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ABSTRACT

Marina K. Drosou. PhD, Computer Science and Engineering Department, University of
Ioannina, Greece. October, 2013. Relevance and Diversity-based Ranking in Networlk:-
Centric Information Management Systems. Thesis Supervisor: Evaggelia Pitoura.

With the explosion of the amount of information currently available online, locating
valuable or important information can prove out to be an overwhelming task. This
abundance of accessible information creates the need for developing methods towards
selecting and presenting to users representative subsets. Various ranking techniques
have been developed in the past, to allow users to quickly access what is most useful
to them. Ranking of information is usually based on some notion of relevance of
each specific piece of information, or item, to the user needs. Ranking based solely
on relevance, however, may lead to enhancing the over-specialization problem, i.e.,
the retrieval of too homogeneous results for a user query. For this reason, retrieving
diverse results, i.e., items that are different to each other, has recently attracted great
attention as a means to complement relevance-based ranking and increase the quality
of results retrieved by information systems.

Generally, the problem of diversification is defined as follows. Given a set P of items
and a budget k, select a subset S of P, with |S| = k, such that, S maximizes some
diversification objective. Among the many different objectives proposed in the past for
selecting diverse items, one can find approaches based on (i) content (or similarity), i.e.,
selecting items that are dissimilar to each other, (ii) novelty, i.e., selecting items that
contain new information when compared to previously seen ones, and (iii) coverage,
i.e., selecting items that belong to different categories. Selecting diverse items has been
shown to be an NP-hard problem.

This PhD thesis concerns the development, implementation and evaluation of mod-
els, algorithms and techniques for the ranking of information being presented to users
of network-centric information management systems. This ranking is based on the
importance of each piece of information. We consider that importance is influenced by
both relevance to user information needs and diversity. Relevance is important so that
users are only presented with the most useful results according to their needs, while

diversity ensures that the received results do not all contain similar information.

We focus on two different axes: (i) diversifying dynamic data and (ii) diversifying

xiii



data based on dissimilarity and coverage. In addition to this, we also develop a system
prototype, called PoikiLo (from the Greek “mowkido”, meaning “diverse”) for evaluating

the results of various diversification models and algorithms.

Most previous research considers the static version of the problem, i.e., the available
items out of which a diverse set is selected do not change over time. In this thesis, we
focus on the dynamic diversification problem, where insertions and deletions of items
are allowed and the diverse set needs to be refreshed to reflect such updates. We
propose an index-based approach using a spatial-index structure, namely the Cover
Tree. Cover trees are data structures originally proposed for approximate nearest-
neighbor search. Motivated by popular proactive delivery paradigms, such as news
alerts, RSS feeds and notification services in social networks, where users specify their
interests and receive relevant notifications, we also consider the continuous version
of the problem, where diversified sets are computed over streams of items. To avoid
overwhelming users by forwarding to them all relevant items, we consider the case in
which a representative diverse set is computed, instead, whose size can be configured
by the users. We introduce a sliding window model along with continuity requirements.
Such requirements ensure that the order in which the diverse items are delivered
follows the order of their generation and that an item does not appear, disappear and
then re-appear in the diverse set.

We introduce a suite of algorithms that exploit the cover tree to provide solutions
with varying accuracy and complexity and also provide theoretical results that bound
the accuracy of the solutions achieved with regards to the optimal solution. We extend
our approach to select items that are both relevant and diverse. We consider two
different approaches. The first one considers the relevance of the items when inserting
them into the index, while the second one combines relevance with diversity when
selecting items from the index. We perform an extensive experimental evaluation of the

efficiency and effectiveness of our approach using both real and synthetic datasets.

We also address diversity through a different perspective. Let P be the set of avail-
able items and r a positive real number, which we call radius. Let also d be some
distance metric. For p;, p; in P, we consider that p; is similar to p; if and only if d(p;, p;)
< r. We also say that p; is covered by p;. Given P, we select a representative subset 5,
S C P, to be presented to the user such that: (i) all items in P are covered by at least
one item in .S and (ii) no two items in S cover each other. The first condition ensures
that all items in P are represented by at least one similar item in the selected subset.
The second condition ensures that the selected items of P are dissimilar. We call .S
r-Dissimilar and Covering subset or r-DisC diverse subset.

In contrary to previous approaches to diversification, instead of specifying a required
size k of the diverse set, our tuning parameter r explicitly expresses the degree of
diversification and determines the size of the diverse subset. Increasing r results in

smaller, more diverse subsets, while decreasing r results in larger, less diverse subsets.



We call these operations zooming-out and zooming-in respectively. To retrieve a concise
representation of all items, we aim at selecting the DisC diverse subset containing the
smallest number of items. We also define weighted DisC diverse subsets, where each
item is associated with a weight indicating its relevance and multiple radii DisC diverse
subsets, where each item is associated with a different radius. Multiple radii are used
to allow different areas of the data to contribute more or less items to the selected
diverse subset.

We formalize the problem of locating minimum and minimum weighted DisC diverse
subsets as an independent dominating set problem on graphs. We provide efficient
algorithms for locating approximate solutions as well as corresponding theoretical ap-
proximation bounds. We propose efficient implementations of our algorithms based on
spatial index structures. In particular, we use the M-tree. We compare DisC diversity
with other popular diversity models, both analytically and qualitatively, and provide an

extensive experimental evaluation of various aspects of our approach.

Finally, we present a system prototype, called PoIKILO, to assist users in locating,
visualizing and comparing diverse items based on a suite of different diversification
models and algorithms. We provide implementations of a wide variety of diversification
approaches.






IIEPIAHWH

Mapiva Apooou 1ou Kavotavtivou kat tng Keovotaviivag. PhD, Tprpa Mnyavikov H/Y
kat [TAnpogopikng, [Navermotrpio Ioavvivev, OxktwBpilog, 2013. Yrootpiln Atabaduiong
ue Baon Ipotunoeig kar Atagopeticomnia os Aiktvo-Keviptka Xvotnuata Awayeipiong Ae-
bopévav. EmuBAéniovoa: Euvayyedia [Titoupa.

O 6yKog tng MAnpogopiag mou yivetat kabnpepva diabeopiog otoug xprjoteg Hradik-
TUOK®OV OUCTNPATROV eivatl tepdotiog. O evioriopog Xpnoipng minpopopiag péoa o autov
Tov oyko Sedopévav prmopel va arodeixOel eaipetika 6Uokodog. Ta tov Adyo auto,
dlapopeg texvikég H1aBabpiong mAnpogopiag €xouv mpotabel Katd KAlpoug, Ol OToieg
OTOXEUOUV 01 H1EUKOAUVOT) TRV XPNOTOV Katd tnv avadtnorn minpogdopiag. H 6iaBabpion
g mMAnpogopiag sivatr cuvnOwg Paciopévn os KAmola évvola guvagetag (relevance) g
IIPOG TO £pWINHA TOU €Xel Y€oel 0 ¥prjotng. Qotoco, 1 6iaBddpion pe Pdaon artokAelo-
TIKA T ouvdagela PIopel va evioxuoet 1o rpoBAnua tng urnep-e§eidikevuong, dndadn myv
AVAKTNOT] ATIOTEAEOPATAV TIOU £lvatl PeV OXETIKA T0 KaB€va e 10 ep@INHa ToU XP1 ot aAAd
elvat oAy opotla petagu toug.

H mowiflopopgia (diversity) tov debopévav £xel avaderxbel ta tedeutaia xpovia og Evag
TPOI0G AVIIHETRINONG TOU TpoBAfjatog tng uriep-e§eidikevong. IIépav autou, moAAEg
QOpPEG, 01 Xprioteg Y€touv epwtrpata pe pia diabeon e§epevvnong, SnAadn evdiapépoviat
VA AVAKIOOUV ATTOTEAEOPATA Td OIMoid va KAAUMIOUV S1a(OPETIKEG OITUKEG YOVIEG TOU
epatpatog toug. Paviaoteite yla napdadetypa €vav xprnotn Imou evdladEpetal ya v
ayopd evog axivhtou kat JEIel €va aviiotolxo epatnRa o€ £va TANPO(POPIUKO CUCTHH.
Ev yével, éva oUuvolo moKiAe®v anotedeopdtev (Y. akivnia oe S1aPOPETIKEG OUVOIKIEG,
He drapopetiko ap1Opod unvodePatiov KTA.) TEPIEXEL IO XPH O TTANPodopia amo &va
OUVOAO ATOTEAEOPRATOV HE TIapopola xapaktnplotikd. H augnon ng nowkidopopdiag tov
anoteAeopdtev Spa CUPMANPEHATIKA PE T ouvadeld Toug yia 1) BeAti®on g mootntag
TOU AroTeAE0ATOG TTOU TTAPOUGCIALETAl OTOV XPI|OT).

TCevikd, 1o PpoBANPa g ermAoyrg nokiAopopdpev (diverse) arotedeopdtov opidetat wg
e€ng: Aoopévou evog ouvodou P arotedeopdtov, 0Kordg eivat va Bpoujie £€va UrtoouvoAo
S tou P této10 Gote va peylotornoteitatl 1 moKIAOPopQia TV EMAEYHEVOV ATIOTEAEOPATRV,
oUPPGOVA JE KATIO0 KPP0 TTOKIAopopdiag.

Z16X0g autng tng datpBrg eival n avartudn, vdoroinon kat a§loAoynorn HovieAav,
aAyopifpev Kat tTexvikev yia v urnoot)pi§n §iaBabpiong pe faon 1o ) ouvagela 6co
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Kal TV NoKopopdia tov amnoteAeopdiov oe HIKTUO-KevIpIKA ouotrjpata diaxeipiong
rAnpogopiag. Ermkevipovoupe to evilapépov pag Kupieg rmave oe duo dfoveg: (i) v
rokiAopopdia mAnpodopiag mou adAadel Suvapika oto xpovo kat (ii) tnv mokidopopdia

nAnpogopiag pe Bdaon v avopodinta (dissimilarity) kat v kaAuyn (coverage).

[TapoAo 10 evBladEPOV TG EPEVUVNTIKIG KOVOTNTAG Y1id TNV audnorn tng rokilopopdiag,
1 TIPONYOUHEVH £peuva adopd KUPImG T OTatiKy £€KO00r ToUu MPOBANPATOG, OIOU 1)
61aBcoun mAnpogopia pével apetdBAntn oto Xpovo. Xta mAdaiola autng Ing dwatpiBng,
aoxoAoupaocte pe ) Suvapikn €kdoorn Tou TPOBANHATOG, OTTOU £XOUHE dUVAMIKEG £10-
ayoyeg kat Staypapég 6edopévav 01 oroieg TIPETEL va aviikatorntpidovial ota okAopopdpa
arotedéopata mou rnapouotadovidal oTov Xpnotr).

AxolouBoupe pia mpoogyylon Paciopévn oe X0pikeg Hopég eupetnpiaong, Kat ouy-
KeRpPEva, oe Hévipa emkadluywng (cover trees). Emikevipwvopaote oe éva KAAOCOIKO
poBANPIa mowkopoppiag (MAXMIN), o ortoio, HOOPEVNG YA PETPIKEG ATIOOTAOTG, OTO-
XEUEL OTr] PEYIO0TOIONN 01 TG EAAX10TNG ArOotacng BETasy 6Uo arotedeopdtov. To rpoBAn-
Ha auto €xet anoderxbel iwg avrkel otnv kKAdon tov NP-hard nipoBAnuatav. IMpoteivoupe
€va ouvodo aAyopibuwv, dladopetikng akpiBelag KAl ITOAUTTAOKOTNTAG, Ol OTI0101 EKPET-
alAsvovial TG XOPIKES 1010TNTES TRV HEVIP®V EMKAAUYNG Yid TV artodoTiKY) eM{AUoT ToU
poBANatog. Amodeikvuoupe Sewpnuikd amoteAéopata mou @PACooUV TNV akpibela tov
AUoewv pag oe oxéon pe ) BEAtotn Avorn. TéAog, emekteivoupe toug alyopibpoug pag
®OTE Va OUVUITIOA0Yi{oUV KAl T CUVAPELD TV ATTOTEAEOPATOV KATA TV IMAOYT) TOUG.

H mipornyoupevn épsuva Sswpel Kuping to peéyebog k tou mokidopoppou cuvodou S
®G MAPAPETPO TOU MPOBANIATOS KAl OTOXEVUEL OV EIMAOYI TOV Kk ATMOTEAEOPATOV TTOU
HEY10TOIO10UV KATIO10 KPITHP10 MotKIAopopdiag. Zta mlaiola autig mg diatpiBng, egetd-
Joupe v nowkidopopdia arod pia véa ornuiky yovia. ‘Eotew P éva ouvolo arnotedeopdtov
KAl 7 évag 9eTKOg MPaypatikog apibpog, tov onoio kadovupe aktiva. 'Eote® akopa pia
HETPIKY) anodotaong d. Oewpoupe nwg dUo arotedéopata py, pe tou P eivatl maoduoa av
rat povo av d(pl, p2) < r. Le authjv v Nepirntoorn), Aépe eniong neg 1o p; Kajumtel 1o po.

Aoopévou tou P, 9éloupie va eVIOITiOOUE £€va AVIUTPOOMITEUTIKO, TTOIKIAO UTTOOUVOAO
S tou P, térolo wote (i) 6Ada ta arotedéopata tou P va kadurrovial arnd touldxiotov
éva arotédeopa tou S kat (ii) 6Aa ta arotedéopata tou S va givat avopola petaguy toug.
H mpotn ouvOnkn e§aopalidel 6tt 6Aa ta arotedéopata €KIPOOEITOUVIAL A0 KATTO10
TIAPO010 ATTOTEAECIA OTO EMMAEYHEVO UTTIOOUVOAO, VR 1) SeUTEPT) 0UVONKI e§aoPpalidel ot
dev unapyouv napopola arotedéopara Petady v ermdeypévov. Kaloupe 1o urtoouvoAo
S r-Dissimilar-and-Covering (r-DisC) UrocUvoAo Kdal OTOXEUOUME OTNV AvAKTNon £vog
edayxiotou r-DisC urtocuvolou.

e avtibeon e TG IPONYOUHEVES TIPOOEYYIoelg, avii va opioupe e§apxng ®g £i00do
0to MPOBANPA pag to péyebog k tou urtoouvodou S, 1 APAPETPOS pag r Poodlopilel Tov
artartoupevo Babpod rmowopopdiag Kat eppéong kabopidel to péyebog tou S. Meydldn
aktiva odnyel oe pikpoTEPa aAAd mePLOOOTEPO MOIKIAA UMTOOUVOAd, €VE UIKPI] AKTIivad TO

avtibeto.
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Aocxoloupaote ermiong Pe VvV NMePIMI®On oty onoia oe Kabe arotédeopa avtlotoiyel
pla dapopetikn axktiva -pia 1€tola poogyylon eivatl xprown otav 9édouvpe va dwooupie
dlapopetikn £épgaocn ot dlapopetikd amnotedéopata- Kabmg Kal e Vv MEPIUTTOON OtV
ortoia kAaOe anotéAdeopa @épet Evav Badpo ocuvagelag.

Movtedonoloupe 10 mpoéBAnpa eviortiopou DisC urnoouvodwv yla pia kowvr) 1 yua
MOAAAITAEG AKTIVEG @G éva TPOBANHA €VIOMIOPOU CUVOA®V avedaptnoiag Katr KAAUWng
(independent dominating set) oe pn-kateuBuvopevoug Kat KAteubuvVOPEVOUS YPAPOUS
avtiotoiya. Aegixvoupe ot 10 IpoBANpa avhkel oty KAdon tov NP-hard npoBAnpdatev
Kal IPOoteivoupe €éva oUVOAO €UPETIKOV adyopiBpwv yia tnv emiduor] tou. I[lapéyxoupe
@paypata yla 1o peyebog tov AUos®v pag os oXeon pe v PéAtiotn Avorn).

