadPage(t[k].ref);

15. ST (Q, tl].ref); 7* ST is recursively called for the references %/
16. ELSE /*i < n, intermediate variable instantiated */

17. IF check_forward(i) /* no future variable was eliminated */

18. THEN i: =i + 1; /* instantiate next variable */

19.} /* end WHILE %/

20. boolean check_forward(int i)
21.FORj =i+l ton /*forall future variables*/
22. IF QL[j1 = TRUE /* if there is an edge between v and v; */

23, THEN

24. D[i+11[j] := &, /* initialize v;'s domain for next instantiation */

25. WHILE (s, = nextentry € D[]{j]) AND (s,.x_low < [i]l.x_up) {

26. IF 5,, N 1li} # D /* consistent value */

27. THEN D[i+11[j1 := Dli+11{j1 U {s.}; /* copy value to the next domain */
28. } /% end WHILE */

29. IF D[i+1][j] = © THEN RETURN TALSE; /* a future variable is eliminated */
30. ELSE /* Q[illj] = FALSE, no edge between v, and v; */

31. D[i+11[j1 := DA;

32.RETURN TRUE;

Fig. 7. Synchronous Traversab{) with forward checkingdFC).

For partial solutionsi(< n) checkforwardis called to remove from the domains of all
future variables; (j > i) such that Q[j] = TRUE, those values that do not intersect
t[i] (z[i] = s¢). In other wordsD[i + 1][j] (the domain ofv; after the instantiation of
vj) contains the subset of MBRs D[i][j] that intersect[i] (lines 21-28). The order
of MBRs (generated by space restriction) is used to avoid redundant checks: when the
first entry s, such thatsy.x_low > [i].x_upis encountered, searching the domain is
aborted because there cannot exist subsequent entries that intifsect

After checkforward, the domain of each future variable contains only values which
are consistent with all current instantiations. If some domain has been eliminated com-
pletely, checkforward will return FALSE signaling that[i] cannot lead to a solu-
tion. Domain elimination for a variable; happens when there exists a join condition
QIil[j], but no value fory; that intersects[i]. Continuing the previous example, af-
ter space restriction the domains becoBid][1] = {&, &, as}, D[1][2] = {bs}, and
D[1][3] = {ci}. During the instantiatiom; <« ag, checkforward will remove by and
D[2][2] becomes empty. Therefore; <« a3 cannot lead to a solution and must

Constraint-Based Processing of Multiway Spatial Joins 199

be assigned another value. The three-dimensional structure of the domain array is used
as a stack mechanism to simplify the domain restoration procedure, i.e., wlen
unassigned valueli], D[i + 1][j] is re-initialized toD[i][j] for all future variables.

The application o6 TandWRin cases where some or all of the variables have the same
domain (i.e., image similarity retrieval applications) is straightforward. Furthermore,
both algorithms can be effectively employed when only a subset of the solutions needs
to be retrieved. For instance, they can be easily modified to terminate after retrieval of
the first solution resulting in significantly smaller execution cost (see the experiments in
Section 6). Traditional multiway join processing, based on integration of pairwise spatial
join algorithms, does not have this feature. For instance, spatial hash join algorithms (e.g.,
[23] and [25]) applied for joining intermediate outputs must read and write the whole
build input, even if pipelining is used for passing the results to the next operator.

4. CostModels. WRessentially searchesthe whole space in order to instantiate the first
variable, but after doing so it performs only window queries which are cheap operationsin
R-trees. The disadvantage of blindly instantiating the first variable in the whole universe
could be avoided by an algorithm that appl&Eto instantiate multiple initial variables
which will then be input toWR through pipelining. In the query of Figure 4(a), for
instanceRJ could retrieve pairs of overlapping cities and rivers, and for each such pair
WRwill be called to find qualifying industrial areas. Figure 8 illustrates all the alternative
plans for the query, where joins to be processe&bware shown in rectangles. The last
four plans correspond t¢/Rwhere the leftmost variable is instantiated first.

Obviously this technique can be applied with any number of variables, e.g., a query
involving ten relations may be processed usfigfor the first four variables, and/Rto
instantiate the rest. The combination®FandWRfor multiway spatial join processing
results in plans of a certain “left-deep” form, which is different from left-deep trees in
relational join processing [12] in the sense that the leftmost (deepest) leaf nodes are
synchronously traversed (plans are not necessarily binary trees). In order to determine
the optimal plan we need analytical formulas for the selectivity of multiway spatial joins
and for the cost of the algorithms.

4.1. Selectivity of Multiway Spatial Joins As in the case of spatial selections and
pairwise joins, the expected number of solutions determines the cost and is crucial for
the optimization of multiway spatial joins. The total number of solutions is given by the
following formula:

(4.1) #solutions= #(all possiblen-tuples)- Prob(ann-tuple constitutes a solutipn

The first part of the product in (4.1) equals the cardinality of the Cartesian prodnct of

Pure ST Pure WR
= X X P X ™
R/R\ \R N/ \Rz N/ \Rl m/ \R [XI/M\R N/ \R Dd/ \R
= NN SN N N
Ry Ry Ry Ry Ry Ry R, Ry Ry R; Rj R;

Fig. 8. Possible plans for the query of Figure 4(a).

200 D. Papadias, N. Mamoulis, and Y. Theodoridis

domains, while the second part corresponds to query selectivily.if a data object in

Ri, selectivity is defined as the probability that all binary assignmgmts— sg, v; <

sr} Vi, j | Q[i][j] = TRUE are consistent. In the case of acyclic graphs, and ignoring
boundary effects (i.e., rectangles are small with respect to the workspace), the pairwise
probabilities are independent. For instance, in the query of Figure 4(a), the event that
“sg, overlapssg,” is independent of the evensg, overlapssg,.” Thus the probability

of a triplet satisfying the join conditions is the product of pairwise selectivities, which
are computed by (2.1):

(4.2) Prob((sg,. Sr,. Sr,) is a solution = (|sr,| + [Sr,1)? * (ISr,| + ISr,])Y.
Extending ton variables, the selectivity of an acyclic join graph is

(4.3) Prob(ann-tuple is a solution= l_[(Isr |+ Isr N4
¥i,j:Q(,j)=TRUE

and (4.1) and (4.3) imply that the total number of solutions at tree lesgel

(4.4) #solutionQ.l) = [Nea- [Usrul+IsraD®

i=1 vi,j:Q(,j)=TRUE

When the query graph contains cycles, the assignments are not independent anymore
and (4.3) does not accurately estimate the probability that a random tuple constitutes a
solution. For cligues, it is possible to provide a formula for selectivity based on the fact
that if a set of rectangles mutually overlap, then they must share a common area. The
common intersection area of a set of rectangles is computed by the following lemma.

