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Abstract—Result diversification has recently attracted considerable attention as a means of increasing user satisfaction in recom-
mender systems, as well as in web and database search. In this paper, we focus on the problem of selecting the k-most diverse items
from a result set. Whereas previous research has mainly considered the static version of the problem, in this paper, we exploit the
dynamic case in which the result set changes over time, as for example, in the case of notification services. We define the CONTINUOUS
k-DIVERSITY PROBLEM along with appropriate constraints that enforce continuity requirements on the diversified results. Our proposed
approach is based on cover trees and supports dynamic item insertion and deletion. The diversification problem is in general NP-hard;
we provide theoretical bounds that characterize the quality of our cover tree solution with respect to the optimal one. Since results
are often associated with a relevance score, we extend our approach to account for relevance. Finally, we report experimental results
concerning the efficiency and effectiveness of our approach on a variety of real and synthetic datasets.

Index Terms—Indexing methods. Selection process, Information filtering. Search process. Similarity measures.
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1 INTRODUCTION Motivated by popular proactive delivery paradigms, such as

_ _ ) ) news alerts, RSS feeds and notification services in soctal ne
The abundance of information available online creates thgyks where users specify their interests and receiveaste

need for developing methods towards selecting and presefdrifications, we also consider th@ntinuousversion of the

ing to users representative result sets. To this end, resyplem, where diversified sets are computed over streams of

diversification has attracted considerable attention agans jtems. To avoid overwhelming users by forwarding to them all

of increasing user satisfaction. Result diversificatioke$a rg|evant items, we consider the case in which a represemtati
many forms including selecting items so that their contegfyerse set is computed, instead, whose size can be cordigure
dissimilarity, novelty or topic coverage is maximized [14] by the users. We introduce a sliding window model along
Most previous approaches to computing diverse sets rely @ith continuity requirements. Such requirements ensure that
greedyor interchangeheuristics. Greedy heuristics (e.g., [31]the order in which the diverse items are delivered folloves th

[20]) build a diverse set incrementally, selecting one it8m order of their generation and that an item does not appear,

a time so that some diversity measure is maximized, whergfiappear and then re-appear in the diverse set.

interchange heuristics (e.g., [30], [24]) start from a @md  \We focus on the MxMIN diversity problem defined as

initial set and try to improve it. the problem of selecting: out of a set ofn items so that
Despite the considerable interest in diversification, mogie minimum distance between any two of the selected items

previous research considers tatic version of the problem, is maximized. The MxMIN problem is known to be NP-

i.e., the available items out of which a diverse set is setedb hard [17]. We propose a suite of algorithms that exploit the

not change over time. In this paper, we focus ondiieamic cover tree to provide solutions with varying accuracy and

diversification problem, where insertions and deletions @bmplexity. We provide theoretical results that bound the
items are allowed and the diverse set needs to be refresheddouracy of the solutions achieved with regards to the atim
reflect such updates. The dynamic problem was addressegdfution. The most efficient algorithm achievesbal/2s2-

[13] using a greedy heuristic and in [25] using an intercleangpproximation of the optimal solution, whebes the base of

heuristic. Here, we propose an index-based approach. the cover tree, whereas the most expensive algorithm, agrun
Our solution is based on cover trees. Cover trees dmeplementation of a greedy heuristicl/a-approximation. The

data structures originally proposed for approximate retaremost efficient algorithms just select items from a singleslev
neighbor search [8]. They were recently used to compubé the tree whose size is close foand thus they achieve
medoids [23] and priority medoids [9]. An index-based apscalability withn.

proach was also followed in [28] for the static version of Our incremental algorithms produce results of quality com-

the problem. The proposed index exploited a Dewey-encodipgrable to that achieved by re-applying the greedy hearisti

tree and can be used only with a specific diversity functian re-compute a diverse set, while avoiding the cost of re-
on structured data. Our approach is more general and cancbenputation. Using cover trees also allows the efficient en-
used with any diversity function. forcement of the continuity requirements. Furthermoreltimu
ple queries with different values @f can be supported.

« M. Drosou and E. Pitoura are with the Computer Science Deprt, In many cases, the items in the result set are associated with
University of loannina, Greece. a relevance rank. We have extended our approach to support
E-mail: {mdrosou, pitoura@cs.uoi.gr the computation of diverse subsets of ranked sets of items.

We first show how to incorporate relevance in the diversity




function used to build the cover tree. In addition, to allow
for dynamically tuning the relative importance of relevanc
and diversity, we introduce an alternative solution based o
weighted cover trees along with appropriate algorithms.
Finally, note that a recent line of research focuses on
combining relevance and diversity by viewing diversifioati
as a topk problem ([7], [21], [19]). In such cases, threshold
algorithms are used for selecting diverse items aiming at

) . : : q@@' W
pruning a portion of the candidate items. Such approaches i ¥ ¥
. L . % ¢ ¢ ¢
assume the existence of indices to provide sorted access to
items, e.g., based on relevance or their distance from agive (@) MAXMIN. (b) MaxSum.
item. In this paper, instead, we aim at constructing indtbes Fig. 1: MAXMIN vs. MAXSuM for n = 200 and & = 30.
will guide the selection process. Diverse items are marked with a darker (red) color.

In a nutshell, in this paper, we:
« propose indexing based on cover trees to address {i€e gistances of the selected items, formally defined as:
dyna_m|c dlversmcatm_n problem anng with con.tlnwty fun(S, d) = min,,, ,, s d(pi, p;), and
requirements appropriate for a streaming scenario, s
. present a suite of methods with varying complexity that fsum (S, d) =3 pi p;es d(pi pj)-

exploit the cover tree for the M<MIN problem and The corresponding problemsparg]called\M\/lm and Max-

provide bpunds for_ the achieved diversity with regard§UM. Intuitively, MAXMIN aims at discouraging the selection
to the optimal solution, _ _of nearby items, while MxSuMm at increasing the average
- extend the cover tree and our algorithms for selectifighiise distance among all items. An example is shown in
|tems.that are both relevant a”‘?' Q|verse and . Figure 1, which depicts thé = 30 most diverse, in terms
» experimentally evaluate the efficiency and effectivenegs geographical distance, apartments for sale from a set of
of our approach using both real and synthetic datasetsn = 200 available apartments in the London area retrieved
This paper extends our previous work [15] with new diversgrom [5]. In general, Mx Sum tends to select items in the
fication algorithms, among which an efficient implementatiogytskirts of the setP, whereas MxMIN selects items that
of the greedy heuristic that uses the properties of the covge more representative &f in the sense that they provide a
tree to prune the search space. Also, we extend our approgglter coverage of it. In the rest of this paper, we will focus

to combine diversity with relevance. on the MaxMIN problem that exhibits this desired property.
The rest of this paper is structured as follows. In Secr—

tion 2, we present our diversification framework and defiree th he MAXMIN Greedy Heuristic. The k-DIVERSITY PROB-
CONTINUOUS k-DIVERSITY PROBLEM. Section 3 presents LEM is known to be NP-harq [17]. Various heuristics haye_
the cover tree index structure, while Section 4 introduc Ien _g]ropolse(:], an;ong Wr?'Ch a natl_JraI tgr”eeo![y he;mshc
algorithms for computing diverse items. Section 5 conside gorlthm tZ] as been ts own explegmerisa y T?] ou lper-
combining diversity with relevance. Section 6 presents o rm the others in most cases ([13], [18]). e aigo-

experimental results. In Section 7, we present related ,vvomhm starts by selecting either a random. item or the two
while in Section 8 a summary of the paper. items in P that are the furthest apart (line 1). Then, it

continues by selecting the items that have the maximum
distance from the items already selected, where the dis-
2 THE DIVERSIFICATION MODEL tance of an itemp; from a set of itemsS is defined as:
There are many definitions of diversity. In this paper, we d(pi, S) = miny, es d(pi, pj)-
focus on a general form of diversification based on contentlt has been shown (e.g., in [27]) that the minimum dis-
dissimilarity. Next, we first provide a formal definition die¢ tance of the set produced by the greedy heuristic i5-a
diversity problem and then introduce its continuous vaiat approximation of the minimum distance of the optimal solu-
tion and that no polynomial algorithm can provide a better