Opidoupe g mpagelg zooming-out kat zooming-in yia tv 1pocappoyr] evog cuvoAou
S oe kAol peyaduteprn) 1) PIKPOTEPT Ao TNV APX1KY TOU aktiva avtiototxa. MeAetoupe
) O0X€0T PETASU TOU apX1KOU Kal TOU TeAKOU urntoouvodou. Ilapéxoupe @paypata yia i)
ox£on pey£boug toug Kat rpoteivoupe adyopibpoug yia tv audnTikr Petatport) ou S.

[Mapéxoupe amodotikeég UAOIONOe1S TV aAyopiOpev pag faciopiéveg oe XOPIKEG Hopég
eupenpiaong, Kat cuykerpipéva oe M-6évipa (M-trees), ekpetalAsuopevol v taxutnta

auTOV TOV S0PQV yla 11 YPHyopn avAaKinon IApOHOol®V ATTOTEAEOUATRV.

TéAog, avarttudape éva 0OAOKANP®IEVO ouotnd, To oroio kadoupe JTIOIKIAO», yia v
a&l0A0yNon KAt TV OITIKOIIOINOT TV AMOTEAEOPATOV 1ou AapBavoupe ano éva mAnog
aAyopibpev auinong g mokAopopPiag rmou £€Xouv KAatd Kaipoug rpotabei ot OXETKY)
BBAloypadia.






CHAPTER 1

INTRODUCTION

1.1 Overview

1.2 Thesis Contribution

1.3 Thesis Layout

OWADAYS, a great volume of information becomes available to users every day

from a number of on-line sources. Locating valuable or important informa-

tion can prove out to be an overwhelming task, due to the great amount of
accessible data. For this reason, various ranking techniques have been developed, to
allow users to quickly access what is most useful to them. Ranking of information is
usually based on some notion of relevance of each specific piece of information to the
user needs. Ranking based solely on relevance, however, may lead to enhancing the
over-specialization problem, i.e., the retrieval of too homogeneous results, or items, for a
user query. Beside this, many user searches are of an exploratory nature, in the sense
that users are interested in retrieving pieces of information that cover many aspects
of their information needs. Diversification has recently attracted great attention as a
means to complement relevance-based ranking and provide information systems with
the means to retrieve more satisfying results (e.g., [88]). The aim of diversification is to
retrieve results that are different to each other.

This PhD thesis concerns the development, implementation and evaluation of mod-
els, algorithms and techniques for the ranking of information being presented to users
of network-centric information management systems. This ranking is based on the
importance of each piece of information. We consider that importance is influenced by
both relevance to user information needs and diversity. Relevance is important so that
users are only presented with the most useful results according to their needs, while
diversity ensures that the received results do not all contain similar information.



1.1 Overview

Many different approaches have been proposed in the past for selecting diverse items
(e.g., [48, 57, 109, 113]). Most of these can be classified in three different categories

[42], namely in terms of:

1. content (or similarity), i.e., selecting items that are dissimilar to each other (e.g.,
[114, 107]),

2. novelty, i.e., selecting items that contain new information when compared to

previously seen ones (e.g., [35, 115]), and
3. coverage, i.e., selecting items that belong to different categories (e.g., [11, 104]).

Content-based definitions interpret diversity as an instance of the p-dispersion prob-
lem, whose objective is to select p out of n given items, so that the minimum distance
between any pair of selected items is maximized [48]. The p-dispersion problem has
been studied in the field of operations research for locating facilities that should be
dispersed; such as franchises belonging to a chain or nuclear power plants. Formally,
let P = {p1,...,pn} be a set of n items. Given a distance metric d : P x P — R*
indicating the dissimilarity of two items in P, assume that the diversity of a set S,
S C P, is measured by a function f : 27! x d — RT. For a positive integer k, k < n,
the content-based diversification problem is the problem of selecting a subset S* of P
such that:

S* = argmax f (.5, d). (1.1)

Scp
|S|=k

The choice of f affects the selection of items, even for a specific distance metric d. Two
widely used functions are the minimum distance among the selected items and the sum

of the distances of the selected items, formally defined as:

fMIN(SJ d) = min d(pmp]) (12]
PiP; €
PiF#D;
and
fSUM(Sad): Z d(piapj) (1.3)
PiPjES

The corresponding problems are called MaxMIN and MaxSum diversification problems.
Intuitively, MAXMIN aims at discouraging the selection of nearby items, while MAxSum
at increasing the average pairwise distance among all items.

Novelty is a notion closely related to that of diversity, in the sense that items which
are diverse from all items seen in the past are likely to contain novel information, i.e.,
information not seen before. A distinction between novelty and diversity is made in
[35], where novelty is viewed as the need to avoid redundancy, whereas diversity is

viewed as the need to resolve ambiguity.



Finally, some works view diversity in a different way, that of selecting items that
cover many different interpretations of the user’s information need. For example, [11]
considers typical web search and, given a taxonomy of independent information cat-
egories, aims at retrieving items that cover many interpretations of the user query,

especially interpretations that are considered important.

Given a set of items P, locating an optimal diverse subset of P is an NP-hard
problem for all these definitions (e.g., [47]). For this reason, various heuristics have
been proposed for locating approximate solutions. Most of the heuristics in the related
literature can be classified into two main groups, namely (i) greedy (e.g., [119]) and
(ii) interchange (e.g., [113]) algorithms.

Greedy algorithms are the ones most commonly used since they are intuitive and
fast. Such algorithms generally make use of two sets to locate a diverse subset of size
k: the set P of the available n items and the set S which contains the selected, i.e.,
diverse, items. Items are iteratively moved from P to S and vice versa until |S| = k
and |P
relevant one, and then items are moved one-by-one from P to S until k£ of them have

= n — k. In most approaches, S is initialized with some item, e.g., the most

been selected. Many greedy algorithms have been proved to provide !/2-approximations
of the optimal solution.

Interchange algorithms have also been widely used in the literature for solving the
diversification problem. Such algorithms are generally initialized with a random solu-
tion S and then iteratively attempt to improve that solution by interchanging an item
in the solution with another item that is not in the solution.

Another line of research aims at selecting diverse results similarly to top-£ results
by employing some sort of threshold algorithm, often attempting to incorporate weights
to this threshold (e.g., [87, 22]). This approach is more common in novelty-based defi-
nitions of diversity in information retrieval (e.g., [35, 115]). There is a crucial difference
between the two problems, however, in that the diversity of a single item cannot be com-
puted independently from that of other items as in the top-k case, since all diversity

measures require comparing the item with any previously selected ones.

1.2 Thesis Contribution

In this thesis, we mainly focus on two different axes: (i) diversifying dynamic data and
(ii) diversifying data based on dissimilarity and coverage. We also developed a system
prototype, called PoikiLo (from the Greek “mowkido”, meaning “diverse”) for evaluating
the results of various diversification models and algorithms. We next present our
contribution in each field.

Diverse Set Selection over Dynamic Data. Despite the considerable interest in diver-
sification, most previous research considers the static version of the problem, i.e., the

available items out of which a diverse set is selected do not change over time. Here, we
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focus on the dynamic diversification problem, where insertions and deletions of items
are allowed and the diverse set needs to be refreshed to reflect such updates. In the
past, we addressed the dynamic problem [41] using a sliding-window model. Our ap-
proach is based on keeping any non-expired diverse items in every new window and
using them to initialize a greedy algorithm. Besides reducing the computational cost,
this approach often performs better than executing the greedy algorithm from scratch
for each window, since an already diversified subset of items is used as a seed. The
dynamic problem was also addressed in [84], using an interchange heuristic instead.
Here, we propose an index-based approach.

Our solution is based on Cover Trees. Cover trees are data structures originally
proposed for approximate nearest-neighbor search [16]. Motivated by popular proactive
delivery paradigms, such as news alerts, RSS feeds and notification services in social
networks, where users specify their interests and receive relevant notifications, we also
consider the continuous version of the problem, where diversified sets are computed
over streams of items. To avoid overwhelming users by forwarding to them all relevant
items, we consider the case in which a representative diverse set is computed, instead,
whose size can be configured by the users. We introduce a sliding window model along
with continuity requirements. Such requirements ensure that the order in which the
diverse items are delivered follows the order of their generation and that an item does
not appear, disappear and then re-appear in the diverse set.

We focus on the MaxXxMIN diversity problem. We propose a suite of algorithms that
exploit the cover tree to provide solutions with varying accuracy and complexity. We
provide theoretical results that bound the accuracy of the solutions achieved with
regards to the optimal solution.

In a nutshell, this thesis makes the following contributions:

e we propose indexing based on cover trees to address the dynamic diversification

problem along with continuity requirements appropriate for a streaming scenario,

e we present a suite of methods with varying complexity that exploit the cover
tree for the MAXMIN problem and provide bounds for the achieved diversity with
regards to the optimal solution,

e we extend the cover tree and our algorithms for selecting items that are both
relevant and diverse, and

e we experimentally evaluate the efficiency and effectiveness of our approach using
both real and synthetic datasets.

DisC Diversity: Result diversification based on Dissimilarity and Coverage. We
also address diversity through a different perspective. Let P be the set of items in a
query result and r a positive real number, which we call radius. Let also d be some

distance function. For p;, p; in P, we consider that p; is similar to p; if and only if
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d(pi,pj) < r. We also say that p; is covered by p;. Given P, we select a representative
subset S, S C P, to be presented to the user such that: (i) all items in P are covered
by at least one item in S and (ii) no two items in S cover each other. The first condition
ensures that all items in P are represented by at least one similar item in the selected
subset. The second condition ensures that the selected items of P are dissimilar. We
call the set S r-Dissimilar and Covering subset or r-DisC diverse subset.

In contrary to previous approaches to diversification, we aim at computing subsets
of items that contain items that are both dissimilar with each other and cover the whole
result set. Furthermore, instead of specifying a required size k£ of the diverse set or a
threshold, our tuning parameter r explicitly expresses the degree of diversification and
determines the size of the diverse set. Increasing r results in smaller, more diverse sub-
sets, while decreasing r results in larger, less diverse subsets. We call these operations
zooming-out and zooming-in respectively.

We aim at retrieving a concise representation of all results. For this reason, among
all DisC diverse subsets that answer the user query, we aim at selecting the one con-
taining the smallest number of items. In case items are also associated with weights, we
also take them into consideration when selecting our diverse items. We also consider
extending the definition of DisC diverse subsets to allow each item to be associated with
a different radius. We do this to allow different areas of the data to contribute more or
less items to the selected diverse subset.

We formalize the problem of locating minimum and minimum weighted DisC diverse
subsets as an independent dominating set problem on graphs [58]. In the case of a
single radius, items can be represented via an undirected graph. When multiple radii
are employed, a directed graph is used instead. We show that locating minimum DisC
diverse subsets is an NP-hard problem and provide a suite of algorithms for locating
approximate solutions. We also consider the problem of adjusting the radius 7, or
zooming. We explore the relation among DisC diverse subsets of different radii and
provide algorithms for incrementally adapting a DisC diverse subset to a new radius.
We provide theoretical upper bounds for the size of the diverse subsets produced by
our algorithms for computing DisC diverse subsets as well as for their zooming coun-
terparts. Since the crux of the efficiency of the proposed algorithms is locating similar
items, we take advantage of spatial data structures. In particular, we propose efficient
implementations based on the M-tree [33].

In a nutshell, this thesis makes the following contributions:

e we introduce a new, intuitive definition of diversity, called DisC diversity, based

on using a radius r rather than a size limit & to select diverse items,

e we extend DisC diversity to the weighted and multiple radii cases and introduce

a graph-based view of the problem in both cases,

e we introduce incremental diversification through zooming-in and zooming-out,
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e we show that locating DisC diverse subsets is an NP-hard problem and provide
efficient algorithms for their computation as well as corresponding theoretical
approximation bounds,

e we provide efficient M-tree tailored implementations of our algorithms and exper-
imentally evaluate their performance, and

e we compare DisC diversity with other popular diversity models, both analytically
and qualitatively.

Poikio: A System for Evaluating the Results of Diversification Models and Algo-
rithms. Finally, during the elaboration of this thesis, we also developed a system
prototype, called PoikiLo, which is a system designed to assist users in locating, vi-
sualizing and comparing diverse results based on a suite of different diversification
models and algorithms. We provide implementations of a wide variety of diversification
approaches for retrieving diverse results.

Users of POIKILO can submit queries to a number of different datasets and see a
visualization of a diversified subset of their query result. Users can choose among a
wide selection of diversification algorithms and specify various configuration parame-
ters. Furthermore, they can zoom-in and zoom-out of this initial diverse subset and

navigate between consequent windows in the case of streaming data.

1.3 Thesis Layout

The rest of this thesis is structured as follows. In Chapter 2, we overview related work
in the field of diversification. In Chapter 3, we introduce indexing based on cover trees
to address the dynamic diversification problem. In Chapter 4, we introduce a novel
definition of diversity, called DisC diversity, as well as, a suite of algorithms for locating
concise DisC diverse subsets. Chapter 5 presents a system prototype for visualizing
diverse results. Finally, Chapter 6 summarizes this thesis and overviews directions for
future work.



CHAPTER 2

RELATED WORK ON SEARCH RESULT
DIVERSIFICATION

2.1 Diversity Definitions

2.2 Combination of Diversity with Other Criteria
2.3 Algorithms

2.4 Evaluation Measures

2.5 Summary

oDAY, most user searches are of an exploratory nature, in the sense that users

are interested in retrieving pieces of information that cover many aspects of

their information needs. Therefore, recently, result diversification has attracted
considerable attention as a means of counteracting the over-specialization problem,
i.e., the retrieval of too homogeneous results in recommender systems and web search,
thus enhancing user satisfaction (e.g., [119, 107]). Consider, for example, a user who
wants to buy an apartment and submits a related web search query. A diverse result,
i.e. a result containing various apartments in different neighborhoods with different
number of bedrooms and other characteristics is intuitively more informative than a
result that contains a homogeneous result containing only apartments with similar
features.

Diversification is also useful in counter-weighting the effects of personalization. Per-
sonalization aims at tailoring results to meet the preferences of each specific individual
(e.g., [73, 98]). However, this may lead to overly limiting the search results. Diversifica-
tion can complement preferences and provide personalization systems with the means
to retrieve more satisfying results (as in [88]).

In this chapter, we survey the various approaches taken in the area of result diver-
sification. We classify the ways that diverse items are generally defined in the related
literature in three different categories, namely in terms of:
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1. content (or similarity), i.e., items that are dissimilar to each other (e.g., [114, 107]),

2. novelty, i.e., items that contain new information when compared to previously
seen ones (e.g., [35, 115]), and

3. coverage, i.e., items that belong to different categories (e.g., [11]).

We present various diversification algorithms of the related literature and classify them
into two main groups, namely (i) greedy (e.g., [119, 57]) and (ii) interchange (e.g., [113,
81]) algorithms. We also present other criteria often used along with diversity and show
various measures used for evaluating the performance of diversification systems.

The rest of this chapter is structured as follows. In Section 2.1, we classify various
definitions of the diversification problem, while in Section 2.2, we see how diversity is
combined with other ranking criteria. In Section 2.3, we review proposed algorithms
for efficiently retrieving diverse results and, in Section 2.4, we show measures used
for evaluating the diversity of selected items. Finally, Section 2.5 summarizes this
chapter.

2.1 Diversity Definitions

Generally, the problem of selecting diverse items can be expressed as follows:

Definition 2.1 (Diversification Problem). Given a set! P of n available items and a
restriction £ on the number of wanted results, select a subset S* of k items out of the
n available ones, such that, the diversity among the items of S* is maximized.

In this section, we present various specific definitions of the result diversification
problem that can be found in the research literature. We classify these definitions based
on the way that diverse items are defined, i.e., (i) content, (ii) novelty and (iii) coverage.
Note that, this classification is sometimes fuzzy, since these factors are related to each

other and, therefore, a definition can affect more than one of them.

