
Reconfiguration in JPaxos

Maria Zerva
mzerva@cs.uoi.gr
Computer Science and

Engineering
University of Ioannina

Ioannis Kouvatis
ikouvatis@cs.uoi.gr

Computer Science and
Engineering

University of Ioannina

Abstract

The paxos algorithm, provides a way
to build fault-tolerant distributed systems,
using consensus via message exchange
and guarantees safety. Jpaxos is a fully-
functional implementation of state ma-
chine replication, which is a technique for
making services fault-tolerant by replicat-
ing them over a group of machines. JPaxos
is based on the Multi-Paxos protocol, that
allows multiple instances of Paxos to run
and is written in Java. Although JPaxos
provides multiple functions, like state-
transfer, recovery mechanisms and algo-
rithms etc., it does not provide any re-
configuration service. In this paper we
present our modification of JPaxos, which
we extended to provide a reconfiguration
service, that gives the client the ability to
require a change to the configuration and
choose the replicas that he wants to partic-
ipate in Paxos. Our implementation uses
messages between replicas and state trans-
fer in order to complete this request.

1 Introduction

The need for trustworthy internet services is be-
coming more and more important over time. The
users demand services that are reliable with no
loss of information or money during their trans-
actions. Another significant factor, is that of avail-
ability. A service is not considered credible, if one
day it is available and the other is not.

State machine replication is a very reliable
technique, for providing services that are fault-
tolerant. What state machine replication does,
is that it replicates the service to a number of
machines, keeping each replica’s state consistent.
The latter happens, because the service is deter-
ministic and so each replica executes the same se-

quence of requests. The physical isolation of ma-
chines in a distributed system ensures that failures
of server replicas are independent, as required. As
long as there are enough of non-faulty replicas, the
service is guaranteed to be provided.

There are some systems that implement an ef-
ficient state machine replication. One of them
which is a Java library and runtime system is
JPaxos. We chose to extend JPaxos, as it is a
full-fledged, high-performance Java implementa-
tion of state machine replication based on Multi-
Paxos. JPaxos uses the Paxos algorithm and con-
siders only non-byzantine faults, that is, replicas
can only fail by crashing and can never perform
actions that are not specified by the algorithm.

Changing the configuration, which means al-
tering the set of machines that replicate a ser-
vice, is of great importance. In general, replica-
tion allows a limited number of failures, so the re-
placement of failed machines, or machines with
a huge load can be critical to the system. Al-
though JPaxos is a fully-functional implementa-
tion of state machine replication, it does not sup-
port any re-configuration of its nodes. We thought
that extending JPaxos and giving it an extra func-
tion of replacing the replicas as a service, would
be really interesting.

Our main contributions are that we imple-
mented a user requested service, that changes the
configuration of JPaxos. Among the modifications
we performed are a lot of messages that can be sent
between replicas, state transfer of reconfiguration
actions between replicas and a different definition
of the nodes with extra fields, that were not ini-
tially in JPaxos.

The remaining of this paper is organized as fol-
lows. Related work that has been conducted in this
area is presented in section 2. The background of
the Paxos algorithm is given in section 3, while
section 4 describes the reconfiguration procedure
in Paxos. Section 5 analyses our implementation.



An evaluation and example of our system is shown
in section 6. Conclusions and future work are
found in sections 7 and 8 respectively.

2 Related Work

Konczak, Santos, Zurkowski, Wojciechowski
and Schiper in [1] presented a fully functional
state-machine replication Java library, JPaxos,
which is based on the Multi-Paxos protocol.
JPaxos handles unreliable network with message
loss and delays and guarantees that each replica
will be eventually up to date. It provides state
transfer with the snapshot mechanism and some
improvements like pipelining and batching. In or-
der to handle failures in a proper way, they de-
signed four different recovery algorithms to secure
the system by tolerating crash-recovery faults.
JPaxos was released as an open-source project.

