
1

Diverse Set Selection over Dynamic Data
Marina Drosou and Evaggelia Pitoura

Abstract—Result diversification has recently attracted considerable attention as a means of increasing user satisfaction in recom-
mender systems, as well as in web and database search. In this paper, we focus on the problem of selecting the k-most diverse items
from a result set. Whereas previous research has mainly considered the static version of the problem, in this paper, we exploit the
dynamic case in which the result set changes over time, as for example, in the case of notification services. We define the CONTINUOUS

k-DIVERSITY PROBLEM along with appropriate constraints that enforce continuity requirements on the diversified results. Our proposed
approach is based on cover trees and supports dynamic item insertion and deletion. The diversification problem is in general NP-hard;
we provide theoretical bounds that characterize the quality of our cover tree solution with respect to the optimal one. Since results
are often associated with a relevance score, we extend our approach to account for relevance. Finally, we report experimental results
concerning the efficiency and effectiveness of our approach on a variety of real and synthetic datasets.

Index Terms—Indexing methods. Selection process, Information filtering. Search process. Similarity measures.

✦

1 INTRODUCTION

The abundance of information available online creates the
need for developing methods towards selecting and present-
ing to users representative result sets. To this end, result
diversification has attracted considerable attention as a means
of increasing user satisfaction. Result diversification takes
many forms including selecting items so that their content
dissimilarity, novelty or topic coverage is maximized [14].

Most previous approaches to computing diverse sets rely on
greedyor interchangeheuristics. Greedy heuristics (e.g., [31],
[20]) build a diverse set incrementally, selecting one itemat
a time so that some diversity measure is maximized, whereas
interchange heuristics (e.g., [30], [24]) start from a random
initial set and try to improve it.

Despite the considerable interest in diversification, most
previous research considers thestatic version of the problem,
i.e., the available items out of which a diverse set is selected do
not change over time. In this paper, we focus on thedynamic
diversification problem, where insertions and deletions of
items are allowed and the diverse set needs to be refreshed to
reflect such updates. The dynamic problem was addressed in
[13] using a greedy heuristic and in [25] using an interchange
heuristic. Here, we propose an index-based approach.

Our solution is based on cover trees. Cover trees are
data structures originally proposed for approximate nearest-
neighbor search [8]. They were recently used to compute
medoids [23] and priority medoids [9]. An index-based ap-
proach was also followed in [28] for the static version of
the problem. The proposed index exploited a Dewey-encoding
tree and can be used only with a specific diversity function
on structured data. Our approach is more general and can be
used with any diversity function.

• M. Drosou and E. Pitoura are with the Computer Science Department,
University of Ioannina, Greece.
E-mail: {mdrosou, pitoura}@cs.uoi.gr

Motivated by popular proactive delivery paradigms, such as
news alerts, RSS feeds and notification services in social net-
works, where users specify their interests and receive relevant
notifications, we also consider thecontinuousversion of the
problem, where diversified sets are computed over streams of
items. To avoid overwhelming users by forwarding to them all
relevant items, we consider the case in which a representative
diverse set is computed, instead, whose size can be configured
by the users. We introduce a sliding window model along
with continuity requirements. Such requirements ensure that
the order in which the diverse items are delivered follows the
order of their generation and that an item does not appear,
disappear and then re-appear in the diverse set.

We focus on the MAX M IN diversity problem defined as
the problem of selectingk out of a set ofn items so that
the minimum distance between any two of the selected items
is maximized. The MAX M IN problem is known to be NP-
hard [17]. We propose a suite of algorithms that exploit the
cover tree to provide solutions with varying accuracy and
complexity. We provide theoretical results that bound the
accuracy of the solutions achieved with regards to the optimal
solution. The most efficient algorithm achieves ab−1/2b2-
approximation of the optimal solution, whereb is the base of
the cover tree, whereas the most expensive algorithm, a pruned
implementation of a greedy heuristic, a1/2-approximation. The
most efficient algorithms just select items from a single level
of the tree whose size is close tok and thus they achieve
scalability withn.

Our incremental algorithms produce results of quality com-
parable to that achieved by re-applying the greedy heuristic
to re-compute a diverse set, while avoiding the cost of re-
computation. Using cover trees also allows the efficient en-
forcement of the continuity requirements. Furthermore, multi-
ple queries with different values ofk can be supported.

In many cases, the items in the result set are associated with
a relevance rank. We have extended our approach to support
the computation of diverse subsets of ranked sets of items.
We first show how to incorporate relevance in the diversity

2

function used to build the cover tree. In addition, to allow
for dynamically tuning the relative importance of relevance
and diversity, we introduce an alternative solution based on
weighted cover trees along with appropriate algorithms.

Finally, note that a recent line of research focuses on
combining relevance and diversity by viewing diversification
as a top-k problem ([7], [21], [19]). In such cases, threshold
algorithms are used for selecting diverse items aiming at
pruning a portion of the candidate items. Such approaches
assume the existence of indices to provide sorted access to
items, e.g., based on relevance or their distance from a given
item. In this paper, instead, we aim at constructing indicesthat
will guide the selection process.

In a nutshell, in this paper, we:
• propose indexing based on cover trees to address the

dynamic diversification problem along with continuity
requirements appropriate for a streaming scenario,

• present a suite of methods with varying complexity that
exploit the cover tree for the MAX M IN problem and
provide bounds for the achieved diversity with regards
to the optimal solution,

• extend the cover tree and our algorithms for selecting
items that are both relevant and diverse and

• experimentally evaluate the efficiency and effectiveness
of our approach using both real and synthetic datasets.

This paper extends our previous work [15] with new diversi-
fication algorithms, among which an efficient implementation
of the greedy heuristic that uses the properties of the cover
tree to prune the search space. Also, we extend our approach
to combine diversity with relevance.

The rest of this paper is structured as follows. In Sec-
tion 2, we present our diversification framework and define the
CONTINUOUS k-DIVERSITY PROBLEM. Section 3 presents
the cover tree index structure, while Section 4 introduces
algorithms for computing diverse items. Section 5 considers
combining diversity with relevance. Section 6 presents our
experimental results. In Section 7, we present related work,
while in Section 8 a summary of the paper.

2 THE DIVERSIFICATION MODEL

There are many definitions of diversity. In this paper, we
focus on a general form of diversification based on content
dissimilarity. Next, we first provide a formal definition of the
diversity problem and then introduce its continuous variation.

2.1 The k -Diversity Problem

Let P = {p1, . . . , pn} be a set ofn items. Given a dis-
tance metricd : P × P → R+ indicating the dissimilarity
of two items in P , assume that thediversity of a set S,
S ⊆ P , is measured by a functionf : 2|P | × d → R+.
For a positive integerk, k ≤ n, thek-DIVERSITY PROBLEM

is the problem of selecting a subsetS∗ of P such that:
S∗ = argmax S⊆P

|S|=k

f(S, d).

The choice off affects the selection of items, even for
a specific distance metricd. Two widely used functions are
the minimumdistance among the selected items and thesum

(a) MAX M IN. (b) MAX SUM.

Fig. 1: MAX M IN vs. MAX SUM for n = 200 and k = 30.
Diverse items are marked with a darker (red) color.

of the distances of the selected items, formally defined as:
fM IN(S, d) = minpi,pj∈S

pi 6=pj

d(pi, pj), and

fSUM(S, d) =
∑

pi,pj∈S
pi 6=pj

d(pi, pj).

The corresponding problems are called MAX M IN and MAX -
SUM. Intuitively, MAX M IN aims at discouraging the selection
of nearby items, while MAX SUM at increasing the average
pairwise distance among all items. An example is shown in
Figure 1, which depicts thek = 30 most diverse, in terms
of geographical distance, apartments for sale from a set of
n = 200 available apartments in the London area retrieved
from [5]. In general, MAX SUM tends to select items in the
outskirts of the setP , whereas MAX M IN selects items that
are more representative ofP in the sense that they provide a
better coverage of it. In the rest of this paper, we will focus
on the MAX M IN problem that exhibits this desired property.

The MAXMIN Greedy Heuristic. Thek-DIVERSITY PROB-
LEM is known to be NP-hard [17]. Various heuristics have
been proposed, among which a natural greedy heuristic
(Algorithm 1) has been shown experimentally to outper-
form the others in most cases ([13], [18]). The algo-
rithm starts by selecting either a random item or the two
items in P that are the furthest apart (line 1). Then, it
continues by selecting the items that have the maximum
distance from the items already selected, where the dis-
tance of an itempi from a set of itemsS is defined as:

d(pi, S) = minpj∈S d(pi, pj).
It has been shown (e.g., in [27]) that the minimum dis-

tance of the set produced by the greedy heuristic is a1/2-
approximation of the minimum distance of the optimal solu-
tion and that no polynomial algorithm can provide a better
guarantee.

Algorithm 1 Greedy Heuristic.
Input: A set of itemsP , an integerk.
Output: A setS with the k most diverse items ofP .

1: p∗, q∗ ← argmaxp,q∈P
p6=q

d(p, q)

2: S ← {p∗, q∗}
3: while |S| < k do
4: p∗ ← argmaxp∈P d(p, S)
5: S ← S ∪ {p∗}
6: end while
7: return S

3

2.2 The Continuous k -Diversity Problem

We consider the case in which the setP changes over time
and we want to refresh the computedk most diverse items to
represent the updated set. In general, the insertion (or deletion)
of even a single item may result in a completely different
diverse set. The following simple example demonstrates this.
Consider the setP = {(4, 4), (3, 3), (5, 6), (1, 7)} of points in
the 2-dimensional Euclidean space andk = 2. The two most
diverse items ofP are(4, 4) and(1, 7). Assume that(0, 0) is
added toP . Now, the two most diverse items ofP are (0, 0)
and (5, 6).