2.1 The k-Diversity Problem guarantee.

Let P = {p1,...,pn} be a set ofn items. Given a dis- i _
tance metricd : P x P — R* indicating the dissimilarity Algorithm 1 Greedy Heuristic.
of two items in P, assume that theliversity of a set.S, !nput: AsetofitemsP, anintegerk.
S C P, is measured by a fUﬂCtiO[ﬁ : 2\P| < d — R+ Output: A set S with the k most diverse items of.
For a positive integek, k < n, the k-DIVERSITY PROBLEM
is the problem of selecting a subsSt of P such that:

1 p™,q" + argmax, gep d(p, q)
. . p#4q
208+ {p",q"}

3: while |S| < k do
S* = argmax gcp f(S, d) 4 p" < argmax,cp d(p, S)
) |S|= ) ) 5: S(—.Su{p*}
The choice of f affects the selection of items, even forgf ?&%xhlg

a specific distance metrié. Two widely used functions are
the minimumdistance among the selected items and st



2.2 The Continuous k-Diversity Problem H P, ‘ P ‘ P ‘ ) ‘ P ‘ P ‘ P Hp ‘ P ‘m‘p‘ ‘p‘ -
We consider the case in which the detchanges over time
and we want to refresh the computkdnost diverse items to
represent the updated set. In general, the insertion (etide)

of even a single item may result in a completely differen_}

diverse set. The following simple example demonstrates thi his means that, once an ltemis selected as d"’efse’ we
Consider the seP — {(4,4), (3,3), (5,6), (1,7)} of points in cannot later on select an item older thanWe call this the

the 2-dimensional Euclidean space ane- 2. The two most freshnesgequirement. This is a desirable property in case of
diverse items of are (4,4) and (1, 7). Assume that0, 0) is notification services, such as news alerts and RSS feeds, so

added toP. Now, the two most diverse items @t are (0, 0) as to ensure that the diverse |t_ems selected to. be de_llvered t
and (5,6). the users follow the chronological order of their publioati

In many applications, new items are generated in a Colﬁgising this requirement may result in out-of-order deijve

tinuous manner and, thus, the getchanges gradually overWhL;,Ch rr&ay stehem l;nnatursl to u:?ers. ; v def
time. For example, consider a user continuously receivin ased on the above observalions, we now formally define

a representative, i.e., most diverse, subset of the strefamt OQNS,TRA'NEDCONT'NUOUSk'D'VERS'TY PROBLEM.
Definition 1: (CONSTRAINED CONTINUOUS k-

available apartments in her area. We would like to offer her a .
continuous view of the most diverse items in this stream. D!VERSITY PROBLEM). Let P be a stream of items,
We adopt a sliding-window model where thenost diverse Li-1: Ii» @ > 1, be any two consequent windows and

items are computed over sliding windows of lengthin the 9i-1 be the diverse subset of,_,. The CONSTRAINED

input stream. The window length may be defined either [FONTINUOUS k-DIVERSITY PROBLEM is the problem
time units (e.g., “thet most diverse items in the last hour”),0f  Selecting a subsetSy of P, Vi, such that
or in number of items (e.g., “the most diverse items among Si = argma"lgﬁg]’; f(Si,d)

the 100 most recent items”). Without loss of generality, wend the following two constraints are satisfied:

assume item-based windows. We allow windows to not only(j) p; € (S;_y N P;) = p; € S¢ (durability requirement),
slide but also jump, i.e., move forward more than one itemi) Let p; be the newest item in' ;. Then,jﬂpj € P\S;
For windows of lengthu and a jump step of length, i < w, with j < I, such thatp; € S; (freshness requirement).
consequent windows shate — h common items (Figure 2).

Two consequent jumping windows may correspond, for exam-

ple, to the items seen by a user in two consequent visits to er INDEX-BASED DIVERSIFICATION

RSS reader application. Between these two visits, somesiteg, compute diverse sets in a dynamic setting, we rely on a

have ceased to be valid, new items have been generated, While sirycture, calledover tree to index the items inP. In
a number of older items remain valid. Note that, for= 1, his section, we provide a formal definition of the cover tree

jumping windows behave as regular sliding windows, while 10,54 with algorithms for constructing cover trees appiatpr
h = w, consequent windows are disjoint which correspongs;, ihe diversification problem.

to periodic behavior with a period of lengih.
Formally, let P be a stream of items. We denote the
i jumping window of P as P;. The UNCONSTRAINED 3.1 The Cover Tree

CONTINUOUS k-DIVERSITY PROBLEM is the problem of A cCover Tree (CT) [8] for a sef is a leveled tree where
selecting a subsetS7 of F; for each P;, such that: each level is associated with an integewhich increases as
S} = argmax s,cp, f(Si,d). we move up the tree. Each node in the tree is associated with

[Si|=k . . . )
Constrained Continuous k-Diversity Problem. Since users e>.<actly one itenp € P, Wh"e each item may be associated
with multiple nodes, but with at most one at each level. In the

may expect some continuity in the diverse sets they reccaivefbIIOWin when clear from context. we useto refer to both
consequent retrievals, we consider additional requirésnen the iterr?’ and the node associateé wjgbl“a?ea specific level
how the diverse sets change over time. p P '

First, we want to avoid cases where diverse items thatl‘et Ctk/ ble Eue Isevt ?f 't?ms ?t I?vérllzrﬁﬁnimvandﬁnm be i
are still valid disappear. This may lead to confusing ressultres’peC €ly the levels ot he root a € leaves. A cows

where an item appears in one diverse set, disappears in ?It]gaseb, b > 1, is a tree that obeys the following invariants:
next one and then appears again. Thus, an item selected as Nesting: For all levels?, £yin < £ < lrmaz, Cp € Co1,
diverse remains in the diverse set until it expires, i.eitsex i.e., once an itenp appears in the tree at some level, then
the current window. The diverse set is complemented with there is a node associated wjthat every lower level.
new items that are diverse with regards to those previously?- Separation: For all levels?, £r;;, < ¢ < l1q2, and all
selected diverse items that are still valid. For instancethe distinct p;, p; € Cy, it holds thatd(p;, p;) > b°.
apartments example, the user sees new items that are diver3e Covering: For all levelst, £y, < £ < {100 and allp; €
with regards to other previously seen apartments that dre st C, there exists @; € Cy.1, such thatd(p;, p;) < b
available. We call this thelurability requirement. and the node associated with is the parent of the node
Second, we want the order in which items are chosen as @associated wittp;.
diverse to follow the order of their appearance in the streain example is shown in Figures 3 and 4.

“[o]e.]o]ol[p]r.[r [p]ppu[o o]
Fig. 2: Two consequent windows withh = 7 andh = 4.
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Fig. 3: An example of the top 10 levels of a cover tree for a $dtemns in the 2-dimensional Euclidean space. Bold points
represent the items (i.e., nodes) at each level, moving foamer levels to the root level, as we move from left to right.

A4 Algorithm 2 Batch Cover Tree Construction.

Input: A set of itemsP, a baseb.