Lorch, Adya, Bolosky, Chaiken, Douceur and
Howell in [2] presented SMART, which is a tech-
nique for migrating replicated stateful services.
SMART allows migrations to remove or replace
a non-failed machine, while guarantees no over-
lap between consecutive configurations. It mi-
grates services that can balance load by overlap-
ping the processing of multiple requests. A new
configuration starts with initializing a new replica
of the service on each machine in the new config-
uration, while each replica of each configuration
runs a per-configuration instance of Paxos. Until
the new configuration is established, the new repli-
cas with the old replicas run concurrently. The al-
gorithm decides if a machine has failed and needs
replacement, to prevent the risk of halting a ser-
vice forever. The authors evaluated the perfor-
mance of SMART with numerous experiments and
found that SMART’s ability to overlap processing
of multiple requests reduces latency of requests
when there are concurrent requests, while the mi-
gration has only a small temporary effect.

3 Paxos Protocol

Paxos is a well known family of protocols that
solves consensus, which is the state of a group of
participants to agree in the same result, in unre-
liable networks. The Paxos protocol, which was
first published in 1989, is named after a a fictional
legislative consensus system used on the Paxos is-
land in Greece. Paxos is the basis of state machine
replication in distributed systems and guarantees
consistency, while there is a very small possibility,

that makes Paxos not progress.
The processes in Paxos can have different roles,

and a single process may have more than one role
simultaneously. The role of the client, is to request
some service from the distributed system and wait
for an answer. The acceptor, is the voter, that can
form a quorum with other acceptors. The proposer
is the coordinator, that advocates the client request
in order to make acceptors vote for it. The role of
the learner, is to learn about an agreement, once
there is one, and to sometimes execute or inform
the client. A last and very important role, is that of
the leader, which is a distinguished proposer, that
guarantees the progress of the algorithm.

In general, the paxos algorithm achieves con-
sensus via message exchange, it is asynchronous,
with no timing guarantees and can handle a net-
work that delays, while losing but not corrupt-
ing message packets. Paxos guarantees the safety,
that each replica will eventually agree on a single
value.

JPaxos, which we modified and will present
in following sections, is based on Multi-Paxos,
which is the most common deployment of the
Paxos family. Multi-Paxos allows multiple in-
stances of Paxos to run and uses a leader to coor-
dinate an infinite stream of commands. Each com-
mand is the result of a single instance of the basic
Paxos protocol.

4 Reconfiguration in Paxos

The configuration, in a Paxos protocol, is the set
of processes (replicas) that participate in the Paxos
algorithm. A certain state machine may allow re-
configuration, which is the process of changing the
configuration, or not allow it and only let specified
processes to execute the protocol. The reconfig-
uration function is of great importance, as it can
be performed to reduce the vulnerability to fur-
ther failures after a process has failed or to replace
hardware without shutting down the system.

The most common way to implement a recon-
figurable state machine, is to let the machine it-
self order and execute the reconfiguration. This
usually happens, when the protocol suspects that a
process has failed, after a certain amount of time.
The machine chooses the new configuration and
then resumes execution with a new state machine
that uses the new configuration. This way of re-
configuration is implemented in SMART[2].

Our implementation that achieves the reconfig-



uration of a state machine, handles reconfigura-
tion as a command requested by the client. The
system itself does not guess when to execute a
change of the configuration, but lets the client
choose the replicas, that he wants to participate in
Paxos. Then for a certain amount of time, until the
new configuration is established, the old with the
new processes co-exist until all replicas are up to
date and the algorithm then continues its normal
course.

5 Implementation

The reconfiguration service, that we imple-
mented, is an extension of the JPaxos Java library
and runtime system for state machine replication.
JPaxos achieves failure-tolerant user-provided ser-
vices by replicating them on separate machines
and coordinating client interactions with these
replicas. The failures of server replicas can be in-
dependent by the physical isolation of machines in
a distributed system. As long as there are enough
of non-faulty replicas, the service is guaranteed to
be provided. The replicated service that JPaxos
provides assumes deterministic behavior and non-
Byzantine failures. It also supports the crash-
recovery model, which tolerates message loss and
communication delays, which means that after
crash, the service can be restarted with the same
IP address.

