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Constraint-Based Processing of Multiway Spatial Joins1

D. Papadias,2 N. Mamoulis,2 and Y. Theodoridis3

Abstract. A multiway spatial join combines information found in three or more spatial relations with respect
to some spatial predicates. Motivated by their close correspondence with constraint satisfaction problems
(CSPs), we show how multiway spatial joins can be processed by systematic search algorithms traditionally
used for CSPs. This paper describes two different strategies, window reduction and synchronous traversal, that
take advantage of underlying spatial indexes to prune the search space effectively. In addition, we provide cost
models and optimization methods that combine the two strategies to compute more efficient execution plans.
Finally, we evaluate the efficiency of the proposed techniques and the accuracy of the cost models through
extensive experimentation with several query and data combinations.
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1. Introduction. Spatial DBMSs and GISs store large amounts of multidimensional
data, such as points, lines, or polygons. Popular indexing methods used in relational
databases (e.g., B-trees) are not directly applicable for spatial data due to the fact that
there is no total ordering of objects in space that preserves proximity. As a result, a
number ofmultidimensional access methods[11] have been successfully employed in
several domains, including medical information systems [44] and time series databases
[10]. The predominant access method for multidimensional data is the R-tree [14] and
its variations, which are currently used in many commercial systems (e.g., Informix,
Postgress, MapInfo). R-trees have been applied for processing several types of spatial
selections such as window [14], relation-based [36], and nearest neighbor queries [47].
In addition, they are effective for (pairwise) spatial joins [5].

This paper deals with processing and optimization of multiway spatial joins using
R-trees. A multiway spatial join can be defined as follows: Given a set ofn spatial
relations{R1, . . . , Ri , . . . , Rj , . . . , Rn}, whereRi = {ui

1, . . . ,u
i
Ni
}, and a set of binary

spatial predicates{Ci j | 1 ≤ i, j ≤ n}, find all n-tuples{(u1
p, . . . ,u

i
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j
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n
r ) |

∀i, j,1≤ i, j ≤ n,Ci j (ui
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l )}. In most cases the spatial predicate isoverlap(intersect,

crosses) but alternatively any predicate, such asnear, northeast, meet, could be used. As
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an example of a multiway spatial join consider the content-based query “find all cities
crossed bya river whichcrossesan industrial area.” The query can be thought of as a
case of image similarity retrieval, where similarity is based on spatial predicates and not
visual characteristics.

If n is the number of query variables andN is the size of their domain, then in the
worst case alln-combinations (orn-permutations if all variables have the same domain)
of N objects have to be searched to find configurations that satisfy the query constraints.
In order to avoid the large cost of processing, previous image similarity techniques
that do not use indexing (e.g., [13] and [30]) have focused on a specific instance of
the problem where small images consist of the same set of known (labeled) objects.
Petrakis and Faloutsos [44] employ R-trees to solve such queries for images that contain
a constant number of labeled objects (e.g., lungs) and a small number of unlabeled ones
(e.g., tumors). Although their method is efficient for domains involving numerous small
images with few unlabeled objects (e.g., medical databases of X-rays), it is not applicable
to large images of unlabeled objects.

This paper proposes a solution to the general problem of multiway spatial joins,
where large datasets contain arbitrary numbers of unlabeled objects. The next section
outlines the R-trees and the most common types of spatial query processing, i.e., spatial
selections and joins. Motivated by a close correspondence between multiway joins and
constraint satisfaction problems, we describe, in Section 3, techniques to process mul-
tiway spatial joins by integrating systematic search algorithms with R-trees. Section 4
discusses the selectivity of multiway spatial joins and provides analytical cost models.
Section 5 describes optimization algorithms based on exhaustive and local search in
the space of alternative execution plans. Section 6 evaluates the proposed techniques
with extensive experimentation using various datasets and join graph topologies, and
Section 7 concludes the paper.

2. Overview of Spatial Query Processing Using R-Trees.The R-tree data structure
is a height-balanced tree that consists of intermediate and leaf nodes corresponding to
disk pages in secondary memory (R-trees are extensions of B+-trees [7] to many dimen-
sions). The root is at levelh− 1, whereh is the height of the tree, and the leaf nodes are
at level 0. The Minimum Bounding Rectangles (MBRs) of the data objects are stored in
the leaf nodes and intermediate nodes are built by grouping MBRs of the lower level. We
make the distinction between an R-tree nodeN[i ] and its entriessk, which correspond
to MBRs included inN[i ]; sk ref points to the corresponding nodeN[k] at the next
(lower) level. Each R-tree node (except from the root) should contain at least a number
m of entries, called minimum R-tree node utilization. Figure 1 illustrates three relations
(covering the same workspace) and the corresponding R-trees assuming thatm= 2 and
maximum node capacityC is three rectangles (in real two-dimensional applicationsC
is normally 50–400 depending on the page size). R+-trees [48] and R∗-trees [3] are im-
proved versions of the original method, proposed to address the problem of performance
degradation caused by the overlapping regions and excessive dead-space.

Selection and join queries are fundamental operations in any DBMS. In this section we
briefly present the techniques employed by query processors to support spatial selections
and joins using R-trees, and describe related analytical models.
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Fig. 1.R-trees.

2.1. Selection Queries. A spatial selection retrieves from a dataset, the entries that
satisfy some spatial predicate with respect to a reference objectq. The most common
type of spatial selections arewindow queries, where the predicate isoverlapandq defines
a rectangular window in the workspace. The processing of a window query using R-trees
involves the procedure of Figure 2: starting from the root node, exclude the entries that
are disjoint with the query window, and recursively search the remaining ones. If, for
instance, we are looking for all rivers that intersect city a1, we retrieve the root entries of
the second tree that overlap a1 (in this case B1). Then we search inside B1 for potential
solutions (no objects in B2 can overlap a1 and the node is not accessed).

When the MBRs of two objects aredisjoint, the objects that they approximate are
alsodisjoint. If the MBRs however share common points, no conclusion can be drawn
about the spatial relation between the objects. For this reason, spatial queries involve the
following two-step strategy [33]: (i) Afilter stepuses the tree to eliminate rapidly objects
that could not possibly satisfy the query. The result of this step is a set of candidates
which includes all the results and possibly some false hits. (ii) During arefinement step
each candidate is examined (by using computational geometry techniques) and false hits
are eliminated.

This paper, like most related spatial database literature, focuses on minimizing the
cost of filtering. Performance is usually measured in terms of the number of R-tree nodes
that should be accessed during the search process. Letd be the dimensionality of the
data space and let [0,1)d be thed-dimensional unit workspace. Given an R-treeRi (with
heighthRi ) and a windowq (with |q| average extent on each dimension), theselectivity

Fig. 2.Window Query (WQ) algorithm.
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S(Ri ,q, l ) of q on the entries ofRi at levell is defined asthe ratio of the expected number
of entries overlapping q over their total number(i.e., the probability that a random entry
intersectsq). Theodoridis and Sellis [52] provide the following formula for selectivity:

S(Ri ,q, l ) = (|sRi ,l | + |q|)d,(2.1)

where|sRi ,l | is the average extent (on each dimension) of an entrysRi ,l of the R-treeRi

at level l . The above formula assumes (i) unit workspace, (ii) square node rectangles,
which is a desirable property for “efficient” R-trees [3], [21], (iii) uniformly distributed
centers of node rectangles, the so-called “uniformity assumption,” and (iv) independent
dimensions. These assumptions hold for the analytical formulas presented throughout
the paper.