1) v .
® ‘.::g.;‘ > - Output: A cover treeT of baseb for P.
~"'a?:.' ), 1: £« |log, (minp qep d(p, q))]
syt 2: T.Cp < 0
& faaeln & 3: for all p € P do
o, A dask 1 A}“A -~ r 4. T.Cp «— T.Cy U {p}
% or U - 5: end for
w . 6: while |T.Cy| > 1 do
BN MY 70 T.Cpp1 <0
* . w ¢ 8: candidates < T.Cy
. 91 p"q" « argmax, gecandidates HUPs 9)
< 10: T.Cpy1 < T.Cppq1 U {p*, q*}

11:
Fig. 4: The (... — 5)™ level of the cover tree of Figure 3. izf
The items (i.e., nodes) of the level are drawn with large bold3'
symbols, while the items of lower levels covered by thes%g
nodes are drawn with the same symbol (and color) as thgi:

candidates < candidates\{p*,q*}
while candidates # 0 do
candidates < candidates\{p :
bl+1}
P 4+ argmax, e ondidates A0 T-Coy1)
T.Cg+1 < T.Cg+1 U {p*}
candidates < candidates\{p™}

g € T.Cpy1 with d(p,q) <

ancestor. 17:  end while
18: for all p € T.C, do
19: q* argminquclJrl d(p, T.Cey1)
The CT was originally proposed with base= 2. In this g(l)i dn;akeq parent ofp
: enda for
paper, we use a more general bagé > 1. Genr—;rally, larger 5. 1., T.Coir
base values result in shorter and wider trees, since fewllgno23: ¢+ ¢+1

are able to “cover’ the nodes beneath them. The valué ofsg. o While

determines the granularity with which we move from one levet
to the next, i.e., how many more items become visible as we
descend the tree.

) Dug to the CT invariants, if an 'tem appears fqr the from the items already selected (lines 12-17).

first time at level/ of the tree, therp is a child of itself L .

at all levels below/. This observation provides us with a The remaining items af’, are assigned a parent node from

more space-efficient representation of the CT achieved %&f L scihthat thle covering tlf:lvarlant holds ((Ijmt()as .13.'21)' LO
coalescing all nodes whose only child is a self child. We cdffauce the overlap among he areas covered by sibling nodes,

this representatioaxplicit The explicit representation of a CT%e asslllgtr;‘ieac;h nod(;\ t?{ Its fl(;;estriczndlg?terrarferntnfll[rrl]e 19)
for a setP with n items requiresO(n) space [8]. Although € ca S stepnearest parenheurisic. fieary, 1ro ©

we use an explicit representation in our experiments, feped & the tree is constructed/ry, C Ci, thus the nesting

of presentation, we shall use the full implicit represeintat Invariant also holds. We call the tree constructed using thi
when describing the algorithms. procedureBatch Cover Tree(BCD.

Next, we first present an algorithm for batch constructing We shall prove that the set of |tem3_ at each levef of the
a CT tailored for the MxMIN problem. Then, we consider CT correspond to the result of applying thexMIM N greedy

an incremental construction of a CT appropriate for dynamﬂ?u”StIC (Algorlthm 1? onp, fgrRk = |Ce|. Our proof uses
environments. the following observation. Le§“**( P, k) denote the result of

applying the MaxMIN greedy heuristic orP for k.
Observation 1:For any k& > 2, S¢E(Pk + 1) D

SCR(P k).

Given a setP of items, we build an appropriate CT fd? Theorem 1:Let P be a set of items an@d’ be a BCT for

using a bottom-up approach as depicted in Algorithm 2. Firdt. For all levels?, £, < € < £;,4,, Of T, it holds:

we construct the lowest level that includes all item#irflines Cp = SYE(P,|Cyl).

1-5). Then, given a levef to build the next level + 1, we Proof: We shall prove the theorem by induction on the

select items from level whose distance is larger thafit! level ¢. The theorem holds trivially fof equal to the lowest

(so that the separation invariant is maintained), as lorsnel level of the tree, since this level includes all items &h

items exist (lines 6-17). To construct a CT whose items ah ea@ssume that it holds for level. We shall show that it also

level are as far apart from each other as possible, we followhalds for levell + 1.

greedy approach in selecting which items fraf to include Consider the construction of levél-1. From the induction

in Cy 1. Specifically, we start by selecting the two items(in  step, it holds thatC, = SEE(P,|C,|). Let p be thefirst

that are the farthest apart from each other (line 9) andcoati item in C, such thatp is the best candidate, i.e., has the

by selecting the item that has the largest minimum distance

3.2 Batch Construction



maximum minimum distance from the items already selectefjlgorithm 3 Insertp, 7.Qy, ¢)

but p cannot be moved t@’,,; becausep is covered by an Input: Anitemp, a set of node".Q, of a cover treeT" at level .
item already selected to be iy, 1. Let C’, C' € Cy, be  1: ¢ « {children(q) : g € T.Qs}

the set of items already selected to be includedin;. This 2 if d(p,C) > b" then

. 3: return true
means that, it holdsmingccr d(p,¢’) > mingecr d(',q’), 4 dse ,
forall p’ € C,\C’ (1) and, also ¢ € C’ such thatd(p, q) < 5. T.Qea+{g€C dp,g) < 35
(11 f 6: flag + Insert(p,T.Q¢—1,0— 1)
b1 (2). From (1) and (2), we get that for all € C,\C’, 3 7. if flag and d(p, T.Qr) < b’ then
q € C' such thatd(p’, q) < b**1, that is, all remaining items & q" argmingcp o g0 g <pt 4P 9)
. 9: makep a child of ¢*
are already covered by items @f. 10- return false
Thus, p is the last item that is considered for inclusionll: s

. . . ] . 12: et fl
in Cy;1, since all other remaining items i, are already 15  egqyf O

covered. Therefore, to constru€y, the items fromC, to  14: end if

be included in level+1 are considered in the same order as in

the greedy heuristic, until one item that violates the safjam

criterion (it is covered by the selected items) is encowter COMPplexity of the algorithm depends on how many nodes of

When this happens the selection stops. By the induction s h level covep. _ _ _
and Observation 1, this concludes the proof. 0 Next, we prove the correctness of the insertion algorithm.

Note that, we have made an implicit assumption that no ties—
occur when selecting items. In tf?e absencepof ties, both [gorithm 4 Deletep, {T.Q¢, T-Qe1, - -, T-Qr,... }, )
greedy heuristic and the BCT construction algorithm selek':'PutiTAglgsgbpv sets of nodeqT.Qr, T-Qey1, - - s T-Qeyyqy, } OF @ cover tree
items deterministically. We can raise this assumption, byl C'H{Chi'l'drm( YWTTTY
considering that if ties exist, these are resolved in a ipeci . T 1 ¢ {qc qcz'g(p’ q)‘ ;#}
order that may vary depending on the nature of the items, fog: Deiete(p, {T.Q—1, T.Qo, . f,ibgmw},z -1)
instance, by selecting the most recent among the items. 4 i d(p,C) =0 then

X i X . 5: deletep from level £ — 1 and fromchildren(parent(p))
Regarding the complexity of Algorithm 2, computational 6:  for ¢ € children(p) in greedy ordedo

steps are shared among levels. Each €], is a subset of \i/h; 2(; 1TQ ) > do
C, and, more specifically, it consists of the items@fin the o addg into level ¢/

order in which they were inserted intg; up to the first item 1% ye TR U {p}
whose minimum distance from the already selected items of: end while

C, is smaller tharb**!. Therefore, it suffices to perform thesel: q" argminger.q,, d(¥',q)

. " 14: keq a child of ¢*
computational steps only once (at the lowest level) and jusé:  edtar — o O

maintain the order in which each item was selected from tH@: end if
lowest level for inclusion in the next level. This gives us an
O(n?) complexity. Theorem 2:Let T' be a cover tree for a sét andp be an
As a final remark, another way to view the BCT is a#em,p ¢ P. If p can be inserted at an existing level Bf
caching the results of the greedy heuristic for alland then callingl nsert (Algorithm 3) with inputp and the root
indexing them for efficient retrieval. level Cy,, ., of T returns a cover tree faP U {p}.
Proof: Sincep can be inserted at an existing level, there is

always a (sufficiently low) level of the tree where the coioadit
3.3 Dynamic Construction of line 2 holds for the first time. Let — 1 be this level. Since
— 1 is the highest level where this condition holds, it must
old thatd(p, T.Q,) < b*. Therefore, the second condition of
ffie 7 holds and we can always find a parent for the new node,
thus maintaining the covering invariant. Whenever a new node