JPaxos’ simple API provides to the user a Ser-
vice interface, that the the programmer has to im-
plement with the service code using methods and
abstract classes that the library provides, in order
to make the service he wants available to the client.
It also provides a Replica class, that needs instanti-
ation and implements many required functions for
each server. Finally the Client class is provided,
which sends the requests to be executed. JPaxos
guarantees that if the client sends a request, it’ll
eventually get the answer, every replica will exe-
cute the request exactly once and any two replicas
will execute the requests in the same order.

Jpaxos is a fully distributed system, and thus it
implements the Paxos algorithm. Many optimiza-
tions to the basic Paxos algorithm are also offered
in JPaxos, in order to deliver requests efficiently
despite any failure that might happen.

JPaxos contains a configuration file, that defines
the nodes (replicas), the crash model, network op-
tions etc. In our implementation we transformed
this file in order to change the node configuration.

Each replica is defined by the process id, the host-
name, the port that other replicas use to commu-
nicate with it and the port that the client uses for
their communication. To create the reconfigura-
tion service, we added an extra field to the nodes’
definition, called active, that represents the partic-
ipation of a replica to the Paxos algorithm. Field
active is of type boolean, if a replica is active, this
means that the replica will participate immediately
to the Paxos protocol, when it is initialized. In the
case that a replica is defined as inactive in the con-
figuration file, this means that the replica will be
initialized when started, but wait for a join mes-
sage from the other replicas to join Paxos.

In order to make the system recognize this node
definition change, we modified the configuration
classes Configuration and PID, to also contain the
active field and handle it properly.

The Client class that JPaxos provides sends the
request to the replicas and waits for their answer.
It contains methods for connection with the repli-
cas and execution of requests. We created a new
class that uses JPaxos’ Client class, handles and
launches the reconfiguration request. The recon-
figuration command that the client gives consists
of three integers, each representing the process id
of the replica, that he wants in the new configura-
tion.

The Replica class uses the Paxos algorithm to
order the client requests and after deciding them it
executes them on service, always with the proper
order. All the methods from the Service class are
called from one Replica thread, so that no two will
be called concurrently on the service. We also
modified the Replica class in order to take into
consideration the active field that we added. When
an active replica gets the reconfiguration request, it
sends join messages to all replicas in the new con-
figuration and tries to also send a snapshot to the
replicas that were initially inactive. The snapshot
contains information about decisions of any other
reconfiguration services that happened so far. The
replica also has to check whether it is in the new
configuration, or whether it is not. In the latter
case, the replica has to wait for all the other repli-
cas to be ready for the new configuration, and have
the most recent state and then it leaves paxos, be-
comes inactive and waits for a join message to re-
enter the configuration. The reconfiguration com-
mand is given by the Replica class to the Service-
Proxy class, which dispatches it to the Service.



As we mentioned before, the reconfiguration
that we implemented is in the form of a client-
requested service. JPaxos’ Service interface, re-
quires implementation with a service class that ex-
ecutes all the requests of the clients in a determin-
istic way. This class also required some additional
methods to save and restore its state and all the
data that are exchanged between the service imple-
mentation class that we created with the Replica
class is in the form of byte arrays. Extra functions
that convert the bytes to integer or objects in both
classes where also implemented.

6 Evaluation

In order to evaluate the reconfiguration mod-
ification of JPaxos that we implemented, we
performed numerous experiments in a single ma-
chine, where each replica and client are executed
as threads. These experiments took place for
different number of replicas (default number in
JPaxos was three) and different number of active
and inactive ones.

Figure 1. Client thread.

Figure 2. Active replica with process id 0.

Figure 3. Active replica with process id 1.

Figure 4. Active replica with process id 2.

Figure 5. Inactive replica with process id 3.

Figure 6. Inactive replica with process id 4.

In the figures above we show an example
of a test run of our system with five replicas,
three active and two inactive. In this example, the
printed messages in each command line show the
state of each process.



In Figure 1 we can see the client process.
The client tries to connect with an active replica
and achieves to connect with the replica with id
0. Once the connection is done, it informs the
user about the configuration that paxos has in that
moment. We can see that replicas with ids 0, 1 and
2 are active, while replicas 3 and 4 are inactive.
Then the client requests a new configuration with
replicas with ids 1, 2 and 3 as active. Once the
request is completed, the process informs the user
and also shows the new state of the configuration,
which is exactly the one that he requested. Then
the client waits for another request.