In many applications, new items are generated in a con-
tinuous manner and, thus, the setP changes gradually over
time. For example, consider a user continuously receiving
a representative, i.e., most diverse, subset of the stream of
available apartments in her area. We would like to offer her a
continuous view of the most diverse items in this stream.

We adopt a sliding-window model where thek most diverse
items are computed over sliding windows of lengthw in the
input stream. The window length may be defined either in
time units (e.g., “thek most diverse items in the last hour”),
or in number of items (e.g., “thek most diverse items among
the 100 most recent items”). Without loss of generality, we
assume item-based windows. We allow windows to not only
slide but also jump, i.e., move forward more than one item.
For windows of lengthw and a jump step of lengthh, h ≤ w,
consequent windows sharew − h common items (Figure 2).
Two consequent jumping windows may correspond, for exam-
ple, to the items seen by a user in two consequent visits to her
RSS reader application. Between these two visits, some items
have ceased to be valid, new items have been generated, while
a number of older items remain valid. Note that, forh = 1,
jumping windows behave as regular sliding windows, while for
h = w, consequent windows are disjoint which corresponds
to periodic behavior with a period of lengthw.

Formally, let P be a stream of items. We denote the
ith jumping window of P as Pi. The UNCONSTRAINED

CONTINUOUS k-DIVERSITY PROBLEM is the problem of
selecting a subsetS∗i of Pi for each Pi, such that:

S∗i = argmax Si⊆Pi

|Si|=k

f(Si, d).

Constrained Continuous k-Diversity Problem. Since users
may expect some continuity in the diverse sets they receive in
consequent retrievals, we consider additional requirements on
how the diverse sets change over time.

First, we want to avoid cases where diverse items that
are still valid disappear. This may lead to confusing results,
where an item appears in one diverse set, disappears in the
next one and then appears again. Thus, an item selected as
diverse remains in the diverse set until it expires, i.e., exits
the current window. The diverse set is complemented with
new items that are diverse with regards to those previously
selected diverse items that are still valid. For instance, in the
apartments example, the user sees new items that are diverse
with regards to other previously seen apartments that are still
available. We call this thedurability requirement.

Second, we want the order in which items are chosen as
diverse to follow the order of their appearance in the stream.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12
... ...

... ...p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

Fig. 2: Two consequent windows withw = 7 andh = 4.

This means that, once an itemp is selected as diverse, we
cannot later on select an item older thanp. We call this the
freshnessrequirement. This is a desirable property in case of
notification services, such as news alerts and RSS feeds, so
as to ensure that the diverse items selected to be delivered to
the users follow the chronological order of their publication.
Raising this requirement may result in out-of-order delivery
which may seem unnatural to users.

Based on the above observations, we now formally define
the CONSTRAINED CONTINUOUSk-DIVERSITY PROBLEM.

Definition 1: (CONSTRAINED CONTINUOUS k-
DIVERSITY PROBLEM). Let P be a stream of items,
Pi−1, Pi, i > 1, be any two consequent windows and
S∗i−1 be the diverse subset ofPi−1. The CONSTRAINED

CONTINUOUS k-DIVERSITY PROBLEM is the problem
of selecting a subsetS∗i of Pi, ∀i, such that:

S∗i = argmax Si⊆Pi

|Si|=k

f(Si, d)

and the following two constraints are satisfied:
(i) pj ∈ (S∗i−1 ∩ Pi) ⇒ pj ∈ S∗i (durability requirement),

(ii) Let pl be the newest item inS∗i−1. Then,∄pj ∈ Pi\S
∗
i−1

with j < l, such that,pj ∈ S∗i (freshness requirement).

3 INDEX-BASED DIVERSIFICATION

To compute diverse sets in a dynamic setting, we rely on a
tree structure, calledcover tree, to index the items inP . In
this section, we provide a formal definition of the cover tree
along with algorithms for constructing cover trees appropriate
for the diversification problem.

3.1 The Cover Tree

A Cover Tree (CT) [8] for a setP is a leveled tree where
each level is associated with an integerℓ which increases as
we move up the tree. Each node in the tree is associated with
exactly one itemp ∈ P , while each item may be associated
with multiple nodes, but with at most one at each level. In the
following, when clear from context, we usep to refer to both
the itemp and the node associated withp at a specific level.

Let Cℓ be the set of items at levelℓ andℓmax andℓmin be
respectively the levels of the root and the leaves. A cover tree
of baseb, b > 1, is a tree that obeys the following invariants:

1. Nesting: For all levelsℓ, ℓmin < ℓ ≤ ℓmax, Cℓ ⊆ Cℓ−1,
i.e., once an itemp appears in the tree at some level, then
there is a node associated withp at every lower level.

2. Separation: For all levelsℓ, ℓmin ≤ ℓ ≤ ℓmax, and all
distinct pi, pj ∈ Cℓ, it holds that,d(pi, pj) > bℓ.

3. Covering: For all levelsℓ, ℓmin ≤ ℓ < ℓmax and allpi ∈
Cℓ, there exists apj ∈ Cℓ+1, such that,d(pi, pj) ≤ bℓ+1

and the node associated withpj is the parent of the node
associated withpi.

An example is shown in Figures 3 and 4.

4

level 1max-ℓlevel 2max-ℓlevel 3max-ℓlevel 4max-ℓlevel 5max-ℓlevel 6max-ℓlevel 7max-ℓlevel 8max-ℓlevel 9max-ℓ level maxℓ

Fig. 3: An example of the top 10 levels of a cover tree for a set of items in the 2-dimensional Euclidean space. Bold points
represent the items (i.e., nodes) at each level, moving fromlower levels to the root level, as we move from left to right.

Fig. 4: The(ℓmax − 5)th level of the cover tree of Figure 3.
The items (i.e., nodes) of the level are drawn with large bold
symbols, while the items of lower levels covered by these
nodes are drawn with the same symbol (and color) as their
ancestor.

The CT was originally proposed with baseb = 2. In this
paper, we use a more general baseb, b > 1. Generally, larger
base values result in shorter and wider trees, since fewer nodes
are able to “cover” the nodes beneath them. The value ofb
determines the granularity with which we move from one level
to the next, i.e., how many more items become visible as we
descend the tree.

Due to the CT invariants, if an itemp appears for the
first time at levelℓ of the tree, thenp is a child of itself
at all levels belowℓ. This observation provides us with a
more space-efficient representation of the CT achieved by
coalescing all nodes whose only child is a self child. We call
this representationexplicit. The explicit representation of a CT
for a setP with n items requiresO(n) space [8]. Although
we use an explicit representation in our experiments, for ease
of presentation, we shall use the full implicit representation
when describing the algorithms.

Next, we first present an algorithm for batch constructing
a CT tailored for the MAX M IN problem. Then, we consider
an incremental construction of a CT appropriate for dynamic
environments.

3.2 Batch Construction

Given a setP of items, we build an appropriate CT forP
using a bottom-up approach as depicted in Algorithm 2. First,
we construct the lowest level that includes all items inP (lines
1-5). Then, given a levelℓ to build the next levelℓ + 1, we
select items from levelℓ whose distance is larger thanbℓ+1

(so that the separation invariant is maintained), as long assuch
items exist (lines 6-17). To construct a CT whose items at each
level are as far apart from each other as possible, we follow a
greedy approach in selecting which items fromCℓ to include
in Cℓ+1. Specifically, we start by selecting the two items inCℓ

that are the farthest apart from each other (line 9) and continue

Algorithm 2 Batch Cover Tree Construction.
Input: A set of itemsP , a baseb.
Output: A cover treeT of baseb for P .

1: ℓ← ⌊logb (minp,q∈P d(p, q))⌋
2: T.Cℓ ← ∅
3: for all p ∈ P do
4: T.Cℓ ← T.Cℓ ∪ {p}
5: end for
6: while |T.Cℓ| > 1 do
7: T.Cℓ+1 ← ∅
8: candidates← T.Cℓ

9: p∗, q∗ ← argmaxp,q∈candidates d(p, q)
10: T.Cℓ+1 ← T.Cℓ+1 ∪ {p

∗, q∗}
11: candidates← candidates\{p∗, q∗}
12: while candidates 6= ∅ do
13: candidates ← candidates\{p : ∃q ∈ T.Cℓ+1 with d(p, q) ≤

bℓ+1}
14: p∗ ← argmaxp∈candidates d(p, T.Cℓ+1)
15: T.Cℓ+1 ← T.Cℓ+1 ∪ {p

∗}
16: candidates← candidates\{p∗}
17: end while
18: for all p ∈ T.Cℓ do
19: q∗ ← argminq∈T.Cℓ+1

d(p, T.Cℓ+1)

20: makeq parent ofp
21: end for
22: T.Cℓ ← T.Cℓ+1

23: ℓ← ℓ + 1
24: end while
25: return T

by selecting the item that has the largest minimum distance
from the items already selected (lines 12-17).

The remaining items atCℓ are assigned a parent node from
Cℓ+1 so that the covering invariant holds (lines 18-21). To
reduce the overlap among the areas covered by sibling nodes,
we assign each node to its closest candidate parent (line 19).
We call this stepnearest parentheuristic. Clearly, from the
way the tree is constructed,Cℓ+1 ⊆ Cℓ, thus the nesting
invariant also holds. We call the tree constructed using this
procedure,Batch Cover Tree(BCT).