LEMMA 1. Given a set of in > 2) mutually overlapping rectangles,$ =1, ..., n,
with extent|s | on each directionthe common intersection area is a rectangleaf
average extenty,| defined as follows

[T s
(4.5) [Onl = M .
il s
PROOF(BY INDUCTION ON Nn). Stepl. Forn = 2, itis sufficient to prove that
g = 21
|s1 + Is2]

Without loss of generality, we assungg| < |s;|. Since the two rectangles overlap, their
projections (line segments) on each direction also overlap;dettheir intersection and

let s start (S.eng) b€ their projections’ start (end) points= 1, 2. Figure 9 sketches the
three possible configurations between two overlapping line segments, representing the
following sets of conditions:

o Case I'S start < S2.start < St.end < S2.end-
o Case I:'s start < S1start < St.end < S2.end
o Case IS start < Sp.start < S2.end < St end-

Constraint-Based Processing of Multiway Spatial Joins 201

5 ‘ 51 51

8 é 8
case I case Il case III

Fig. 9. Possible configurations of overlapping intervals.

Recall that it is alwayss; siart < Si.end @Nd Sy start < S.engd Since the two projections
overlap.

Assuming that the address space is discrete, with very fine granularity (the case of
continuous space will be the limit for infinitely fine granularity) [20], the probability that
a configuration may be the case for two overlapping segnstsds, corresponds to
the different relative positions & with respect tes,. Formally:

Prob (St start < S2.start < St.end < S2.end/S2. start < S1.end A St. start < S2.end)
sl
[S1] + |2
= Prob (s start < S1 startS2. end < SL.end/S2. start < St.end A SLstart < S2.end)

and

PrOb(SQ. start < Sl start < Sl.end < $2.end/S2. start < Si.end A St start < $2.end)
_ sl — Isi]
IS1] + [S2l

The first two probabilities correspond to cases | and Il and the latter one corresponds
to case Il. For each of the three cases, the avetaire equals the average portion of

s intersectings,, i.e.,d = |s1]/2 for cases | and Il and = |s;| for case Il. In turn, the
average extenty,| equals the weighted averagsize, i.e.,

sl lsl\ sl — sl
| |=2~(—-—)+7-|s1|,
& sl+s 2) st s

where the first part of the summation represents the (equal) weighted averafr of
cases | and Il while the second part corresponds to case Il. Since the above \ighlie of
equalgs| - ||/ (|s1] + I2]), step 1 of the proof has been completed.

Step2. We assume that (4.5) holds fo= k, i.e.,

g = — i=a8|
= K K ‘
iz lj=1jz IS
Step3 (induction step. We will prove that (4.5) holds fon =k + 1, i.e.,
k+1
i—1 IS
G+l = o

i=1 1 lj=1j- IS

202 D. Papadias, N. Mamoulis, and Y. Theodoridis

Proof of the induction step: Since rectangle; overlaps alls;, . . ., s¢ rectangles that
are mutually overlapping, it overlaps their common intersection area, denotgd by
Furthermore, the common intersection area ofall. ., &, S.1 rectangles, denoted by
Ok+1, is identical to the common intersection area betwgeands,, ;. According to
steps 1 and 2:

G| = Serlclad k kikilllsll k
[Sk1| + Okl |9K+1|‘Zi:11_[;:1,j¢i sl + 1<, Is|
_ 1 15l
Zrzl (|S«+1| . H:'(zl,#i IS; |) + Z::le I—[szl,j;éi EY
_ s .
L A ls]

Consider the instantiationN®, < Sg,, v2 < Sg,} in the query of Figure 4(b). The
probability that a tuplesg,, Sg,, Sr,) iS a solution isProb(sg, overlapssg,) - Prob(sg,
overlapssg, and s, overlapssg,/sg, overlapssg,). The conditional probability in the
second part of the product is equal to the probability shaintersects the common area
of sg, andsg,, i.e., Prob(sg, overlapsgy). By applying (4.5) for the intersection area of
gz and (2.1) for pairwise selectivities, we derive

(4.6) Prob((sg,, Sr,, Sr,) iS @ solution)

d
|

ISR, | + ISR,

= (ISr,| * ISR.| + ISR,| - ISRs| + ISR, | - ISR,)

d
(Isr,| + Isr,1) *(ISRgI +
d

The selectivity of complete query graphs involving an arbitrary number of inputs is
computed by the following lemma.

LEMMA 2. Given a random n-tuple of rectanglés, ..., s,), the probability that all
rectangles mutually overlap is

d

n n
4.7) Prob(rectangles., . .., s, mutually overlap = | "[]Isi!

i=1 =t
i

PrOOF Since all rectangles mutually overlap, without loss of generality we assume
that the instantiation order 8, . . ., ;. Thus, the left part of (4.7) is equal to a product
of independent probabilities:
Prob(rectangles, .. ., s, mutually overlap = Prob(s, overlapss)
- Prob(s; overlapss; A s3 overlapss,/si, S, mutually overlap

- Prob(s, overlapss; A - - - A s, overlapss,_1/si, . . ., Sn_1 mutually overlap.