In Figure 2 we can see the process of the active
replica with id 0, which also is the leader in this
execution. As soon as this replica is initialized,
since it is active, joins Paxos immediately and
informs the user about it. Once the reconfigura-
tion request is delivered to the replica, the replica
process prints the command, which as we can see
is 1, 2 and 3 as mentioned in the client section
above. Then, as we can see from the figure, it
sends join message to the replicas in the new
configuration and tries to send a snapshot to the
inactive one (here the replica with id 3). Once the
other replicas are ready for the new configuration,
replica with id 0 realizes it is not in the new
configuration, becomes inactive, leaves paxos,
informs the user that the request is completed and
waits for a join message from the other replicas to
re-join Paxos if needed.

In Figure 3 we can see the process of the active
replica with id 1. Once again, in the moment
that this replica is initialized, since it is active,
it joins Paxos immediately and informs properly
the user. This replica did not need to execute the
reconfiguration itself. It gets a join message from
replica with id 2, so it knows that it is also in the
new configuration and stays active and waits.

In Figure 4 we can see the process of the active
replica with id 2. Again, as an active replica, it
joins Paxos immediately, when it is initialized.
This replica follows the same procedure with
replica with id 0. It gets the command, sends
join messages to the replicas that belong to the
new configuration and tries to send the snapshot
to the inactive replica that will be in the new
configuration. It also, notices that it itself was in
the request, so it stays active and waits for the
next requests, while it informs the user that the
request was completed.

In Figure 5 we can see the process of the
inactive replica with id 3. Here, since the replica
is inactive, when it is initialized, it does not join
Paxos, but rather waits for an invitation from
the active replicas. Because the client requested
replica with id 3 to join Paxos, we can see that
it gets join messages from replicas with id 0 and
2 that executed the request, gets the snapshot
from replica with id 2 and then when all the other
replicas are up to date with the current state, it
also joins Paxos.

Figure 6 just shows us, that the replica with id
4 that was inactive and did not join Paxos, just
waits for a message and does nothing, because the
request did not include it.

The example described above is one of the
numerous tests that we performed to evaluate
our implementation. As the reader can see this
implementation resembles SMART a lot. JPaxos
is based on Multi-Paxos, so it allows many
instances of Paxos to run. There is a leader that
coordinates the algorithm. The reconfiguration
service that we created follows the Paxos protocol
and guarantees that the client request will be done
eventually. After the first reconfiguration is done
properly as required, there are some minor bugs
during the second reconfiguration request, which
we intend to solve as soon as possible.

7 Conclusions

In this report, we presented a modification of
the JPaxos, that is a fully functional state ma-
chine replication Java library. Our implementa-
tion, except from the functions already supported
by JPaxos, adds a few more important features.
We offered a new structure of the node definition,
that gives an extra role to each replica, that repre-
sents its participation to the protocol. Extra mes-
sages were implemented to make the reconfigura-
tion service achievable. Finally, we accomplished
state transfer between the replicas in the old con-
figuration and the replicas in the new configura-
tion, in order to keep each replica up to date.

8 Future Work

Although the reconfiguration process in JPaxos,
was achieved, there are some minor bugs, that we
are willing to solve in the near future. Further-
more, an interesting extension would be to allow
services to communicate with each other and the
state transfer implemented, to also contain logs



from different services, and not only from recon-
figuration logs.

9 References

[1] Jan Konczak, Nuno Santos, Tomasz Zurkowski
, Pawel T. Wojciechowski and Andre Schiper,
2011.
JPaxos: State machine replication based on the
Paxos protocol.

[2] Jacob R. Lorch, Atul Adya, William J. Bolosky
, Ronnie Chaiken, John R. Douceur, and Jon
Howell, 2006.
The SMART Way to Migrate Replicated State-
ful Services


	Introduction
	Related Work
	Paxos Protocol
	Reconfiguration in Paxos
	Implementation
	Evaluation
	Conclusions
	Future Work
	References