We shall prove that the set of itemsCℓ at each levelℓ of the
BCT correspond to the result of applying the MAX M IN greedy
heuristic (Algorithm 1) onP , for k = |Cℓ|. Our proof uses
the following observation. LetSGR(P, k) denote the result of
applying the MAX M IN greedy heuristic onP for k.

Observation 1:For any k > 2, SGR(P, k + 1) ⊃
SGR(P, k).

Theorem 1:Let P be a set of items andT be a BCT for
P . For all levelsℓ, ℓmin ≤ ℓ < ℓmax, of T , it holds:

Cℓ = SGR(P, |Cℓ|).
Proof: We shall prove the theorem by induction on the

level ℓ. The theorem holds trivially forℓ equal to the lowest
level of the tree, since this level includes all items inP .
Assume that it holds for levelℓ. We shall show that it also
holds for levelℓ+ 1.

Consider the construction of levelℓ+1. From the induction
step, it holds that,Cℓ = SGR(P, |Cℓ|). Let p be the first
item in Cℓ such thatp is the best candidate, i.e., has the

5

maximum minimum distance from the items already selected,
but p cannot be moved toCℓ+1 becausep is covered by an
item already selected to be inCℓ+1. Let C ′, C ′ ⊂ Cℓ, be
the set of items already selected to be included inCℓ+1. This
means that, it holds:minq′∈C′ d(p, q′) ≥ minq′∈C′ d(p′, q′),
for all p′ ∈ Cℓ\C

′ (1) and, also,∃ q ∈ C ′ such thatd(p, q) ≤
bℓ+1 (2). From (1) and (2), we get that for allp′ ∈ Cℓ\C

′, ∃
q ∈ C ′ such thatd(p′, q) ≤ bℓ+1, that is, all remaining items
are already covered by items inC ′.

Thus, p is the last item that is considered for inclusion
in Cℓ+1, since all other remaining items inCℓ are already
covered. Therefore, to constructCℓ+1, the items fromCℓ to
be included in levelℓ+1 are considered in the same order as in
the greedy heuristic, until one item that violates the separation
criterion (it is covered by the selected items) is encountered.
When this happens the selection stops. By the induction step
and Observation 1, this concludes the proof.

Note that, we have made an implicit assumption that no ties
occur when selecting items. In the absence of ties, both the
greedy heuristic and the BCT construction algorithm select
items deterministically. We can raise this assumption, by
considering that if ties exist, these are resolved in a specific
order that may vary depending on the nature of the items, for
instance, by selecting the most recent among the items.

Regarding the complexity of Algorithm 2, computational
steps are shared among levels. Each levelCℓ+1 is a subset of
Cℓ and, more specifically, it consists of the items ofCℓ in the
order in which they were inserted intoCℓ up to the first item
whose minimum distance from the already selected items of
Cℓ is smaller thanbℓ+1. Therefore, it suffices to perform these
computational steps only once (at the lowest level) and just
maintain the order in which each item was selected from the
lowest level for inclusion in the next level. This gives us an
O(n2) complexity.

As a final remark, another way to view the BCT is as
caching the results of the greedy heuristic for allk and
indexing them for efficient retrieval.

3.3 Dynamic Construction

In dynamic environments, it is not efficient to re-construct
a BCT whenever an item is inserted or deleted. Thus, we
construct a cover treeincrementallyas new items arrive and
old ones expire. We refer to such trees asIncremental Cover
Trees(ICTs).

Incremental Insertion. To insert a new itemp into a CT,
we use the recursive insert procedure shown in Algorithm 3.
It is based on the insertion algorithm in [8] and subsequent
corrections in [22] that we have extended to work for any
b > 1. Insert is called recursively starting from the root
level, until a level is found at whichp is separated from all
other items (lines 2-4). Each time,Insert is called only with
the nodes that coverp (line 5). When the first level such thatp
is separated from all other items is located, a node that covers
p is selected as its parent (lines 8-9). To select a node as a
parent forp, we use anearest parentheuristic (as in the batch
construction) and assignp to its closest candidate parent. The

Algorithm 3 Insert(p, T.Qℓ, ℓ)
Input: An item p, a set of nodesT.Qℓ of a cover treeT at levelℓ.

1: C ← {children(q) : q ∈ T.Qℓ}
2: if d(p, C) > bℓ then
3: return true
4: else
5: T.Qℓ−1 ← {q ∈ C : d(p, q) ≤ bℓ

b−1}
6: flag ← Insert(p, T.Qℓ−1, ℓ− 1)
7: if flag and d(p, T.Qℓ) ≤ bℓ then
8: q∗ ← argmin

q∈T.Qℓ,d(p,q)≤bℓ
d(p, q)

9: makep a child of q∗

10: return false
11: else
12: return flag
13: end if
14: end if

complexity of the algorithm depends on how many nodes of
each level coverp.

Next, we prove the correctness of the insertion algorithm.

Algorithm 4 Delete(p, {T.Qℓ, T.Qℓ+1, . . . , T.Qℓmax
}, ℓ)

Input: An item p, sets of nodes{T.Qℓ, T.Qℓ+1, . . . , T.Qℓmax} of a cover tree
T , a levelℓ.

1: C ← {children(q) : q ∈ T.Qℓ}

2: T.Qℓ−1 ← {q ∈ C : d(p, q) ≤ bℓ

b−1}
3: Delete(p, {T.Qℓ−1, T.Qℓ, . . . , T.Qℓmax}, ℓ− 1)
4: if d(p, C) = 0 then
5: deletep from level ℓ− 1 and fromchildren(parent(p))
6: for q ∈ children(p) in greedy orderdo
7: ℓ′ ← ℓ− 1
8: while d(q, T.Qℓ′) > bℓ

′
do

9: addq into level ℓ′

10: T.Qℓ′ ← T.Qℓ′ ∪ {p}
11: ℓ′ ← ℓ′ + 1
12: end while
13: q∗ ← argminq′∈T.Q

ℓ′
d(p′, q)

14: makeq a child of q∗

15: end for
16: end if

Theorem 2:Let T be a cover tree for a setP andp be an
item, p /∈ P . If p can be inserted at an existing level ofT ,
then callingInsert (Algorithm 3) with inputp and the root
level Cℓmax

of T returns a cover tree forP ∪ {p}.
Proof: Sincep can be inserted at an existing level, there is

always a (sufficiently low) level of the tree where the condition
of line 2 holds for the first time. Letℓ− 1 be this level. Since
ℓ − 1 is the highest level where this condition holds, it must
hold thatd(p, T.Qℓ) ≤ bℓ. Therefore, the second condition of
line 7 holds and we can always find a parent for the new node,
thus maintaining the covering invariant. Whenever a new node
is inserted at some level, it is also inserted at all lower levels
as a child of itself, thus the nesting invariant is maintained.
It remains to prove the separation invariant. We shall proveit
for level ℓ− 1. The proof proceeds similarly for lower levels.
Consider some other itemq in Cℓ−1. If q ∈ C, thend(p, q) >
bℓ−1. If not, then there is a higher levelℓ′ > ℓ where some
ancestor ofq, sayq′ was eliminated by line 5, i.e.,d(p, q′) >
bℓ

′+1

b−1 . Using the triangle inequality, we have thatd(p, q) ≥

d(p, q′)−d(q, q′) ≥ d(p, q′)−
∑ℓ′

j=ℓ b
j = d(p, q′)− bℓ

′+1−bℓ

b−1 >
bℓ

′+1

b−1 + bℓ−bℓ
′+1

b−1 = bℓ

b−1 > (b−1)bℓ−1

b−1 = bℓ−1.
For clarity of presentation, we have made the assumption

that the new itemp can be inserted at an existing level of the
tree. In the general case, when the new itemp must be inserted

6

at a level lower thanℓmin, we keep copying nodes ofCℓmin
to

a new levelCℓmin−1, until p is separated from all other items
in the new level. Similarly, whenp has a distance from the
root node larger thanbℓmax , we promote both the root node
andp to a new higher levelℓmax + 1 and repeat this process
until one of the two nodes can cover the other. Note that, since
the explicit representation of the tree is stored, duplication of
levels is only virtual and is performed very efficiently.

Incremental Deletion. Similar to insertion, to delete an item,
starting from the root,Delete (Algorithm 4) is called until
the item p to be deleted is located, keeping note of the
candidate nodes at each level that may havep as a descendant.
Whenp is located, it is deleted from the tree. In addition, all
of its children are reassigned to some other candidate parent.

Algorithm 4 includes two heuristics for improving the
quality of the resulting CT. One is the usualnearest parent
heuristic shown in line 13: we assign each child ofp to the
closest among its candidate parents. The other heuristic refers
to the order in which the children ofp are examined in line
6. We examine them in a greedy manner starting from the
one farthest apart from the items at levelℓ′ and continue to
process them in decreasing order of their distance to the items
currently in ℓ′.

Theorem 3:Let T be a cover tree for a setP andp be an
item, p ∈ P . If p /∈ Cℓmax

of T , calling Delete (Algorithm
4) with input p and the root levelCℓmax

of T returns a cover
tree forP \ {p}.

Proof: The itemp is deleted from all levels that include it,
thus the nesting invariant is maintained. For each childq of p,
we move up the tree, until a parent forq is located, insertingq
in all intermediate levelsℓ′ to ensure that the nesting invariant
is not violated. Such a parent is guaranteed to be found (at least
at the level of the root). Addingq under its new parent does
not violate the separation invariant in any of the intermediate
levels sinced(q, q′) > bℓ

′

, for all q′ in T.Qℓ′ . The covering
constraint also holds for the parent ofq.

For ease of presentation, we assumed thatp /∈ Cℓmax
.