. . L - /
In dynamic environments, it is not efficient to re-construtﬁ
a BCT whenever an item is inserted or deleted. Thus,
construct a cover tremcrementallyas new items arrive and
old ones expire. We refer to such treeslasremental Cover . . - -
P is inserted at some level, it is also inserted at all loweelev

Trees(ICT9). as a child of itself, thus the nesting invariant is maintdine
Incremental Insertion. To insert a new itenp into a CT, |t remains to prove the separation invariant. We shall piiove
we use the recursive insert procedure shown in Algorithm fr level ¢ — 1. The proof proceeds similarly for lower levels.
It is based on the insertion algorithm in [8] and subsequegbnsider some other itemin C,_;. If ¢ € C, thend(p, q) >
corrections in [22] that we have extended to work for any*—1, |f not, then there is a higher levél > ¢ where some
b > 1. I nsert is called recursively starting from the rootancestor ofj, sayq’ was eliminated by line 5, i.ed(p,¢') >

level, _untiI a_level is found at. which is _separated from_ all blfjll. Using the triangle inequality, we have théfp, q) >
other items (lines 2-4). Each timenser t is called only with B+t

Vs 1
the nodes that cover (line 5). When the first level such that (P, 4¢)—d(¢;4') > d(p,q') =32, b’ = d(p,¢') = "=

is separated from all other items is located, a node thatrsové — 4 £=0°% — b0 % = pt1, O
p is selected as its parent (lines 8-9). To select a node as &or clarity of presentation, we have made the assumption
parent forp, we use anearest parenheuristic (as in the batch that the new itenp can be inserted at an existing level of the

construction) and assigmto its closest candidate parent. Thearee. In the general case, when the new ifemust be inserted




at a level lower thad,,;,, we keep copying nodes ¢f, , to efficiently, e.g., by using a hash table to store the size ofiea
a new levelCy, . _1, until p is separated from all other itemslevel. After locating/;,, the complexity of the algorithm is
in the new level. Similarly, whemp has a distance from the O(k), since a random subset 6f;, is selected.

root node larger tham‘~<=, we promote both the root node

andp to a new higher level,, ... + 1 and repeat this processAlgorithm 5 Level-Basic Algorithm.

until one of the two nodes can cover the other. Note thatesinGput. A cover treer, an integerk.

the explicit representation of the tree is stored, dugheabf Output: A setS with k diverse items irf.

levels is only virtual and is performed very efficiently. L by, Linas

i L. . . . 2: while |T.Cy, | < k do
Incremental Deletion. Similar to insertion, to delete an item, 3: ¢, « ¢, -1

3:

. : ; ; 4: end while
start!ng from the rootPel et_e (Algorithm 4) is called until 5 5« any subset of sizé of 7.C,
the item p to be deleted is located, keeping note of thee: return s

candidate nodes at each level that may haes a descendant.

Whenp is located, it is deleted from the tree. In addition, all The following theorem characterizes the solution attaimed
of its children are reassigned to some other candidate pargfe | evel-Basicalgorithm with respect to the optimal solution.
Algorithm 4 includes two heuristics for improving the Theorem 4 (Approximation Boundjet P be a set of
quality of the resulting CT. One is the usuagarest parent jtems, ¢OP7 (P, k) be the minimum distance of the optimal

heuristic shown in line 13: we assign each childpofo the iyerse set for the Mx MIN problem fork > 2 andd®? (P, k)

closest among its candidate parents. The other heuri$éitsre e the minimum distance of the diverse set computed by the
to the order in which the children gf are examined in line | ayel-Basic algorithm. Then:
6. We examine them in a greedy manner starting from the d°T(P,k) > a d°PT(P, k), wherea = &1

one farthest apart from the items at levéland continue to Proof: Let SOPT(P, k) be an optimal setTOZ)k. diverse

process them in decreasing order of their distance to th&sitejiems. To prove Theorem 4, we shall bound the level where
currently in¢’. the least common ancestor (LCA) of any pair of items

. Theorem 3:Let T' be a cover treg for a sdt andp pe an ,, ¢ SOPT(P, k) appears in the cover tree. Assume that the
item,p € P.If p ¢ Cy,,,, of T, calling Del et e (Algorithm | ca of any two itemsp;, p» in the optimal solution appears
4) with inputp and the root levels,,,, of T' returns a Cover for the first time at levehn. That is,m is the lowest (furthest

tree for P \ {p}. _ _ _ from the root) level that such an LCA appears.
Proof: The itemp is deleted from all levels thatinclude it, | &t s now compute a bound om. Assume that the

thus the nesting invariant is maintained. For each chitd p, | ca of any two itemsp;, p» € SOFT(P,k) appears at

we move up the tree, until a parent fpis located, inserting  |ovel m. Let p be this ancestor. From the triangle in-

in all intermediate levelg’ to ensure that the nesting invariaanua"ty, d(p1,p) + d(pa,p) > d(p1,ps). Sincepy, p» €

is not violated. Such a parent is guaranteed to be founddst IeSopT(R k), it holds that, d(;hpz) > dOPT(P,k). Thus:

at the level of the root). Adding under its new parent does d(p1,p) + d(pa,p) > dOPT(}7 k). (1)

lr:aote\llsio?r:i et;(e sggaa;a;t)iegnfg\/::ar)t_:: ;rg Of'lt'?z ig(t)e;r?;]n;i From the covering invariant of the cover tree, it holds that,
V | q,9 ' q | g VErl m J ol imi ol

constraint also holds for the parent qf Ap1,p) < 2y ¥ < =y Similarly, d(pa,p) < oy

For ease of presentation, we assumed that C,

.. Substituting in (1), we get that o~ > 4OPT (P, k). Solving

Otherwise, we need to select a new root. Note that, it {8F 7 We havem > log, (®51d?" (P, k)) — 1.

possible that none of the children of the old root covers all Since m is the first level that the LCA of any two
of its siblings. In this case, we promote those siblings thiieMS in the optimal solution appears, from the covering
continue to be separated from each other in a new (highBfPPery. it holds that at leveln — 1, there are at least

level ¢,,,. + 1 and continue to do so until we end up with & It€ms, i.e., the distinct ancestors of tieitems in the
level having a single node. optimal solution. Thus, there are at ledstitems at level

m—1=log, (452dOPT(P,k)) —2. (2)
This means that the cover tree algorithm will select items

4 DIVERSE SET COMPUTATION ; ) L .
) _ ) from this or a higher level. From the separation invariant of
In this section, we present algorithms that use the coverttre e cover tree. we havé®T (P, k) > b™~1. Using (2), we

solve thek-diversity problem. The Level algorithms exploit theget thatdCT (P, k) > plog (552 dOP T (P k) 2 dOT(P ) >

2
separation property, i.e., the higher the tree level, thendst b=14OPT (P k) b=2, which proves the theorem 0

. S 5
;parélts ZOdSS' Wei aIsAol pre.fhe nt fntthaffltuentl lTp[[imentaﬁgn We also consider algorithms that, instead of selecting any
e Greedy Heuristic (Algorithm 1) that exploits the cover k items from levell;, select these items greedily. The first

property to prune the search space. algorithm, calledLevel-Greedy performs a greedy selection

) ) among all items at level,. This requiresk|Cy, | distance
4.1 The Level Family of Algorithms computations. The second algorithm, callexvel-Inherit (Al-
We consider first the intuitive algorithm of selectiigitems gorithm 6), initializes the solution with all items 6, 41
from the highest possible level of a cover tree, that is, froend selects the remaining — |Cy, 11| items fromCy, in a
level ¢, such that,|Cy,+1| < k and |C,, | > k (depicted greedy manner. Thus, it requirés — |Cy, +1])|Ce, | distance
in Algorithm 5). Locating this level can be implementeccomputations.