The numberNA(Ri ,q, l ) of node accesses for retrieving entries at levell equals the
number of entries intersected byq in the upper levell + 1, i.e., the total number of
entries at levell + 1 (denoted byNRi ,l+1) times the probability that an entry intersectsq
(selectivity):

NA(Ri ,q, l ) = NRi ,l+1 · S(Ri ,q, l + 1)(2.2)

= NRi ,l+1 · (|sRi ,l+1| + |q|)d, 0≤ l ≤ h− 2.

In the previous examples (rivers intersecting city a1), the number of node accesses
depends on how many root entries of the second tree intersect a1 and not on the number
of river MBRs. The total cost of a window queryCostWQ is the sum of node accesses at
each level, i.e., the number of entries that intersectq at all intermediate levels plus the
access of the root:

CostWQ(Ri ,q) = 1+
hR1−2∑

l=0

NA(Ri ,q, l ) = 1+
hR1−1∑

l=1

NRi ,l · (|sRi ,l | + |q|)d.(2.3)

This formula is based on the performance analysis of [35]. Theodoridis and Sellis [52]
define the R-tree propertieshRi , NRi ,l , and|sRi ,l | involved in (2.3) as functions of the
cardinality and density4 of the dataset, thus computingNA(Ri ,q, l ) andCostWR(Ri ,q)
by using only data properties, without extracting information from the underlying R-tree
structure. Pagel and Six [34] argue that window queries are representative for range
queries in general. Papadias et al. [37] show how the above formulas can be applied for
any spatial predicate including topological (e.g., inside, meets), direction (e.g., north),
and distance relations.

2.2. Spatial Joins. A spatial join operation selects from two object sets, the pairs that
satisfy some spatial predicate, usuallyintersect(e.g., “find all cities that arecrossed bya
river”). Previous work on pairwise spatial join queries can be classified in two categories.
The methods of the first category treat nonindexed inputs (e.g., when there is another op-
eration, such as selection, before the spatial join). If there is an R-tree for only one input,

4 The density of a set of rectangles is defined as the average number of rectangles that contain a given point
in the workspace. Equivalently, density can be expressed as the ratio of the sum of the areas of all rectangles
over the area of the available workspace.
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processing can be done by (i) index nested loops, (ii) building a second R-tree for the
nonindexed input using bulk loading [54] and then applying an R-tree-based algorithm
(see below), (iii) thesort and matchalgorithm [40], (iv) theseeded treealgorithm [24]
which works like (ii) but builds the second R-tree using the existing one as a skeleton
(seed), and (v) theslot index spatial join[27] which is an improved version of (iv). If both
inputs are nonindexed, some methods partition the space either regularly [23], [43] or ir-
regularly [25], and distribute the data objects into buckets defined by these partitions. The
spatial join is then performed in a relational hash join fashion. Another method [1] first
applies external sorting to both files and then uses an adaptable plane sweep algorithm,
considering that in most cases the “horizon” of the sweep line will fit in the main memory.

The methods of the second category are applicable when both relations to be joined
are indexed on the spatial attributes. The most influential technique in this category is
R-tree-based Join(RJ) [5], which presupposes the existence of R-trees for both relations.
RJ is based on theenclosure property: if two intermediate R-tree nodes do not intersect,
there can be no MBRs below them that intersect. Assume that we want to retrieve all pairs
of overlapping cities and rivers in Figure 1. The algorithm starts from the roots of the two
trees to be joined and finds all pairs of overlapping entries inside them (e.g.,(A1,B1),
(A2,B2)). These are the only pairs that may lead to solutions; for instance, there cannot
exist any(ai ,bj ) ai ∈ A1 andbj ∈ B2 such that(ai ,bj ) is a solution, because A1 does not
overlap B2. For each overlapping pair of intermediate entries, the algorithm is recursively
called until the leaf levels. Figure 3 illustrates the pseudocode forRJassuming that the
trees are of equal height; the extension to different heights is straightforward.

Two optimization techniques can be used to improve the CPU speed ofRJ. The
first, search space restriction, reduces the quadratic number of pairs to be evaluated
when two nodesN[i ], N[ j ] are joined. If an entrysk ∈ N[i ] does not intersect the
MBR of N[ j ] (that is the MBR of all entries contained inN[ j ]), then there can be no
entry sl ∈ N[ j ], such thatsk andsl overlap. In the example of Figure 1, entry a4 of
node A2 does not intersect node B2, so it cannot intersect any entry inside B2. Using
this observation, space restriction performs two linear scans in the entries of both nodes
before starting theRJ procedure, and prunes out from each node the entries that do not
intersect the MBR of the other node. The second technique, based on theplane sweep
paradigm [45], applies sorting in one dimension in order to reduce the computation time
of the overlapping pairs between the nodes to be joined. Huang et al. [17] extendRJ
by introducing an on-the-fly indexing mechanism to optimize, in terms of I/O cost, the
execution order of matching at intermediate levels. Papadias et al. [38] shows howRJ
and related heuristics can be applied for a variety of spatial predicates.

Fig. 3.R-tree-based spatial join (RJ) algorithm.
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Initially, RJ takes the roots of the trees to be joined as parameters. Then it performs a
synchronous traversal of both R-trees, with the entries of the two structures playing the
roles of data rectangles and query windows, respectively, in a series of window queries.
According to Theodoridis et al. [53], (2.2), which calculates the number of node accesses
at Ri when a windowq is considered, can be modified to calculate the cost of a join
query by using the corresponding node entries ofRj as a series of query windows onRi .
Thus, the cost for each R-tree at levell is the sum of costs ofNRj ,l+1 different window
queries onRi :

NA(Ri , Rj , l ) = NA(Rj , Ri , l )(2.4)

= NRj ,l+1 · NRi ,l+1 · (|sRi ,l+1| + |sRj ,l+1|)d, 0≤ l ≤ h− 2.

For R-trees with equal heighthR, the total costCostR J(Ri , Rj ) of a spatial join between
Ri andRj usingRJ is the sum of node accesses for each level:

CostR J(Ri , Rj ) = 2+
hR−2∑
l=0

{NA(Ri , Rj , l )+ NA(Rj , Ri , l )}(2.5)

= 2+
hR−1∑
l=1

{2 · NRj ,l · NRi ,l · (|sRi ,l | + |sRj ,l |)d}.

The cost shown in (2.5) is an upper bound where no buffer is considered and every
node access inRi corresponds to a node access inRj , according to line 7 of theRJ
algorithm. Theodoridis et al. [53] provide a detailed description of cost formulas for
RJ, including the case of R-trees with different heights. In correspondence to window
query analysis, all the involved parameters can be expressed as functions of dataset
properties, namely cardinality and density. Experimental results suggest that the above
cost models are accurate for uniform data (where the density remains almost invariant
through the workspace). In order to deal with nonuniform data distributions, they propose
the maintenance of a grid with statistical information about cardinality and density per
cell. This approach, applied with a reasonably sized grid (50× 50), provides good
estimations for real datasets with highly skewed data distributions [27].

The basic symbols describing the concepts presented in this section are listed in
Table 1. In what follows we show how these concepts are applied for multiway spatial
joins.

3. Algorithms for Multiway Spatial Joins. A multiway spatial join can be repre-
sented by a graph Q where Q[i ][ j ] denotes the join condition betweenRi andRj . Follow-
ing the standard approach in the spatial join literature, we consider only MBRs, i.e., the
filter step, andoverlapas the default join condition, i.e., if for somei, j , Q[i ][ j ] is TRUE,
then there is a intersection-join betweenRi andRj (Q is not directed: Q[i ][ j ] = Q[ j ][ i ]).
We assume that Q is connected; nonconnected graphs can be solved as independent sub-
problems. Furthermore, we focus on two particular types of multiway joins: acyclic
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Table 1.List of symbols.