2.1.1 Content-based definitions

Content-based definitions interpret diversity as an instance of the p-dispersion problem.
The objective of the p-dispersion problem is to select p out of n given items, so that
the minimum distance between any pair of selected items is maximized [48]. The p-
dispersion problem has been studied in the field of operations research for locating
facilities that should be dispersed; such as franchises belonging to a chain or nuclear

power plants. Formally, the p-dispersion problem is defined as follows:

'In some works, the term “set” is used loosely to denote a set with bag semantics or a multiset, where
the same item may appear more than once in the set.
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Given a set P of items, P = {p1,...,p,}, a distance metric d among items and an
integer k, locate a subset S* of P, such that:

S* = argmax f (5, d) 2.1)
ST

where
f(S,d) = min_d(p;, p;) (2.2)
i, EP
PiFDj

Similar content-based definitions of diversity have been proposed in the context of
web search and recommender systems. Often, however, the objective function that is
maximized is the average distance of any two items, instead of the minimum one, that
is:

f(S,dy =Y d(pi,p;) (2.3)
i, EP

These two common diversification objectives are referred to as the MaxMiNn and
MaxSuwm diversification problems, respectively. Locating a diverse set for both problems
has been shown to be an NP-hard problem (e.g., [47]). Recently, a thorough complexity
analysis of content-based diversification was presented in [38], where three interesting
problems are studied. The first problem is the existence of a set S with f(5,d) > «,
for some value «, while the second problem is finding the number of sets with diversity
larger than «. Finally, given a set S, the third problem concerns deciding how many
other sets exist with diversity larger than that of S. MaxMiN and MaxSuMm were both
shown to be NP-complete, #NP-complete and coNP-complete for the three problems
respectively.

Content-based definitions are among the most popular ones in the related litera-
ture. For example, in [119], the diversity of a set of recommendations in a typical
recommender system is defined based on their intra-list similarity, which is the appli-
cation of Equation 2.3 along with a user-defined distance metric. In [113], the distance
between recommendations is measured based on their explanations. Given a set of
items P and a set of users U/, the explanation of an item p; € P recommended to a user
u; € U can be defined in a content-based approach as:

expl(u;, p;) = {p; € P|sim(pi,pj) > 0 A p; € items(u;)} (2.4)

where sim(p;,p;) is the similarity of p;, p; and items(u;) is the set of all items rated
in the past by user u;. A non content-based collaborative filtering approach is also
considered, in which:

expl(ui, p;) = {u; € U|sim’ (uz, uj) > 0 A p; € items(u;)} (2.5)

where sim’ is a similarity metric between two users. The similarity sim between two
items p; and p; can be defined based on the Jaccard similarity coefficient, the cosine

similarity or any other similarity measure. The diversity of a set of items S C P is
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defined as the average distance of all pairs of items (as in Equation 2.3). A similar
Jaccard-based similarity measure is also used in [57]. In that case, each item is
described by a sketch produced by a number of hash functions. Another alternative
distance metric used in that work is a taxonomy-based categorical distance when this
can be applied (e.g., in the case of documents).

A content-based definition of diversity has also been applied in the context of pub-
lish/subscribe systems [46, 41]. Here, given a period or a window of matching events
and an integer k, only the £ most diverse of them (based on Equation 2.3) are delivered
to interested subscribers.

Another definition that can be classified in this category is the one used in [107]
in the context of database systems. Given a database relation R = (A, ..., 4,,), a
diversity ordering of R, denoted <, is a total ordering of its attributes based on their
importance, say A; <z ... <g A,,. Also, a prefix with respect to <, denoted p, is
defined as a sequence of attribute values in the order given by <z, moving from higher
to lower priority. Let p be a prefix of length ¢ and ¢, t’ be two tuples of R that share p.

The similarity between ¢ and t’ is defined as:

1 iftA@+1 - t,.Ag+1

(2.6)
0 otherwise

sim,(t,t') = {
Now, given an integer k, a subset S of R with cardinality %k is defined to be diverse
with respect to p if all tuples in S share the prefix p and the sum of their pair-wise
similarities, as defined above, is minimized. S is also said to be diverse with respect
to R if it is diverse with respect to every possible prefix for /R. This approach is also
followed in [76], where it is extended to the case of dynamic diversity orderings, i.e., the
diversity ordering of the attributes is not static but is rather specified by the user along
with the query. The proposed method is based on computing core covers, i.e., sets of
tuples of size smaller than k£ whose tuples can cover all the tuples of a diverse set of
size k. A different problem for structured data is considered in [81], that of selecting a
limited number of features that can maximally differentiate the available items.

On a related issue, content-based definitions of diversity have been widely used to
extend the k-nearest neighbor problem, so that, given an item p;, the k spatially closest
results that are sufficiently different to each other are retrieved (e.g., [59, 92, 62, 10, 9]).
Similar approaches are followed; in [59], for example, the distance between two items
is based on the Gower coeflicient, i.e., a weighted average of the respective attribute
differences of the items. Assuming J, to be equal to the difference between the 2

attributes of two items p;, p; then:

d(pi,p;) = > _ w.0. 2.7)

where w, is a weight corresponding to the 2" dimension of the items. Two items are
considered diverse if their distance is greater than a given threshold and a set S is

considered diverse if all pairs of items in it are diverse.
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Finally, content-based diversification has also been employed to enhance skyline
search. Let p;, p; be two items in P. We say that p;, dominates p; if it is better than
or equal to p; in all dimensions and strictly better than p; in at least one dimension.
An item belongs to the skyline of a set if there does not exist any other item that
dominates it. Skylines can often be large in size. Selecting k representative skyline
items is considered in [101], where representative items are selected so that the distance
between a non-selected skyline item from its nearest selected item is minimized, and
[105, 21], where the dominance relationships among items are exploited to select a
diverse subset of the skyline items.

2.1.2 Novelty-based definitions

Novelty is a notion closely related to that of diversity, in the sense that items which
are diverse from all items seen in the past are likely to contain novel information, i.e.,
information not seen before.

A distinction between novelty and diversity in the context of information retrieval
(IR) systems is made in [35], where novelty is viewed as the need to avoid redundancy,
whereas diversity is viewed as the need to resolve ambiguity. Each document p; and
query g are considered as a collection of information nuggets from the space of all
possible nuggets O = {oy,...,0,}. Given a binary random variable R, that denotes
whether a document p; is considered relevant to a given query g, it holds that:

P(R,, = 1|q,p;) = P(3o;, such that o; € p; N q) (2.8)

Now, given an ordered list of documents py, ..., p, retrieved by an IR system for ¢, the
probability that the & document is both novel and diverse from the k — 1 first ones is
equal to the probability of that document containing a nugget that cannot be found in
the previous k£ — 1 documents. Given a list of £ — 1 preceding documents, the probability
that a nugget o; € O is novel for a query q is:

k—1
P(oi € qlg,p1,-. ., pe1) = Poi € ¢) [ [ Plo: ¢ pj) (2.9)

Jj=1

Assuming that all nuggets are independent and equally likely to be relevant for all
queries, then:

P(R,, =1|q¢,p1,...,px) =1— H(l — yaJ (pk, 0;)(1 — ) eik=1) (2.10)

i=1
where J(py, 0;) = 1 if some human judge has determined that p; contains the nugget
0; (or zero otherwise), « is a constant in (0, 1] reflecting the possibility of a judge error
in positive assessment, v = P(0; € ¢) and 7,, ;_1 is the number of documents ranked
up to position k£ — 1 that have been judged to contain o;, i.e., 7, y—1 = Z;:ll J(pj, 05).
This approach requires prior knowledge of the nuggets and also considerable amount
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of human effort for judging the relevance of documents in order to compute the related
probabilities.

Another work based on novelty is [115], which aims at enhancing adaptive filtering
systems with the capability of distinguishing novel and redundant items. Such systems
should identify items that are similar to previously delivered ones, in the sense of having
the same topic, but also dissimilar to them, in the sense of containing novel information.
The redundancy R of each item p; is measured with respect to its similarity to all

previously delivered items, denoted D(p;), as follows:

R(ps| D(p;)) = argmax R(ps|p;) (2.11)

p;€D(p;)
where R(p;|p;) is the redundancy (similarity) of p; with respect to another item p;.
Three different ways for measuring R(pi ]pj) are considered, namely the set difference,
the geometric distance and the distributional distance. The set difference is based on

the number of new terms that appear in p;:

R(pilp;) = |set(p:) N set(p;) (2.12)

In the above formula, given a term w and a document p;, it holds that w € set(p;),
if and only if, count(w,p;) > h, where h is a constant and count(w,p;) = aqtfu,, +
aodfy, + asrdfy. tf,p is the frequency of w in p;, df, is the number of all filtered
documents that contain w, rdf,, is the number of delivered documents that contain w
and o, a9, a3 are constants with oy + as + a3 = 1. The geometric distance is based on
the cosine similarity between p; and p;. If we represent each document p; as a vector
Pi = (tfuoypis tfuwspss -+ s Lfwnn ;). » Where wy, wo, . .., wy, are all the available terms, then:

R(pilp;) = cos(ps, py)
-T .
= DD (2.13)
il [l
Finally, the distributional distance is based on a probabilistic language model. Each
document p; is represented by a unigram word distribution 6,, and the distance among

two documents is measured via the Kullback-Leibler (KL) formula:

P(w;|0,,
— —ZP(wH@pi)log% (2.14)
w; J1Ypj

A mixture-model approach is considered in order to find the language models for the ¢
distributions.

Novelty is also used in [96] in the context of publish/subscribe systems, to promote
items matching subscriptions that have rarely been matched in the past.

Finally, using some notion of novelty in recommenders is also proposed in [75]. The
authors argue that, since the available data are generally sparse and they frequently
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change, recommenders continuously have to make decisions based on incomplete and

changing data, thus, increasing novelty is useful. A batch scenario is considered, where

users receive lists of recommendations in intervals. Let Lq, Lo be two subsequent lists
[L2\ L1

of size k for some user. The objective of the proposed approach is to maximize =%=*.

2.1.3 Coverage-based definitions

Some works view diversity in a different way, that of selecting items that cover many
different interpretations of the user’s information need. For example, [11] considers
typical web search and, given a query ¢ and a taxonomy C' of independent information
categories, aims at retrieving £ documents that cover many interpretations of ¢, espe-
cially interpretations that are considered important. The result diversification problem
in this context is formally defined as follows: Given a query ¢, a set of documents P, a
taxonomy C, a probability distribution P(c|q) of each category ¢ € C being relevant to
g, the probability V' (p;|q, ¢) of each document p; € P being relevant to each category ¢
for ¢ and an integer k, find a set of documents S*, such that:

S* = argmax P(S|q) (2.15)

SCP
|S|=k

where:
P(Slg) =Y P(clg)1 - J] (1 = V(pilg.c))) (2.16)
c PiES

The probability of p; not covering a relevant to the query ¢ category c is equal to (1 —
V(pilg, ¢)). Therefore, the above formula, in essence, maximizes the probability of each
relevant category c being covered by at least one document in S. This method requires
prior knowledge of the taxonomy and the learning of the probability distributions.

[80] also makes use of a cover-based definition of diversity to locate and highlight
diverse concepts in documents. Given a set of sentences S, the cover of S is the union
of all terms ¢ appearing in any sentence p; in S, that is:

cover(S) = U U{t} (2.17)
piES tEP;

Assuming a function ¢(i) that measures the benefit we have by covering a term exactly

¢ times, the gain of S is:
S|

gain(S) = Y w(t)g(i) (2.18)

i=0 t€T;
where 7; is the set of terms appearing in exactly 7 sentences in S and w(t) is a weight
for the term ¢. Now, the result diversification problem is defined as follows: Given a

document consisting of n sentences P = {pi,...,p,} and an integer k, locate a set of
sentences S*, such that:
S* = argmax gain(S) (2.19)
SCcp
IS|<k
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A coverage-based approach is also followed in [77] for a different problem, that of se-
lecting a set of diversified queries to recommend to users. The proposed method makes
use of a query log to cluster queries into query concepts. Given an input user query,
a small set of diversified relevant concepts is first selected. To do this, a probabilistic
model is exploited, which aims at maximizing the likelihood that the recommended con-
cepts cover as many interpretations of the query as possible. Only one representative
query from each cluster corresponding to each relevant concept is then returned to the

user.

A different approach is followed in [37], where an item list is considered most diverse,
with respect to some set of topics related to the query, when the number of items it
provides on each topic is proportional to the topic’s popularity. To select a highly
diversified list of items, for each position in the ranked result list, the topic that best
maintains the overall proportionality is determined. Then, the best item on this specific
topic is added to the list.

On a related issue, [117] considers modifying the way of computing subtopic cover-
age in a taxonomy in the case of semi-structured data by also considering the structural
similarity between subtopics, i.e., among the subtopics covered by a selected item, a
subtopic that differs considerably from its parent is considered to be “less” covered than
a subtopic that is structurally more similar to its parent. Structure is also considered
in [60] along with content-based diversity, where items are organized in a tree and a
tree edit-distance between items is also considered, along with content, during diverse
item selection.

2.2 Combination of Diversity with other Criteria

Diversity is often used along with some other ranking criterion, most commonly that
of relevance to the user’s query. To the best of our knowledge, the first work in which
the two measures were combined is [23], in which marginal relevance, i.e., a linear
combination of relevance and diversity, is proposed as a criterion for ranking results
retrieved by IR systems. An item has high marginal relevance if it is both relevant
to the user query ¢ and also exhibits minimal similarity to previously selected items.
Formally, given the set of all retrieved items P and the set of already selected ones,
denoted S, the item p; € P\S that has the maximum marginal relevance to S is:

p; = argmax | M(w(pi) — (1 — A) maxd(p;, p;)) (2.20)
pi€P\S p; €S

where w(p;) is the relevance of p; to the query and A, A € [0, 1], is a diversification tuning
parameter. This approach has also been applied in [88] as a means to reformulate
queries submitted in web search. The above formulation of the problem corresponds to

the MaxSuwm diversification problem. The objective function that is maximized in this
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case is:
F(S,w,d, A) = (IS| = 1) > w(p) +21 Y d(pi,p;) (2.21)
Pi€ES Pip;ES
where A > (0. Other common variations of combining relevance and diversity are
MaxMIN diversification, where:
f(S,w,d,\) = minw(p;) + X min_d(p;, p;) (2.22)
pi€S Pip; €S

and also a mono-objective formulation of the problem in which:

A
f(S,w, d, >\) = Z w(pl-) -+ m Z d(p,;,pj) (2.23]
pPi€ES p;EP
A different mono-objective formulation based on coverage rather than content is
introduced in [74] in the context of items organized in a graph. Let Ng(S ) be the set of
items which are at most ¢ edges away from at least one item of S on the graph. Then:

FSw, )= > wips) (2.24)
Pi€Ny(S)
[118] also employes a mono-objective diversity function but, in addition, considers
that items belong to some manifold space and exploits traditional manifold ranking
algorithms to retrieve relevant and diverse items.

An interesting analysis of eight intuitive axioms that diversification systems should
satisfy concerning the combination of relevance and diversity can be found in [57]. It
is shown, however, that not all of them can be satisfied simultaneously.

The combination of diversity and relevance has also been studied in [114] as an
optimization problem. Let once again P = {pi,...,p,} be a set of items and D be an
n x n distance matrix with the (i, 7)™ element being equal to d(p;,p;). Let also m be
an n-dimensional vector with the ™ element being equal to w(p;). Consider, finally, an
integer k and a binary n-dimensional vector y with the i element being equal to 1, if
and only if, p; belongs to the k£ most highly relevant and diverse items. Now, given a
diversification factor A € [0, 1], we can define the problem of selecting k items that are

both as relevant and diverse as possible as follows:

y* = argmax(l — Nay’ Dy + A\Bm’y

y
s.t. 17y = k and
y(i) € {0,1},1<i<mn (2.25)

where « and [ are normalization parameters.