Algorithm 6 Level-Inherit Algorithm. Algorithm 7 Greedy-CT Algorithm.

Input: A cover treeT’, an integerk. Input: A cover treeT’, an integerk.
Output: A set S with k diverse items irll". Output: A set S with the k most diverse items iff".
1. 4y +— lmax 1: S « {T.root}
2: while |T.Cy, | < k do 2: while |S| < k do
3: O < L, — 1 3: Q < children(T.root)
4: end while 4 while Q # 0 do
5. S« T.Cy 11 5: p* <+ argmaxpecq d(p, S)
6: candidates + T.Co \T.Coy 41 6: Q' « children(p*)
7: while |S| < k do 7 for all p € Q\{p"} do
8: p* 4= argmax,c.ondidates 4Ps S) 8: if g is not pruned by the pruning rulien
9: S« SuU{p*} 9: Q' + Q' U children(q)
10: candidates < candidates\{p*} 10: end if
11: end while 11: end for
12: return S 12: Q+— Q'

13: end while
14: S« SU{p*}
15: end while
Clearly, the bound of Theorem 4 holds for the solution of% e S
Level-Greedy. It also holds for the solution of Level-Iniher
since due to nesting, an item that appears at some level ) .
the tree also appears at all levels below it, thus, all itemcg]t PRUNING RULE: Let p a?g?_lzzem}ﬂ? nodes at level in
selected by Level-Inherit belong 1@, . In general, these two aCT. Ifd(p,5) 2 d(g, 5) + b—1 , We can prune the
algorithms are expected to produce more diverse sets tlean §Hbtree rooted a.
estimated general bound. In particular, for Batch Covee3re The CT pruning rule is pessimistic, in the sense that it
(BCTs), we can prove a better approximation. Specifically, assumes that each node may have a child located as far
follows from Theorem 1, that the application of Level-Grgedas possible from it. A more efficient pruning rule can be
and Level-Inherit algorithms on a BCT produces the sammed at the trade-off of maintaining some extra information
solution with the greedy heuristic. Specifically, at each node in the tree, we maintain the
Corollary 1: Let P be a set of itemsk > 2, d“F(P k) distance ofp from the node in its subtree that is the furthest
be the minimum distance of the diverse set computed by thpart fromp. We call this distance thelistance weightof
greedy heuristic andi®“” (P, k) be the minimum distance p denoted byw,(p). We call the tree that is annotated with
of the diverse set computed by Level-Basic or Level-Inheruch weights aVeighted Cover Tre@VCT). Then, we can use
when applied on a BCT foP. It holds thatd?“” (P, k) = Algorithm 7 along with the following pruning rule:
d9R(P k) > 1/y dOPT(Pk) .

WCT PRUNING RULE: Let p and ¢ be two nodes at level

o ina WCT. If d(p,S) = d(q,S) + wa(q), we can prune the
4.2 Greedy Heuristic using CTs subtree rooted aj.

Next, we present algorithms that use the cover tree to prune
the search space of the greedy heuristic.

The algorithms proceed as follows. We initialize the dieerst-3 Other Issues
set S by selecting either the root or the two furthest apaftonstrained Continuous k-Diversity. The two requirements
leaves of the tree. This corresponds to initializing theedge Of constrained continuous-diversity (Definition 1) can be
heuristic with either a random or the two most distant itemeasily enforced using cover trees. For the durability negui
Then, we proceed in rounds. At each round, we select one itéhent, items that are selected as diverse are marked as such
by descending the tree seeking for the iterwith the max- and remain part of the diverse set, until they expire. L&
imum distance(p, S), from the current sef. Specifically, the number of such items. In this case, our algorithms just
at each of thek — 1 (or k — 2) rounds, we start descendingselectk — z additional items from the tree. For the freshness
the tree from the highest levél, that contains items that arerequirement, non-diverse items that are older than the stewe
not already inS. We locate the itenp of C, with the largest item in the current diverse set are marked as “invalid” in the
d(p,S) and use it to prune its siblings. Then, we considé¢T and are not considered further as candidates for inglusio
as candidates the children of all non-pruned node§'0énd R .
repeat the process far,_;. In the enz, the best candidateAdJLIStIng k. The CT can be used to provide results for

from the leaf level is added t§ and we proceed to the nextmu.Itlple queries with different. .Thus, .each user can n-
) . . . dividually tune the amount of diverse items she wishes to
round. This process is shown in Algorithm 7.

Pruning is based on the following observation. Su r_eceiye. F_urthermore, the CT supports a “zoomi_n_g” type of
pose that at some point we consider for inclusion ?unctmnallty. _A_ssume that a user sel_ects a specific value fo
S an item p in C,. Let d(p,S) be the distance of 2 After receiving thek most diverse |tems,. she can reque_st
p from S and ¢ be any sibli7ng of p. Then, the best a larger number of closer to each other items by choosing
candidate in the subtree of is at aistancé at most: & largerk (“zoom-in”), or a smaller number of farther apart

Ze pi — B pmint] "items by choosing a smalldr (“zoom-out”). We can exploit
J=lmin+1 b-1 ' the nesting invariant to achieve continuity in the follogin
from ¢. Therefore, we can safely prune nodes according to thense. LetS be the set of thé: most diverse items and Iét

following CT pruning rule: be the highest level of the CT at which all items$fappear.



(a) Relevance.

(b) Relevance and Diversity.

Fig. 5. Selectingk = 10 out of n = 200 apartments in

dr (A pirpj) = 5 (r(pi) + 7(ps)) + Ad(pi, pj)-

If we defined,.(\, ps;,p;) = 0, for p; = pj, it is to easy to
see thatd, is a metric, ifd is a metric.

To incorporate relevance, we can now build the CTs using
distanced, instead ofd. It is straightforward to see that all
algorithms and related bounds advanced for the diversity-o
case directly apply to the combined relevance-diversigeca

Supporting a varying A. A drawback of the combined
approach is that we need to maintain a different CT for each
different value ofA\. We would like to be able to adjust
dynamically without having to reconstruct the trees. Tes thi
end, we consider building CTs based solely on distahaad

London based (a) solely on relevance (i.e., price) and (Q?lhancing our algorithms for selecting diverse sets so as to

incorporating diversity (i.e., geographical distancegleSted
items are marked with a darker (red) color.

For k&’ > k, we would like the sef’ with the ¥’ most diverse

incorporate relevance in the selection.

Let Cy, be the highest level with at leadt nodes. The
enhanced Level-Basic algorithm selects thenost relevant
items of Cy,, while the Level-Greedy algorithm performs a

items to be such thad” O S. To achieve this, we select itemsgreedy selection among the corresponding items using the

from level ¢ or lower, since the items iy appear at all levels
m < ¢. Analogously, fork’ < k, to construct the se$’ with
the &’ most diverse items such th&at C S, we may select
those items ofS that appear at levels higher thén

5 DIVERSITY AND RELEVANCE

In many cases, the items in the result of a query are rank

most often based on their relevance to the user query.
this case, diversification also addresses the over-spgstiah
problem, i.e., retrieving results that are very similar aclke
other. An example is shown in Figure 5 using our apartme
dataset, where relevance is defined based on price, i.e.,

combined distancd,., instead ofd.