Symbol Definition

d Number of dimensions
hRi Height of the R-treeRi

NRi Number of data MBRs indexed byRi

NRi ,l Number of entries ofRi at levell (Nri ,0 ≡ NRi )
|sRi | Average extent of data rectangles indexed byRi

|sRi ,l | Average extent of entries ofRi at levell (|sRi ,0| ≡ |sRi |)
|q| Average extent of a query windowq
S(Ri ,q, l ) Selectivity of a query windowq on the entries ofRi at levell
CostW Q(Ri ,q) Number of node accesses for a window queryq on Ri

CostR J(Ri , Rj ) Number of node accesses for a spatial join between two R-treesRi andRj

(trees) and complete graphs (cliques). Figure 4 illustrates two query graphs joining three
datasets and two solution tuples(sR1, sR2, sR3) such thatsRi is an object inRi . Figure 4(a)
corresponds to a chain query (e.g., “find all citiescrossed bya river whichcrossesan
industrial area”), while Figure 4(b) corresponds to a clique (“the industrial area should
also intersect the city”).

According to the relational database methodology, multiway spatial joins could be
processed by integration of pairwise join algorithms [27]. Solutions to the above queries
are obtained by computing the result of one pairwise join (e.g., riverscrossingindus-
trial areas) using the corresponding R-trees and an appropriate (pairwise) spatial join
algorithm (e.g., [5]); then joining the resulting rivers with the relation cities employ-
ing a method (e.g., [24]) applicable when only one R-tree (for cities) is available. An
efficient execution plan can be determined using cost models for pairwise spatial joins
and optimization methods for relational queries. This paper follows a different direction
and discusses processing of multiway spatial joins using systematic search algorithms,
traditionally used for constraint satisfaction problems.

3.1. Multiway Spatial Joins as Constraint Satisfaction Problems. Numerous problems
in a variety of areas (e.g., spatio-temporal reasoning, planning, image processing) can be
modeled as constraint satisfaction problems (CSPs). In the context of relational databases,
Dechter [8] uses results obtained from the study of CSPs to decompose large relations
into trees of binary relations. In the opposite direction, Gyssens et al. [15] apply relational
database techniques to decompose a CSP in smaller subproblems whose solutions can be

Fig. 4.Examples of multiway spatial join.
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combined to generate a solution to the original problem. A binary CSP [46] is defined by:

• A set ofn variables,v1, . . . , vi , . . . , vn.

• For each variablevi , a finite domainDi = {ui,1, . . . ,ui,Ni } of potential values (where
Ni is the cardinality ofDi ).
• For each pair of variablesvi , vj , a binary constraintCi j which is a subset ofDi × Dj .

If (ui,x,uj,y) ∈ Ci j , then the assignment{vi ← ui,x, vj ← uj,y} is consistent. A solution
is an assignment{v1 ← u1,w, . . . , vi ← ui,x, . . . , vj ← uj,y, . . . , vn ← un,z}, such
that, for alli, j , {vi ← ui,x, vj ← uj,y} is consistent.

The example query: “find all citiescrossed bya river which alsocrossesan industrial
area” can be mapped to a CSP as follows: (i) There exists a variablevi for each input,
i.e., v1, v2, andv3, for cities, rivers, and industrial areas, respectively. (ii) The domain
of each variablevi consists of the objects in the corresponding relation (e.g.,D1 is
the set of cities). (iii) Each join predicate (e.g., “crossed by”) corresponds to a binary
constraint. An assignment{v1← u1,x, v2← u2,y, v3← u3,z} constitutes a solution of
the query in Figure 4(a), if cityu1,x is crossed by riveru2,y which also crosses industrial
areau3,z. Thus, the join graphs in Figure 4 can be alternatively considered as constraint
networks, and in what follows we use CSP and database terminology interchangeably
(e.g., variable/dataset, constraint/join condition).

Since multiway spatial joins can be modeled as CSPs, CSP algorithms could be
employed for their processing. Such algorithms perform systematic search by applying
the basic idea of backtracking and trying to improve the backward (e.g.,backjumping
anddynamic backtracking) or the forward step (e.g.,forward checking; see [46] for a
survey). A na¨ıve backtracking algorithm for processing the query of Figure 4(a) (using the
datasets of Figure 1) would first instantiate the variable corresponding to cities to some
value (e.g.,v1← a1) and then proceed to the next variable (v2) for rivers. Assume thatv2

is first instantiated to b1 which overlaps a1. The algorithm will then proceed another step
forward and will assignv3 (industrial area) with value c1. Because c1 overlaps b1, the first
solution(a1,b1, c1) has been found. Then the algorithm would try all other industrial
areas before it determines that there is no other value that overlaps b1, and will backtrack
assigning a new value tov2.

The above algorithm performs a large number of redundant consistency checks be-
cause it does not exploit the underlying index structures. Papadias et al. [38] combine
systematic search algorithms and R-trees for the retrieval of object combinations match-
ing (exactly or approximately) some input configurations. Mamoulis and Papadias [26]
employ these methods for a special case of multiway spatial joins where there exists a
join condition between all pairs of inputs. In what follows we apply and extend this work
to arbitrary query graphs. In addition, we propose optimization techniques that yield
significant improvement over the original algorithms.

3.2. Window Reduction. Window reduction (WR) performs systematic search by ap-
plying window queries to find the consistent values of uninstantiated variables. For
instance, after assigningv1 ← a1, a1 becomes the query window for rivers that will
constitute the domain ofv2, avoiding unnecessary consistency checks. In other words,
the forward phase ofWRworks in an index nested loops fashion, while the backtracking
phase can be based on various CSP algorithms. The overhead of algorithms (e.g., back-
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Fig. 5.Window Reduction (WR) algorithm.

jumping) that direct the backward step according to information about inconsistencies
does not pay-off for the current problem. This is because, due to the large domain sizes
and the limited tightness ofoverlap, the instantiated variable that causes an inconsis-
tency with a value of the current one is almost certainly the last. Figure 5 illustrates a
nonrecursive version ofWRbased on chronological backtracking.

Initially the index to the current variablevi is set toi = 1 and the query window forv1

is the whole workspace (the first variable will be instantiated to all values in its domain).
Array τ holds the current instantiations (τ [i ] stores the current value ofvi ). A value
for vi is retrieved using a query window in the corresponding R-tree (line 5). If such a
value cannot be found, the algorithm will backtrack; it will terminate when it attempts to
backtrack fromv1. Line 8 will be reached only in the case of a successful instantiation.
If vi is the last variable (i = n), τ contains a complete solution that is output to the user.
Otherwise,i is increased and the algorithm proceeds to the next variable.

The order of variables is predetermined according to some optimization method (see
Section 5), and is such that every variable after the first one should be directly connected
to some instantiated variable(s) (e.g., the orderv1, v3, v2 is not valid for the query of
Figure 4(a), since there is no edge betweenv3 andv1). For acyclic queries, the current
variablevi is directly connected to a single instantiated variable whose value becomes the
query window for search inRi , e.g., for the orderv1, v2, v3, sR1 is the query window for
v2, sR2 for v3, and so on. For clique queries,vi is connected to all instantiated variables
that mutually intersect. In this case the query window forRi is the common area of
instantiated variables [26], since any set of MBRs that mutually overlap has a nonempty
intersection. In Figure 4(b), for instance,v3 should overlap the common intersection
(gray area) ofsR1 andsR2. For arbitrary queries, i.e., whenvi is connected to an arbitrary
number of instantiated variables, the value of one is chosen as the query window and
filtering with respect to the other variables takes place in main memory (lines 9–11).