Constraint-Based Processing of Multiway Spatial Joins 203

In general, in order for a rectangig,; to overlaps,, ..., sc mutually overlapping
rectangles, it should overlap their common intersection, which is denoted bience,
the above equation is equivalent to

Prob(rectangles, ..., s, mutually overlap
= Prob(s, overlapss;) - Prob(s; overlapsy,) - --- - Prob(s, overlapsg,_1)
= (152l + Is1D? - (Issl + gD+ -+ - (ISal + Ioh-2D -

Using Lemma 1 for the area of eagh we obtain

Prob(rectanglesy, ..., s, mutually overlap
d
sl - 1s2 \° [=ts |
=52+sld.(+7)-~-~~s1+ =
(IS2] + Is1)7 - | Issl (sl + 152D (I | ?;111_[?;11,#1 S|
n n d
sl - 1Sl + Isul - ISsl + ISl - Iss Yicalljejz IS
=<(|32|+|51|)-<| |- ISe| + IS1] - 1S3l + Is2] - | I) ni Jn71115ﬁ 5
(Is1] + Is21) ic1 []j=1 ISl
n n
=>"11s!- O
i=1 i=1

j#
Thus, in the case for clique queries the numbers of solutions atllevel

n

(4.8) #solutiongQ,) = [[Nwir - | D_ [] Isrill

i=1 i=1 i=1
J#
The experiments of Section 6 demonstrate that previous formulas are accurate and,
therefore, can be applied for optimization of multiway spatial joins independently of the
algorithms. In what follows we show how they can be used to estimate the cé@&Rof
andST.

4.2. Cost Models for WR and ST Like the approaches described in Section 2, we use
node accessedlp) as a measure of the costWRandST. This is because (iINA are
relatively simple to estimate, (ii) they do not depend on buffer size and page replacement
policy, and (iii) they provide an indication for the CPU overhead siNéeare directly
related to the number of consistency checks performed by both algorithms. As we show
in the experimental evaluation, the CPU-time plays an important role in the cost of
multiway spatial joins (whereas selections and pairwise joins/&ebbund).

A subgraphQy y of Q containingx nodes (variables) is calldegalif it is connected
(we use indexy to distinguish different legal subgraphs>ohodes).V, y is the set of
nodes inQy y. The total number of legal subgraphs is less than or equal to (in the case
of complete graphs) the numberfcombinationof n objectsC(x, n). (Qx-1,y, vx')
denotes @ecompositionf Q, y into a legal subgrapRx_1,y (with x — 1 nodes), and a
single variablev,, such thab, = Vy y — Vx_1y. Forinstance, the graph in Figure 4(a)
can be decomposed into a subgra@y with Vo1 = {v1, vz} and variablev;. On the

204 D. Papadias, N. Mamoulis, and Y. Theodoridis

other hand, a decomposition info;, v3} and v, is not allowed sincey; and v3 are
not directly connected. A legal subgra@h, y can be processed in two ways: either by
applyingST, or by executing a subquery of sixe- 1 and then usinVRto instantiate
thexth variable.

Let Costvr(Qx-1,y, vx) be the cost (in terms of node accesses) of execWiiRjo
find all consistent instantiations of, whenQy_1 y has been solved. For each solution
we have to perform a window query in indéX, in order to retrieve the consistent
instantiations oby . As discussed previously, in the case of acyclic graphis connected
with a single instantiated variabl;_, v whose value becomes the query windgw
For cliqguesgy is the common intersection area of the values of all variabl&gin y .
The total number of window queries corresponds to the number of solutidQg_af,
atlevel 0. Thus,

(4.9) Costyr(Qx—1,y, vx) = #SO|Uti0n$Qxfl,y’v 0) - Costyo(Ry, Ox),

whereCostyq is computed according to (2.3), and the number of solutions according to
(4.4) or (4.8), for acyclic and clique queries, respectively.

Let CoskT(Qy,y) be the cost of processir@y y usingST. Thex roots of the R-trees
must be accessed in order to find root level solutions. Each solution will lecatimesses
at the next (lower) level. In general, at levethere will bex - #solutiongQy y, | + 1)
node accesses. The total cos&dfis

h—2

(4.10) CoskT(Qxy) = X + Z X - #solutiongQy y, | + 1).
=0

Note that although both algorithms are applicable for queries containing arbitrary cycles,
optimization of such queries using (4.4) and (4.8) as bounds for the number of solutions
isnotaccurate. LeP = ((v1, ..., v), ks1, - - - » Un) D€ @ plan where the firktvariables

are instantiated througBTand the rest byVRin this order, and leQ, , be a subgraph
containing the firsk variables ofP. The total cost of processirg is

n

(4.11) Cos(P) = Coskr(Qup) + Y COSWr(Qx—1,pvx)-
x=k+1

It is well known in both the database [12] and CSP [2] communities that the choice of
an appropriate plan, or an order in which variables get instantiated, has a very signif-
icant effect on performance. In what follows we provide optimization algorithms that
determine the subset of variables to be instantiate8 Hgnd the optimal order of the
remaining variables to be instantiated\MR

5. Query Optimization. Let p(x) be a function that returns the number of plans for

a legal subgraph of nodes, and led(x) be a function that returns the number of legal
decompositions. Assuming that & , can resultin the same number of decompositions
and each decomposition has the same number of plans, then the total number of plans is
described by the following recurrence:

(5.1) pl) =1 and pXx)=dX) - p(x—1) +1,

Constraint-Based Processing of Multiway Spatial Joins 205

where the additional plan is for processiQg y usingST. For chain queries (minimal
number of plans)d(x) = 2 sinceQ_1 y can be generated froQy y only by removing

the first or the last variable. By substituting this value in recurrence (5.1), we derive
that the number of alternative plans for chain queries'is-2. Equation (5.1) cannot

be applied for arbitrary trees, becaule) may be different for two subgraphs with
nodes. Among all acyclic queries, the one that results in the largest number of plans is
the star graph. In this casg,_1 y» can be generated fro@, y by removing any variable
except for the one at the center, thlix) = x — 1. For cliques (maximum number of
plans) any variable can be removed during a decomposition, resultdig)n= x, and

a total number of plans equal to

n

(5.2) n!~zx—ll<n!-e.

x=1

This is significantly smaller than the corresponding number in relational queries, i.e.,
(2(n = 1)!/(n — 1)!) [49], because there do not exist right-deep or bushy plans. In this
section we first describe a dynamic programming algorithm that searches through the
whole plan space and can be used for joins involving relatively few variables. Next we
apply hill climbing techniques for the case of numerous inputs.