Diversity has also been combined with spatial distance, as a relevance characteri-
zation, when solving the k-nearest diverse neighbors problem, e.g., in [59].

There has been considerable work on training IR systems to retrieve relevant results
exhibiting high diversity. For example, [93] proposes adapting the degree of diversifi-
cation \ to each specific query. In particular, given a previously unseen query, the

15



authors aim at predicting an effective trade-off between relevance and diversity based
on a log of similar previous queries. First, a training set is constructed by retrieving
diverse sets for all values of A and keeping the one with the best diversity according
to some measure. Then, a regression model is trained which is later used to decide a
degree of diversification for unseen queries. Similarly, in [94], the authors aim at pre-
dicting the best IR method for different interpretations of the query. [31] also considers
a combination of IR ranking metrics along with the diversity of retrieved results to train

a probabilistic model for result retrieval.

Besides relevance, a couple of works exist that combine diversity with sentiment
(e.g., [64, 13, 9]). Sentiment is a meaningful property of text items, e.g., documents or
blog comments. It can be computed based on the content of the item, e.g., by using
a dictionary of positive and negative words and counting the number of occurrences
of these words in the text. After a sentiment (positive, negative or neutral) has been
computed for each item, it can be used along with relevance and diversity when selecting
items, as in [64, 9], or it can be used as an input parameter set by users to bias the

selection of items, as in [13].

Another criterion that can be combined with diversity is freshness. For example,
[99], which considers the problem of recommending unanswered questions of a knowl-
edge base to potential answerers, combines relevance, diversity and freshness in an
effort to present answerers with questions they may find more interesting to answer.
Note that freshness and novelty are two different concepts, since a novel item, i.e., an
item the user has not seen before, is not necessarily fresh, i.e., recently created.

Besides the more traditional definitions of diversity, recently, there has been some
related work on temporal diversity, which concerns the creation time of items. A highly
temporally diversified set is a set containing items that were created at different time
from each other. Temporal diversity is useful in streaming environments. Consider,
for example, a blog publishing entries on some specific topic. A post published around
the same date as many other posts is intuitively less informative than a post which is
published at a distant time. In this spirit, a hybrid content/temporal diversity approach
is proposed in [67] to retrieve items that are both dissimilar and temporally distant to
each other. A different form of temporal diversity is also considered in [116], where the
selection of diverse results is affected not only by their (spatial) distances but also by the
time of the computation. Such an approach may increase the likelihood of a purchase
decision in on-line shops, since users often buy products at specific intervals, e.g., a
user may buy a printer ink cartridge every six months. The proposed method aims at
exploiting such known intervals to compute the utility surplus of each product at the
time of the query. To do this, a probabilistic model is trained based on the intervals

between subsequent purchases of products.
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2.3 Algorithms

Given a set P of items, P = {p1, ..., p,}, a distance metric d among items and an integer
k, the diversification problem is to locate a subset S* of P, such that the diversity among
the selected items is maximized, where the diversity of a set of items is defined based
on some specific definition of Section 2.1.

Generally, the diversification problem has been shown to be NP-hard (e.g., [47]).
Thus, to solve large instances of the problem, we need to rely on heuristics. Many
heuristic algorithms have been used in the research literature and have been employed
for solving variations of the problem in more than one research fields. We can classify
these algorithms into two main categories: (i) greedy and (ii) interchange. In following,

we describe algorithms in each category and their applications.

2.3.1 Greedy Algorithms

Greedy algorithms are the ones most commonly used since they are intuitive and some
of them are also relatively fast. Greedy algorithms generally make use of two sets: the
set P of available items and the set S which contains the selected ones. Items are
iteratively moved from P to S and vice versa until |S| = k£ and |P| = n — k. In most
works, S is initialized with some item, e.g., the most relevant one, and then items are
moved one-by-one from P to S until k£ of them have been selected. The item that is
moved each time is the one that has the maximum item-set distance from S. The item-
set distance, denoted d(p;, S), between an item p; and a set of items S is defined based

on its distance from the items in S, for example:

d(pi, S) = min d(p;, p;) (2.26)
p;ES
or
d(pi,S) = > d(pi,p)) (2.27)
p;ES

Ties are generally broken arbitrarily.

This greedy approach is, for example, used in [119] in the context of recommender
systems, where, given a set of recommendations P = {pi,...,p,} and their degrees of
relevance w(p;), 1 < i < n, to a user query, diverse recommendations are produced. S is
initialized with the most relevant recommendation. Then, recommendations are added
one-by-one to S as follows: For each recommendation p; not yet added to S, its item-
set distance from the recommendations already in S is computed. These “candidate”
recommendations are then sorted in order of (i) relevance to the query and (ii) item-set
distance to S. The rank of each recommendation is a linear combination of its positions
in the two sorted lists. The recommendation with the minimum rank is added to S and
the process is repeated until S has k£ recommendations. Note that the recommender
system has to produce a larger number of recommendations (n) out of which the final
k ones will be selected. The larger this number, the higher the possibility that more

diverse recommendations will be located (at the cost of higher computation cost).
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A greedy heuristic is also employed in [80] for locating diverse sentences in docu-
ments. At each round, the sentence which has the highest gain for S (Equation 2.19)
is added to S. [11] also follows the greedy approach. In that case, an algorithm is pro-
posed that, given the set of the top-k most relevant documents to a query, it re-orders
them in a way, such that, the objective function of Equation 2.16 is maximized. [57] em-
ploys another greedy variation, first presented in [61] as a solution to the p-dispersion
problem, in which, at each iteration, the two remaining items with the largest pair-wise
distance are added to S. A greedy solution is also used in [113] for recommenders.
However, in that case, threshold values are also used to determine when two recom-
mendations are considered distant. [59] also uses a greedy algorithm for locating the
k-nearest diverse neighbors to a given item.

A variation of such greedy algorithms is introduced in [109, 108], in which, instead
of selecting the best candidate item at each step, an item is randomly chosen among
the first couple of top-ranked items. Also, items are selected not only based on their
item-set distance from S, but also from P\S, in an effort to select the most diverse
items in early rounds. These two techniques were experimentally shown to increase
the diversity of the produced diverse set in many cases.

A greedy heuristic is also employed in [78] for the selection of a representative,
diverse subset of skyline items.

Also, an extension of greedy algorithms to the case of streaming data is introduced
in [41], in which, every time a diverse set is requested, a greedy heuristic is used to
fill in the places of any expired items in the previous diverse set. This approach often
outperforms running the same greedy heuristic from scratch, since the algorithm is
initialized with a seed of already highly diversified results.

A special case of greedy algorithms are neighborhood algorithms. These algorithms
start with a solution S containing one random item and then iteratively add items to
the solution. The items to be considered at each iteration are limited based on the
notion of r-neighborhood of an item p; € P, denoted N (p;, P, r), defined as:

N(p;, P,r) ={p; € P:d(pi,pj) <r} (2.28)

In other words, all items that have a smaller than or equal to r distance to p; belong
to its r-neighborhood. At each iteration, only items outside the r-neighborhoods of all
already selected items are considered. Out of these items, one is chosen to be added to
the solution. This can be the fist located item outside those r-neighborhoods, the one
that has the smallest sum of distances to the already selected items or the one that has
the largest sum of distances to the already selected items [48]. Note that the selection
of r plays an important role as it restricts the number of items that are considered at
each iteration. In fact, given a value of r, a solution S with |S| = k£ may not even exist.
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2.3.2 Interchange Algorithms

Interchange algorithms have also been used in the literature for solving the diversifica-
tion problem. Generally, these algorithms are initialized with a random solution S and
then iteratively attempt to improve that solution by interchanging an item in the solu-
tion with another item that is not in the solution. At each round, possible interchanges
are the first met one that improves the solution or the one that improves the solution
the most.

An interchange heuristic that combines relevance and diversity is proposed in [113].
In this approach, S is initialized with the £ most relevant items. At each iteration, the
item of S that contributes the least to the diversity of the entire set, i.e., the one with
the minimum item-set distance, is interchanged with the most relevant item in P\S.
Interchanges stop when there are no more items in P\S with higher relevance than a
given threshold.

Another work that employs an interchange algorithm is [82], where, given a set of
structured search results, the goal is to identify a subset of their features that are able
to differentiate them. Starting with a random subset of features, at each iteration, one
of these features is interchanged with a better candidate feature.

Finally, an interchange heuristic is employed [84] for streaming data. Upon the
arrival of a new item p;, all possible interchanges between p; and the items in the
current diverse set S are performed and p; replaces an item in the solution, if this
replacement increases diversity. A similar technique is also proposed in [46] in the
context of publish/subscribe systems.

2.3.3 Other Algorithms

An algorithm for achieving diversity in database systems based on a tree index struc-
ture, i.e., the Dewey tree, is presented in [107]. Each tuple of a database relation is
represented by a path in the tree. Higher levels of the tree represent more important
attributes, according to the diversity ordering of the relation (see Section 2.1). Diverse
tuples are retrieved by traversing this tree. A similar tree, called D-Index, is used in
[76].

Motivated by the fact that the one-dimensional p-dispersion problem can be solved
optimally in polynomial time, [48] considers a dimensionality-reduction heuristic that
projects items in one dimension. However this approach does not result in good solu-
tions in practice.

A hybrid greedy/interchange heuristic is used in [41] in the context of continuous
data. In this case, a diverse subset S is located using a greedy approach and then its
diversity is further improved by performing interchanges.

Another related approach is that of [79], where, given the set of a database query
results, these results are grouped in k£ clusters and the corresponding £ medoids are

retrieved as a subset of k representative and diverse results.
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Also, in [114], where the diversification problem is formulated as an optimization
one, a solution is approximated via optimization techniques that include problem re-
laxation and quantization.

Concerning the computation of diverse skyline items, [105] follows an approach
based on hashing items and computing distances based on hash-signatures.

Finally, a recent line of research focuses on viewing diversification as a top-k prob-
lem (e.g., [15, 51, 113]) and using threshold algorithms (e.g., [50, 49]) for selecting
diverse items, aiming at pruning a portion of the candidate items. Threshold-based
techniques have also be employed in [114], where variations of the optimization prob-
lem of Equation 2.25 are considered (e.g., maximize the diversity of the selected items
given a relevance threshold and, the dual, maximize the relevance of the selected items
given a minimum required diversity). Placing a threshold on diversity, however, may

be hard, since it requires an estimation of the achievable diversity.

2.4 Evaluation Measures

The diversity of a set S of selected items can be evaluated by the value of the objective
function f based on which the diversity problem is defined, e.g. Equation 2.2 or
Equation 2.3. This approach is used in most of the related work (e.g., [119, 113, 46,
80, 114]). The computed value can be normalized by the corresponding value for the
set S*, i.e., the optimal solution to the diversification problem. This, however, is not
always feasible due to the high cost of computing the optimal solution.

In the field of IR systems, there has been an effort to adapt traditional IR evaluation
measures so as to become diversity-aware. A key difference of these approaches is that
the retrieved results are usually viewed as an ordered list instead of a set. These adapted
measures are usually applied along with novelty-based or coverage-based diversity
definitions.

For example, [35] proposes evaluating retrieved results through a weighted Normal-
ized Discounted Cumulative Gain measure (denoted a-NDCG), a measure often used in
the context of IR systems that measures the gain of an item being at a specific position
of the list, given the items that precede it. Given an ordered list of items, the k" element
of the list’s gain vector, denoted G, is computed based on Equation 2.10 as:

m

Gk =D J(pr,00)(1 = a)'ee! (2.29)

i=1

and the corresponding cumulative gain vector, denoted GC, is computed as:
CGlk] =) Glj] (2.30)

Usually, the elements of the cumulative gain vector are weighted according to their po-

sition in the list, so the discounted cumulative gain vector, denoted DGC, is computed
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as:

DCG[i] = Xk: _Ghl 2.31)
i1 log,(1 +J) .

The discounted cumulative gain vector computed for a list is finally normalized by the
optimal discounted cumulative gain. However, the computation of this optimal gain is
an NP-complete problem and, thus, in practice, its value is approximated via heuristics.

The adaptation of the NDCG measure is also considered in [11, 27], where NDCG
is aggregated over all available categories that a document may cover (see Section 2.1).
This variation is called Intent-Aware Normalized Discounted Cumulative Gain measure
(denoted NDCG-IA). Its value for the k'™ element of a list S of items retrieved for a query

q is:

NDCG-TA(S,k) =Y _ P(clg) NDCG(S, k|c) (2.32)

The same aggregation method can be applied to other IR measures as well, such as
Mean Reciprocal Rank (MRR) and Mean Average Precision (MAP).

A redundancy-aware variation of the traditional precision and recall measures is
considered in [115]:

R
Redund -Precision = ———— 2.33
edunaancy-1recision BT N- ( )
and
Redundancy-Recall = L (2.34)
Y "R + Rt '

where R~ is the set of non-delivered redundant items, N~ is the set of non-delivered

non-redundant ones and R* is the set of delivered redundant ones.

Variations of these measures have been studied in [106, 25, 110], where the intro-
duction of the user as an explicit random variable is considered, in an effort to provide
a personalized diverse result.

Besides deriving appropriate measures, user studies are also important in evalu-
ating the usefulness of diversification. In [119], two thousand volunteers from the
BookCrossing® community were asked to rate recommendations produced by using di-
versification techniques. The results vary according to the method used to acquire the
initial recommendations but, overall, users rated diversified recommendations higher
than non-diversified ones in all cases, as long as diversity contributed up to 40% to the
linear combination of the relevance and diversity measures. A higher contribution led
to a lower overall rating by the users. An interesting finding is that, when diversified
results were presented to users, the individual recommendations where generally rated
lower but the overall rating of the recommendation list as a whole was higher.

thtp: / /www.bookcrossing.com
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2.5 Summary

In this chapter, we presented the various definitions of the result diversification prob-
lem proposed in the research literature and classified them into three main categories,
namely content-based, novelty-based and coverage-based. These three factors are
closely related and, therefore, most related work considers more than one of them.
We also reviewed different approaches taken for the combination of diversity with other
ranking criteria, most commonly that of relevance to the user’s information need. We
classified the algorithms used in the literature for locating diverse items into two main
categories (greedy and interchange) and also discussed other used approaches. Finally,
we reviewed a number of measures used for evaluating diversity.
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CHAPTER 3

DIVERSE SET SELECTION OVER DYNAMIC
DATA

3.1 The Diversification Model

3.2 Index-based Diversification

3.3 Diverse Set Computation

3.4 Diversity and Relevance

3.5 Experimental Evaluation

3.6 Comparison with Related Work

3.7 Summary

HE abundance of information available online creates the need for develop-

ing methods towards selecting and presenting to users representative result

sets. To this end, result diversification has attracted considerable attention
as a means of increasing user satisfaction. Result diversification takes many forms
including selecting items so that their content dissimilarity, novelty or topic coverage
is maximized [42].

Most previous approaches to computing diverse sets rely on greedy or interchange
heuristics. Greedy heuristics (e.g., [119, 57]) build a diverse set incrementally, selecting
one item at a time so that some diversity measure is maximized, whereas interchange
heuristics (e.g., [113, 81]) start from a random initial set and try to improve it.

Despite the considerable interest in diversification, most previous research consid-
ers the static version of the problem, i.e., the available items out of which a diverse
set is selected do not change over time. Here, we focus on the dynamic diversification
problem, where insertions and deletions of items are allowed and the diverse set needs
to be refreshed to reflect such updates. The dynamic problem was addressed in [41]
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using a greedy heuristic and in [84] using an interchange heuristic. Here, we propose
an index-based approach.