3.3. Synchronous Traversal. The second methodology, synchronous traversal (ST),
can be thought of as the generalization ofRJ for an arbitrary number of inputs. In
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particular,STstarts from the roots of the trees and attempts to find solutions, i.e., combi-
nations of entries that satisfy the input constraints. For the query of Figure 4(a),STwould
find all triplets(A i ,Bj ,Ck)of entries at the roots such that(A i ,Bj )and(Bj ,Ck) intersect.
Out of the eight possible combinations (i.e.,(A1,B1,C1), (A1,B1,C2), (A1,B2,C1), . . . ,

(A2,B2,C2)), only three,(A1,B1,C1), (A1,B1,C2), and(A2,B2,C2), could potentially
lead to solutions. For each solution found the algorithm is recursively called, taking the
references to the underlying nodes as parameters, until the leaf level is reached.

The calculation of combinations of the qualifying nodes for each level is expensive,
as their number can be as high asCn (whereC is the node capacity). Finding the subset
of node combinations that is consistent with the input query can be treated as a local CSP
at each level in order to avoid exhaustive search. Similarly toWR, STcan be applied with
a variety of search algorithms and optimization techniques. Here we employforward
checking(FC) [16], a backtracking-based algorithm which prunes the domain of future
variables based on the current instantiations. Several studies [2], [31] have shown that
it performs very well for a variety of CSPs. Furthermore, we combineFC with a space
restriction/ordering heuristic that minimizes the number of intersection checks.

A three-dimensional (n · n · C) array keeps the versions of variable domains for
each instantiation step:D[i + 1][ j ] stores the potential values of variablevj , aftervi is
instantiated. Initially the domainD1[1][ j ] of each variablevj consists of all entries of
a node N[j ] (in the beginning, the root of the corresponding R-tree). A multivariable
variation of the space restriction heuristic (Figure 6) is applied before each execution of
FC, to reduce the size of domains. Every entry in N[j ] which does not intersect the MBR
of another node N[i ] where Q[i ][ j ] = TRUE is pruned from the domain of N[j ]. As
an example consider that the solution(A1,B1,C1) for the query of Figure 4(a) has been
found at the top level. The domains at the next call ofSTconsist of the entries in these
nodes, i.e.,D[1][1] = {a1,a2,a3}, D[1][2] = {b1,b2}, andD[1][3] = {c1, c2}. Space
restriction will remove b2 from D[1][2] (because it does not intersect the MBR of C1)
and c2 from D[1][3] (because it does not intersect the MBR of B1). Finally, the remaining
entries in the variable domains are sorted with respect to the lowerx-coordinate of their
MBR (x low sorting).

After the application of space restriction,FC (Figure 7) retrieves solutions at the
current level. Each variablevi is assigned values fromD[i ][ i ]. If D[i ][ i ] has been
exhausted the algorithm will backtrack to the previous variable (lines 6–7). A one-
dimensional arrayτ holds the current instantiations. After an instantiationvi ← sk, τ
(τ [i ] = sk) contains a solution where the constraints between the firsti variables are
satisfied. When a complete (i = n) solution is found, it is either output (at leaf level) or
recursively followed at the lower level (lines 9–15).

Fig. 6.Multivariable space restriction.
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Fig. 7.Synchronous Traversal (ST) with forward checking(FC).

For partial solutions (i < n) checkforward is called to remove from the domains of all
future variablesvj ( j > i ) such that Q[i ][ j ] = TRUE, those values that do not intersect
τ [i ] (τ [i ] = sk). In other words,D[i + 1][ j ] (the domain ofvj after the instantiation of
vi ) contains the subset of MBRs inD[i ][ j ] that intersectτ [i ] (lines 21–28). The order
of MBRs (generated by space restriction) is used to avoid redundant checks: when the
first entrysm such thatsm.x low > τ [i ].x up is encountered, searching the domain is
aborted because there cannot exist subsequent entries that intersectτ [i ].

After checkforward, the domain of each future variable contains only values which
are consistent with all current instantiations. If some domain has been eliminated com-
pletely, checkforward will return FALSE signaling thatτ [i ] cannot lead to a solu-
tion. Domain elimination for a variablevj happens when there exists a join condition
Q[i ][ j ], but no value forvj that intersectsτ [i ]. Continuing the previous example, af-
ter space restriction the domains becomeD[1][1] = {a1,a2,a3}, D[1][2] = {b1}, and
D[1][3] = {c1}. During the instantiationv1 ← a3, checkforward will remove b1 and
D[2][2] becomes empty. Therefore,v1 ← a3 cannot lead to a solution andv1 must
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be assigned another value. The three-dimensional structure of the domain array is used
as a stack mechanism to simplify the domain restoration procedure, i.e., whenvi is
unassigned valueτ [i ], D[i + 1][ j ] is re-initialized toD[i ][ j ] for all future variables.

The application ofSTandWRin cases where some or all of the variables have the same
domain (i.e., image similarity retrieval applications) is straightforward. Furthermore,
both algorithms can be effectively employed when only a subset of the solutions needs
to be retrieved. For instance, they can be easily modified to terminate after retrieval of
the first solution resulting in significantly smaller execution cost (see the experiments in
Section 6). Traditional multiway join processing, based on integration of pairwise spatial
join algorithms, does not have this feature. For instance, spatial hash join algorithms (e.g.,
[23] and [25]) applied for joining intermediate outputs must read and write the whole
build input, even if pipelining is used for passing the results to the next operator.

4. Cost Models. WRessentially searches the whole space in order to instantiate the first
variable, but after doing so it performs only window queries which are cheap operations in
R-trees. The disadvantage of blindly instantiating the first variable in the whole universe
could be avoided by an algorithm that appliesST to instantiate multiple initial variables
which will then be input toWR through pipelining. In the query of Figure 4(a), for
instance,RJcould retrieve pairs of overlapping cities and rivers, and for each such pair
WRwill be called to find qualifying industrial areas. Figure 8 illustrates all the alternative
plans for the query, where joins to be processed bySTare shown in rectangles. The last
four plans correspond toWRwhere the leftmost variable is instantiated first.

Obviously this technique can be applied with any number of variables, e.g., a query
involving ten relations may be processed usingSTfor the first four variables, andWRto
instantiate the rest. The combination ofSTandWRfor multiway spatial join processing
results in plans of a certain “left-deep” form, which is different from left-deep trees in
relational join processing [12] in the sense that the leftmost (deepest) leaf nodes are
synchronously traversed (plans are not necessarily binary trees). In order to determine
the optimal plan we need analytical formulas for the selectivity of multiway spatial joins
and for the cost of the algorithms.

4.1. Selectivity of Multiway Spatial Joins. As in the case of spatial selections and
pairwise joins, the expected number of solutions determines the cost and is crucial for
the optimization of multiway spatial joins. The total number of solutions is given by the
following formula:

#solutions= #(all possiblen-tuples)· Prob(ann-tuple constitutes a solution).(4.1)

The first part of the product in (4.1) equals the cardinality of the Cartesian product ofn

Fig. 8.Possible plans for the query of Figure 4(a).
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domains, while the second part corresponds to query selectivity. IfsRi is a data object in
Ri , selectivity is defined as the probability that all binary assignments{vi ← sRi , vj ←
sRj } ∀i, j | Q[i ][ j ] = TRUE are consistent. In the case of acyclic graphs, and ignoring
boundary effects (i.e., rectangles are small with respect to the workspace), the pairwise
probabilities are independent. For instance, in the query of Figure 4(a), the event that
“sR1 overlapssR2” is independent of the event “sR2 overlapssR3.” Thus the probability
of a triplet satisfying the join conditions is the product of pairwise selectivities, which
are computed by (2.1):

Prob((sR1, sR2, sR3) is a solution) = (|sR1| + |sR2|)d ∗ (|sR2| + |sR3|)d.(4.2)

Extending ton variables, the selectivity of an acyclic join graph is

Prob(ann-tuple is a solution) =
∏

∀i, j :Q(i, j )=TRUE

(|sRi | + |sRj |)d(4.3)

and (4.1) and (4.3) imply that the total number of solutions at tree levell is

#solutions(Q, l ) =
n∏

i=1

NRi ,l ·
∏

∀i, j :Q(i, j )=TRUE

(|sRi ,l | + |sRj ,l |)d.(4.4)

When the query graph contains cycles, the assignments are not independent anymore
and (4.3) does not accurately estimate the probability that a random tuple constitutes a
solution. For cliques, it is possible to provide a formula for selectivity based on the fact
that if a set of rectangles mutually overlap, then they must share a common area. The
common intersection area of a set of rectangles is computed by the following lemma.