5.1. Optimization Using Dynamic ProgrammingDynamic programming has been
successfully applied for optimization of relational queries involving a small number of
inputs [18].DP_plan algorithm (Figure 10) computes the best execution strategy for a
guery incrementally, based on optimal plans of its subgraphs. The recursive equation
implemented by the algorithm is

(5.3) CostQy,y)
= min{CoskT(Qx,y), v min (Cost(Qx_1,y") + Costyr(Qx—1,y, vx))}-

decompositiony”
In general, at each lev&P_plan decomposes ever§, y into all legal combinations
(Qx-1,y’, vx), and finds the best demcomposition using the cosQar; y» which was
computed at the previous execution lexel 1. Either this decomposition &T(Qy y)
will be marked agQy y's optimal plan, to be used when computing the optimal cost for
query subgraphs of size+ 1.

1. DP-plan(Query Q, int n)

2. FOR x=2ton DO

3. FOR each connected subgraph y of size x DO

4. Cost[Q,y] = Costsr(Qy,);

5. bestPlan[Q,] = ST;

6. FOR each legal decomposition y' of 0, , DO

7. minCost = Cost{ Q..;] + Costwr(Qx.1yVx);
8. IF minCost < Cost[Q,,] THEN

9. bestPlan{Q, | = WR(Q,.;,,»V:);

10. Cost[@] = minCost;

Fig. 10. Dynamic programming optimization algorithr@P_plan).

206 D. Papadias, N. Mamoulis, and Y. Theodoridis

Cos{Quy] is initially the number of leaf nodes in each R-trBg (i.e., the number
NR,.1 of entries at level 1). Then the algorithm will calculate the plans and corresponding
costs for all pairwise joins, i.e., al,y such thatQ, y is connected. First the cost
of each pairwise join is computed usii®l. Then for both decompositions @,y
to two subgraphs (containing one variable each), it will calculate the coatRfor
instantiating one variable first and then the second one (index nested loops). For all
pairwise joins, the best of three optior®T{and twoWRplans) and their costs are stored
in two tables bestPlanand Cost respectively) and used for calculating the costs of
processing subgraphs of three nodes. At the eridRaplan, bestPlafiQ] will contain
the optimal plan for executin®, andCos{ Q] its expected cost. Notice that lines 4 and
7 use (4.10) and (4.9) which require the expected number of solutions. This number is
also stored for each decomposition, but, for simplicity, is omitted in the pseudocode.

If the query is clique (worst case), at each iteration of the outer loop the algorithm
will test C(x, n) = n!/x!(n — x)! subgraphs ofy y, and for eaclQy y it will perform
x decompositions. Thus, the total running time (assuming constant table writing and
look-up) is

u n!
©.4) XZ; X=D!'(n=x)!"
Only the optimal cost and the number of solutions of each subgraph withxsizé
has to be maintained for the calculation of the optimal costs of subgraphs with size
X; thus, the space requirements@iP_plan at iterationx of the outer loop ar€ (x —
1, n) + C(x, n). The time and space requirements of the algorithm renders exhaustive
optimization inapplicable for queries involving numerous relations.

5.2. Optimization Using Hill Climbing Algorithms Hill climbing algorithms operate
on a graph performing random walks between the nodes based on a certain move-
ment (transition) mechanism. In the current problem, each node corresponds to a plan
P and the transition mechanism defines a neighborhood of all the nodes that can be
reached fronP. The neighborhood of a pla = ((vy, ..., vk), vky1, - - ., Up) CONtAINS
((v1, ..y Uk, Vksd), « - -5 Un), ((V1, ..., 0-1), ..., vn) and all plans that can be derived
from by P swapping the positions of any two variablgsandv;, k < i, j < n. Notice
that starting withP, any plan can be reached after a finite number of moves. A move is
calleddownhill, if it leads to a plan with a lower cost, aphill, if it leads to a plan with
higher cost. We implemented two hill climbing methods for optimization of multiway
spatial joins involving large queries.

The first one, based dterative improvemen(!) [32], starts with a randomly chosen
plan P and applies the above transition mechanism, trying to find a legal plan with lower
cost in the neighborhood d® (i.e., a downhill move). If such a plan is foun®, is
replaced by the new one; otherwise the algorithm kdepsd continues with another
move, until a local minimum is found. This iterative local optimization is repeated a
number of times starting from a different random plan. As time approximsatethe
probability that iterative improvement will find the global minimum approximates to 1
[32]. Given a finite amount of time, the algorithm terminates in a local minimum.

The second method implemestmulated annealin(SA). SAperforms random walks
just like iterative improvement but in addition to downhill, it also accepts uphill moves

Constraint-Based Processing of Multiway Spatial Joins 207

with a certain probability, trying to avoid local minima. Initially this probability has

a relatively high value, which is gradually reduced. Detailed descriptions of simulated
annealing can be found in [6] and [22]. After runniSgA under various conditions

we chose the following set of control parameters for the current problem: the initial
probability of accepting an uphill move is4) the temperature reduce factor 975,

and the equilibrium condition is. Similar values were obtained for the optimization of
relational joins [19], [51].

We also implemented versions of the above heuristics, calleli-#etDN andSA-
sortDN respectively, which, instead of using a random initial plan, choose a “good” seed
by applying the following heuristic: based on the fact that the join cost depends on the
data densityD and the cardinalityN, we sort the variables with respect to the product
D-N. The variables with the smallest value®f N should be processed first, decreasing
the probability that the size of intermediate results will be large. Then, keeping the order
fixed, we test all possible values (h) of k and set as the initial plan the one that gives the
minimum cost. The experiments in the next section suggest that hill climbing algorithms
combined with the above heuristic provide nearly optimal plans.