Our solution is based on cover trees. Cover trees are data structures originally
proposed for approximate nearest-neighbor search [16]. They were recently used to
compute medoids [79] and priority medoids [18]. An index-based approach was also
followed in [107] for the static version of the problem. The proposed index exploited a
Dewey-encoding tree and can be used only with a specific diversity function on struc-
tured data. Our approach is more general and can be used with any diversity function.

Motivated by popular proactive delivery paradigms, such as news alerts, RSS feeds
and notification services in social networks, where users specify their interests and
receive relevant notifications, we also consider the continuous version of the problem,
where diversified sets are computed over streams of items. To avoid overwhelming
users by forwarding to them all relevant items, we consider the case in which a repre-
sentative diverse set is computed, instead, whose size can be configured by the users.
We introduce a sliding window model along with continuity requirements. Such require-
ments ensure that the order in which the diverse items are delivered follows the order
of their generation and that an item does not appear, disappear and then re-appear in
the diverse set.

We focus on the MAXMIN diversity problem defined as the problem of selecting £ out
of a set of n items so that the minimum distance between any two of the selected items
is maximized. The MAaXMIN problem is known to be NP-hard [47]. We propose a suite
of algorithms that exploit the cover tree to provide solutions with varying accuracy and
complexity. We provide theoretical results that bound the accuracy of the solutions
achieved with regards to the optimal solution. The most efficient algorithm achieves
a b—1/a2-approximation of the optimal solution, where b is the base of the cover tree,
whereas the most expensive algorithm, a pruned implementation of a greedy heuristic,
a 1/2-approximation.

Our incremental algorithms produce results of quality comparable to that achieved
by re-applying the greedy heuristic to re-compute a diverse set, while avoiding the
cost of re-computation. Using cover trees also allows the efficient enforcement of the
continuity requirements. Furthermore, multiple queries with different values of £ can
be supported.

In many cases, the items in the result set are associated with a relevance rank. We
have extended our approach to support the computation of diverse subsets of ranked
sets of items. We first show how to incorporate relevance in the diversity function
used to build the cover tree. In addition, to allow for dynamically tuning the relative
importance of relevance and diversity, we introduce an alternative solution based on
weighted cover trees along with appropriate algorithms.

Finally, note that a recent line of research focuses on combining relevance and
diversity by viewing diversification as a top-k problem ([15, 59, 51]). In such cases,

threshold algorithms are used for selecting diverse items aiming at pruning a portion

24



of the candidate items. Such approaches assume the existence of indices to provide
sorted access to items, e.g., based on relevance or their distance from a given item.
Here, instead, we aim at constructing indices that will guide the selection process.

In a nutshell, we make the following contributions:

e we address the dynamic diversification problem along with continuity require-
ments appropriate for a streaming scenario

e we present a suite of methods based on spatial indexing for the MaXMIN problem
and provide bounds for the achieved diversity with regards to the optimal solution,
and

e we extend our methods to the case of selecting items that are both relevant and
diverse.

The rest of this chapter is structured as follows. In Section 3.1, we present our
diversification framework and define the CoNTINUOUS k-DIVERSITY PROBLEM. Section 3.2
presents the cover tree index structure, while Section 3.3 introduces algorithms for
computing diverse items. Section 3.4 considers combining diversity with relevance.
Section 3.5 presents our experimental results. In Section 3.6, we present related work
specific to index-based diversification, while in Section 3.7, a summary of the chapter.

3.1 The Diversification Model

Here, we focus on a general form of diversification based on content dissimilarity. Next,
we first provide a formal definition of the diversity problem and then introduce its
continuous variation.

3.1.1 The k-Diversity Problem

Let P = {p1,...,pn} be a set of n items. Given a distance metric d : P x P — R*
indicating the dissimilarity of two items in P, assume that the diversity of a set S,
S C P, is measured by a function f : 27! x d — R*. For a positive integer k, k < n, the
k-DIvERrsITY PROBLEM is the problem of selecting a subset S* of P such that:

S* = argmax f (S, d). (3.1)

SCPp

|S|=k
The choice of f affects the selection of items, even for a specific distance metric d.
Two widely used functions are the minimum distance among the selected items and the

sum of the distances of the selected items, formally defined as:

fMIN(Sa d) = min d(pzvp]) (32]
Pip; €
DiFD;
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(a) MAXMIN. (b) MAXSUM.

Figure 3.1: MAXMIN vs. MaxSuM for n = 200 and k£ = 30. Diverse items are marked
with a darker (red) color.

and

fom(S,d) = > d(pi,p;). (3.3)

Pip; €S

PiFDj
The corresponding problems are called MAXMIN and MAXSuM. Intuitively, MAXMIN aims
at discouraging the selection of nearby items, while MAXSum at increasing the average
pairwise distance among all items. An example is shown in Figure 3.1, which depicts
the £ = 30 most diverse, in terms of geographical distance, apartments for sale from a
set of n = 200 available apartments in the London area retrieved from [6]. In general,
MaxSuMm tends to select items in the outskirts of the set P, whereas MaxMIN selects
items that are more representative of P in the sense that they provide a better coverage
of it. In the rest of this chapter, we will focus on the MaAXMIN problem that exhibits this
desired property.

The MaxMin Greedy Heuristic. The k-DIVERSITY PROBLEM is known to be NP-hard
[47]. Various heuristics have been proposed, among which a natural greedy heuristic
(Algorithm 3.1) has been shown experimentally to outperform the others in most cases
(141, 48]). The algorithm starts by selecting either a random item or the two items in P
that are the furthest apart (line 1). Then, it continues by selecting the items that have
the maximum distance from the items already selected, where the distance of an item

p; from a set of items S is defined as:
d(pi, S) = mind(p;, pj) (3.4)
p; €S

It has been shown (e.g., in [89]) that the minimum distance of the set produced
by the greedy heuristic is a 1/2-approximation of the minimum distance of the optimal

solution and that no polynomial algorithm can provide a better guarantee.
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Algorithm 3.1 Greedy Heuristic.

Input: A set of items P, an integer k.
Output: A set .S with the k most diverse items of P.
1: P*,¢* « argmaxp 4cp d(P, q)
P#q

2: S — {P*, ¢*}

3: while |S| < k do
4:  P* < argmaxpp d(P,S)

5

6

S — SuU{P*}
: return S

3.1.2 The Continuous k-Diversity Problem

We consider the case in which the set P changes over time and we want to re-
fresh the computed £ most diverse items to represent the updated set. In general,
the insertion (or deletion) of even a single item may result in a completely differ-
ent diverse set. The following simple example demonstrates this. Consider the set
P ={(4,4),(3,3),(5,6),(1,7)} of points in the 2-dimensional Euclidean space and k =
2. The two most diverse items of P are (4,4) and (1,7). Assume that (0,0) is added to
P. Now, the two most diverse items of P are (0,0) and (5, 6).

In many applications, new items are generated in a continuous manner and, thus,
the set P changes gradually over time. For example, consider a user continuously re-
ceiving a representative, i.e., most diverse, subset of the stream of available apartments
in her area. We would like to offer her a continuous view of the most diverse items in
this stream.

We adopt a sliding-window model where the k£ most diverse items are computed over
sliding windows of length w in the input stream. The window length may be defined
either in time units (e.g., “the k£ most diverse items in the last hour”), or in number of
items (e.g., “the k most diverse items among the 100 most recent items”). Without loss
of generality, we assume item-based windows. We allow windows to not only slide but
also jump, i.e., move forward more than one item. For windows of length w and a jump
step of length h, h < w, consequent windows share w — A common items (Figure 3.2).
Two consequent jumping windows may correspond, for example, to the items seen by a
user in two consequent visits to her RSS reader application. Between these two visits,
some items have ceased to be valid, new items have been generated, while a number
of older items remain valid. Note that, for 4 = 1, jumping windows behave as regular
sliding windows, while for & = w, consequent windows are disjoint which corresponds
to periodic behavior with a period of length w.

Formally, let P be a stream of items. We denote the i jumping window of P as
‘P;. The UNCONSTRAINED CONTINUOUS k-DIVERSITY PROBLEM is the problem of selecting a
subset S} of P, for each P;, such that:

St = argmax f(.S;, d) (3.5)
S,CP;

[Sil=k

27



—>

‘ Pi | P2 | Ps | Ps|Ps|Ps|Psr||Ps|Po|Pio|Pu|Pia| ™
—
‘ Pi | Py | Ps| Py ‘ Ps | Ps | P7 | Ps | Po |Pio| Pui||Pia|

Figure 3.2: Two consequent windows with w = 7 and h = 4.

Constrained Continuous k-Diversity Problem. Since users may expect some conti-
nuity in the diverse sets they receive in consequent retrievals, we consider additional
requirements on how the diverse sets change over time.

First, we want to avoid cases where diverse items that are still valid disappear. This
may lead to confusing results, where an item appears in one diverse set, disappears
in the next one and then appears again. Thus, an item selected as diverse remains
in the diverse set until it expires, i.e., exits the current window. The diverse set is
complemented with new items that are diverse with regards to those previously selected
diverse items that are still valid. For instance, in the apartments example, the user
sees new items that are diverse with regards to other previously seen apartments that
are still available. We call this the durability requirement.

Second, we want the order in which items are chosen as diverse to follow the order
of their appearance in the stream. This means that, once an item P is selected as
diverse, we cannot later on select an item older than P. We call this the freshness
requirement. This is a desirable property in case of notification services, such as news
alerts and RSS feeds, so as to ensure that the diverse items selected to be delivered to
the users follow the chronological order of their publication. Raising this requirement
may result in out-of-order delivery which may seem unnatural to users.

Based on the above observations, we now formally define the CONSTRAINED CONTINU-
ouUs k-DIVERSITY PROBLEM.

Definition 3.1. (CoNSTRAINED CONTINUOUS k-DIVERSITY PROBLEM). Let P be a stream of
items, P;_1, P;, i > 1, be any two consequent windows and S;_; be the diverse subset
of P;_1. The CoNSTRAINED CONTINUOUS k-DIVERSITY PROBLEM is the problem of selecting a
subset 57 of P;, Vi, such that:

S = argmax f(.S;, d) (3.6)
S

and the following two constraints are satisfied:
1. p; € (S, NP;) = p; € S (durability requirement),

2. Let p; be the newest item in S} ;. Then, ﬂpj € P;\S;, with j < [, such that,
pj € S} (freshness requirement).
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3.2 Index-based Diversification

To compute diverse sets in a dynamic setting, we rely on a tree structure, called cover
tree, to index the items in P. In this section, we provide a formal definition of the cover
tree along with algorithms for constructing cover trees appropriate for the diversification
problem.

3.2.1 The Cover Tree

A Cover Tree (CT) [16] for a set P is a leveled tree where each level is associated with an
integer ¢ which increases as we move up the tree. Each node in the tree is associated
with exactly one item p € P, while each item may be associated with multiple nodes,
but with at most one at each level. In the following, when clear from context, we use P
to refer to both the item P and the node associated with P at a specific level.

Let C; be the set of items at level ¢ and ¢,,,, and /,,;, be respectively the levels of
the root and the leaves. A cover tree of base b, b > 1, is a tree that obeys the following

invariants:

1. Nesting: For all levels ¢, {,,;, < { < {0z, Co € Cy_1, i.e., once an item P appears
in the tree at some level, then there is a node associated with P at every lower
level.

2. Separation: For all levels {, {,,;, < { < {14, and all distinct p;, p; € Cy, it holds
that, d(p;, p;) > b*.

3. Covering: For all levels ¢, {,,;, < { < {,,4, and all p; € Cy, there exists a p; € Cy1,
such that, d(p;,p;) < b*t1 and the node associated with p; is the parent of the
node associated with p;.

An example is shown in Figures 3.3 and 3.4.

The CT was originally proposed with base b = 2. Here, we use a more general base b,
b > 1. Generally, larger base values result in shorter and wider trees, since fewer nodes
are able to “cover” the nodes beneath them. The value of b determines the granularity
with which we move from one level to the next, i.e., how many more items become
visible as we descend the tree.

Due to the CT invariants, if an item P appears for the first time at level ¢ of the tree,
then P is a child of itself at all levels below /. This observation provides us with a more
space-efficient representation of the CT achieved by coalescing all nodes whose only
child is a self child. We call this representation explicit. The explicit representation of
a CT for a set P with n items requires O(n) space [16]. Although we use an explicit
representation in our experiments, for ease of presentation, we shall use the full implicit
representation when describing the algorithms.

Next, we first present an algorithm for batch constructing a CT tailored for the
MaxXMIN problem. Then, we consider an incremental construction of a CT appropriate

for dynamic environments.
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Figure 3.3: An example of the top 10 levels of a cover tree for a set of items in the
2-dimensional Euclidean space. Bold points represent the items (i.e., nodes) at each
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v
w
. e ¥
i
‘s..l v
® s\'g k > o
® Toale’ey
Y O B,
; et
w £, L
DR e -
a2 ;Aﬁ f “w. . r
Lt T
A ;
:“? A * R
A #
i P ‘

Figure 3.4: The ({,.: — 5)™ level of the cover tree of Figure 3.3. The items (i.e., nodes)
of the level are drawn with large bold symbols, while the items of lower levels covered

by these nodes are drawn with the same symbol (and color) as their ancestor.

3.2.2 Batch Construction

Given a set P of items, we build an appropriate CT for P using a bottom-up approach as
depicted in Algorithm 3.2. First, we construct the lowest level that includes all items in
P (lines 1-5). Then, given a level ¢ to build the next level /+ 1, we select items from level
¢ whose distance is larger than pttt (so that the separation invariant is maintained), as
long as such items exist (lines 6-17). To construct a CT whose items at each level are
as far apart from each other as possible, we follow a greedy approach in selecting which
items from C) to include in Cy;. Specifically, we start by selecting the two items in Cj
that are the farthest apart from each other (line 9) and continue by selecting the item
that has the largest minimum distance from the items already selected (lines 12-17).
The remaining items at Cy are assigned a parent node from Cy; so that the covering

invariant holds (lines 18-21). To reduce the overlap among the areas covered by sibling
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Algorithm 3.2 Batch Cover Tree Construction.
Input: A set of items P, a base b.
Output: A cover tree T of base b for P.
1: £ « [log, (miny 4ep d(p, q))]
2: T.Cy 0
3: forallp € P do
4: T.Cp«—T.CoU{p}
while |T.Cy| > 1 do
T.Cg.H — @
candidates «— T.C,
P, q" — argmax, ccandidates 4P: 4)
T.Crp1  T.Coi1 U{p*, q"}
10:  candidates — candidates\{p*, ¢*}
11:  while candidates # () do

© ® 3o @

12: candidates « candidates\{p : Iq € T.Cy,1 with d(p,q) < b*F'}
13: p* argmaxy,c cqndidates d(p, T.Ce11)

14: T.Cngl — T.Cngl U {p*}

15: candidates < candidates\{p*}

16: forallp € T.Cy do

17: q* < argminger o, , d(p, T-Cri1)

18: make ¢ parent of P

19: T.Cp — T.C”l
20 (+—/{+1
21: return T

nodes, we assign each node to its closest candidate parent (line 19). We call this step
nearest parent heuristic. Clearly, from the way the tree is constructed, Cy; C (Y, thus
the nesting invariant also holds. We call the tree constructed using this procedure,
Batch Cover Tree (BCT).

We shall prove that the set of items C at each level ¢ of the BCT correspond to the
result of applying the MAXMIN greedy heuristic (Algorithm 3.1) on P, for k = |C}|. Our
proof uses the following observation. Let S“¥(P, k) denote the result of applying the
MaxMIN greedy heuristic on P for k.

Observation 3.1. For any k > 2, SYF(P k + 1) D S“E(P, k).