LEMMA 1. Given a set of n(n ≥ 2) mutually overlapping rectangles si , i = 1, . . . ,n,
with extent|si | on each direction, the common intersection area is a rectangle qn of
average extent|qn| defined as follows:

|qn| =
∏n

i=1 |si |∑n
i=1

∏n
j=1, j 6=i |sj | .(4.5)

PROOF(BY INDUCTION ON n). Step1. Forn = 2, it is sufficient to prove that

|q2| = |s1| · |s2|
|s1| + |s2| .

Without loss of generality, we assume|s1| ≤ |s2|. Since the two rectangles overlap, their
projections (line segments) on each direction also overlap; letδ be their intersection and
let si . start (si .end) be their projections’ start (end) points,i = 1,2. Figure 9 sketches the
three possible configurations between two overlapping line segments, representing the
following sets of conditions:

• Case I:s1. start < s2. start < s1.end< s2.end.
• Case II:s2. start ≤ s1. start < s1.end≤ s2.end.
• Case III:s2. start < s2. start < s2.end< s1.end.
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Fig. 9.Possible configurations of overlapping intervals.

Recall that it is always:s2. start ≤ s1.end ands1. start ≤ s2.end since the two projections
overlap.

Assuming that the address space is discrete, with very fine granularity (the case of
continuous space will be the limit for infinitely fine granularity) [20], the probability that
a configuration may be the case for two overlapping segmentss1 ands2 corresponds to
the different relative positions ofs1 with respect tos2. Formally:

Prob(s1. start < s2. start < s1.end< s2.end/s2. start ≤ s1.end∧ s1. start ≤ s2.end)

= |s1|
|s1| + |s2|

= Prob(s2. start < s1. starts2.end< s1.end/s2. start ≤ s1.end∧ s1. start ≤ s2.end)

and

Prob(s2. start < s1. start < s1.end≤ s2.end/s2. start ≤ s1.end∧ s1. start ≤ s2.end)

= |s2| − |s1|
|s1| + |s2| .

The first two probabilities correspond to cases I and III and the latter one corresponds
to case II. For each of the three cases, the averageδ size equals the average portion of
s1 intersectings2, i.e.,δ = |s1|/2 for cases I and III andδ = |s1| for case II. In turn, the
average extent|q2| equals the weighted averageδ size, i.e.,

|q2| = 2 ·
( |s1|
|s1| + |s2| ·

|s1|
2

)
+ |s2| − |s1|
|s1| + |s1| · |s1|,

where the first part of the summation represents the (equal) weighted average ofδ for
cases I and III while the second part corresponds to case II. Since the above value of|q2|
equals|s1| · |s2|/(|s1| + |s2|), step 1 of the proof has been completed.

Step2. We assume that (4.5) holds forn = k, i.e.,

|qk| =
∏k

i=1 |si |∑k
i=1

∏k
j=1, j 6=i |sj |

.

Step3 (induction step). We will prove that (4.5) holds forn = k+ 1, i.e.,

|qk+1| =
∏k+1

i=1 |si |∑k+1
i=1

∏k+1
j=1, j 6=i |sj |

.
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Proof of the induction step: Since rectanglesk+1 overlaps alls1, . . . , sk rectangles that
are mutually overlapping, it overlaps their common intersection area, denoted byqk.
Furthermore, the common intersection area of alls1, . . . , sk, sk+1 rectangles, denoted by
qk+1, is identical to the common intersection area betweenqk andsk+1. According to
steps 1 and 2:

|qk+1| = |sk+1| · |qk|
|sk+1| + |qk| = · · · =

∏k+1
i=1 |s1|

|sk+1| ·
∑k

i=1

∏k
j=1, j 6=i |sj | +

∏k
i=1 |si |

=
∏k+1

i=1 |s1|∑k
i=1

(
|sk+1| ·

∏k
j=1, j 6=i |sj |

)
+∑k+1

i=k+1

∏k
j=1, j 6=i |sj |

=
∏k+1

i=1 |si |∑k+1
i=1

∏k+1
j=1, j 6=i |sj |

.

Consider the instantiations{v1 ← sR1, v2 ← sR2} in the query of Figure 4(b). The
probability that a tuple (sR1, sR2, sR3) is a solution isProb(sR1 overlapssR2) · Prob(sR3

overlapssR1 and sR3 overlapssR2/sR1 overlapssR2). The conditional probability in the
second part of the product is equal to the probability thatsR3 intersects the common area
of sR1 andsR2, i.e.,Prob(sR3 overlapsq2). By applying (4.5) for the intersection area of
q2 and (2.1) for pairwise selectivities, we derive

Prob((sR1, sR2, sR3) is a solution) = (|sR1| + |sR2|
)d∗(|sR3| +

|sR1| · |sR2|
|sR1| + |sR2|

)d

(4.6)

= (|sR1| · |sR2| + |sR2| · |sR3| + |sR1| · |sR3|
)d
.

The selectivity of complete query graphs involving an arbitrary number of inputs is
computed by the following lemma.

LEMMA 2. Given a random n-tuple of rectangles(s1, . . . , sn), the probability that all
rectangles mutually overlap is

Prob(rectangless1, . . . , sn mutually overlap) =

 n∑
i=1

n∏
j=1
j 6=i

|sj |


d

.(4.7)

PROOF. Since all rectangles mutually overlap, without loss of generality we assume
that the instantiation order iss1, . . . , sn. Thus, the left part of (4.7) is equal to a product
of independent probabilities:

Prob(rectangless1, . . . , sn mutually overlap) = Prob(s2 overlapss1)

·Prob(s3 overlapss1 ∧ s3 overlapss2/s1, s2 mutually overlap)

· · ·
·Prob(sn overlapss1 ∧ · · · ∧ sn overlapssn−1/s1, . . . , sn−1 mutually overlap).
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In general, in order for a rectanglesk+1 to overlaps1, . . . , sk mutually overlapping
rectangles, it should overlap their common intersection, which is denoted byqk. Hence,
the above equation is equivalent to

Prob(rectangless1, . . . , sn mutually overlap)

= Prob(s2 overlapss1) · Prob(s3 overlapsq2) · · · · · Prob(sn overlapsqn−1)

= (|s2| + |s1|)d · (|s3| + |q2|)d · · · · · (|sn| + |qn−1|)d .
Using Lemma 1 for the area of eachqi , we obtain

Prob(rectangless1, . . . , sn mutually overlap)

= (|s2| + |s1|)d ·
(
|s3| + |s1| · |s2|

(|s1| + |s2|)
)d

· · · · ·
(
|sn| +

∏n−1
i=1 |si |∑n−1

i=1

∏n−1
j=1, j 6=i |sj |

)d

=
(
(|s2| + |s1|)·

(|s1| · |s2| + |s1| · |s3| + |s2| · |s3|
(|s1| + |s2|)

)
· · · · ·

(∑n
i=1

∏n
j=1, j 6=i |sj |∑n−1

i=1

∏n−1
j=1, j 6=i |sj |

))d

=
n∑

i=1

n∏
j=1
j 6=i

|sj |.