Otherwise, we need to select a new root. Note that, it is
possible that none of the children of the old root covers all
of its siblings. In this case, we promote those siblings that
continue to be separated from each other in a new (higher)
level ℓmax + 1 and continue to do so until we end up with a
level having a single node.

4 DIVERSE SET COMPUTATION

In this section, we present algorithms that use the cover tree to
solve thek-diversity problem. The Level algorithms exploit the
separation property, i.e., the higher the tree level, the farthest
apart its nodes. We also present an efficient implementationof
the Greedy Heuristic (Algorithm 1) that exploits the covering
property to prune the search space.

4.1 The Level Family of Algorithms

We consider first the intuitive algorithm of selectingk items
from the highest possible level of a cover tree, that is, from
level ℓk, such that,|Cℓk+1| < k and |Cℓk | ≥ k (depicted
in Algorithm 5). Locating this level can be implemented

efficiently, e.g., by using a hash table to store the size of each
level. After locatingℓk, the complexity of the algorithm is
O(k), since a random subset ofCℓk is selected.

Algorithm 5 Level-Basic Algorithm.
Input: A cover treeT , an integerk.
Output: A setS with k diverse items inT .

1: ℓk ← ℓmax

2: while |T.Cℓk
| < k do

3: ℓk ← ℓk − 1
4: end while
5: S ← any subset of sizek of T.Cℓk
6: return S

The following theorem characterizes the solution attainedby
theLevel-Basicalgorithm with respect to the optimal solution.

Theorem 4 (Approximation Bound):Let P be a set of
items, dOPT (P, k) be the minimum distance of the optimal
diverse set for the MAX M IN problem fork ≥ 2 anddCT (P, k)
be the minimum distance of the diverse set computed by the
Level-Basic algorithm. Then:

dCT (P, k) ≥ α dOPT (P, k), whereα = b−1
2b2 .

Proof: Let SOPT (P, k) be an optimal set ofk diverse
items. To prove Theorem 4, we shall bound the level where
the least common ancestor (LCA) of any pair of itemsp1,
p2 ∈ SOPT (P, k) appears in the cover tree. Assume that the
LCA of any two itemsp1, p2 in the optimal solution appears
for the first time at levelm. That is,m is the lowest (furthest
from the root) level that such an LCA appears.

Let us now compute a bound onm. Assume that the
LCA of any two items p1, p2 ∈ SOPT (P, k) appears at
level m. Let p be this ancestor. From the triangle in-
equality, d(p1, p) + d(p2, p) ≥ d(p1, p2). Since p1, p2 ∈
SOPT (P, k), it holds that,d(p1, p2) ≥ dOPT (P, k). Thus:

d(p1, p) + d(p2, p) ≥ dOPT (P, k). (1)
From the covering invariant of the cover tree, it holds that,
d(p1, p) ≤

∑m

j=−∞ bj ≤ bm+1

b−1 . Similarly, d(p2, p) ≤ bm+1

b−1 .

Substituting in (1), we get that2 bm+1

b−1 ≥ dOPT (P, k). Solving
for m, we havem ≥ logb

(

b−1
2 dOPT (P, k)

)

− 1.
Since m is the first level that the LCA of any two

items in the optimal solution appears, from the covering
property, it holds that at levelm − 1, there are at least
k items, i.e., the distinct ancestors of thek items in the
optimal solution. Thus, there are at leastk items at level

m− 1 = logb
(

b−1
2 dOPT (P, k)

)

− 2. (2)
This means that the cover tree algorithm will select items
from this or a higher level. From the separation invariant of
the cover tree, we havedCT (P, k) ≥ bm−1. Using (2), we
get thatdCT (P, k) ≥ blogb(b−1

2 dOPT (P,k))−2 ⇒ dCT (P, k) ≥
b−1
2 dOPT (P, k) b−2, which proves the theorem.
We also consider algorithms that, instead of selecting any

k items from levelℓk, select these items greedily. The first
algorithm, calledLevel-Greedy, performs a greedy selection
among all items at levelℓk. This requiresk|Cℓk | distance
computations. The second algorithm, calledLevel-Inherit, (Al-
gorithm 6), initializes the solution with all items inCℓk+1

and selects the remainingk − |Cℓk+1| items fromCℓk in a
greedy manner. Thus, it requires(k − |Cℓk+1|)|Cℓk | distance
computations.

7

Algorithm 6 Level-Inherit Algorithm.
Input: A cover treeT , an integerk.
Output: A setS with k diverse items inT .

1: ℓk ← ℓmax

2: while |T.Cℓk
| < k do

3: ℓk ← ℓk − 1
4: end while
5: S ← T.Cℓk+1

6: candidates← T.Cℓk
\T.Cℓk+1

7: while |S| < k do
8: p∗ ← argmaxp∈candidates d(p, S)
9: S ← S ∪ {p∗}

10: candidates← candidates\{p∗}
11: end while
12: return S

Clearly, the bound of Theorem 4 holds for the solution of
Level-Greedy. It also holds for the solution of Level-Inherit,
since due to nesting, an item that appears at some level of
the tree also appears at all levels below it, thus, all items
selected by Level-Inherit belong toCℓk . In general, these two
algorithms are expected to produce more diverse sets than the
estimated general bound. In particular, for Batch Cover Trees
(BCTs), we can prove a better approximation. Specifically, it
follows from Theorem 1, that the application of Level-Greedy
and Level-Inherit algorithms on a BCT produces the same
solution with the greedy heuristic.

Corollary 1: Let P be a set of items,k ≥ 2, dGR(P, k)
be the minimum distance of the diverse set computed by the
greedy heuristic anddBCT (P, k) be the minimum distance
of the diverse set computed by Level-Basic or Level-Inherit
when applied on a BCT forP . It holds thatdBCT (P, k) =
dGR(P, k) ≥ 1/2 dOPT (P, k) .

4.2 Greedy Heuristic using CTs

Next, we present algorithms that use the cover tree to prune
the search space of the greedy heuristic.

The algorithms proceed as follows. We initialize the diverse
set S by selecting either the root or the two furthest apart
leaves of the tree. This corresponds to initializing the greedy
heuristic with either a random or the two most distant items.
Then, we proceed in rounds. At each round, we select one item
by descending the tree seeking for the itemp with the max-
imum distance,d(p, S), from the current setS. Specifically,
at each of thek − 1 (or k − 2) rounds, we start descending
the tree from the highest levelCℓ that contains items that are
not already inS. We locate the itemp of Cℓ with the largest
d(p, S) and use it to prune its siblings. Then, we consider
as candidates the children of all non-pruned nodes ofCℓ and
repeat the process forCℓ−1. In the end, the best candidate
from the leaf level is added toS and we proceed to the next
round. This process is shown in Algorithm 7.

Pruning is based on the following observation. Sup-
pose that at some point we consider for inclusion in
S an item p in Cℓ. Let d(p, S) be the distance of
p from S and q be any sibling of p. Then, the best
candidate in the subtree ofq is at distance at most:

∑ℓ

j=ℓmin+1 b
j = bℓ+1−bℓmin+1

b−1 .

from q. Therefore, we can safely prune nodes according to the

following CT pruning rule:

Algorithm 7 Greedy-CT Algorithm.
Input: A cover treeT , an integerk.
Output: A setS with the k most diverse items inT .

1: S ← {T.root}
2: while |S| < k do
3: Q ← children(T.root)
4: while Q 6= ∅ do
5: p∗ ← argmaxp∈Q d(p, S)
6: Q′ ← children(p∗)
7: for all p ∈ Q\{p∗} do
8: if q is not pruned by the pruning rulethen
9: Q′ ← Q′ ∪ children(q)

10: end if
11: end for
12: Q ← Q′

13: end while
14: S ← S ∪ {p∗}
15: end while
16: return S

CT PRUNING RULE: Let p and q be two nodes at levelℓ in
a CT. If d(p, S) ≥ d(q, S) + bℓ+1−bℓmin+1

b−1 , we can prune the
subtree rooted atq.

The CT pruning rule is pessimistic, in the sense that it
assumes that each node may have a child located as far
as possible from it. A more efficient pruning rule can be
used at the trade-off of maintaining some extra information.
Specifically, at each nodep in the tree, we maintain the
distance ofp from the node in its subtree that is the furthest
apart from p. We call this distance thedistance weightof
p denoted bywd(p). We call the tree that is annotated with
such weights aWeighted Cover Tree(WCT). Then, we can use
Algorithm 7 along with the following pruning rule:

WCT PRUNING RULE: Let p and q be two nodes at levelℓ
in a WCT. If d(p, S) ≥ d(q, S) + wd(q), we can prune the
subtree rooted atq.

4.3 Other Issues

Constrained Continuous k-Diversity. The two requirements
of constrained continuousk-diversity (Definition 1) can be
easily enforced using cover trees. For the durability require-
ment, items that are selected as diverse are marked as such
and remain part of the diverse set, until they expire. Letz be
the number of such items. In this case, our algorithms just
selectk − z additional items from the tree. For the freshness
requirement, non-diverse items that are older than the newest
item in the current diverse set are marked as “invalid” in the
CT and are not considered further as candidates for inclusion.

Adjusting k. The CT can be used to provide results for
multiple queries with differentk. Thus, each user can in-
dividually tune the amount of diverse items she wishes to
receive. Furthermore, the CT supports a “zooming” type of
functionality. Assume that a user selects a specific value for
k. After receiving thek most diverse items, she can request
a larger number of closer to each other items by choosing
a largerk (“zoom-in”), or a smaller number of farther apart
items by choosing a smallerk (“zoom-out”). We can exploit
the nesting invariant to achieve continuity in the following
sense. LetS be the set of thek most diverse items and letℓ
be the highest level of the CT at which all items ofS appear.