Theorem 3.1. Let P be a set of items and T’ be a BCT for P. For all levels (, {,,;, < { <
linaz» Of T, it holds:
Cy = SYR(P,|Cy|)

Proof. We shall prove the theorem by induction on the level /. The theorem holds
trivially for ¢ equal to the lowest level of the tree, since this level includes all items in
‘P. Assume that it holds for level /. We shall show that it also holds for level ¢ + 1.
Consider the construction of level / + 1. From the induction step, it holds that,
Cy = SYR(P,|Cy]). Let P be the first item in Cy such that P is the best candidate, i.e.,
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has the maximum minimum distance from the items already selected, but P cannot be
moved to Cy,1 because P is covered by an item already selected to be in Cy, ;. Let C’,
C' C Oy, be the set of items already selected to be included in C, ;. This means that, it
holds: mingecr d(p,q') > mingecr d(p', ¢'), for all p’ € C,\C’ (1) and, also, 3 ¢ € C’ such
that d(p, q) < b**! (2). From (1) and (2), we get that for all p’ € C,\C’, 3 ¢ € C’' such that
d(p',q) < b1, that is, all remaining items are already covered by items in C’.

Thus, P is the last item that is considered for inclusion in Cy,;, since all other
remaining items in C, are already covered. Therefore, to construct (', 1, the items from
(' to be included in level /+1 are considered in the same order as in the greedy heuristic,
until one item that violates the separation criterion (it is covered by the selected items)
is encountered. When this happens the selection stops. By the induction step and

Observation 3.1, this concludes the proof. &

Note that, we have made an implicit assumption that no ties occur when selecting
items. In the absence of ties, both the greedy heuristic and the BCT construction
algorithm select items deterministically. We can raise this assumption, by considering
that if ties exist, these are resolved in a specific order that may vary depending on the
nature of the items, for instance, by selecting the most recent among the items.

Regarding the complexity of Algorithm 3.2, computational steps are shared among
levels. Each level () is a subset of C; and, more specifically, it consists of the items of
C in the order in which they were inserted into Cy up to the first item whose minimum
distance from the already selected items of C is smaller than b*"!. Therefore, it suffices
to perform these computational steps only once (at the lowest level) and just maintain
the order in which each item was selected from the lowest level for inclusion in the next
level. This gives us an O(n?) complexity.

As a final remark, another way to view the BCT is as caching the results of the

greedy heuristic for all £ and indexing them for efficient retrieval.

3.2.3 Dynamic Construction

In dynamic environments, it is not efficient to re-construct a BCT whenever an item is
inserted or deleted. Thus, we construct a cover tree incrementally as new items arrive

and old ones expire. We refer to such trees as Incremental Cover Trees (ICTS).

Incremental Insertion. To insert a new item P into a CT, we use the recursive insert
procedure shown in Algorithm 3.3. It is based on the insertion algorithm in [16] and
subsequent corrections in [71] that we have extended to work for any b > 1. | nsert
is called recursively starting from the root level, until a level is found at which P is
separated from all other items (lines 2-4). Each time, | nsert is called only with the
nodes that cover P (line 5). When the first level such that P is separated from all other
items is located, a node that covers P is selected as its parent (lines 8-9). To select a

node as a parent for P, we use a nearest parent heuristic (as in the batch construction)
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Algorithm 3.3 Insert(P, T.Qy, /)

Input: An item P, a set of nodes T.Q); of a cover tree 1" at level /.
1: C « {children(q) : g € T.Q¢}

2: if d(p,C) > b’ then

3: return true

4: else

5. T.Qe1— {q€C:d(p.q) < 25}
6: flag — Insert(p,T.Qy_1,{ — 1)
7:  if flag and d(p, T.Q,) < b’ then
8

9

q" — argminger g, a(p.q)<vt AP, 7)
make P a child of ¢*

10: return false
11: else
12: return flag

Algorithm 3.4 Delete(p, {7".Q¢, T.Qr41, ..., 1T.Qy,,.. }, 0)

Input: An item P, sets of nodes {T.Qy, T.Q¢41,--.,1.Qy,,,. } of a cover tree T', a level £.
1: C «— {children(q) : ¢ € T.Qu}

2: T.Q—1 — {g € C:dp,q) < 5}

3: Delete(p,{T.Qe-1,T-Qp,..., T.Qq, ..}, {—1)

4: if d(p,C) = 0 then

5:  delete P from level £ — 1 and from children(parent(p))

6: for g € children(p) in greedy order do
7: 0 —10—1

8: while d(q, T.Qy) > b’ do

9: add ¢ into level ¢’

10: T.Q@/ — T.Qg/ U {p}

11: U —0+1

12: q* < argmingep g, d(p', q)

13: make ¢ a child of ¢*

and assign P to its closest candidate parent. The complexity of the algorithm depends
on how many nodes of each level cover P.
Next, we prove the correctness of the insertion algorithm.

Theorem 3.2. Let T be a cover tree for a set P and P be an item, P ¢ P. If P can be
inserted at an existing level of T', then calling | nsert (Algorithm 3.3) with input P and
the root level Cy,,,. of T returns a cover tree for P U {p}.

Proof. Since P can be inserted at an existing level, there is always a (sufficiently low)
level of the tree where the condition of line 2 holds for the first time. Let ¢/ — 1 be this
level. Since ¢ — 1 is the highest level where this condition holds, it must hold that
d(p, T.Qp) < b’. Therefore, the second condition of line 7 holds and we can always
find a parent for the new node, thus maintaining the covering invariant. Whenever
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a new node is inserted at some level, it is also inserted at all lower levels as a child
of itself, thus the nesting invariant is maintained. It remains to prove the separation
invariant. We shall prove it for level ¢ — 1. The proof proceeds similarly for lower levels.
Consider some other item ¢ in Cy_;. If ¢ € C, then d(p,q) > b*"!. If not, then there
is a higher level ¢/ > ¢ where some ancestor of ¢, say ¢’ was eliminated by line 5, i.e.,
d(p,q') > b;;—? Using the triangle inequality, we have that d(p,q) > d(p,q') — d(q,q") >

/ Y / I N T s B X (R VA |
dp,q) =2V =dp.¢) - - >33+ 50 =5 > o =0 1

For clarity of presentation, we have made the assumption that the new item P can
be inserted at an existing level of the tree. In the general case, when the new item P
must be inserted at a level lower than ¢,,;,, we keep copying nodes of C;, . to a new
level Cy, . _1,

P has a distance from the root node larger than b=, we promote both the root node

min

until P is separated from all other items in the new level. Similarly, when

and P to a new higher level /,,,, + 1 and repeat this process until one of the two nodes
can cover the other. Note that, since the explicit representation of the tree is stored,

duplication of levels is only virtual and is performed very efficiently.

Incremental Deletion. Similar to insertion, to delete an item, starting from the root,
Del et e (Algorithm 3.4) is called until the item P to be deleted is located, keeping note
of the candidate nodes at each level that may have P as a descendant. When P is
located, it is deleted from the tree. In addition, all of its children are reassigned to some
other candidate parent.

Algorithm 3.4 includes two heuristics for improving the quality of the resulting CT.
One is the usual nearest parent heuristic shown in line 13: we assign each child of P
to the closest among its candidate parents. The other heuristic refers to the order in
which the children of P are examined in line 6. We examine them in a greedy manner
starting from the one farthest apart from the items at level /' and continue to process

them in decreasing order of their distance to the items currently in ¢'.

Theorem 3.3. Let T be a cover tree for a set P and P be an item, P € P. If P ¢ C,, ..
of T, calling Del et e (Algorithm 3.4) with input P and the root level C,
cover tree for P \ {p}.

of T' returns a

mazx

Proof. The item P is deleted from all levels that include it, thus the nesting invariant
is maintained. For each child ¢ of P, we move up the tree, until a parent for ¢ is
located, inserting ¢ in all intermediate levels ¢’ to ensure that the nesting invariant is
not violated. Such a parent is guaranteed to be found (at least at the level of the root).
Adding ¢ under its new parent does not violate the separation invariant in any of the
intermediate levels since d(q,q") > ", for all ¢ in T.Qy. The covering constraint also
holds for the parent of ¢. &

For ease of presentation, we assumed that P ¢ C,, . Otherwise, we need to select
a new root. Note that, it is possible that none of the children of the old root covers all of

its siblings. In this case, we promote those siblings that continue to be separated from
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each other in a new (higher) level /,,,, + 1 and continue to do so until we end up with
a level having a single node.

3.3 Diverse Set Computation

In this section, we present algorithms that use the cover tree to solve the k-diversity
problem. The Level algorithms exploit the separation property, i.e., the higher the tree
level, the farthest apart its nodes. We also present an efficient implementation of the
Greedy Heuristic (Algorithm 3.1) that exploits the covering property to prune the search
space.

3.3.1 The Level Family of Algorithms

We consider first the intuitive algorithm of selecting % items from the highest possible
Cy+1| < k and |Cy, | > k (depicted
in Algorithm 3.5). Locating this level can be implemented efficiently, e.g., by using

level of a cover tree, that is, from level ¢;, such that,

a hash table to store the size of each level. After locating ¢;, the complexity of the
algorithm is O(k), since a random subset of Cy, is selected.

Algorithm 3.5 Level-Basic Algorithm.

Input: A cover tree 7, an integer k.

Output: A set S with k diverse items in T'.

1: by, — o

2: while |7.C, | < k do

3 b — b, — 1

4: S <« any subset of size k of T.Cl,
5: return S

The following theorem characterizes the solution attained by the Level-Basic algo-
rithm with respect to the optimal solution.

Theorem 3.4 (Approximation Bound). Let P be a set of items, d°FT (P, k) be the mini-
mum distance of the optimal diverse set for the MAXMIN problem for k > 2 and d°T (P, k)
be the minimum distance of the diverse set computed by the Level-Basic algorithm. Then:

d°T(P,k) > a d°PT (P, k). where a = 2}

Proof. Let SPFT(P, k) be an optimal set of k diverse items. To prove Theorem 3.4, we
shall bound the level where the least common ancestor (LCA) of any pair of items p,
py € SOF T(P, k) appears in the cover tree. Assume that the LCA of any two items py,
p2 in the optimal solution appears for the first time at level m. That is, m is the lowest
(furthest from the root) level that such an LCA appears.
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Let us now compute a bound on m. Assume that the LCA of any two items p;, ps
€ SOPT(P k) appears at level m. Let P be this ancestor. From the triangle inequality,
d(p1,p) + d(pz,p) > d(pi,p2). Since pi, po € SOFT(P,k), it holds that, d(p,ps) >
d°PT (P, k). Thus:

d(p1,p) +d(p2,p) = d°7T(P, k). (1)

From the covering invariant of the cover tree, it holds that, d(p;, p) < Z;n:_oo b < b;n_ +11 .
Similarly, d(p, p) < 2. Substituting in (1), we get that 2 Y>> d°FT(P, k). Solving
for m, we have m > log, (52d9F7 (P, k)) — 1.

Since m is the first level that the LCA of any two items in the optimal solution

appears, from the covering property, it holds that at level m — 1, there are at least k
items, i.e., the distinct ancestors of the k items in the optimal solution. Thus, there are
at least k items at level

m — 1 =log, (b_TldOPT(P, k;)) —-2. (2

This means that the cover tree algorithm will select items from this or a higher level.
From the separation invariant of the cover tree, we have d°7 (P, k) > b™~!. Using (2),
we get that d°T(P, k) > pom(*2 a7 (PR)=2 o gCT(p k) > LLaOPT(P k) b2, which

proves the theorem. 1

We also consider algorithms that, instead of selecting any £ items from level ¢,
select these items greedily. The first algorithm, called Level-Greedy, performs a greedy
selection among all items at level /. This requires k|Cy, | distance computations. The
second algorithm, called Level-Inherit, (Algorithm 3.6), initializes the solution with all
items in Cy, 1 and selects the remaining k — |Cy, 11/ items from Cy, in a greedy manner.
Thus, it requires (k — |Cy, +1])|Cy, | distance computations.

Algorithm 3.6 Level-Inherit Algorithm.

Input: A cover tree 7', an integer k.

Output: A set S with k diverse items in 7.

1: by — lax

2: while |T.Cy,| < k do

3: by — b, — 1

4: S —T.Cp 1

candidates «— T.Cop \T.Cy, +1

6: while |S| < k do

7. Pt argmax,ccandidates AP S)
8 S Su{p*}

9:  candidates < candidates\{p*}

o

10: return S

Clearly, the bound of Theorem 3.4 holds for the solution of Level-Greedy. It also
holds for the solution of Level-Inherit, since due to nesting, an item that appears at
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some level of the tree also appears at all levels below it, thus, all items selected by Level-
Inherit belong to Cy,. In general, these two algorithms are expected to produce more
diverse sets than the estimated general bound. In particular, for Batch Cover Trees
(BCTs), we can prove a better approximation. Specifically, it follows from Theorem 3.1,
that the application of Level-Greedy and Level-Inherit algorithms on a BCT produces
the same solution with the greedy heuristic.

Corollary 3.1. Let P be a set of items, k > 2, d“F(P, k) be the minimum distance of the
diverse set computed by the greedy heuristic and d? CT(P, k) be the minimum distance

of the diverse set computed by Level-Basic or Level-Inherit when applied on a BCT for P.
It holds that dB°T (P, k) = d°B(P, k) > 1/, d°PT(P, k) .

3.3.2 Greedy Heuristic using Cover Trees

Next, we present algorithms that use the cover tree to prune the search space of the
greedy heuristic.

The algorithms proceed as follows. We initialize the diverse set S by selecting either
the root or the two furthest apart leaves of the tree. This corresponds to initializing the
greedy heuristic with either a random or the two most distant items. Then, we proceed
in rounds. At each round, we select one item by descending the tree seeking for the
item P with the maximum distance, d(p, S), from the current set S. Specifically, at
each of the £ — 1 (or £ — 2) rounds, we start descending the tree from the highest level
() that contains items that are not already in S. We locate the item P of C;, with the
largest d(p, S) and use it to prune its siblings. Then, we consider as candidates the
children of all non-pruned nodes of C; and repeat the process for C,_;. In the end, the
best candidate from the leaf level is added to S and we proceed to the next round. This
process is shown in Algorithm 3.7.

Pruning is based on the following observation. Suppose that at some point we
consider for inclusion in S an item P in Cy. Let d(p, S) be the distance of P from S
and ¢ be any sibling of P. Then, the best candidate in the subtree of ¢ is at distance at

most:

¢
2 V=T 7

J=lmin+1
from ¢g. Therefore, we can safely prune nodes according to the following CT pruning
rule:
CT PruNING RULE: Let P and ¢ be two nodes at level ¢ in a CT. If d(p,S) > d(q,S) +

b£+1—b£min+1

=) , we can prune the subtree rooted at q.

The CT pruning rule is pessimistic, in the sense that it assumes that each node may
have a child located as far as possible from it. A more efficient pruning rule can be used
at the trade-off of maintaining some extra information. Specifically, at each node P in

the tree, we maintain the distance of P from the node in its subtree that is the furthest
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Algorithm 3.7 Greedy-CT Algorithm.

Input: A cover tree 7', an integer k.

Output: A set .S with the k most diverse items in 7.
1: S «— {T.root}
2: while |S| < k do
3: @ « children(T.root)
while Q # () do

4

5 p* — arg maxpeq d(p, S)

6: Q' « children(p*)

7 for all P € Q\{p*} do

8 if ¢ is not pruned by the pruning rule then
9: Q' — Q' U children(q)
10: Q— Q'

11: S~ Su{p*}

12: return S

apart from P. We call this distance the distance weight of P denoted by wy(p). We call
the tree that is annotated with such weights a Weighted Cover Tree (WCT). Then, we
can use Algorithm 3.7 along with the following pruning rule:

WCT PRUNING RULE: Let P and ¢ be two nodes at level ¢ in a WCT. If d(p, S) > d(q, S) +
wq(q), we can prune the subtree rooted at g.