Thus, in the case for clique queries the numbers of solutions at levell is

#solutions(Q, l ) =
n∏

i=1

NRi,l ·

 n∑
i=1

n∏
j=1
j 6=i

|sRj,l |

 .(4.8)

The experiments of Section 6 demonstrate that previous formulas are accurate and,
therefore, can be applied for optimization of multiway spatial joins independently of the
algorithms. In what follows we show how they can be used to estimate the cost ofWR
andST.

4.2. Cost Models for WR and ST. Like the approaches described in Section 2, we use
node accesses (NA) as a measure of the cost ofWRandST. This is because (i)NA are
relatively simple to estimate, (ii) they do not depend on buffer size and page replacement
policy, and (iii) they provide an indication for the CPU overhead sinceNA are directly
related to the number of consistency checks performed by both algorithms. As we show
in the experimental evaluation, the CPU-time plays an important role in the cost of
multiway spatial joins (whereas selections and pairwise joins are I/O bound).

A subgraphQx,y of Q containingx nodes (variables) is calledlegal if it is connected
(we use indexy to distinguish different legal subgraphs ofx nodes).Vx,y is the set of
nodes inQx,y. The total number of legal subgraphs is less than or equal to (in the case
of complete graphs) the number ofx combinationsof n objectsC(x,n). (Qx−1,y′ , vx′ )
denotes adecompositionof Qx,y into a legal subgraphQx−1,y′ (with x−1 nodes), and a
single variablevx′ , such thatvx′ = Vx,y − Vx−1,y′ . For instance, the graph in Figure 4(a)
can be decomposed into a subgraphQ2,1 with V2,1 = {v1, v2} and variablev3. On the
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other hand, a decomposition into{v1, v3} and v2 is not allowed sincev1 and v3 are
not directly connected. A legal subgraphQx,y can be processed in two ways: either by
applyingST, or by executing a subquery of sizex − 1 and then usingWRto instantiate
thexth variable.

Let CostWR(Qx−1,y′ , vx′) be the cost (in terms of node accesses) of executingWRto
find all consistent instantiations ofvx′ , whenQx−1,y′ has been solved. For each solution
we have to perform a window query in indexRx′ in order to retrieve the consistent
instantiations ofvx′ . As discussed previously, in the case of acyclic graphsvx′ is connected
with a single instantiated variableVx−1,y′ whose value becomes the query windowqx′ .
For cliques,qx′ is the common intersection area of the values of all variables inVx−1,y′ .
The total number of window queries corresponds to the number of solutions ofQx−1,y′

at level 0. Thus,

CostWR(Qx−1,y′ , vx′) = #solutions(Qx−1,y′ ,0) · CostWQ(Ry′ ,qx′),(4.9)

whereCostWQ is computed according to (2.3), and the number of solutions according to
(4.4) or (4.8), for acyclic and clique queries, respectively.

Let CostST(Qx,y) be the cost of processingQx,y usingST. Thex roots of the R-trees
must be accessed in order to find root level solutions. Each solution will lead tox accesses
at the next (lower) level. In general, at levell , there will bex · #solutions(Qx,y, l + 1)
node accesses. The total cost ofST is

CostST(Qx,y) = x +
h−2∑
l=0

x · #solutions(Qx,y, l + 1).(4.10)

Note that although both algorithms are applicable for queries containing arbitrary cycles,
optimization of such queries using (4.4) and (4.8) as bounds for the number of solutions
is not accurate. LetP = ((v1, . . . , vk), vk+1, . . . , vn) be a plan where the firstk variables
are instantiated throughSTand the rest byWRin this order, and letQx,p be a subgraph
containing the firstx variables ofP. The total cost of processingP is

Cost(P) = CostST(Qk,p)+
n∑

x=k+1

CostWR(Qx−1,pvx).(4.11)

It is well known in both the database [12] and CSP [2] communities that the choice of
an appropriate plan, or an order in which variables get instantiated, has a very signif-
icant effect on performance. In what follows we provide optimization algorithms that
determine the subset of variables to be instantiated byST and the optimal order of the
remaining variables to be instantiated byWR.

5. Query Optimization. Let p(x) be a function that returns the number of plans for
a legal subgraph ofx nodes, and letd(x) be a function that returns the number of legal
decompositions. Assuming that allQx,y can result in the same number of decompositions
and each decomposition has the same number of plans, then the total number of plans is
described by the following recurrence:

p(1) = 1 and p(x) = d(x) · p(x − 1)+ 1,(5.1)
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where the additional plan is for processingQx,y usingST. For chain queries (minimal
number of plans),d(x) = 2 sinceQx−1,y′ can be generated fromQx,y only by removing
the first or the last variable. By substituting this value in recurrence (5.1), we derive
that the number of alternative plans for chain queries is 2n − 1. Equation (5.1) cannot
be applied for arbitrary trees, becaused(x) may be different for two subgraphs withx
nodes. Among all acyclic queries, the one that results in the largest number of plans is
the star graph. In this caseQx−1,y′ can be generated fromQx,y by removing any variable
except for the one at the center, thusd(x) = x − 1. For cliques (maximum number of
plans) any variable can be removed during a decomposition, resulting ind(x) = x, and
a total number of plans equal to

n! ·
n∑

x=1

1

x!
< n! · e.(5.2)

This is significantly smaller than the corresponding number in relational queries, i.e.,
(2(n− 1))!/(n− 1)!) [49], because there do not exist right-deep or bushy plans. In this
section we first describe a dynamic programming algorithm that searches through the
whole plan space and can be used for joins involving relatively few variables. Next we
apply hill climbing techniques for the case of numerous inputs.

5.1. Optimization Using Dynamic Programming. Dynamic programming has been
successfully applied for optimization of relational queries involving a small number of
inputs [18].DP plan algorithm (Figure 10) computes the best execution strategy for a
query incrementally, based on optimal plans of its subgraphs. The recursive equation
implemented by the algorithm is

Cost(Qx,y)(5.3)

= min{CostST(Qx,y), min
∀ decompositiony′

(Cost(Qx−1,y′)+ CostWR(Qx−1,y′ , vx′))}.

In general, at each levelDP plan decomposes everyQx,y into all legal combinations
(Qx−1,y′ , vx′ ), and finds the best demcomposition using the cost forQx−1,y′ which was
computed at the previous execution levelx − 1. Either this decomposition orST(Qx,y)

will be marked asQx,y’s optimal plan, to be used when computing the optimal cost for
query subgraphs of sizex + 1.

Fig. 10.Dynamic programming optimization algorithm (DP plan).
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Cost[Q1,y] is initially the number of leaf nodes in each R-treeRy (i.e., the number
NRy,1 of entries at level 1). Then the algorithm will calculate the plans and corresponding
costs for all pairwise joins, i.e., allQ2,y such thatQ2,y is connected. First the cost
of each pairwise join is computed usingST. Then for both decompositions ofQ2,y

to two subgraphs (containing one variable each), it will calculate the cost ofWR for
instantiating one variable first and then the second one (index nested loops). For all
pairwise joins, the best of three options (STand twoWRplans) and their costs are stored
in two tables (bestPlanand Cost, respectively) and used for calculating the costs of
processing subgraphs of three nodes. At the end ofDP plan, bestPlan[Q] will contain
the optimal plan for executingQ, andCost[Q] its expected cost. Notice that lines 4 and
7 use (4.10) and (4.9) which require the expected number of solutions. This number is
also stored for each decomposition, but, for simplicity, is omitted in the pseudocode.