8

(a) Relevance. (b) Relevance and Diversity.

Fig. 5: Selectingk = 10 out of n = 200 apartments in
London based (a) solely on relevance (i.e., price) and (b)
incorporating diversity (i.e., geographical distance). Selected
items are marked with a darker (red) color.

For k′ > k, we would like the setS′ with thek′ most diverse
items to be such thatS′ ⊇ S. To achieve this, we select items
from level ℓ or lower, since the items inS appear at all levels
m ≤ ℓ. Analogously, fork′ < k, to construct the setS′ with
the k′ most diverse items such thatS′ ⊆ S, we may select
those items ofS that appear at levels higher thanℓ.

5 DIVERSITY AND RELEVANCE

In many cases, the items in the result of a query are ranked,
most often based on their relevance to the user query. In
this case, diversification also addresses the over-specialization
problem, i.e., retrieving results that are very similar to each
other. An example is shown in Figure 5 using our apartments
dataset, where relevance is defined based on price, i.e., the
cheaper the apartment the more relevant, and diversity is
based on geographical location. Using only relevance, a user
is presented with apartments mostly from east London, while
with diversity, some relatively cheap apartments from other
regions in London are also selected.

The MAXMIN k-Diversity problem with relevance. In gen-
eral, the relevance score of an item is application dependent.
Without loss of generality, we assume a relevance function
r : P → R+ that assigns a relevance score to each item,
where a higher value indicates that the item is more relevant
to a particular query or user. A natural bi-criteria objective
seeks to maximize both the relevance and the diversity of
the selected subset. In particular, the MAX M IN k-DIVERSITY

WITH RELEVANCE PROBLEM for a positive integerk, k ≤
n, is the problem of selecting a subsetS∗ of P such that:

S∗ = argmax S⊆P
|S|=k

fr(S, d, r)

with
fr(S, d, r) = minpi∈S r(pi) + λminpi,pj∈S

pi 6=pj

d(pi, pj)

where λ > 0 is a parameter that tunes the importance of
diversification.

A combined relevance-diversity (dr) approach. It was
shown in [20] that the MAX M IN k-DIVERSITY WITH REL-
EVANCE PROBLEM is equivalent with the MAX M IN k-
DIVERSITY PROBLEM if we replace the distance functiond
with the functiondr:

dr(λ, pi, pj) =
1
2 (r(pi) + r(pj)) + λd(pi, pj).

If we definedr(λ, pi, pj) = 0, for pi = pj , it is to easy to
see thatdr is a metric, ifd is a metric.

To incorporate relevance, we can now build the CTs using
distancedr instead ofd. It is straightforward to see that all
algorithms and related bounds advanced for the diversity-only
case directly apply to the combined relevance-diversity case.

Supporting a varying λ. A drawback of the combined
approach is that we need to maintain a different CT for each
different value ofλ. We would like to be able to adjustλ
dynamically without having to reconstruct the trees. To this
end, we consider building CTs based solely on distanced and
enhancing our algorithms for selecting diverse sets so as to
incorporate relevance in the selection.

Let Cℓk be the highest level with at leastk nodes. The
enhanced Level-Basic algorithm selects thek most relevant
items of Cℓk , while the Level-Greedy algorithm performs a
greedy selection among the corresponding items using the
combined distancedr, instead ofd.

We also introduce a new level algorithm, calledLevel-
Hybrid, whose goal is to allow nodes with large relevance
scores that appear in low levels of the CT to enter the diverse
set.Level-Hybriduses an extended CT. In this extended CT,
for each internal nodep, we maintain a pointer to the node that
has the largest relevance score among all nodes in the subtree
rooted atp. Let best(p) be this node. Level-Hybrid (Algorithm
8) performs a greedy selection among thek nodes from level
Cℓk whose descendants have the best relevance scores and
thesek descendants. Level-Hybrid performsk · 2k = 2k2

distance computations.

Algorithm 8 Level-Hybrid Algorithm.
Input: A cover treeT , an integerk, a real numberλ.
Output: A setS with the k most diverse items inT .

1: ℓk ← ℓmax

2: while |T.Cℓk
| < k do

3: ℓk ← ℓk − 1
4: end while
5: C ← the k nodesp in T.Cℓk

with the most relevantbest(p)
6: candidates← ∅
7: for all p ∈ C do
8: candidates← candidates ∪ {p, best(p)}
9: end for

10: p∗ ← argmaxp∈candidates r(p)
11: S ← S ∪ {p∗}
12: candidates← candidates\{p∗}
13: while |S| < k do
14: p∗ ← argmaxp∈candidates dr(λ, p, S)
15: S ← S ∪ {p∗}
16: candidates← candidates\{p∗}
17: end while
18: return S

In the CT implementation of the greedy heuristic, subtrees
are pruned based on both diversity and relevance. To this end,
we maintain at each internal nodep, the largest relevance
value, wr(p), called relevance weight, of any node in the
subtree ofp. The best possible pruning is achieved, if we
also use the distance weight. Using both weights, we have the
following pruning rule.

WCT PRUNING RULE WITH dr: Let p andq be two nodes at
level ℓ in a WCT. If dr(p, S) ≥ dr(q, S)+

1
2 (r(q) + wr(q))+

λwd(q), we can prune the subtree rooted atq.

9

TABLE 1: Characteristics of the datasets.
Dataset Cardinality Dimensions Distance Relevance scores

Uniform 10,000 2 Euclidean Uniform/Clustered
Clustered 10,000 2 Euclidean Uniform/Clustered

Cities 5,922 2 Euclidean Clustered
Nestoria 1,000 8 Haversine Price-based

Faces 300 256 Cosine Uniform
Flickr 1,000 - Jaccard Uniform

Clearly, we could maintain only the relevance weight, in
which case the distance is bounded using the CT pruning rule.

Maximal Marginal Relevance (MMR) Another popular
approach for combining relevance and diversity is Maximal
Marginal Relevance (MMR) (e.g., [12], [19]). MMR con-
structs a relevant and diverse subsetS in a greedy fashion,
by starting with either a random or the most relevant item
and adding at each round the itempi with the maximum
contribution, i.e., the itempi with the maximum quantity:

mr(λ, pi, S) = λr(pi) + (1− λ)minpj∈S d(pi, pj)
where λ ∈ [0, 1] is a parameter that tunes the relative
importance of each of the two factors.

All the presented algorithms are directly applicable to MMR
by usingmr instead ofdr. For example, we now have the
following pruning rule.

WCT PRUNING RULE WITH MMR: Let p and q be two
nodes at levelℓ in a WCT. If dr(p, S) ≥ λwr(q) + (1 − λ)
(d(q, S) + wd(q)), we can prune the subtree rooted atq.

6 EVALUATION

In this section, we experimentally evaluate the performance of
cover trees for dynamically computing diverse sets.

Datasets. We use a variety of datasets, both real and synthetic.
Our synthetic datasetsconsist of two-dimensional points in
the Euclidean space, where each dimension takes values in
[0, 1]. Items are either uniformly distributed or form clusters
of different sizes. We assign relevance scores to items either
uniformly or in a “clustered” manner around specific target
items, so that items that are closer to the target items get
larger relevance scores than items further away. Clustered
assignment is used to model the common case where we get
high relevance scores around specific items that correspondto
different interpretations of the query. Thus, we get four combi-
nations: (i) uniform spatial distribution with uniform relevance
scores (“Uniform-Uniform”), (ii) uniform spatial distribution
with clustered relevance scores centered around uniformly
distributed target items (“Uniform-Clustered”), (iii) clustered
spatial distribution with uniform relevance scores (“Clustered-
Uniform”) and (iv) clustered spatial distribution with clustered
relevance scores around the centers of the spatial clusters
(“Clustered-Clustered”).

We also employfour real datasets. “Nestoria” consists of
information about 1,000 apartments for sale in the London area
retrieved from [5]. We relate relevance with price and con-
sider cheaper apartments as more relevant, while similarity is
measured based on geographic proximity (Haversine distance).
“Cities” is a collection of geographical points representing
5,922 cities and villages in Greece [4]. We assign relevance

TABLE 2: Parameter values.

Parameter
Range Default

Synthetic Real Synthetic Real

Base (b) 1.2-2.2 1.6
Diversification factor (λ) 0.0-1.0 0.2
Dataset size (n) 1-10,000 300-5,922 4,000 –
Size of diverse set (k) 100-300 10-100 150 50
Window size (w) 1,000 100 (no window)
Window jump step (h) 100-900 10-90 (no window)

scores in a clustered manner to model the fact that some
specific areas may be more interesting than others. “Faces”
consists of 256 features extracted from each of 300 human
face images with the eigenfaces method [1] and uniformly
distributed relevance scores. Finally, for “Flickr”, we used
data from [3] which consists of tags assigned by users to
photographs uploaded to the Flickr photo service [2]. Table1
summarizes our datasets, while Table 2 our parameters.

Our datasets capture result sets with different data character-
istics. Concerning spatial distribution, for example, “Uniform-
Uniform” contains items that cover all the available space,
while “Cities” (due to the geography of Greece, which includes
a large number of islands) provides us with both dense and
sparse areas of items (Figure 3). “Faces” contains many
distinct small dense areas, while “Flickr” is generally a very
sparse dataset.

Setup. All methods are implemented in Java using JDK 1.6.
Our experiments were executed on an Intel Core i3-2100
3.1GHz PC with 3GB of RAM.