6. Experimental Evaluation. The previous algorithms and optimization methods are
independent of the underlying predicates, so they could be used with a variety of spatial
constraints. In these cases, the equation parameters (e.g., number of solutions, cost of
window query) need to be modified using appropriate cost models [37]. Here we follow
the standard experimental methodology and evaluate them by assuming that the spatial
predicate is alwaysverlap We classify the experiments in two subsections: the first deals
with optimization issues, while the second one studies the effects of various parameters
on the cost of multiway spatial joins. All experiments were executed on an Ultrasparc2
workstation (200 MHz) with 256 MB of memory.

6.1. Evaluation of Optimization The first set of experiments shows the accuracy of the
cost models, and studies how data and query density affect the optimal valug.éor
the number of variables to be instantiated3y. We run tree and clique queries involving
seven variables using datasets of various densities. The cardinality of all datasets is fixed
to 10,000 uniformly distributed rectangles. Page size is set to 1 KB resultinttireBs
[3] with node capacity 50 and height 3. Data density has four potential validgs (R0,
0.35, and 060. There is a total of 4 2 (data density times graph topology) experimental
settings. For each setting the valuekafanges from 1 (pur@VR) to 7 (pureST); every
run corresponds to the best plan given the value of all cases the cost of optimization
was less than 1% of the cost of processing the optimal plan.

Figure 11 illustrates the actudilg), estimated ENA) node accesses, and CPU time
for each setting. Node accesses are shown on thg-kefis and CPU time on the right
one (sometimes in logarithmic scale). The first column contains the density values of
all datasets in each query. The diagrams also include the ogtisradl the number of
actual solutions retrieved; obviously, the number of solutions increases with the data
density and decreases with the query density. The results are very similar for all acyclic
topologies so we do not include special cases (i.e., chains or stars); the behavior of
such queries can be derived from the general diagrams for trees. For the estimation of

208 D. Papadias, N. Mamoulis, and Y. Theodoridis

[m]
/ tree topology
i

100000 10000 140 ~

A clique topology

#solutions = 1, k=2
10000 -

0.05] 1000

0.20

0.35

#solutions = 1,396,476, k=4 4500
4000
3500
3000
2500
2000
1500
1000
500

25000
20000
0.50]
15000

10000

5000

EEEa = R A
ENA thousands NA thousands CPU-time secs

Fig. 11. Actual and estimated node accesses and CPU time for various combinations/glidagalensities.

node extents$sg | we use statistical information from the tree (rather than the analytical
formulas of [52]) because they provide higher accuracy.
Several observations can be made based on the results:

e Estimated node accesses are close to the actual number. In the worst case, the relative
error is below 25%, whereas the average difference bet&bdi#xrandNA is 8%.

e The diagrams for CPU time are very similar to the ones for node accesses, and the
cheapest plan in terms of CPU time is always the one with the fewest accesses. This
confirms the fact thaENA based on the models of Section 4, is a good measure for
the cost of multiway spatial joins.

Constraint-Based Processing of Multiway Spatial Joins 209

m

Germany utility network Germany railroad lines Germany workspace area
(17790, 0.12) (36334, 0.07)

Fig. 12. Germany datasets and workspace.

e There are vast performance differences (in some cases, orders of magnitude) for the
different choices ok (although for eaclk the best plan was used). In particular, the
optimalk increases with the data and query density. In all cases, intermediate values
of k achieved the best performance (no pWRor ST plans).

In order to test the applicability of the methods in real-life situations, we also ran
experiments with four real datasets containing different layers of Germany (available at
http://mwwmaproompsuedu/dcw). The previous selectivity formulas refer to uniform
datanormalizedto a [@) workspace. Since intermediate nodes are not usually as skewed
asthe leaf rectangles, the uniformity assumption can be applied to real datasets. However,
theworkspaceshould be normalized because the data objects do not necessarily cover a
rectangular area. Given a series of different layers of the same region (e.g., rivers, streets,
forests), its workspace is defined as the total area covered by all layers, including holes
if any. In order to estimate this area, we use a rectangular grid, where each cell is marked
if it intersects some rectangle(s) in any dataset. The workspace is the area covered by
the marked cells. The selectivity formulas of Section 4 are then applied by considering
that the normalized node area at a specific R-tree level is equal to the average node
area divided by the workspace. Figure 12 illustrates two (of the four) layers of Germany
used in the experiments, with their cardinalities and densities, and the corresponding
workspace using a 50 50 grid.

The four datasets were indexed bi+fRees with 2 KB page size (1 KB size results in
trees of different heights due to the different cardinalities). An LRU page replacement
policy was used and the buffer size was set to 512 KB. We executed the chain and clique
queries of Figure 13 using all the possible plans. In addition to the optimal plan, Figure 13
illustrates the cheape¥fR andST plans. For each plan we include tB&IA (actual)

NA, CPU time (seconds), page accesses, and the percentage of CPU time in the overall
cost of processing (we charge 10 ms for each page access [49]).

The estimated cost of all planBNA) is in all cases smaller than the actual one and the
accuracy drops with respect to uniform data. This is because some areas (e.g., residential)
have high density data which increase the actual number of overlaps. However, the plan
suggested bPP_planwas still the actual optimal; in most cases the suggested plan, even
if not the best, is expected to be nearly optimal. Another observation refers to the CPU
time which plays an important role in the overall cost. This is particularly tru&\fBr
plans where the buffer reduces thi®©lcost since consecutive window queries are likely
to access similar pages (notice that in both p#eplans the number of page accesses

210 D. Papadias, N. Mamoulis, and Y. Theodoridis

Query optimal plan cheapest WR ST
N\ ENA: 25338 | ENA:96168] ENA: 112984
% Tgs NA:S4075 X Ge | NA:135348 AN NA: 133096
N CPU: 22.61 % o3 CPU:48.55 | |51caa364| | CPU: 60.56
o1 G 63 1/0: 2468 /N 1/0: 2360 /0: 4085
- %CPU: 47.8 [G1 G2 %CPU: 67.3 %CPU: 59.7
iy . 2 . .
N ENA: 15464 M| ENA:93301 " ENA: 24759
T3 | NA: 25865 K e | NA: 114071 AN NA: 27316
PN CPU:11.69 | " &, CPU:41.14 | |G Ghaq| | CPUI 1327
G o G o 1/0: 2083 2N v0: 2212 VO: 2809
%CPU: 36 |Gl G2 %CPU: 65 %CPU: 49.1

Fig. 13.Experimental results for real datasets.

is almost two orders of magnitude smaller tiNd). For ST also, the CPU cost increases
significantly with the number of variables because of the false hits at the high levels of
the trees; for queries involving more than seven variables and normal buffer sizes, CPU
time is more than 80% of the total cost [29].