If the query is clique (worst case), at each iteration of the outer loop the algorithm
will test C(x,n) = n!/x!(n− x)! subgraphs ofQx,y, and for eachQx,y it will perform
x decompositions. Thus, the total running time (assuming constant table writing and
look-up) is

n∑
x=2

n!

(x − 1)! (n− x)!
.(5.4)

Only the optimal cost and the number of solutions of each subgraph with sizex − 1
has to be maintained for the calculation of the optimal costs of subgraphs with size
x; thus, the space requirements ofDP plan at iterationx of the outer loop areC(x −
1,n) + C(x,n). The time and space requirements of the algorithm renders exhaustive
optimization inapplicable for queries involving numerous relations.

5.2. Optimization Using Hill Climbing Algorithms. Hill climbing algorithms operate
on a graph performing random walks between the nodes based on a certain move-
ment (transition) mechanism. In the current problem, each node corresponds to a plan
P and the transition mechanism defines a neighborhood of all the nodes that can be
reached fromP. The neighborhood of a planP = ((v1, . . . , vk), vk+1, . . . , vn) contains
((v1, . . . , vk, vk+1), . . . , vn), ((v1, . . . , vk−1), . . . , vn) and all plans that can be derived
from by P swapping the positions of any two variablesvi andvj , k ≤ i , j ≤ n. Notice
that starting withP, any plan can be reached after a finite number of moves. A move is
calleddownhill, if it leads to a plan with a lower cost, oruphill, if it leads to a plan with
higher cost. We implemented two hill climbing methods for optimization of multiway
spatial joins involving large queries.

The first one, based oniterative improvement(II ) [32], starts with a randomly chosen
planP and applies the above transition mechanism, trying to find a legal plan with lower
cost in the neighborhood ofP (i.e., a downhill move). If such a plan is found,P is
replaced by the new one; otherwise the algorithm keepsP and continues with another
move, until a local minimum is found. This iterative local optimization is repeated a
number of times starting from a different random plan. As time approximates∞, the
probability that iterative improvement will find the global minimum approximates to 1
[32]. Given a finite amount of time, the algorithm terminates in a local minimum.

The second method implementssimulated annealing(SA).SAperforms random walks
just like iterative improvement but in addition to downhill, it also accepts uphill moves
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with a certain probability, trying to avoid local minima. Initially this probability has
a relatively high value, which is gradually reduced. Detailed descriptions of simulated
annealing can be found in [6] and [22]. After runningSA under various conditions
we chose the following set of control parameters for the current problem: the initial
probability of accepting an uphill move is 0.4, the temperature reduce factor is 0.975,
and the equilibrium condition isn. Similar values were obtained for the optimization of
relational joins [19], [51].

We also implemented versions of the above heuristics, called theII-sortDN andSA-
sortDN, respectively, which, instead of using a random initial plan, choose a “good” seed
by applying the following heuristic: based on the fact that the join cost depends on the
data densityD and the cardinalityN, we sort the variables with respect to the product
D ·N. The variables with the smallest value ofD ·N should be processed first, decreasing
the probability that the size of intermediate results will be large. Then, keeping the order
fixed, we test all possible values (= n) of k and set as the initial plan the one that gives the
minimum cost. The experiments in the next section suggest that hill climbing algorithms
combined with the above heuristic provide nearly optimal plans.

6. Experimental Evaluation. The previous algorithms and optimization methods are
independent of the underlying predicates, so they could be used with a variety of spatial
constraints. In these cases, the equation parameters (e.g., number of solutions, cost of
window query) need to be modified using appropriate cost models [37]. Here we follow
the standard experimental methodology and evaluate them by assuming that the spatial
predicate is alwaysoverlap. We classify the experiments in two subsections: the first deals
with optimization issues, while the second one studies the effects of various parameters
on the cost of multiway spatial joins. All experiments were executed on an Ultrasparc2
workstation (200 MHz) with 256 MB of memory.

6.1. Evaluation of Optimization. The first set of experiments shows the accuracy of the
cost models, and studies how data and query density affect the optimal value fork (i.e.,
the number of variables to be instantiated byST). We run tree and clique queries involving
seven variables using datasets of various densities. The cardinality of all datasets is fixed
to 10,000 uniformly distributed rectangles. Page size is set to 1 KB resulting in R∗-trees
[3] with node capacity 50 and height 3. Data density has four potential values: 0.05, 0.20,
0.35, and 0.50. There is a total of 4×2 (data density times graph topology) experimental
settings. For each setting the value ofk ranges from 1 (pureWR) to 7 (pureST); every
run corresponds to the best plan given the value ofk. In all cases the cost of optimization
was less than 1% of the cost of processing the optimal plan.

Figure 11 illustrates the actual (NA), estimated (ENA) node accesses, and CPU time
for each setting. Node accesses are shown on the lefty-axis and CPU time on the right
one (sometimes in logarithmic scale). The first column contains the density values of
all datasets in each query. The diagrams also include the optimalk and the number of
actual solutions retrieved; obviously, the number of solutions increases with the data
density and decreases with the query density. The results are very similar for all acyclic
topologies so we do not include special cases (i.e., chains or stars); the behavior of
such queries can be derived from the general diagrams for trees. For the estimation of
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Fig. 11.Actual and estimated node accesses and CPU time for various combinations of data/query densities.

node extents|sRi | we use statistical information from the tree (rather than the analytical
formulas of [52]) because they provide higher accuracy.

Several observations can be made based on the results:

• Estimated node accesses are close to the actual number. In the worst case, the relative
error is below 25%, whereas the average difference betweenENAandNA is 8%.
• The diagrams for CPU time are very similar to the ones for node accesses, and the

cheapest plan in terms of CPU time is always the one with the fewest accesses. This
confirms the fact thatENA, based on the models of Section 4, is a good measure for
the cost of multiway spatial joins.
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Fig. 12.Germany datasets and workspace.

• There are vast performance differences (in some cases, orders of magnitude) for the
different choices ofk (although for eachk the best plan was used). In particular, the
optimalk increases with the data and query density. In all cases, intermediate values
of k achieved the best performance (no pureWRor STplans).

In order to test the applicability of the methods in real-life situations, we also ran
experiments with four real datasets containing different layers of Germany (available at
http://www.maproom.psu.edu/dcw/). The previous selectivity formulas refer to uniform
data normalized to a [0,1)workspace. Since intermediate nodes are not usually as skewed
as the leaf rectangles, the uniformity assumption can be applied to real datasets. However,
theworkspaceshould be normalized because the data objects do not necessarily cover a
rectangular area. Given a series of different layers of the same region (e.g., rivers, streets,
forests), its workspace is defined as the total area covered by all layers, including holes
if any. In order to estimate this area, we use a rectangular grid, where each cell is marked
if it intersects some rectangle(s) in any dataset. The workspace is the area covered by
the marked cells. The selectivity formulas of Section 4 are then applied by considering
that the normalized node area at a specific R-tree level is equal to the average node
area divided by the workspace. Figure 12 illustrates two (of the four) layers of Germany
used in the experiments, with their cardinalities and densities, and the corresponding
workspace using a 50× 50 grid.

The four datasets were indexed by R∗-trees with 2 KB page size (1 KB size results in
trees of different heights due to the different cardinalities). An LRU page replacement
policy was used and the buffer size was set to 512 KB. We executed the chain and clique
queries of Figure 13 using all the possible plans. In addition to the optimal plan, Figure 13
illustrates the cheapestWR, andST plans. For each plan we include theENA, (actual)
NA, CPU time (seconds), page accesses, and the percentage of CPU time in the overall
cost of processing (we charge 10 ms for each page access [49]).