6.1 Building and Maintaining Cover Trees

First, we evaluate the cost of building cover trees. Figure 6
shows the real-time cost of building an ICT by incrementally
inserting items. This cost depends onb, since smaller values
of b lead to new items being inserted in lower tree levels,
thus increasing the cost of individual insertions. The costalso
depends on the distance metric used, since some distance com-
putations are more expensive. For example, inserting 1,000
items of the “Flickr” dataset, using the Jaccard distance, takes
up to 5 seconds, while inserting the same number of items
takes less than 0.1 seconds for our Euclidean datasets. The
results are similar for the omitted datasets.

The cost of building a BCT can be divided into (i) the cost
of selecting items from the leaf level to build the first non-leaf
level and (ii) the cost of assigning nodes to suitable parents.
Table 3 shows these costs for the uniform dataset. The cost of
step (i) is the same as the cost of executing the greedy heuristic
for k = n and is independent ofb or the dataset distribution.
The cost of step (i) dominates that of step (ii) and this is why
the total building cost for BCTs does not differ significantly
with b or with spatial distribution. Building BCTs is orders
of magnitude more expensive than building the corresponding
ICTs for the same datasets.

Figure 7 depicts the size of ICTs and BCTs for different
values ofb (n = 4, 000 for our synthetic datasets). The x-axis
corresponds to the tree level, starting from 0 which denotes
the root level, while the y-axis corresponds to the width (i.e.,
number of nodes) of the corresponding level. Smaller values
of b lead to taller and narrower trees. Further, although ICTs

10

2000 4000 6000 8000 10000
0

5

10

15

n

T
im

e
(s

ec
)

(a) Uniform.

1000 2000 3000 4000
0

0.5

1

1.5

n

T
im

e
(s

ec
)

(b) Cities.

200 400 600 800 1000
0

0.5

1

1.5

2

2.5

n

T
im

e
(s

ec
)

(c) Nestoria.

200 400 600 800 1000
0

1

2

3

4

5

n

T
im

e
(s

ec
)

b = 1.2
b = 1.4
b = 1.6
b = 1.8
b = 2.0
b = 2.2

(d) Flickr.

Fig. 6: ICT building cost. The y-axis corresponds to the total time to incrementally insert alln items in the tree.

0 20 40 60
0

1000

2000

3000

4000

Level

W
id

th

(a) Uniform.

0 20 40 60
0

1000

2000

3000

4000

Level

W
id

th

(b) Cities.

0 20 40 60
0

200

400

600

800

1000

Level

W
id

th

(c) Nestoria.

0 5 10 15 20
0

200

400

600

800

1000

Level

W
id

th

BCT b = 1.2
BCT b = 1.4
BCT b = 1.6
BCT b = 1.8
BCT b = 2.0
BCT b = 2.2

ICT b = 1.2
ICT b = 1.4
ICT b = 1.6
ICT b = 1.8
ICT b = 2.0
ICT b = 2.2

(d) Flickr.

Fig. 7: Tree sizes of the constructed ICTs and BCTs (full implicit representation). The drawn lines in each figure correspond
to smallerb values as we move from left to right.

TABLE 3: BCT building cost (sec).
Uniform

n step (i) step (ii) b=1.2 step (ii) b=1.6 step (ii) b=2.0

1,000 11.181 0.048 0.044 0.043
2,000 107.103 0.211 0.209 0.203
3,000 416.660 0.498 0.416 0.398
4,000 899.799 0.812 0.503 0.490

are constructed incrementally, the resulting trees have almost
identical structure with the corresponding BCTs. In general,
the height of the tree depends on the minimum and maximum
pairwise distances in the dataset, while the width of the levels
depends on the spatial distribution of the data. Therefore,
for example, levels get narrower faster as we move up the
tree for “Cities” rather than for ‘Uniform”, even though their
height is roughly the same, since “Cities” is a more clustered
dataset. Similarly, a wide tree is constructed for “Flickr”, due
to sparsity.

In terms of maintenance, a single insertion in an ICT costs
1 msec for trees up to 5,000 and up to 1.3 msec for trees with
10,000 items. The cost of deletions is higher because, aftera
node is removed, its children have to be re-assigned to new
parents. For all datasets andb values, a single deletion requires
less than 3 msec for trees up to 5,000 and less than 7 msec
for trees with 10,000 items. We also measured the cost of
maintaining weights in the case of WCTs which may require
some extra bookkeeping to update weights. For all datasets and
b values, 4-6 additional nodes where accessed per insertion on
average. The effect on execution time is negligible.

6.2 Computing Diverse Subsets

We next evaluate the performance of the various algorithms
introduced in this paper in terms of the quality of the retrieved
diverse sets and the computational cost.

Diversity Algorithms. We first measure the cost savings when
applying the CT PRUNING RULE (“Greedy-CT”) or WCT
PRUNING RULE (“Greedy-WCT”) on an ICT vs. executing
our cover tree based implementation of the greedy heuristic

2000 4000 6000 8000 10000
0

2

4

6

8

10

12

14

n

T
im

e
(s

ec
)

(a) Uniform (k = 150).

25 50 75 100 125 150 175 200 225
0

2

4

6

8

10

k

T
im

e
(s

ec
)

b=1.2 Greedy
b=1.6 Greedy
b=2.0 Greedy
b=1.2 Greedy−CT
b=1.6 Greedy−CT
b=2.0 Greedy−CT
b=1.2 Greedy−WCT
b=1.6 Greedy−WCT
b=2.0 Greedy−WCT

(b) Uniform (n = 4000).

Fig. 8: Pruning for the diversity-only case.

(“Greedy”). We use our uniform dataset to see how pruning
improves the cost of Greedy withn andk and different values
of b (Figure 8). Clearly, Greedy-WCT is more effective, since
the actual distance to the furthest descendant of each node
is used for pruning. In general, pruning works better for non
uniform datasets, since each selection of a diverse item results
in pruning a largest number of items around it.

Next, we experimentally compare the performance of the
greedy heuristic, using the Greedy-WCT implementation, and
our Level algorithms, i.e., Level-Basic, Level-Greedy and
Level-Inherit. Figure 9 depicts the achieved diversity and
corresponding cost when varyingk. For comparison, we also
report the diversity attained by randomly selectingk of the
n items (RA). Clearly, the larger thek, the less diverse
the selected subset. The comparative performance of all al-
gorithms is the same for all types of datasets. Specifically,
for all datasets, Greedy-WCT achieves the best diversity at
the highest cost, Level-Basic achieves the worst diversityat
the lowest cost, while the other two Level algorithms lie in-
between. Level-Inherit achieves similar diversity with Level-
Greedy but is faster.

The Level algorithms select items from the appropriate tree
level. Thus, their performance depends on the tree. Recall that,
clustered datasets result in trees whose levels get narrower
faster as we move up the tree. Level-Greedy and Level-Inherit
perform a greedy selection among the items in the appropriate

11

100 125 150 175 200 225
0

0.02

0.04

0.06

k

D
iv

er
si

ty

(a) Uniform.

100 125 150 175 200 225
0

0.01

0.02

0.03

0.04

0.05

k

D
iv

er
si

ty

(b) Cities.

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

k

D
iv

er
si

ty

(c) Faces.

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

k

D
iv

er
si

ty

(d) Flickr.

100 125 150 175 200 225
0

1

2

3

k

T
im

e
(s

ec
)

(e) Uniform.

100 125 150 175 200 225
0

0.5

1

1.5

2

2.5

k

T
im

e
(s

ec
)

(f) Cities.

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

k

T
im

e
(s

ec
)

(g) Faces.

10 20 30 40 50 60 70 80 90 100
0

5

10

15

k

T
im

e
(s

ec
)

Greedy−WCT
Level−Basic
Level−Greedy
Level−Inherit
RA

(h) Flickr.

Fig. 9: Diversity and cost for the diversity-only case with varying k.

level, thus the wider the level, the worst the complexity andthe
better the diversity achieved. This also explains why theircost
increases in “steps” ask increases, since we gradually select
items from lower (and wider) levels. Level-Basic just selects
any k items, thus the cost does not increase withk, while
the achieved diversity decreases more rapidly ask increases,
since items are selected randomly instead of greedily from
wider levels.

Figure 10(a) shows how the cost varies withb. Smallerb
values may increase the building cost of the tree (Figure 6)
but also lead to faster diverse set computation, especiallyfor
Greedy-WCT. The cost of Level-Greedy and Level-Inherit
depends on the size of the level from which items are selected.
Figure 10(b) shows how the cost scales alongn. All Level
algorithms scale very efficiently withn, since they depend
only on the size of the corresponding tree level.

Diversity with Relevance Algorithms. Let us first evaluate
pruning (Figure 11). In the following, we report results for
MMR (similar results are attained fordr). We consider two
rules for pruning: using only relevance weights (denoted
“Greedy-CT”) and using both relevance and distance weights
(denoted “Greedy-WCT”). Again, using distance weights im-
proves pruning especially for small values ofλ (i.e., emphasis
on diversity). Pruning is more effective for clustered relevance
scores, since in this case, there are large subtrees with no
relevant items that are pruned early. For the same reason,
pruning generally performs better for very large values ofλ.
Finally, pruning is less effective for “Flickr” whose trees are
shorter due to its sparsity.