Although DP_planis applicable with trivial cost for small number of spatial inputs
(n < 10), for large values dfi its combinatorial explosion makes the method inefficient.
Figure 14 demonstrates the costf_plan (in seconds) as a function aof for chain,
star, and clique queries.ff> 15 the method is inapplicable for star and clique queries,
because the optimization cost exceeds that of executing the optimal plan. Local search
methods should be engaged for optimization in this case.

In order to test the performance of the hill climbing methods of Section 5.2, we
optimized 50 random clique queries for each of the following values:af0, 15,
..., 50. The datasets were randomly generated with cardinality between 5,000 and
40,000, and density betweerd8 and 10. Setting runtime to 2 seconds for= 10 as a
base, the time limit of the algorithms for the various values @fas chosen using the
function: runtime(n) = (n/10)? - runtimeg(10) (in accordance with similar experiments
for relational joins [51]). Figure 15(a) illustrates the quality of the plans produced by
simulated annealingS{3), iterative improvementl(), and their sorted variants. Quality

cost of optimization

1.0E+05 -
1OE+04

—3— DP-chain
—£3— DP-star

LOE+03 1 | _a— DP-clique
1.0E+02 -
1.0E+01 ~
1.OE+00 -

1.0E-01 -

1.0B-02 #
3 6 9 i2 5 18

number of query variables

T T v T

Fig. 14.Cost of DP_plan.

Constraint-Based Processing of Multiway Spatial Joins 211

average scaled cost of plans average scaled cost of plans

6-) 4 . .pP
o ;I A - S —o— iSIA ,,,,, ©
- e —t— =
e -
st S A+SOHDN PO 3 +ISIA+SOSEIN e
P — +sontDN e R N o

number of query variables number of query variables

(a) Plans of hill climbing algorithms (10< n<50) (b) Comparison with the optimal plan

Fig. 15.Cost of optimization and quality of plans.

is measured in terms @fverage scaled coste., the cost of the output plan divided by

the minimum cost produced by any algorithm for the same qliepgrforms better than
SAin all cases, while the sorted versions of both algorithms produce better plans than
the original onesll-sortDN is consistently the most effective algorithm.

The set of experiments in Figure 15(b) compares the cost of plans produced by hill
climbing algorithms scaled with respect to the cost of the optimal plan produced by
DP_plan. Because of the combinatorial explosion®_plan, we were able to test the
quality of the local optimization methods only for< 18. Observe thdt-sortDN finds
a plan which is just 10—-20% more expensive than the optimal; this percentage is not
expected to grow significantly for larger valuesrof

6.2. Cost Parameters In this subsection we use the plan computedi®plan (for

n < 10) andl-sortDN (forn > 10)to test how several parameters affect the performance
of the proposed algorithms. The first experiment demonstrates the effect of data size; in
particular we keep the number of variables and density fixed and measure the cost of
multiway spatial joins by increasing the size of datasets. Figure 16 illustrates the actual
node accesses (in thousands) and CPU time (in seconds) for datasets with 10k, 20k

50k rectangles. For each dataset we also include the number of solutions retrieved (on
top of the NA columns).

Acyclic (Density 0.2)

300

200 +

.8

Jsases NN
1000

800

&0

400

Clique (Density 0.5)

Fig. 16.Actual node accesses and CPU time as a function of datd\Nsize

212 D. Papadias, N. Mamoulis, and Y. Theodoridis

Acyclic (Density 0.2) Clique (Density 0.5)

EZEENA =~ CPU
400 +

N=10*

300

100

3 6 9 12 15 18 21

Fig. 17.Actual node accesses and CPU time as a function of queryisize

The cost, as well as the number of solutions, increases linearly with the size of the
datasets. Notice that we chose different density values for acyclic (0.2) and for clique
(0.5) queries, because these values give a reasonable number of solutions. Recall from
Figure 11, that density 0.5 for acyclic queries (with seven variables) generates more than
amillion solutions. On the other hand, for cliques density 0.2 results in only 36 solutions.

For the second set of experiments data sizes and densities are fixed, and the number
of variables ranges from 3 to 21 (Figure 17). There is a range of density values where the
number of solutions does not vary considerably as a function of the number of variables.
Density values above that range result in exponential growth in the number of solutions,
while values below result in no solutions for large queries. As shown in the diagram for
trees, when there is no significant change in the number of solutions, the cost increases
linearly with the number of variables. On the other hand, density 0.5 for cliques is below
the aforementioned threshold and queries with 18 or more variables do not have solutions.
As a result, the cost almost stabilizes since search is abandoned when no solution can
be found for a subset of variables.

The last set of experiments demonstrates the effectiveness of the algorithms for partial
retrieval. We use the same settinfjs£ 10,0000 = 7) and measure the cost when only
a subset (i.e., 10%, 20%,.) of solutions is to be retrieved. As shown in Figure 18, the
algorithms again demonstrate an output-sensitive behavior, the cost increasing linearly
as a function of the percentage of retrieved solutions. This feature is important not only
in the cases where a subset of the solutions is heeded, but also when the results of the join

Acyclic (Density 0.2) Cligue (Density 0.5)

EZTINA ~#¥-CPU NA fy CPU
120 T

n=7
N=104 80 T

30

40t

Fig. 18.Actual node accesses and CPU time as a function of the percentage of the retrieved solutions.

Constraint-Based Processing of Multiway Spatial Joins 213

are passed to another operation through pipelining, or when the user wants to visualize
the output during processing.