3.3.3 Other Issues

Constrained Continuous k-Diversity. The two requirements of constrained contin-
uous k-diversity (Definition 3.1) can be easily enforced using cover trees. For the
durability requirement, items that are selected as diverse are marked as such and re-
main part of the diverse set, until they expire. Let z be the number of such items.
In this case, our algorithms just select k — 2 additional items from the tree. For the
freshness requirement, non-diverse items that are older than the newest item in the
current diverse set are marked as “invalid” in the CT and are not considered further as

candidates for inclusion.

Adjusting k. The CT can be used to provide results for multiple queries with different
k. Thus, each user can individually tune the amount of diverse items she wishes to
receive. Furthermore, the CT supports a “zooming” type of functionality. Assume that
a user selects a specific value for k. After receiving the £ most diverse items, she can
request a larger number of closer to each other items by choosing a larger £ (“zoom-in”),
or a smaller number of farther apart items by choosing a smaller k£ (“zoom-out”). We
can exploit the nesting invariant to achieve continuity in the following sense. Let S be
the set of the £ most diverse items and let ¢ be the highest level of the CT at which all
items of S appear. For k' > k, we would like the set S’ with the &’ most diverse items
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(a) Relevance. (b) Relevance and Diversity.

Figure 3.5: Selecting £ = 10 out of n = 200 apartments in London based (a) solely
on relevance (i.e., price) and (b) incorporating diversity (i.e., geographical distance).

Selected items are marked with a darker (red) color.

to be such that S’ O S. To achieve this, we select items from level ¢ or lower, since the
items in S appear at all levels m < /. Analogously, for k' < k, to construct the set S’
with the &’ most diverse items such that S’ C S, we may select those items of S that

appear at levels higher than /.

3.4 Diversity and Relevance

In many cases, the items in the result of a query are ranked, most often based on
their relevance to the user query. In this case, diversification also addresses the over-
specialization problem, i.e., retrieving results that are very similar to each other. An
example is shown in Figure 3.5 using our apartments dataset, where relevance is de-
fined based on price, i.e., the cheaper the apartment the more relevant, and diversity is
based on geographical location. Using only relevance, a user is presented with apart-
ments mostly from east London, while with diversity, some relatively cheap apartments
from other regions in London are also selected.

The MaxMin k-Diversity problem with relevance. In general, the relevance score of
an item is application dependent. Without loss of generality, we assume a relevance
function r : P — R* that assigns a relevance score to each item, where a higher value
indicates that the item is more relevant to a particular query or user. A natural bi-
criteria objective seeks to maximize both the relevance and the diversity of the selected
subset. In particular, the MAXMIN k-DIVERSITY WITH RELEVANCE PROBLEM for a positive
integer k, k < n, is the problem of selecting a subset 5* of P such that:

S* = argmax f,.(S,d,r) (3.8)

scp
|S|=k

with
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fr(S,d,r) =minr(p;) + A min d(p;, p;) (3.9)
pi€S Pi,p; €S
DiFDj

where A > 0O is a parameter that tunes the importance of diversification.

A combined relevance-diversity (d,) approach. It was shown in [57] that the MAXMIN
k-DIVERSITY WITH RELEVANCE PROBLEM is equivalent with the MAXMIN k-DIVERSITY PROB-
LEM if we replace the distance function d with the function d,.:

1
dr(N\, pi,pj) = 3 (r(pi) +7(pj)) + Ad(pi, py). (3.10)

If we define d,.(\, p;, p;) = 0, for p; = pj, it is to easy to see that d, is a metric, if d is a
metric.

To incorporate relevance, we can now build the CTs using distance d, instead of
d. It is straightforward to see that all algorithms and related bounds advanced for the
diversity-only case directly apply to the combined relevance-diversity case.

Supporting a varying A. A drawback of the combined approach is that we need to
maintain a different CT for each different value of \. We would like to be able to adjust
A dynamically without having to reconstruct the trees. To this end, we consider building
CTs based solely on distance d and enhancing our algorithms for selecting diverse sets
so as to incorporate relevance in the selection.

Let (s, be the highest level with at least £ nodes. The enhanced Level-Basic algo-
rithm selects the k£ most relevant items of (), , while the Level-Greedy algorithm per-
forms a greedy selection among the corresponding items using the combined distance
d,, instead of d.

We also introduce a new level algorithm, called Level-Hybrid, whose goal is to allow
nodes with large relevance scores that appear in low levels of the CT to enter the diverse
set. Level-Hybrid uses an extended CT. In this extended CT, for each internal node P,
we maintain a pointer to the node that has the largest relevance score among all nodes
in the subtree rooted at P. Let best(p) be this node. Level-Hybrid (Algorithm 3.8)
performs a greedy selection among the £ nodes from level C;, whose descendants have
the best relevance scores and these k descendants. Level-Hybrid performs k - 2k = 2k?
distance computations.

In the CT implementation of the greedy heuristic, subtrees are pruned based on
both diversity and relevance. To this end, we maintain at each internal node P, the
largest relevance value, w,(p), called relevance weight, of any node in the subtree of P.
The best possible pruning is achieved, if we also use the distance weight. Using both
weights, we have the following pruning rule.

WCT PRUNING RULE WITH d,: Let P and ¢ be two nodes at level ¢ in a WCT. If d,(p, S) >
d,(q,5) + 3 (r(q) + w,(q)) + Mwa(q). we can prune the subtree rooted at g.

Clearly, we could maintain only the relevance weight, in which case the distance is
bounded using the CT pruning rule.
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Algorithm 3.8 Level-Hybrid Algorithm.

Input: A cover tree 7', an integer k, a real number \.

Output: A set .S with the k most diverse items in 7.

1: Uk — lrax
while |7.Cy, | < k do
b — b — 1
C « the k nodes P in T.Cy, with the most relevant best(p)
candidates «— )
forallp € C' do
candidates «— candidates U {p, best(p)}
P argmaX,c andidates 7 (P)
S — SU )
: candidates — candidates\{p*}
: while |S| < k do
p* — argmax,c andidates (A, p; S)
S —Su{p}
candidates — candidates\{p*}

© ® N o Rk e

— e e e
L T

: return S

p—t
o1

Maximal Marginal Relevance (MMR) Another popular approach for combining rele-
vance and diversity is Maximal Marginal Relevance (MMR) (e.g., [23, 51]). MMR con-
structs a relevant and diverse subset S in a greedy fashion, by starting with either
a random or the most relevant item and adding at each round the item p; with the
maximum contribution, i.e., the item p; with the maximum quantity:

mr(\, pi, S) = Ar(p;) + (1 — A);né% d(pi, pj) (3.11)

where A € [0, 1] is a parameter that tunes the relative importance of each of the two
factors.

All the presented algorithms are directly applicable to MMR by using mr instead of
d,. For example, we now have the following pruning rule.

WCT PruUNING RULE WiTH MMR: Let P and ¢ be two nodes at level £ in a WCT. If d,.(p, S)
> dw(q) + (1 = A) (d(g, S) + wa(q)), we can prune the subtree rooted at gq.

3.5 Experimental Evaluation

In this section, we experimentally evaluate the performance of cover trees for dynami-
cally computing diverse sets.

Datasets. We use a variety of datasets, both real and synthetic. Our synthetic datasets
consist of two-dimensional points in the Euclidean space, where each dimension takes

values in [0, 1]. Items are either uniformly distributed or form clusters of different
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Table 3.1: Characteristics of the datasets.

Dataset | Cardinality | Dimensions | Distance | Relevance scores
Uniform 10,000 2 Euclidean | Uniform/Clustered
Clustered 10,000 2 Euclidean | Uniform/Clustered
Cities 5,922 2 Euclidean Clustered
Nestoria 1,000 8 Haversine Price-based
Faces 300 256 Cosine Uniform
Flickr 1,000 - Jaccard Uniform
Table 3.2: Input parameters.
Parameter Range Default
Synthetic Real Synthetic | Real
Base (b) 1.2-2.2 1.6
Diversification factor ()\) 0.0-1.0 0.2
Dataset size (n) 1-10,000 | 300-5,922 4,000 -
Size of diverse set (k) 100-300 10-100 150 50
Window size (w) 1,000 100 (no window)
Window jump step (h) 100-900 10-90 (no window)

sizes. We assign relevance scores to items either uniformly or in a “clustered” manner
around specific target items, so that items that are closer to the target items get larger
relevance scores than items further away. Clustered assignment is used to model the
common case where we get high relevance scores around specific items that correspond
to different interpretations of the query. Thus, we get four combinations: (i) uniform
spatial distribution with uniform relevance scores (“Uniform-Uniform”), (ii) uniform spa-
tial distribution with clustered relevance scores centered around uniformly distributed
target items (“Uniform-Clustered”), (iii) clustered spatial distribution with uniform rele-
vance scores (“Clustered-Uniform”) and (iv) clustered spatial distribution with clustered
relevance scores around the centers of the spatial clusters (“Clustered-Clustered”).

We also employ four real datasets. “Nestoria” consists of information about 1,000
apartments for sale in the London area retrieved from [6]. We relate relevance with price
and consider cheaper apartments as more relevant, while similarity is measured based
on geographic proximity (Haversine distance). “Cities” is a collection of geographical
points representing 5,922 cities and villages in Greece [5]. We assign relevance scores
in a clustered manner to model the fact that some specific areas may be more interest-

ing than others. “Faces” consists of 256 features extracted from each of 300 human
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face images with the eigenfaces method [2] and uniformly distributed relevance scores.
Finally, for “Flickr”, we used data from [4] which consists of tags assigned by users
to photographs uploaded to the Flickr photo service [3]. Table 3.1 summarizes our
datasets, while Table 3.2 our parameters.

Our datasets capture result sets with different data characteristics. Concerning
spatial distribution, for example, “Uniform-Uniform” contains items that cover all the
available space, while “Cities” (due to the geography of Greece, which includes a large
number of islands) provides us with both dense and sparse areas of items (Figure 3.3).
“Faces” contains many distinct small dense areas, while “Flickr” is generally a very

sparse dataset.

Setup. All methods are implemented in Java using JDK 1.6. Our experiments were
executed on an Intel Core i3-2100 3.1GHz PC with 3GB of RAM.

3.5.1 Building and Maintaining Cover Trees

First, we evaluate the cost of building cover trees. Figure 3.6 shows the real-time cost of
building an ICT by incrementally inserting items. This cost depends on b, since smaller
values of b lead to new items being inserted in lower tree levels, thus increasing the
cost of individual insertions. The cost also depends on the distance metric used, since
some distance computations are more expensive. For example, inserting 1,000 items of
the “Flickr” dataset, using the Jaccard distance, takes up to 5 seconds, while inserting
the same number of items takes less than 0.1 seconds for our Euclidean datasets. The
results are similar for the omitted datasets.

The cost of building a BCT can be divided into (i) the cost of selecting items from the
leaf level to build the first non-leaf level and (ii) the cost of assigning nodes to suitable
parents. Table 3.3 shows these costs for the uniform dataset. The cost of step (i) is
the same as the cost of executing the greedy heuristic for £ = n and is independent of
b or the dataset distribution. The cost of step (i) dominates that of step (ii) and this is
why the total building cost for BCTs does not differ significantly with b or with spatial
distribution. Building BCTs is orders of magnitude more expensive than building the
corresponding ICTs for the same datasets.

Figure 3.7 depicts the size of ICTs and BCTs for different values of b (n = 4,000
for our synthetic datasets). The x-axis corresponds to the tree level, starting from O
which denotes the root level, while the y-axis corresponds to the width (i.e., number
of nodes) of the corresponding level. Smaller values of b lead to taller and narrower
trees. Further, although ICTs are constructed incrementally, the resulting trees have
almost identical structure with the corresponding BCTs. In general, the height of the
tree depends on the minimum and maximum pairwise distances in the dataset, while
the width of the levels depends on the spatial distribution of the data. Therefore, for
example, levels get narrower faster as we move up the tree for “Cities” rather than

for ‘Uniform”, even though their height is roughly the same, since “Cities” is a more
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Figure 3.6: ICT building cost. The y-axis corresponds to the total time to incrementally
insert all n items in the tree.
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Figure 3.7: Tree sizes of the constructed ICTs and BCTs (full implicit representation).

The drawn lines in each figure correspond to smaller b values as we move from left to
right.

clustered dataset. Similarly, a wide tree is constructed for “Flickr”, due to sparsity.

In terms of maintenance, a single insertion in an ICT costs 1 msec for trees up to
5,000 and up to 1.3 msec for trees with 10,000 items. The cost of deletions is higher
because, after a node is removed, its children have to be re-assigned to new parents.
For all datasets and b values, a single deletion requires less than 3 msec for trees up to
5,000 and less than 7 msec for trees with 10,000 items. We also measured the cost of
maintaining weights in the case of WCTs which may require some extra bookkeeping
to update weights. For all datasets and b values, 4-6 additional nodes where accessed
per insertion on average. The effect on execution time is negligible.

3.5.2 Computing Diverse Subsets

We next evaluate the performance of the various algorithms introduced in this chapter
in terms of the quality of the retrieved diverse sets and the computational cost.

Diversity Algorithms. We first measure the cost savings when applying the CT PRUNING
RULE (“Greedy-CT”) or WCT PRUNING RULE (“Greedy-WCT”) on an ICT vs. executing our
cover tree based implementation of the greedy heuristic (“Greedy”). We use our uniform
dataset to see how pruning improves the cost of Greedy with n and k£ and different values
of b (Figure 3.8). Clearly, Greedy-WCT is more effective, since the actual distance to the
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Table 3.3: BCT building cost (sec).

Uniform

n step (i) | step (ii) b=1.2 | step (ii) b=1.6 | step (ii) b=2.0

1,000 | 11.181 0.048 0.044 0.043
2,000 | 107.103 0.211 0.209 0.203
3,000 | 416.660 0.498 0.416 0.398
4,000 | 899.799 0.812 0.503 0.490
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Figure 3.8: Pruning for the diversity-only case.

furthest descendant of each node is used for pruning. In general, pruning works better
for non uniform datasets, since each selection of a diverse item results in pruning a
largest number of items around it.

Next, we experimentally compare the performance of the greedy heuristic, using the
Greedy-WCT implementation, and our Level algorithms, i.e., Level-Basic, Level-Greedy
and Level-Inherit. Figure 3.9 depicts the achieved diversity and corresponding cost
when varying k. For comparison, we also report the diversity attained by randomly
selecting £ of the n items (RA). Clearly, the larger the £, the less diverse the selected
subset. The comparative performance of all algorithms is the same for all types of
datasets. Specifically, for all datasets, Greedy-WCT achieves the best diversity at the
highest cost, Level-Basic achieves the worst diversity at the lowest cost, while the other
two Level algorithms lie in-between. Level-Inherit achieves similar diversity with Level-
Greedy but is faster.

The Level algorithms select items from the appropriate tree level. Thus, their perfor-
mance depends on the tree. Recall that, clustered datasets result in trees whose levels
get narrower faster as we move up the tree. Level-Greedy and Level-Inherit perform a
greedy selection among the items in the appropriate level, thus the wider the level, the
worst the complexity and the better the diversity achieved. This also explains why their
cost increases in “steps” as k increases, since we gradually select items from lower (and

wider) levels. Level-Basic just selects any k items, thus the cost does not increase with

45



Diversity

Time (sec)

N

[y

Diversity
Diversity
Diversity

Figure 3.9: Diversity and cost for the diversity-only case with varying k.

k, while the achieved diversity decreases more rapidly as k increases, since items are
selected randomly instead of greedily from wider levels.

Figure 3.10(a) shows how the cost varies with . Smaller b values may increase the
building cost of the tree (Figure 3.6) but also lead to faster diverse set computation,
especially for Greedy-WCT. The cost of Level-Greedy and Level-Inherit depends on the
size of the level from which items are selected. Figure 3.10(b) shows how the cost scales
along n. All Level algorithms scale very efficiently with n, since they depend only on
the size of the corresponding tree level.