The estimated cost of all plans (ENA) is in all cases smaller than the actual one and the
accuracy drops with respect to uniform data. This is because some areas (e.g., residential)
have high density data which increase the actual number of overlaps. However, the plan
suggested byDP planwas still the actual optimal; in most cases the suggested plan, even
if not the best, is expected to be nearly optimal. Another observation refers to the CPU
time which plays an important role in the overall cost. This is particularly true forWR
plans where the buffer reduces the I/O cost since consecutive window queries are likely
to access similar pages (notice that in both pureWRplans the number of page accesses
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Fig. 13.Experimental results for real datasets.

is almost two orders of magnitude smaller thanNA). ForSTalso, the CPU cost increases
significantly with the number of variables because of the false hits at the high levels of
the trees; for queries involving more than seven variables and normal buffer sizes, CPU
time is more than 80% of the total cost [29].

AlthoughDP plan is applicable with trivial cost for small number of spatial inputs
(n ≤ 10), for large values ofn its combinatorial explosion makes the method inefficient.
Figure 14 demonstrates the cost ofDP plan (in seconds) as a function ofn, for chain,
star, and clique queries. Ifn ≥ 15 the method is inapplicable for star and clique queries,
because the optimization cost exceeds that of executing the optimal plan. Local search
methods should be engaged for optimization in this case.

In order to test the performance of the hill climbing methods of Section 5.2, we
optimized 50 random clique queries for each of the following values ofn: 10, 15,
. . . , 50. The datasets were randomly generated with cardinality between 5,000 and
40,000, and density between 0.05 and 1.0. Setting runtime to 2 seconds forn = 10 as a
base, the time limit of the algorithms for the various values ofn was chosen using the
function:runtime(n) = (n/10)2 · runtime(10) (in accordance with similar experiments
for relational joins [51]). Figure 15(a) illustrates the quality of the plans produced by
simulated annealing (SA), iterative improvement (II ), and their sorted variants. Quality

Fig. 14.Cost ofDP plan.
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Fig. 15.Cost of optimization and quality of plans.

is measured in terms ofaverage scaled cost, i.e., the cost of the output plan divided by
the minimum cost produced by any algorithm for the same query.II performs better than
SA in all cases, while the sorted versions of both algorithms produce better plans than
the original ones.II-sortDN is consistently the most effective algorithm.

The set of experiments in Figure 15(b) compares the cost of plans produced by hill
climbing algorithms scaled with respect to the cost of the optimal plan produced by
DP plan. Because of the combinatorial explosion ofDP plan, we were able to test the
quality of the local optimization methods only forn < 18. Observe thatII-sortDN finds
a plan which is just 10–20% more expensive than the optimal; this percentage is not
expected to grow significantly for larger values ofn.

6.2. Cost Parameters. In this subsection we use the plan computed byDP plan (for
n ≤ 10) andII-sortDN (for n > 10) to test how several parameters affect the performance
of the proposed algorithms. The first experiment demonstrates the effect of data size; in
particular we keep the number of variables and density fixed and measure the cost of
multiway spatial joins by increasing the size of datasets. Figure 16 illustrates the actual
node accesses (in thousands) and CPU time (in seconds) for datasets with 10k, 20k, . . . ,

50k rectangles. For each dataset we also include the number of solutions retrieved (on
top of the NA columns).

Fig. 16.Actual node accesses and CPU time as a function of data sizeN.
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Fig. 17.Actual node accesses and CPU time as a function of query sizen.

The cost, as well as the number of solutions, increases linearly with the size of the
datasets. Notice that we chose different density values for acyclic (0.2) and for clique
(0.5) queries, because these values give a reasonable number of solutions. Recall from
Figure 11, that density 0.5 for acyclic queries (with seven variables) generates more than
a million solutions. On the other hand, for cliques density 0.2 results in only 36 solutions.

For the second set of experiments data sizes and densities are fixed, and the number
of variables ranges from 3 to 21 (Figure 17). There is a range of density values where the
number of solutions does not vary considerably as a function of the number of variables.
Density values above that range result in exponential growth in the number of solutions,
while values below result in no solutions for large queries. As shown in the diagram for
trees, when there is no significant change in the number of solutions, the cost increases
linearly with the number of variables. On the other hand, density 0.5 for cliques is below
the aforementioned threshold and queries with 18 or more variables do not have solutions.
As a result, the cost almost stabilizes since search is abandoned when no solution can
be found for a subset of variables.

The last set of experiments demonstrates the effectiveness of the algorithms for partial
retrieval. We use the same settings (N = 10,000,n = 7) and measure the cost when only
a subset (i.e., 10%, 20%,. . . ) of solutions is to be retrieved. As shown in Figure 18, the
algorithms again demonstrate an output-sensitive behavior, the cost increasing linearly
as a function of the percentage of retrieved solutions. This feature is important not only
in the cases where a subset of the solutions is needed, but also when the results of the join

Fig. 18.Actual node accesses and CPU time as a function of the percentage of the retrieved solutions.
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are passed to another operation through pipelining, or when the user wants to visualize
the output during processing.

7. Conclusion. This paper describes a constraint-based approach for processing multi-
way spatial joins by combining systematic search algorithms with R-trees to guide search.
In addition to methodologies, we propose cost models and optimization techniques and
evaluate their effectiveness with extensive experimentation. Although we focused on
joins involvingoverlap, the proposed techniques can be applied with a variety of spatial
or temporal predicates. In [39]ST is compared with traditional systematic and local
search algorithms using topological relations, while [28] shows how CSP algorithms
can be applied withWR in the context of temporal constraint networks. In both cases
the indexed versions clearly outperform the original algorithms for most experimental
settings.

The current work can be extended in many ways. Park et al. [41] propose several
optimization methods to speedupST. These include aspace restriction orderingwhich
minimizes the pages to be loaded during space restriction, a newplane sweep-based al-
gorithmwhich outperformsFC for some experimental settings, and anindirect predicate
heuristicthat detects false hits at the intermediate levels. In a recent work Mamoulis and
Papadias [29] propose another efficient algorithm forST, which combines plane sweep
with FC and works by dividing each problem into smaller ones reducing the amount of
backtracking. Furthermore, they compareSTwith methods based on the integration of
pairwise join algorithms for processing multiway spatial joins [27]. The results show
thatST is preferable for dense data and queries, while in most cases the most efficient
plan is one which combinesSTwith some pairwise join algorithm(s).

Another area with interesting open problems involves cost models. The selectiv-
ity formulas of Section 4 can be extended to arbitrary query graphs and nonuniform
data. A more difficult extension refers to selectivity involving actual objects rather
than MBRs. Given such formulas the filter and refinement steps could be interleaved
as suggested in [42]. For instance, after ak-tuple has been returned byST in a plan
P = ((v1, . . . , vk), vk+1, . . . , vn), it may be preferable to check if the tuple corresponds
to an actual solution (i.e., refinement) before proceeding toWR. Furthermore, cost mod-
els for algorithms can be elaborated to capture page accesses in the presence of LRU
buffers or other replacement policies.

Efficient multidimensional information processing becomes increasingly important
as the availability of information in various forms (e.g., satellite images, digital video,
multimedia documents) and the complexity of related applications increase continuously.
Large systems must handle massive volumes of multidimensional data and answer on-line
queries from numerous users. Several such systems (i.e., the DBMS for satellite images
in [4]) and query languages for GIS (Query-by-Sketch[9]) and multimedia databases
(VisualSeek[50]) already provide ways of expressing content-based queries that can be
processed as multiway spatial joins. Therefore, the proposed techniques have a wide
range of potential applications.
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