We next compare Greedy-WCT with the Level algorithms.
We also consider a CT variation, calledPriority Cover Tree
(PCT) introduced in [9] for computing priority medoids. A
PCT is a CT which in addition to the three invariants of a CT,
satisfies a fourth one that requires each node of the tree to have
relevance score larger than or equal to the scores of all nodes
in its subtree. To construct a PCT so that the fourth invariant
is satisfied, items need to be inserted in descending order of
relevance. In general, PCTs cannot be built incrementally.To
illustrate, we present a simple example that shows that the

0

0.5

1

1.5

b

T
im

e
(s

ec
)

1.2
(157)

1.4
(205)

1.6
(346)

1.8
(187)

2.0
(512)

2.2
(337)

(a) Uniform.

2000 4000 6000 8000 10000
0

0.5

1

1.5

n

T
im

e
(s

ec
)

Greedy−WCT
Level−Basic
Level−Greedy
Level−Inherit

(b) Uniform.

Fig. 10: Cost for the diversity-only case when varying (a)b
(the numbers in parentheses are the sizes of the highest level
with at leastk items) and (b)n.

p
1

p
2

p
3

p
4

p
1

0 5.0 3.5 2.5

p
2

5.0 0 5.3 7.5

p
3

3.5 5.3 0 5.0

p
4

2.5 7.5 5.0 0

Distances

Relevance

p
1

0.8

p
2

0.5

p
3

0.1

p
4

0.9

(a) Items.

p
1

p
3

p
2

l=3

l=2

l=1

p
1

p
1

p
2

(b) Before insertion.

p
4

p
1

p
2p

4

p
4

p
2

p
3

p
3

(c) After insertion.

Fig. 12: The arrival ofp4 changes the relations among all
nodes of the PCT.

arrival of a single item may change the relations among all
nodes in a PCT. Consider the PCT of Figure 12(b) withb = 2.0
and the relevance scores and distances of Figure 12(a). This
PCT is unique forp1, p2, p3, sincep1 must appear at the top
due to its relevance andp3 cannot be covered byp2 at ℓ =
2. Assume thatp4 arrives. Sincep4 has the largest relevance
score, it must appear at the top of the tree.p1 is not separated
from p4 at levelsℓ = 3 andℓ = 2, therefore, it cannot appear
there.p2 andp3 are separated fromp4 atℓ = 2 and are placed at
this level. The resulting PCT is shown in Figure 12(c). Notice
that all pre-existing nodesp1, p2, p3 now have different parent
and children nodes than before the arrival ofp4, which means
that the tree is in effect re-built from scratch.

Figure 13 shows the relevance, diversity and cost of the
various algorithms when varyingλ. We report results for the
faster greedy heuristic, i.e., Greedy-WCT and the three Level
algorithms (namely, Level-Basic, Level-Greedy and Level-
Hybrid) applied on an ICT and a PCT for two synthetic and

12

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

λ

T
im

e
(s

ec
)

(a) Uniform-Uniform.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

λ

T
im

e
(s

ec
)

(b) Uniform-Clustered.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

λ

T
im

e
(s

ec
)

(c) Cities.

0.0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

λ

T
im

e
(s

ec
)

(d) Faces.

0.0 0.2 0.4 0.6 0.8 1.0
1

2

3

4

λ

T
im

e
(s

ec
)

Greedy
Greedy−CT
Greedy−WCT

(e) Flickr.

Fig. 11: Pruning for the diversity with relevance (MMR) casewith varying λ.

0.0 0.2 0.4 0.6 0.8 1.0
0.4

0.6

0.8

1

λ

R
el

ev
an

ce

(a) Uniform-Uniform.

0.0 0.2 0.4 0.6 0.8 1.0

0.7

0.8

0.9

1

λ

R
el

ev
an

ce

(b) Uniform-Clustered.

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1

λ

R
el

ev
an

ce

(c) Nestoria.

0.0 0.2 0.4 0.6 0.8 1.0
0.4

0.6

0.8

1

λ

R
el

ev
an

ce

(d) Flickr.

0.0 0.2 0.4 0.6 0.8 1.0
0

0.02

0.04

0.06

λ

D
iv

er
si

ty

(e) Uniform-Uniform.

0.0 0.2 0.4 0.6 0.8 1.0
0

0.02

0.04

0.06

λ

D
iv

er
si

ty

(f) Uniform-Clustered.

0.0 0.2 0.4 0.6 0.8 1.0
0

0.05

0.1

λ

D
iv

er
si

ty

(g) Nestoria.

0.0 0.2 0.4 0.6 0.8 1.0
0

0.5

1

λ

D
iv

er
si

ty

(h) Flickr.

0.0 0.2 0.4 0.6 0.8 1.0
0

0.5

1

λ

T
im

e
(s

ec
)

(i) Uniform-Uniform.

0.0 0.2 0.4 0.6 0.8 1.0
0

0.5

1

1.5

λ

T
im

e
(s

ec
)

(j) Uniform-Clustered.

0.0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

λ

T
im

e
(s

ec
)

(k) Nestoria.

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

λ
T

im
e

(s
ec

)

(l) Flickr.

ICT Greedy−WCT
ICT Level−Basic

ICT Level−Greedy
ICT Level−Hybrid

PCT Greedy−WCT
PCT Level−Basic

PCT Level−Greedy
RA

Fig. 13: Relevance (top row), diversity (middle row) and cost (bottom row) for the MMR case with varyingλ.

two real datasets. Note that due to the fourth invariant of the
PCT,best(p) = p for every nodep of a PCT, thus Level-Hybrid
is the same with Level-Basic for PCTs and it is not depicted.

In terms of diversity and relevance, for all datasets, Level-
Hybrid is the one closer to the greedy heuristic (which
provides a good approximation of the optimal solution).
Level-Hybrid achieves such results with much smaller cost.
Among the Level algorithms, Level-Basic is clearly the fastest.
Level-Hybrid performs a greedy selection among2k items,
while Level-Greedy performs a greedy selection among|Cℓk |
items, whereℓk is the highest level with at leastk items.
Therefore, the relative cost of Level-Greedy when compared
with Level-Hybrid depends on the size of the level with
regards tok. For example, for “Flickr”, which has much
wider levels than the other datasets, Level-Hybrid has lower
cost than Level-Greedy. Note also that the cost of the level
algorithms does not depend onλ. The quality and cost of
the PCT solutions does not differ substantially from those

of the ICT. Only pruning is slightly more efficient, since
larger relevance scores appear at high levels. Due to space
limitations, we omit the results for the rest of our datasets.
“Clustered-Uniform” and “Clustered-Clustered” behave sim-
ilarly to “Uniform-Uniform” and “Uniform-Clustered” re-
spectively, while “Cities” has similar behavior to “Uniform-
Clustered” and “Faces” to “ Clustered-Uniform”.

Continuous k-Diversity. We next focus on streaming arrivals
of items and on how the application of our continuity re-
quirements affects the retrieved solutions. We show results for
“Nestoria”, where we use the actual apartment upload time
as the time in which items enter the stream. We also use
the “Clustered-Uniform’ dataset which has the most different
distribution. For “Clustered-Uniform’, the items that enter the
stream are selected in a random manner.

Figure 14 reports results for the UNCONSTRAINED and
the CONSTRAINED k-DIVERSITY PROBLEM. We vary the
jump steph of the window and fix the other parameters

13

100 200 300 400 500 600 700 800 900
0.5

0.6

0.7

0.8

0.9

1

h

A
ve

ra
ge

 r
el

ev
an

ce
 p

er
 w

in
do

w

(a) Clustered-Uniform.

100 200 300 400 500 600 700 800 900
0

0.005

0.01

0.015

0.02

0.025

h

A
ve

ra
ge

 d
iv

er
si

ty
 p

er
 w

in
do

w

(b) Clustered-Uniform.

100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

h

A
ve

ra
ge

 ti
m

e
(m

se
c)

 p
er

 w
in

do
w

(c) Clustered-Uniform.

100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

h

A
ve

ra
ge

 J
ac

ca
rd

 s
im

ila
rit

y
pe

r
w

in
do

w

(d) Clustered-Uniform.

10 20 30 40 50 60 70 80 90
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

h

A
ve

ra
ge

 r
el

ev
an

ce
 p

er
 w

in
do

w

(e) Nestoria.

10 20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

0.12

h

A
ve

ra
ge

 d
iv

er
si

ty
 p

er
 w

in
do

w

(f) Nestoria.

10 20 30 40 50 60 70 80 90
0

0.7

1.4

2.1

2.8

3.5

h

A
ve

ra
ge

 ti
m

e
(m

se
c)

 p
er

 w
in

do
w

(g) Nestoria.

10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

h

A
ve

ra
ge

 J
ac

ca
rd

 s
im

ila
rit

y
pe

r
w

in
do

w

(h) Nestoria.

(C) Greedy−WCT
(C) Level−Basic

(C) Level−Greedy
(C) Level−Hybrid

(U) Greedy−WCT
(U) Level−Basic

(U) Level−Greedy
(U) Level−Hybrid

RA

Fig. 14: Relevance ((a)/(e)), diversity ((b)/(f)), cost ((c)/(g)) and Jaccard similarity ((d)/(h)) for the Unconstrained (U) and
Constrained (C) MMR case in a streaming setting when varyingh (k = 150 (resp.k = 15), w = 1000 (resp.w = 100) for
the synthetic (resp. real) dataset,b = 1.6, λ = 0.2).
to study the behavior of the algorithms as the number of
valid diverse items from the previous window changes. We
report average values over all windows as the window slides
along the stream of items. In most cases, the constrained
variations achieve similar relevance and diversity with the un-
constrained alternatives. For all algorithms performing greedy
computations, the constrained variations are executed faster,
since the diverse subset of each window is initialized with the
valid items of the diverse subset from the previous window,
and thus, fewer computations are required. Level-Basic is
unaffected, since it does not involve any greedy steps. Besides
cost savings, another important aspect of the constrained
variations is the higher sense of continuity between subsequent
diverse sets seen by the users. To quantify this, we use
the Jaccard similarity between the acquired diverse sets. The
Jaccard similarity of two sets of itemsS1, S2 is defined as:

Jaccard(S1, S2) =
|S1∩S2|
|S1∪S2|

The higher the Jaccard similarity of two sets, the more
common items the two sets share. In Figure 14, we see that
the constrained variations exhibit higher Jaccard similarity.