7. Conclusion. This paperdescribes a constraint-based approach for processing multi-
way spatial joins by combining systematic search algorithms with R-trees to guide search.
In addition to methodologies, we propose cost models and optimization techniques and
evaluate their effectiveness with extensive experimentation. Although we focused on
joins involvingoverlap the proposed techniques can be applied with a variety of spatial
or temporal predicates. In [38T is compared with traditional systematic and local
search algorithms using topological relations, while [28] shows how CSP algorithms
can be applied witWRin the context of temporal constraint networks. In both cases
the indexed versions clearly outperform the original algorithms for most experimental
settings.

The current work can be extended in many ways. Park et al. [41] propose several
optimization methods to speed&®J. These include apace restriction orderingvhich
minimizes the pages to be loaded during space restriction, plage sweep-based al-
gorithmwhich outperform$C for some experimental settings, andagirect predicate
heuristicthat detects false hits at the intermediate levels. In a recent work Mamoulis and
Papadias [29] propose another efficient algorithmS@rwhich combines plane sweep
with FC and works by dividing each problem into smaller ones reducing the amount of
backtracking. Furthermore, they comp&€with methods based on the integration of
pairwise join algorithms for processing multiway spatial joins [27]. The results show
thatSTis preferable for dense data and queries, while in most cases the most efficient
plan is one which combineST with some pairwise join algorithm(s).

Another area with interesting open problems involves cost models. The selectiv-
ity formulas of Section 4 can be extended to arbitrary query graphs and nonuniform
data. A more difficult extension refers to selectivity involving actual objects rather
than MBRs. Given such formulas the filter and refinement steps could be interleaved
as suggested in [42]. For instance, aftee-tuple has been returned IST in a plan
P=((vy,...,v), %1, ..., Un), it may be preferable to check if the tuple corresponds
to an actual solution (i.e., refinement) before proceedifyf®oFurthermore, cost mod-
els for algorithms can be elaborated to capture page accesses in the presence of LRU
buffers or other replacement policies.

Efficient multidimensional information processing becomes increasingly important
as the availability of information in various forms (e.g., satellite images, digital video,
multimedia documents) and the complexity of related applications increase continuously.
Large systems must handle massive volumes of multidimensional data and answer on-line
gueries from numerous users. Several such systems (i.e., the DBMS for satellite images
in [4]) and query languages for GI®(ery-by-SketcfO]) and multimedia databases
(VisualSeek50]) already provide ways of expressing content-based queries that can be
processed as multiway spatial joins. Therefore, the proposed techniques have a wide
range of potential applications.

Acknowledgments. We thank Sophie Lamacq for her useful comments.

214

(1
(2]
(3]
(4]

(5]
6]

[7]
(8]

9]
(10]
(11]
(12]
(13]
[14]
(15]
[16]
(17]

(18]
(29]

(20]
[21]
(22]

(23]
[24]

[25]
(26]

(27]
(28]

[29]

D. Papadias, N. Mamoulis, and Y. Theodoridis

References

Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., Vitter, J.S. Scalable Sweeping-Based Spatial Join.
Proc. VLDB, pp. 570-581, 1998.

Bacchus, F., van Run, P. Dynamic Variable Ordering in C&Pisiciples and Practice of Constraint
Programming pp. 258-275. LNCS 976, Springer-Verlag, Berlin, 1995.

Beckmann, N., Kriegel, H., Schneider, R., Seeger, B. ThelRe: An Efficient and Robust Access
Method for Points and Rectanglézoc. ACM SIGMOD pp. 322-331, 1990.

Bergman, L., Castelli, V., Li, C.-S. Progressive Content-Based Retrieval from Satellite Image Archives.
D-Lib Magazine October 1997 (http://mirrored.ukoln.ac.uk/lis-journals/dlib/dlib/dlib/october97/
ibm/10li.html).

Brinkhoff, T., Kriegel, H., Seeger, B. Efficient Processing of Spatial Joins Using R-Tirees.ACM
SIGMOD pp. 237-246, 1993.

Cerny, V. Thermodynamical APproach to the Travelling Salesman Problem: An Efficient Simulation
Algorithm. Journal of Optimization Theory and Applicatiork: 41-51, 1985.

Comer, D. The Ubiquitous B-Tre&CM Computing Survey41(2): 121-138, 1979.

Dechter, R. Decomposing a Relation into a Tree of Binary Relatidmsnal of Computer and System
SciencesSpecial Issue on the Theory of Relational Databases, 41: 2—-24, 1990.

Egenhofer, M. Query Processing in Spatial-Query-by-Sketatrnal of Visual Languages and Com-
puting, 8: 403-424, 1997.

Faloutsos, C., Ranganathan, M., Manolopoulos, Y. Fast Subsequence Matching in Time Series
DatabasesProc. ACM SIGMOD pp. 419-429, 1994.

Gaede, V., Guenther, O. Multidimensional Access Metha@vi Computing Survey80(2): 123-169,
1998.

Graefe, G. Query Evaluation Techniques for Large Databa&¥d.Computing Survey85(2): 73-170,

1993.

Gudivada, V., Raghavan, V. Design and Evaluation of Algorithms for Image Retrieval by Spatial Simi-
larity. ACM TOIS 13(1): 115-144, 1995.

Guttman, A. R-Trees: A Dynamic Index Structure for Spatial Searclfrae. ACM SIGMOD pp. 47—

57, 1984.

Gyssens, M., Jeavons, P., Cohen, D. Decomposing Constraint Satisfaction Problems Using Database
TechniquesAtrtificial Intelligence 66(1): 57—-89, 1994.

Haralick, R.M., Elliott, G.L. Increasing Tree Search Efficiency for Constraint Satisfaction Problems.
Artificial Intelligence 14: 263-313, 1980.

Huang, Y.-W., Jing, N., Rundensteiner, E. Spatial Joins Using R-Trees: Breadth First Traversal with
Global OptimizationsProc. VLDB, pp. 396-405, 1997.

loannidis, Y. Query OptimizatiorACM Computing Survey28(1): 121-123, 1996.

loannidis, Y., Kang, Y. Randomized Algorithms for Optimizing Large Join Quersc. ACM
SIGMOD pp. 312-321, 1990.