We also introduce a new level algorithm, callégvel-
Hybrid, whose goal is to allow nodes with large relevance
scores that appear in low levels of the CT to enter the diverse
set. Level-Hybriduses an extended CT. In this extended CT,
for each internal nodg, we maintain a pointer to the node that
g&s the largest relevance score among all nodes in the subtre
rpoted atp. Let best(p) be this node. Level-Hybrid (Algorithm
8) performs a greedy selection among thaodes from level
Cy, whose descendants have the best relevance scores and

esek descendants. Level-Hybrid perfornis- 2k = 2k2

{sance computations.

cheaper the apartment the more relevant, and diverSity/-\i?gorithm 8 Level-Hybrid Algorithm

based on geographical location. Using only relevance, a use
is presented with apartments mostly from east London, whtf;éjt

ut: A cover treeT’, an integerk, a real number.
put: A set.S with the £ most diverse items iff".

with diversity, some relatively cheap apartments from othe7.

regions in London are also selected. %:
The MAXMIN k-Diversity problem with relevance. In gen- &
eral, the relevance score of an item is application dependers:
Without loss of generality, we assume a relevance functio@f
r : P — R* that assigns a relevance score to each itemy:
where a higher value indicates that the item is more reIevaﬂ

to a particular query or user. A natural bi-criteria objeeti 12

L+ Lmax

while |T.Cy, | < k do
b < £ — 1

end while

5! C < the k nodesp in T.C,, with the most relevanbest(p)

candidates < ()
for al p € C do

candidates < candidates U {p, best(p)}
end for

. p* — a‘rgmaXDEC(lndidates T(p)
TS+ SU{p"}

candidates < candidates\{p*}

seeks to maximize both the relevance and the diversity
the selected subset. In particular, thes¥MIN k-DIVERSITY
WITH RELEVANCE PROBLEM for a positive integelk, k£ <
n, is the problem of selecting a subsgt of P such that:

S* = argmax gcp fr(S,d,r)
. |S|=Fk
with

fr(Sv d,T) = minpiES T(pl) + Aminpi,pjes d(p’ij)

. PiFDj .
where A > 0 is a parameter that tunes the importance
diversification.

A combined relevance-diversity (d,) approach. It was
shown in [20] that the MXMIN k-DIVERSITY WITH REL-
EVANCE PROBLEM is equivalent with the MXMIN k-
DivERSITY PROBLEM if we replace the distance functiah
with the functiond,:

while |S| < k do
P Argmax, c condidates
S« Su{p*}
candidates < candidates\{p*}
end while
return S

;
15:
16:
17:
18:

dr(X,p, S)

In the CT implementation of the greedy heuristic, subtrees
are pruned based on both diversity and relevance. To this end
we maintain at each internal noge the largest relevance
9klue, w,(p), called relevance weightof any node in the
subtree ofp. The best possible pruning is achieved, if we
also use the distance weight. Using both weights, we have the
following pruning rule.

WCT PRUNING RULE WITH d,.: Let p andg be two nodes at
level ¢ in a WCT. Ifd,.(p, S) > d,(q,5) + 3 (r(q) + w,(q)) +

2
Awg(q), we can prune the subtree rootedqgat



TABLE 1: Characteristics of the datasets.

TABLE 2: Parameter values.

[ Dataset | Cardinality | Dimensions [ Distance | Relevance scores | Parameter Range Default
Uniform 10,000 2 Euclidean | Uniform/Clustered Synthetic | Redl Synthetic | Real
Clustered 10,000 2 Euclidean | Uniform/Clustered Base b) 1.2-2.2 1.6

Cities 5,922 2 Euclidean Clustered Diversification factor &) 0.0-1.0 0.2
Nestoria 1,000 8 Haversine Price-based Dataset sizer) 1-10,000 | 300-5,922 4,000 -
Faces 300 256 Cosine Uniform Size of diverse setk() 100-300 10-100 150 50
Flickr 1,000 - Jaccard Uniform Window size () 1,000 100 (no window)
Window jump step k) 100-900 10-90 (no window)

Clearly, we could maintain only the relevance weight, in

which case the distance is bounded using the CT pruning ruséores in a clustered manner to model the fact that some
specific areas may be more interesting than othdfaceés
Maximal Marginal Relevance (MMR) Another popular consists of 256 features extracted from each of 300 human
approach for combining relevance and diversity is Maximace images with the eigenfaces method [1] and uniformly
Marginal Relevance (MMR) (e.g., [12], [19]). MMR con-istriputed relevance scores. Finally, foElickr”, we used
structs a relevant and diverse subsetn a greedy fashion, gata from [3] which consists of tags assigned by users to
by starting with either a random or the most relevant ite'ﬁhotographs uploaded to the Flickr photo service [2]. Tdble
and adding at each round the itemy with the maximum symmarizes our datasets, while Table 2 our parameters.
contribution, i.e., the itemp; with the maximum quantity:  Our datasets capture result sets with different data ctearac
mr(, pi, S) = Ar(p;) + (1 — A) miny, es d(p;, p;) istics. Concerning spatial distribution, for exampleriform-

where A € [0,1] is a parameter that tunes the relativgjniforn’ contains items that cover all the available space,
importance of each of the two factors. while “Cities’ (due to the geography of Greece, which includes

All the presented algorithms are directly applicable to MMR, |arge number of islands) provides us with both dense and
by usingmr instead ofd,. For example, we now have thesparse areas of items (Figure 3)Fates contains many
following pruning rule. distinct small dense areas, whil€&lickr” is generally a very

WCT PRUNING RULE WITH MMR: Let p and ¢ be two SParse dataset.

nodes at level in a WCT. If d.(p, S) > Mw.(q) + (1 — ) Setup. All methods are implemented in Java using JDK 1.6.

(d(q, S) + wa(q)), we can prune the subtree rootedgat Our experiments were executed on an Intel Core i3-2100
3.1GHz PC with 3GB of RAM.

6 EVALUATION 6.1 Building and Maintaining Cover Trees
In this section, we experimentally evaluate the performasic fjyst we evaluate the cost of building cover trees. Figure 6
cover trees for dynamically computing diverse sets. shows the real-time cost of building an ICT by incrementally
Datasets. We use a variety of datasets, both real and synthetinserting items. This cost depends bnsince smaller values
Our synthetic datasetsonsist of two-dimensional points inof b lead to new items being inserted in lower tree levels,
the Euclidean space, where each dimension takes valueghims increasing the cost of individual insertions. The edst
[0, 1]. Items are either uniformly distributed or form clest depends on the distance metric used, since some distanee com
of different sizes. We assign relevance scores to itemerritlputations are more expensive. For example, inserting 1,000
uniformly or in a “clustered” manner around specific targatems of the Flickr” dataset, using the Jaccard distance, takes
items, so that items that are closer to the target items ggt to 5 seconds, while inserting the same number of items
larger relevance scores than items further away. Clustertedtes less than 0.1 seconds for our Euclidean datasets. The
assignment is used to model the common case where we igaiults are similar for the omitted datasets.
high relevance scores around specific items that corresigpond The cost of building a BCT can be divided into (i) the cost
different interpretations of the query. Thus, we get founbd of selecting items from the leaf level to build the first nea
nations: (i) uniform spatial distribution with uniform eslance level and (ii) the cost of assigning nodes to suitable parent
scores (Uniform-Unifornt), (i) uniform spatial distribution Table 3 shows these costs for the uniform dataset. The cost of
with clustered relevance scores centered around unifornslep (i) is the same as the cost of executing the greedy hieuris
distributed target items Uniform-Clustered), (iii) clustered for k = n and is independent df or the dataset distribution.
spatial distribution with uniform relevance score€l{istered- The cost of step (i) dominates that of step (ii) and this is why
Uniform”) and (iv) clustered spatial distribution with clusteredhe total building cost for BCTs does not differ significantl
relevance scores around the centers of the spatial clusteith b or with spatial distribution. Building BCTs is orders
(“Clustered-Clustereyl. of magnitude more expensive than building the correspandin
We also employfour real datasets“Nestorid consists of ICTs for the same datasets.
information about 1,000 apartments for sale in the Londea ar Figure 7 depicts the size of ICTs and BCTs for different
retrieved from [5]. We relate relevance with price and convalues ofb (n = 4,000 for our synthetic datasets). The x-axis
sider cheaper apartments as more relevant, while sinyil&rit corresponds to the tree level, starting from 0 which denotes
measured based on geographic proximity (Haversine disjand¢he root level, while the y-axis corresponds to the width.{i.
“Cities’ is a collection of geographical points representingumber of nodes) of the corresponding level. Smaller values
5,922 cities and villages in Greece [4]. We assign relevanoéb lead to taller and narrower trees. Further, although ICTs
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(a) Uniform. (b) Cities. (c) Nestoria. (d) Flickr.
Fig. 6: ICT building cost. The y-axis corresponds to thelttitae to incrementally insert alh items in the tree.
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Fig. 7: Tree sizes of the constructed ICTs and BCTs (full iniptepresentation). The drawn lines in each figure cowwadp
to smallerb values as we move from left to right.
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TABLE 3: BCT building cost (sec). 14 ——b=12 Greedy
Uniform 12 o g:;.g greejy
x =2. ree
n_ | Step () | Step (i) b=1.2 | step (i) b=16 | step (i) b=2.0 10 | b2 creedy-cT
1,000 | 11181 0.048 0.044 0.043 g LI By AU
2,000 | 107.103 0.211 0.209 0.203 2 g | oazomeawer 277
3,000 | 416.660 0.498 0.416 0.398 T, o b-20Greedy T &
4,000 | 899.799 0.812 0.503 0.490 P 2 - ‘g,/fg
s e
. . 9 —
are constructed incrementally, the resulting trees havest 200 4000 600 8000 10000 S 5075 100 1% 150 175 200 229
identical structure with the corresponding BCTs. In gehera (a) Uniform (: = 150). (b) Uniform (n = 4000).
the height of the tree depends on the minimum and maximum Fig. 8: Pruning for the diversity-only case.