7 RELATED WORK

Due to the NP-hardness of thek-DIVERSITY PROBLEM, many
different algorithms have been proposed for its solution (e.g.,
[18], [20], [29], [30]). In this paper, we have proposed an
approach based on cover trees to address the dynamic case,
where the data items change over time.
Static data. Most approaches rely either on greedy or in-
terchange heuristics [18], [14]. Greedy heuristics construct
the diverse subset incrementally by selecting at each step the
item that is the furthest apart from the items already selected.
Interchange heuristics start from a random solution and tryto
improve its diversity by swapping items in the solution with
items outside it. It has been shown that the greedy heuristic
for the MAX M IN variation produces a performance guarantee

of two which is shown to be the best that can be achieved by
any polynomial algorithm [27]. A thorough comparison along
with novel variations can be found in [29].

Another line of research considers selecting thek diverse
items using top-k threshold algorithms. Such approaches as-
sume the availability of sorted access methods. In contrast, in
this paper, we propose such sorted access methods based on
cover trees. The approach in [19] offers an implementation
of MMR in low-dimensional vector spaces assuming the
availability of both relevance-based and distance-based sorted
access methods. A number of variations of sorted and random
accesses are also employed in [7] to retrieve a top-k list of
relevant and diverse results. The focus is on scheduling the
order of the various accesses for cost efficiency.

Finally, other approaches define diversification in terms of
covering different categories or interpretations of ambiguous
web queries. Such approaches assume that there exists a
related taxonomy of both queries and documents [6], or
query logs, and a priori knowledge of the distribution of the
underlying possible specializations of queries [11].

Indices and structured data. There are a couple of ap-
proaches that consider indexing to assist diversification.Most
such works consider structured data. Relational data are con-
sidered in [28]. Attributes aretotally orderedby importance
in terms of diversity, so that two tuples that differ in a highly
important attribute are considered highly diverse, even ifthey
share common values in other less important attributes. This
diversity measure allows the exploitation of a Dewey encoding
of tuples that enables a tree structure which is later exploited to
select thek most diverse tuples. Contrary to our approach, the
proposed method is limited to this specific diversity measure.
A spatial index is exploited in [21] to locate those relevant
nearest neighbors of an item that are the most distant to each
other. Our work is different since our goal is not to locate
the nearest diverse neighbors of a single object but rather to

14

locate a relevant and diverse subset of all available items.A
different problem for structured data is considered in [24], that
of selecting a limited number of features that can maximally
differentiate the available items.

Cover trees are employed in [23] for solving thek-medoids
problem. A variation of cover trees, called Priority Cover
Trees (PCTs), were employed in [9] for computing priority
medoids, i.e., medoids having a high relevance factor. Besides
solving a different problem, this approach cannot be employed
in dynamic environments, since all available items must be
known in advance for building PCTs.

Continuous data. The related literature focusing on contin-
uous data is considerably more limited. None of the existing
proposals considers an index-based approach.

In our previous work [13], we evaluated various heuristics
in case of continuous data, and a greedy heuristic that enforces
durability was shown to outperform the other methods. A
method based on interchange heuristics is proposed in [25].
Upon the arrival of a new itemp, all possible interchanges
betweenp and the items in the current solution are performed
and p replaces an item in the solution, if this replacement
increases diversity. A similar technique was also proposedin
[16]. However, with these methods, old items do not expire,
and a new item may enter the solution only upon its arrival.
The MAX SUM diversification problem is studied in [10], in
the setting of streaming data and monotone submodular di-
versification functions. A1/2-approximation greedy algorithm
is proposed which is faster than the usual greedy heuristic.
Dynamic updates are also considered in the sense that when
the underlying set of available items changes, interchanges
are attempted to improve the computed solution. Finally,
the online version of the diversity problem is considered in
[26], that is, selecting a diverse subset without knowing the
complete set of items

8 SUMMARY
Recently, result diversification has attracted considerable at-
tention. However, most current research addresses the static
version of the problem. In this paper, we have studied the
diversification problem in a dynamic setting where the items
to be diversified change over time. We have proposed an index-
based approach that allows the incremental evaluation of the
diversified sets to reflect item updates. Our solution is based
on cover trees. We have provided theoretical and experimental
results regarding the quality of our solution.

ACKNOWLEDGMENTS

The work of the first author has been co-financed by the
European Union (ESF) and Greek national funds through the
Operational Program “Education and Lifelong Learning” of
the NSRF-Research Funding Program: Heracleitus II and of
the second author by the European Union (ERDF) and Greek
national funds through the Operational Program “Thessaly-
Mainland Greece and Epirus 2007-2013” of the NSRF 2007-
2013.

REFERENCES

[1] Faces dataset. http://www.informedia.cs.cmu.edu.
[2] Flickr. http://www.flickr.com.

[3] Flickr dataset. http://www.tagora-project.eu.
[4] Greek cities dataset. http://www.rtreeportal.org.
[5] Nestoria. http://www.nestoria.co.uk.
[6] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying

search results. InWSDM, 2009.
[7] A. Angel and N. Koudas. Efficient diversity-aware search. In SIGMOD

Conference, 2011.
[8] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest

neighbor. InICML, 2006.
[9] R. Boim, T. Milo, and S. Novgorodov. Diversification and refinement

in collaborative filtering recommender. InCIKM, 2011.
[10] A. Borodin, H. C. Lee, and Y. Ye. Max-sum diversification, monotone

submodular functions and dynamic updates. InPODS, 2012.
[11] G. Capannini, F. M. Nardini, R. Perego, and F. Silvestri. Efficient

diversification of web search results.PVLDB, 4(7):451–459, 2011.
[12] J. G. Carbonell and J. Goldstein. The use of mmr, diversity-based

reranking for reordering documents and producing summaries. In SIGIR,
1998.

[13] M. Drosou and E. Pitoura. Diversity over continuous data. IEEE Data
Eng. Bull., 32(4):49–56, 2009.

[14] M. Drosou and E. Pitoura. Search result diversification. SIGMOD
Record, 39(1):41–47, 2010.

[15] M. Drosou and E. Pitoura. Dynamic diversification of continuous data.
In EDBT, 2012.

[16] M. Drosou, K. Stefanidis, and E. Pitoura. Preference-aware pub-
lish/subscribe delivery with diversity. InDEBS, 2009.

[17] E. Erkut. The discretep-dispersion problem. European Journal of
Operational Research, 46(1), 1990.

[18] E. Erkut, Y.Ülküsal, and O. Yeniçerioglu. A comparison ofp-dispersion
heuristics.Computers & OR, 21(10), 1994.

[19] P. Fraternali, D. Martinenghi, and M. Tagliasacchi. Top-k bounded
diversification. InSIGMOD Conference, 2012.

[20] S. Gollapudi and A. Sharma. An axiomatic approach for result
diversification. InWWW, 2009.

[21] J. R. Haritsa. The kndn problem: A quest for unity in diversity. IEEE
Data Eng. Bull., 32(4):15–22, 2009.

[22] T. Kollar. Fast Nearest Neighbors. http://nicksgroup.csail.mit.edu/TK/
Technical Reports/covertrees.pdf.

[23] B. Liu and H. V. Jagadish. Using trees to depict a forest.PVLDB,
2(1):133–144, 2009.

[24] Z. Liu and Y. Chen. Differentiating search results on structured data.
ACM Trans. Database Syst., 37(1):4, 2012.

[25] E. Minack, W. Siberski, and W. Nejdl. Incremental diversification for
very large sets: a streaming-based approach. InSIGIR, 2011.

[26] D. Panigrahi, A. D. Sarma, G. Aggarwal, and A. Tomkins. Online
selection of diverse results. InWSDM, 2012.

[27] S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. Facility dispersion
problems: Heuristics and special cases. InWADS, 1991.

[28] E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bhat, and S. Amer-
Yahia. Efficient computation of diverse query results. InICDE, 2008.

[29] M. R. Vieira, H. L. Razente, M. C. N. Barioni, M. Hadjieleftheriou,
D. Srivastava, C. T. Jr., and V. J. Tsotras. On query result diversification.
In ICDE, 2011.

[30] C. Yu, L. V. S. Lakshmanan, and S. Amer-Yahia. It takes variety to
make a world: diversification in recommender systems. InEDBT, 2009.

[31] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen.Improving
recommendation lists through topic diversification. InWWW, 2005.

Marina Drosou is a PhD candidate at the Com-
puter Science Department of the University of
Ioannina in Greece. She received her MSc and
BSc degrees from the same institution in 2008
and 2006 respectively. She is a member of
the Distributed Data Management group since
2006 and a recipient of an “HERACLETUS II”
scholarship. Her research interests include per-
sonalization via ranking based on diversity and
recommendation systems.

15

Evaggelia Pitoura is a Professor in the Com-
puter Science Department of the University of
Ioannina in Greece where she also leads the
Distributed Data Management group. She re-
ceived her BSc from the University of Patras
in Greece and her MSc and PhD from Purdue
University. Her research interests are in the area
of distributed data management with a recent
focus on ranking based on preferences, diversity
and relevance.