Kamel, |., Faloutsos, C. Parallel R-Tre@soc. ACM SIGMOD pp. 195-204, 1992.

Kamel, |., Faloutsos, C. On Packing R-TreBsc. ACM CIKM, pp. 490-499, 1993.

Kirkpatrick, S., Gelat, C., Vecchi, M. Optimization by Simulated AnnealiBgience220: 671-680,
1983.

Koudas, N., Sevcik, K. Size Separation Spatial JBioc. ACM SIGMOD pp. 324-333, 1997.

Lo, M.-L., Ravishankar, C.V. Spatial Joins Using Seeded Treesc. ACM SIGMOD pp. 209-220,
1994.

Lo, M.-L., Ravishankar, C.V. Spatial Hash-JoiRsoc. ACM SIGMOD pp. 247-258, 1996.

Mamoulis, N., Papadias, D. Constraint-Based Algorithms for Computing Clique Intersection Joins.
Proc. ACM-GIS pp. 118-123, 1998.

Mamoulis, N., Papadias, D. Integration of Spatial Join Algorithms for Processing Multiple Iipats.

ACM SIGMOD pp. 1-12, 1999.

Mamoulis, N., Papadias, D. Improving Search Using Indexing: A Study with Temporal C&irs.
IJCAI, pp. 436-441, 1999.

Mamoulis, N., Papadias, D. Synchronous R-Tree Traversal. Technical Report HKUST-CS99-03, Febru-
ary 1999. Available via ftp from http://www.cs.ust.hidimitris/

Constraint-Based Processing of Multiway Spatial Joins 215

[30]

(31
(32

(33]
(34]
(35]
(36]
(37]
(38]
[39]
[40]
[41]
[42]

[43]
[44]

[45]
[46]

[47]
(48]

[49]
[50]

[51]
[52]

[53]

[54]

Nabil, M., Ngu, A., Shepherd, J. Picture Similarity Retrieval using 2d Projection Interval Representation,
IEEE TKDE 8(4): 533-539, 1996.

Nadel, B. Constraint Satisfaction Algorithm@omputational Intelligenceb: 188-224, 1989.

Nahar, S., Sahni, S., Shragowitz, E. Simulated Annealing and Combinatorial OptimiExton23rd
Design Automation Conferengep. 293-299, 1986.

Orenstein, J.A. Spatial Query Processing in an Object-Oriented Database SmeMCM SIGMOD

pp. 326-336, 1986.

Pagel, B.-W., Six, H. Are Window Queries Representative for Arbitrary Range Quéties?ACM

PODS pp. 150-160, 1996.

Pagel, B.-W., Six, H., Toben, H., Widmayer, P. Towards an Analysis of Range Query Performance.
Proc. ACM PODS pp. 214-221, 1993.

Papadias, D., Theodoridis, Y., Sellis, T., Egenhofer, M. Topological Relations in the World of Minimum
Bounding Rectangles: A Study with R-Tre&oc. ACM SIGMOD pp. 92-103, 1995.

Papadias, D., Theodoridis, Y., Stefanakis, E. Multidimensional Range Query Processing with Spatial
Relations Geographical Systemé(4): 343—-365, 1997.

Papadias, D., Mamoulis, N., Delis, B. Algorithms for Querying by Spatial StrucRnec. VLDS

pp. 547-557, 1998.

Papadias, D., Kalnis, P., Mamoulis, N. Hierarchical Constraint Satisfaction in Spatial Datdtrases.
AAA| pp. 142-147, 1999.

Papadopoulos, A.N., Rigaux, P., Scholl, M. A Performance Evaluation of Spatial Join Processing Strate-
gies.Proc. SSO pp. 286—-307. LNCS 1651, Springer-Verlag, Berlin, 1999.

Park, H., Cha, G., Chung, C.J.M. Multiway Spatial Joins Using R-Trees: Methodology and Performance
Evaluation.Proc. SSD pp. 231-250. LNSC 1651, Springer-Verlag, Berlin, 1999.

Park, H., Lee, C.-G., Lee, Y.-J., Chung, C.-W. Early Separation of Filter and Refinement Steps in Spatial
Query OptimizationProc. DASFAA pp. 161-168, 1999.

Patel, J.M., DeWitt, D.J. Partition Bases Spatial-Merge J&iac. ACM SIGMOD pp. 259-270, 1996.
Petrakis, E., Faloutsos, C. Similarity Searching in Medical Image Datall&&s#s . TKDE, 9(3): 435—

447, 1997.

Preparata, F., Shamos, omputational GeometrBpringer-Verlag, New York, 1988.

Prosser, P. Hybrid Algorithms for the Constraint Satisfaction Probf@éamputational Intelligence

9(3): 268-299, 1993.

Roussopoulos, N., Kelley, F., Vincent, F. Nearest Neighbor Qud?ies. ACM SIGMOD pp. 71-79,

1995.

Sellis, T., Roussopoulos, N., Faloutsos, C. The-Ree: A Dynamic Index for Multidimensional
Objects.Proc. VLDB, pp. 507-518, 1987.

Silberschatz, A., Korth, H.F., SudarshanP@tabase System ConcepcGraw-Hill, New York, 1997.
Smith, J., Chang, S.-F. VisualSEEk: A Fully Automated Content-Based Image Query Sistem.
ACM Multimedia pp. 87-98, 1996.

Swami, A., Gupta, A. Optimization of Large Join QueriBsoc. ACM SIGMOD pp. 8-17, 1988.
Theodoridis, Y., Sellis, T. A Model for the Prediction of R-Tree Performatec. ACM PODS

pp. 161-171, 1996.

Theodoridis, Y., Stefanakis, E., Sellis, T. Cost Models for Join Queries in Spatial DataPesetE EE

ICDE, pp. 476-483, 1998.

van der Bercken, J., Seeger, B., Widmayer, P. A Generic Approach to Bulk Loading Multidimensional
Index StructuresProc. VLDB, p. 406-415, 1997.