pairwise distances in the dataset, while the width of theltev
depends on the spatial distribution of the data. TherefoféGreedy”). We use our uniform dataset to see how pruning
for example, levels get narrower faster as we move up tiBproves the cost of Greedy withandk and different values
tree for ‘Cities’ rather than for Uniforn?”, even though their of b (Figure 8). Clearly, Greedy-WCT is more effective, since
height is roughly the same, sinc€ities’ is a more clustered the actual distance to the furthest descendant of each node
dataset. Similarly, a wide tree is constructed fBti¢kr”, due is used for pruning. In general, pruning works better for non
to sparsity. uniform datasets, since each selection of a diverse itenitses

In terms of maintenance, a single insertion in an ICT cosi pruning a largest number of items around it.
1 msec for trees up to 5,000 and up to 1.3 msec for trees withNext, we experimentally compare the performance of the
10,000 items. The cost of deletions is higher because, aftegreedy heuristic, using the Greedy-WCT implementation, and
node is removed, its children have to be re-assigned to newr Level algorithms, i.e., Level-Basic, Level-Greedy and
parents. For all datasets ah#alues, a single deletion requiresLevel-Inherit. Figure 9 depicts the achieved diversity and
less than 3 msec for trees up to 5,000 and less than 7 mesemresponding cost when varyirkg For comparison, we also
for trees with 10,000 items. We also measured the cost refport the diversity attained by randomly selectibgf the
maintaining weights in the case of WCTs which may require items (RA). Clearly, the larger thé&, the less diverse
some extra bookkeeping to update weights. For all datasdts she selected subset. The comparative performance of all al-
b values, 4-6 additional nodes where accessed per insenmiongorithms is the same for all types of datasets. Specifically,
average. The effect on execution time is negligible. for all datasets, Greedy-WCT achieves the best diversity at
the highest cost, Level-Basic achieves the worst diversity
the lowest cost, while the other two Level algorithms lie in-
We next evaluate the performance of the various algorithraetween. Level-Inherit achieves similar diversity withvee
introduced in this paper in terms of the quality of the re®@ Greedy but is faster.
diverse sets and the computational cost.

6.2 Computing Diverse Subsets

The Level algorithms select items from the appropriate tree
Diversity Algorithms. We first measure the cost savings whetevel. Thus, their performance depends on the tree. Rétal]l t

applying the CT RUNING RULE (“Greedy-CT”) or WCT clustered datasets result in trees whose levels get narrowe
PRUNING RULE (“Greedy-WCT”) on an ICT vs. executing faster as we move up the tree. Level-Greedy and Level-lhheri
our cover tree based implementation of the greedy heurisgierform a greedy selection among the items in the apprepriat
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Fig. 9: Diversity and cost for the diversity-only case witarying k.

level, thus the wider the level, the worst the complexity Hrel 15 15
better the diversity achieved. This also explains why thest
increases in “steps” ak increases, since we gradually seleci§ 1
items from lower (and wider) levels. Level-Basic just s&dec g
any k items, thus the cost does not increase withwhile "~ °7
the achieved diversity decreases more rapidly; ascreases, e
since items are selected randomly instead of greedily fro &227) oo G (B G (3?227)
wider levels. b

Figure 10(a) shows how the cost varies withSmallerb (@) Uniform. (b) Uniform.
values may increase the building cost of the tree (Figure Big- 10: Cost for the diversity-only case when varying &a)
but also lead to faster diverse set computation, espedially (t. e numbers in parentheses are the sizes of the highest leve
Greedy-WCT. The cost of Level-Greedy and Level-Inher#ith at leastk items) and (b)..
depends on the size of the level from which items are selected =3 @ @
Figure 10(b) shows how the cost scales alongAll Level P37, 1, 1, [reievence

algorithms scale very efficiently wit, since they depend [ Jo [sojssjzs| 2 °® | ., @ @ @ @@
500 [53]7.5|P- |05

only on the size of the corresponding tree level. P.

. . . . . p, 35(53[0 [5.0|p, |01
Diversity with Relevance Algorithms. Let us first evaluate b, 25]75[50(0 ||p, [08 | ¢=1 @@@ @@@@

pruning (Figure 11). In the following, we report results for ) ) ) )
MMR (similar results are attained fat,). We consider two (@ 'tems- (b) Before insertion. (c) After insertion.
rules for pruning: using only relevance weights (denotdd9: 12: The arrival ofp, changes the relations among all
“Greedy-CT”) and using both relevance and distance weigrt@des of the PCT.
(denoted “Greedy-WCT"). Again, using distance weights imarrival of a single item may change the relations among all
proves pruning especially for small values)ofi.e., emphasis nodes in a PCT. Consider the PCT of Figure 12(b) with 2.0
on diversity). Pruning is more effective for clustered valece and the relevance scores and distances of Figure 12(a). This
scores, since in this case, there are large subtrees withR@T is unique fomp., ps, ps, Sincep; must appear at the top
relevant items that are pruned early. For the same reasdue to its relevance angs cannot be covered by, at ¢ =
pruning generally performs better for very large values\of 2. Assume thap, arrives. Sincep, has the largest relevance
Finally, pruning is less effective forFlickr” whose trees are score, it must appear at the top of the treeis not separated
shorter due to its sparsity. from p, at levels? = 3 and? = 2, therefore, it cannot appear
We next compare Greedy-WCT with the Level algorithmghere.p, andp; are separated fropy at¢ = 2 and are placed at
We also consider a CT variation, call@&tiority Cover Tree this level. The resulting PCT is shown in Figure 12(c). Netic
(PCT) introduced in [9] for computing priority medoids. Athat all pre-existing nodes;, p2, ps now have different parent
PCT is a CT which in addition to the three invariants of a CHRnd children nodes than before the arrivapef which means
satisfies a fourth one that requires each node of the treeso hthat the tree is in effect re-built from scratch.
relevance score larger than or equal to the scores of allsnodeFigure 13 shows the relevance, diversity and cost of the
in its subtree. To construct a PCT so that the fourth invariamarious algorithms when varying. We report results for the
is satisfied, items need to be inserted in descending orderfadter greedy heuristic, i.e., Greedy-WCT and the threelLeve
relevance. In general, PCTs cannot be built incrementadly. algorithms (namely, Level-Basic, Level-Greedy and Level-
illustrate, we present a simple example that shows that tHgbrid) applied on an ICT and a PCT for two synthetic and
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two real datasets. Note that due to the fourth invariant ef tlof the ICT. Only pruning is slightly more efficient, since
PCT,best(p) = p for every nodep of a PCT, thus Level-Hybrid larger relevance scores appear at high levels. Due to space
is the same with Level-Basic for PCTs and it is not depictetimitations, we omit the results for the rest of our datasets
“Clustered-Uniforrh and “Clustered-Clusterédbehave sim-

In terms of diversity and relevance, for all datasets, Levalarly to “Uniform-Uniforni and “Uniform-Clustered re-
Hybrid is the one closer to the greedy heuristic (whichpectively, while Cities’ has similar behavior to Yniform-
provides a good approximation of the optimal solutiong|ustered and “Faceg to “ Clustered-Uniform
Level-Hybrid achieves such results with much smaller cost.

Among the Level algorithms, Level-Basic is clearly the ést Continuous k-Diversity. We next focus on streaming arrivals
of items and on how the application of our continuity re-

guirements affects the retrieved solutions. We show redoit

Level-Hybrid performs a

greedy selection amodiy items,

while Level-Greedy performs a greedy selection amgrig |
items, where/l; is the highest level with at leagt items.

“Nestorid, where we use the actual apartment upload time
Therefore, the relative cost of Level-Greedy when compar@§ the time in which items enter the stream. We also use
with Level-Hybrid depends on the size of the level witfihe “Clustered-Uniforrhdataset which has the most different
regards tok. For example, for Flickr”, which has much distribution. For ‘Clustered-Uniforrh the items that enter the
wider levels than the other datasets, Level-Hybrid has fowgiréam are selected in a random manner.

cost than Level-Greedy. Note also that the cost of the levelFigure 14 reports results for the NGdONSTRAINED and
algorithms does not depend on The quality and cost of the CONSTRAINED k-DIVERSITY PROBLEM. We vary the
the PCT solutions does not differ substantially from thogamp steph of the window and fix the other parameters
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Fig. 14: Relevance ((a)/(e)), diversity ((b)/(f)), cost){(g)) and Jaccard similarity ((d)/(h)) for the Unconsted (U) and
Constrained (C) MMR case in a streaming setting when varying = 150 (resp.k = 15), w = 1000 (resp.w = 100) for
the synthetic (resp. real) dataskt= 1.6, A = 0.2).
to study the behavior of the algorithms as the number of two which is shown to be the best that can be achieved by
valid diverse items from the previous window changes. Wany polynomial algorithm [27]. A thorough comparison along
report average values over all windows as the window slidesth novel variations can be found in [29].
along the stream of items. In most cases, the constrainedinother line of research considers selecting thdiverse
items using tope threshold algorithms. Such approaches as-
constrained alternatives. For all algorithms performingegly sume the availability of sorted access methods. In contirast
computations, the constrained variations are executddrfasthis paper, we propose such sorted access methods based on
since the diverse subset of each window is initialized wliid t cover trees. The approach in [19] offers an implementation
valid items of the diverse subset from the previous windowf MMR in low-dimensional vector spaces assuming the
and thus, fewer computations are required. Level-Basic asgailability of both relevance-based and distance-basegd
unaffected, since it does not involve any greedy steps.dBssiaccess methods. A number of variations of sorted and random
cost savings, another important aspect of the constrainsttesses are also employed in [7] to retrieve aktdist of
variations is the higher sense of continuity between subessq relevant and diverse results. The focus is on scheduling the
diverse sets seen by the users. To quantify this, we usmler of the various accesses for cost efficiency.
the Jaccard similarity between the acquired diverse séts. T Finally, other approaches define diversification in terms of
Jaccard similarity of two sets of itemS;, S, is defined as: covering different categories or interpretations of ambigs

web queries. Such approaches assume that there exists a
The higher the Jaccard similarity of two sets, the morelated taxonomy of both queries and documents [6], or
common items the two sets share. In Figure 14, we see thaery logs, and a priori knowledge of the distribution of the
underlying possible specializations of queries [11].
Indices and structured data. There are a couple of ap-
proaches that consider indexing to assist diversificafibost
Due to the NP-hardness of theDIVERSITY PROBLEM, many such works consider structured data. Relational data are co
different algorithms have been proposed for its solutiag.(e sidered in [28]. Attributes aréotally orderedby importance
[18], [20], [29], [30]). In this paper, we have proposed aim terms of diversity, so that two tuples that differ in a High
approach based on cover trees to address the dynamic caspertant attribute are considered highly diverse, evehefy

‘S1ﬁSz|
‘SlUSQl

where the data items change over time.

80 90

10 20 30 40 50 60 70 80 90
h

(h) Nestoria.

(U) Level-Greedy—+— RA
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share common values in other less important attributess Thi
Static data. Most approaches rely either on greedy or indiversity measure allows the exploitation of a Dewey encgdi
terchange heuristics [18], [14]. Greedy heuristics camts$tr of tuples that enables a tree structure which is later etqaldb

the diverse subset incrementally by selecting at each biep select thek most diverse tuples. Contrary to our approach, the
item that is the furthest apart from the items already setect proposed method is limited to this specific diversity measur
Interchange heuristics start from a random solution andatry A spatial index is exploited in [21] to locate those relevant
improve its diversity by swapping items in the solution witmearest neighbors of an item that are the most distant to each
items outside it. It has been shown that the greedy heuristither. Our work is different since our goal is not to locate
for the MAXMIN variation produces a performance guarantgbe nearest diverse neighbors of a single object but rather t



locate a relevant and diverse subset of all available itéins.[3]
different problem for structured data is considered in [24&t [4]
of selecting a limited number of features that can maximal 5]
differentiate the available items.

Cover trees are employed in [23] for solving thenedoids [7]
problem. A variation of cover trees, called Priority Covefg]
Trees (PCTs), were employed in [9] for computing priority
medoids, i.e., medoids having a high relevance factor.d@ssi [°]
solving a different problem, this approach cannot be errqzdoy[lo]
in dynamic environments, since all available items must be
known in advance for building PCTs. (11]

Continuous data. The related literature focusing on contin{12]
uous data is considerably more limited. None of the existing
proposals considers an index-based approach. [13]
In our previous work [13], we evaluated various heuristics
in case of continuous data, and a greedy heuristic that eggor(14]
durability was shown to outperform the other methods. 65]
method based on interchange heuristics is proposed in [25].
Upon the arrival of a new itenp, all possible interchanges (16l
betweerp and the items in the current solution are performeg,
and p replaces an item in the solution, if this replacement
increases diversity. A similar technique was also propased 18]
[16]. However, with these methods, old items do not expirﬁ,g]
and a new item may enter the solution only upon its arrival.
The MaxSum diversification problem is studied in [10], in[20]
the setting of streaming data and monotone submodular gi
versification functions. Al/2-approximation greedy algorithm
is proposed which is faster than the usual greedy heuristi?l
Dynamic updates are also considered in the sense that me
the underlying set of available items changes, intercheinge
are attempted to improve the computed solution. Finall#4]
the online version of the diversity problem is considered i[ri5]
[26], that is, selecting a diverse subset without knowing th
complete set of items [26]

8 SUMMARY
Recently, result diversification has attracted considerait 28
tention. However, most current research addresses the stat
version of the problem. In this paper, we have studied ti®®]
diversification problem in a dynamic setting where the items

to be diversified change over time. We have proposed an indexy
based approach that allows the incremental evaluationeof th
diversified sets to reflect item updates. Our solution is tast
on cover trees. We have provided theoretical and experahent
results regarding the quality of our solution.
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