Diversity with Relevance Algorithms. Let us first evaluate pruning (Figure 3.11).
In the following, we report results for MMR (similar results are attained for d,.). We
consider two rules for pruning: using only relevance weights (denoted “Greedy-CT”)
and using both relevance and distance weights (denoted “Greedy-WCT”). Again, using
distance weights improves pruning especially for small values of A (i.e., emphasis on
diversity). Pruning is more effective for clustered relevance scores, since in this case,
there are large subtrees with no relevant items that are pruned early. For the same
reason, pruning generally performs better for very large values of \. Finally, pruning is
less effective for “Flickr” whose trees are shorter due to its sparsity.

We next compare Greedy-WCT with the Level algorithms. We also consider a CT vari-
ation, called Priority Cover Tree (PCT) introduced in [18] for computing priority medoids.
A PCT is a CT which in addition to the three invariants of a CT, satisfies a fourth one
that requires each node of the tree to have relevance score larger than or equal to the
scores of all nodes in its subtree. To construct a PCT so that the fourth invariant is
satisfied, items need to be inserted in descending order of relevance. In general, PCTs
cannot be built incrementally. To illustrate, we present a simple example that shows
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Figure 3.11: Pruning for the diversity with relevance (MMR) case with varying .

that the arrival of a single item may change the relations among all nodes in a PCT.
Consider the PCT of Figure 3.12(b) with b = 2.0 and the relevance scores and distances
of Figure 3.12(a). This PCT is unique for p;, ps2, p3, since p; must appear at the top
due to its relevance and p; cannot be covered by p, at / = 2. Assume that p, arrives.
Since p, has the largest relevance score, it must appear at the top of the tree. p; is not
separated from p, at levels ¢ = 3 and ¢ = 2, therefore, it cannot appear there. p, and p;
are separated from p, at £ = 2 and are placed at this level. The resulting PCT is shown
in Figure 3.12(c). Notice that all pre-existing nodes p;, p2, p3s now have different parent
and children nodes than before the arrival of ps, which means that the tree is in effect
re-built from scratch.

Figure 3.13 shows the relevance, diversity and cost of the various algorithms when
varying A\. We report results for the faster greedy heuristic, i.e., Greedy-WCT and the
three Level algorithms (namely, Level-Basic, Level-Greedy and Level-Hybrid) applied on
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Figure 3.12: The arrival of p, changes the relations among all nodes of the PCT.

an ICT and a PCT for two synthetic and two real datasets. Note that due to the fourth
invariant of the PCT, best(p) = P for every node P of a PCT, thus Level-Hybrid is the
same with Level-Basic for PCTs and it is not depicted.

In terms of diversity and relevance, for all datasets, Level-Hybrid is the one closer
to the greedy heuristic (which provides a good approximation of the optimal solution).
Level-Hybrid achieves such results with much smaller cost. Among the Level algo-
rithms, Level-Basic is clearly the fastest. Level-Hybrid performs a greedy selection
among 2k items, while Level-Greedy performs a greedy selection among |Cy, | items,
where ¢, is the highest level with at least k items. Therefore, the relative cost of Level-
Greedy when compared with Level-Hybrid depends on the size of the level with regards
to k. For example, for “Flickr”, which has much wider levels than the other datasets,
Level-Hybrid has lower cost than Level-Greedy. Note also that the cost of the level
algorithms does not depend on \. The quality and cost of the PCT solutions does not
differ substantially from those of the ICT. Only pruning is slightly more efficient, since
larger relevance scores appear at high levels. Due to space limitations, we omit the
results for the rest of our datasets. “Clustered-Uniform” and “Clustered-Clustered” be-
have similarly to “Uniform-Uniform” and “Uniform-Clustered” respectively, while “Cities”
has similar behavior to “Uniform-Clustered” and “Faces” to “Clustered-Uniform”.

Continuous k-Diversity. We next focus on streaming arrivals of items and on how
the application of our continuity requirements affects the retrieved solutions. We show
results for “Nestoria”, where we use the actual apartment upload time as the time in
which items enter the stream. We also use the “Clustered-Uniform’ dataset which has
the most different distribution. For “Clustered-Uniform’, the items that enter the stream
are selected in a random manner.

Figure 3.14 reports results for the UNCONSTRAINED and the CONSTRAINED k-DIVER- SITY
PrOBLEM. We vary the jump step h of the window and fix the other parameters to study
the behavior of the algorithms as the number of valid diverse items from the previous
window changes. We report average values over all windows as the window slides along
the stream of items. In most cases, the constrained variations achieve similar relevance
and diversity with the unconstrained alternatives. For all algorithms performing greedy
computations, the constrained variations are executed faster, since the diverse subset
of each window is initialized with the valid items of the diverse subset from the previous
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Figure 3.13: Relevance (top row), diversity (middle row) and cost (bottom row) for the
MMR case with varying \.

window, and thus, fewer computations are required. Level-Basic is unaffected, since
it does not involve any greedy steps. Besides cost savings, another important aspect
of the constrained variations is the higher sense of continuity between subsequent
diverse sets seen by the users. To quantify this, we use the Jaccard similarity between
the acquired diverse sets. The Jaccard similarity of two sets of items 57, S5 is defined
as:

_1S1N Sy

Jaccard(Sy, S2) = 5, US|
1U 5,

The higher the Jaccard similarity of two sets, the more common items the two sets
share. In Figure 3.14, we see that the constrained variations exhibit higher Jaccard
similarity.
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((d)/(h)) for the Unconstrained (U) and Constrained (C) MMR case in a streaming setting
when varying h (k = 150 (resp. k£ = 15), w = 1000 (resp. w = 100) for the synthetic
(resp. real) dataset, b = 1.6, A = 0.2).

3.6 Comparison with Related Work

There are a couple of approaches in the related literature that consider indexing to
assist diversification. Most such works consider structured data. Relational data are
considered in [107]. Attributes are totally ordered by importance in terms of diversity,
so that two tuples that differ in a highly important attribute are considered highly
diverse, even if they share common values in other less important attributes. This
diversity measure allows the exploitation of a Dewey encoding of tuples that enables
a tree structure which is later exploited to select the £ most diverse tuples. Contrary
to our approach, the proposed method is limited to this specific diversity measure and
cannot be applied in the general case.

Spatial index are often exploited to locate those relevant nearest neighbors of an
item that are the most distant to each other (e.g., [59]). Our work is different since our
goal is not to locate the nearest diverse neighbors of a single object but rather to locate

a relevant and diverse subset of all available items.

Cover trees are employed in [79] for solving the k-medoids problem. While locating k
representative medoids is a form of diversification, that work focuses on the clustering
of data rather than their diversification. A variation of cover trees, called Priority Cover
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Trees (PCTs), were employed in [18, 17] for computing priority medoids, i.e., medoids
having a high relevance factor. Besides solving a different problem, this approach can-
not be employed in dynamic environments, since all available items must be known in
advance for building PCTs. Our method, can handle dynamic insertions and deletions
and provide an evolving diverse set of items.

The related literature focusing on continuous data is limited. None of the existing
proposals considers an index-based approach to diversification as we do here. In our
previous work [41], we evaluated various heuristics in case of continuous data, and a
greedy heuristic that enforces durability was shown to outperform the other methods.
A method based on interchange heuristics is proposed in [84]. Upon the arrival of a
new item p, all possible interchanges between p and the items in the current solution
are performed and p replaces an item in the solution, if this replacement increases
diversity. A similar technique was also proposed in [46]. However, with these methods,
old items do not expire, and a new item may enter the solution only upon its arrival.

The MaxSuwm diversification problem is studied in [19], in the setting of streaming
data and monotone submodular diversification functions. A !/2-approximation greedy
algorithm is proposed which is faster than the usual greedy heuristic. Dynamic updates
are also considered in the sense that when the underlying set of available items changes,
interchanges are attempted to improve the computed solution. Our approach considers
a different diversification problem, i.e., MAXMIN, and is not restricted to monotone
submodular functions. Finally, the online version of the diversity problem is considered
in [86], that is, selecting a diverse subset without knowing the complete set of items.

3.7 Summary

Most current research addresses the static version of the diversification problem. In
this chapter, we have studied the diversification problem in a dynamic setting where the
items to be diversified change over time. We have proposed an index-based approach
that allows the incremental evaluation of the diversified sets to reflect item updates.
Our solution is based on cover trees. We have provided theoretical and experimental
results regarding the quality of our solution.

51






CHAPTER 4

DisC DIVERSITY: RESULT DIVERSIFICATION
BASED ON DISSIMILARITY AND COVERAGE

4.1 DisC Diversity

4.2 Computing DisC Diverse Subsets

4.3 Incremental DisC

4.4 Comparison of Diversification Models
4.5 Implementation

4.6 Experimental Evaluation

4.7 Comparison with Related Work

4.8 Summary

ESULT diversification has attracted considerable attention as a means of en-
R hancing the quality of the query results presented to users (e.g., [107, 119]).
Consider, for example, a user who wants to buy a camera and submits a re-
lated query. A diverse result, i.e., a result containing various brands and models with
different pixel counts and other technical characteristics is intuitively more informative
than a homogeneous result containing only cameras with similar features.
There have been various definitions of diversity; they can be roughly categorized [42]
as based on: (i) content (or similarity), i.e., items that are dissimilar to each other (e.g.,
[119]), (ii) novelty, i.e., items that contain new information when compared to what was
previously presented (e.g., [35]) and (iii) coverage, i.e., items that belong to different
categories or topics (e.g., [11]).
Most previous approaches to diversification rely on assigning a diversity score to
each item and then selecting as diverse either the k items with the largest score for a
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given k (e.g., [15, 24]), or the items with score larger than some predefined threshold
(e.g., [113]). Diversity is often combined with other ranking criteria, such as relevance
(e.g., [99]). In this case, the selected items must be both highly relevant individually
and diverse as a set. The two criteria are often conflicting with each other, since the
items most relevant to a specific user need are often similar to each other. A number of
different approaches have been proposed to achieve a trade-off between high relevance
and high diversity (e.g., [23, 57]), usually based on assigning weights to the two factors,

resulting again in a unified score and a corresponding top-£ or threshold problem.

Here, we address diversity through a different perspective. In contrary to previous
approaches, we aim at selecting a representative subset of the result set that contains
items that are both dissimilar with each other and cover the whole result set. Let P
be the set of items in a query result, d a distance metric, and r a real number, that
we call radius. We consider that two items p;, p; in P are similar to each other, if and
only if, d(p;,p;) < r. We also say that they cover each other. Our goal is to select a
subset S of P, such that (i) for each item p, € P, there is at least one item p; in P,
such that d(p;,p;) < r, and (ii) for any pair of items, p;, p; € S, it holds d(p;, p;) > .
The first condition ensures that all items in P are represented, or covered, by at least
one similar item in the selected subset. The second condition ensures that the selected
items are dissimilar to each other. We call the set S Dissimilar and Covering subset or
DisC diverse subset.

A novel aspect of our approach is that, instead of specifying a required size £k of
the diverse set or a threshold, our tuning parameter r explicitly expresses the degree
of diversification and determines the size of the diverse set. Increasing r results in a
smaller, more diverse subset, while decreasing r results in a larger, less diverse subset.
We call these operations zooming-out and zooming-in respectively. At one extreme, a
radius equal to the diameter of the result set gives a singleton diverse subset. At the
other extreme, a radius smaller than the smallest pairwise distance in the result set

gives a diverse subset equal to the original result set.

Since there may be more than one DisC diverse subset of a result set, for attaining a
concise representation, we aim at selecting the one with the smallest number of items,
termed Minimum r-DisC diverse subset. Furthermore, when the items in the result set
are associated with weights, besides the size, we take weights into account and select
a Minimum Weighted r-DisC diverse subset. When all weights are equal, a Minimum
Weighted r-DisC diverse subset reduces to a Minimum r-DisC diverse subset. As an
example, Figure 4.1(a) and Figure 4.1(b) depict the selected diverse subset for a set of
items representing major cities in our world, without and with weights respectively. In
this example, weights were set based on population.

Further, we would like to allow different areas of the result set to contribute more or
less items in the diverse subset. To this end, we extend the definition of DisC diverse
subsets to allow each item p; to be associated with a different radius 7(p;). The radius

of an item may depend on its relevance to the query, on the density of its surrounding
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(a) No weights. (b) Weights. (c) Multiple radii.

Figure 4.1: DisC diversity: (a) no weights, single radii, (b) weights, single radii, and
(c) no weights, multiple radii. Selected items are shown as solid circles with size
proportional to their weight. (Non solid) circles denote the radius around the selected
items.

area, or other factors. Figure 4.1(c) depicts the selected subset of the world cities
example in the case of multiple radii, where a smaller radii is used for cities in Europe,
resulting in more items being selected from this area.

We formalize the problem of locating minimum DisC diverse subsets as an indepen-
dent dominating set problem on graphs. In the case of a single radius, the correspond-
ing graph is undirected, whereas in the case of multiple radii, the corresponding graph
is directed. We show that, locating a DisC diverse subset is equivalent to locating an
independent and dominating set for the corresponding graph. However, for directed
graphs, there are graphs for which there is no independent and dominating set. We
show that for the graphs modeling the DisC problem, there is always such a set. Locat-
ing a minimum independent and dominating set is an NP-hard problem. We provide a
suite of greedy algorithms for locating approximate solutions along with bounds for the
size of the produced diverse subsets.

Then, we consider the problem of incrementally adjusting the radius r, or zooming.
We explore the relation among DisC diverse subsets of different radii and provide algo-
rithms for adapting an already computed DisC diverse subset to a new radius along with
corresponding theoretical upper bounds for the size of the diverse subsets produced.
Figure 4.2 shows an example of zooming-in and zooming-out.

Although the examples presented so far concern two-dimensional points, DisC di-
versity is applicable to any type of data set, including the case of non-categorical at-
tributes, as long as an appropriate distance d is provided. As an example, consider
searching for cameras, where diversity refers to cameras with different features. Fig-
ure 4.3 depicts an initial most diverse result and the result of zooming-in one individual
camera in this result.

Since the crux of the efficiency of all proposed algorithms is locating neighbors, we
take advantage of spatial data structures. In particular, we propose efficient imple-
mentations based on the M-tree [33]. We evaluate our algorithms for the different DisC

diversity versions using both real and synthetic datasets and draw various conclusions

55



(a) Initial set. (b) Zooming-in. (c) Zooming-out.

Figure 4.2: Zooming. Selected items are shown as solid circles with size proportional

to their weight. (Non solid) circles denote the radius around the selected items.

regarding their effectiveness and efficiency.

In a nutshell, we make the following contributions:

e we use a new, intuitive definition of diversity, called DisC diversity, based on
using a radius r rather than a size limit £ and extend it to support a different
radius for each item,

e in addition to the geometrical interpretation of DisC diversity, we present an
equivalent graph-based model of the problem,

e we introduce incremental diversification through zooming-in and zooming-out,

e we show that locating DisC diverse subsets is an NP-hard problem, provide ef-
ficient algorithms for their computation along with theoretical approximation
bounds, present efficient M-tree tailored implementations and experimentally
evaluate their performance, and

e we compare DisC diversity with other popular diversity models, both analytically
and qualitatively.

The rest of this chapter is structured as follows. Section 4.1 introduces DisC diver-
sity and Section 4.2 algorithms for computing diverse subsets, Section 4.3 introduces
incremental diversification and Section 4.4 compares our approach with other diversi-
fication methods. In Section 4.5, we employ the M-tree for the efficient implementation
of our algorithms, while in Section 4.6, we present experimental results. Finally, Sec-
tion 4.7 presents related work and Section 4.8 concludes the chapter.

4.1 DisC Diversity

In this section, we first provide a formal definition of DisC diversity. We define the
Minimum 7-DisC and Minimum Weighted r-DisC diverse subsets and provide various

theoretical bounds for the size of an r-DisC diverse subset with regards to the minimum
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Brand Model Megapixels |Zoom |Interface Battery Storage
Epson PhotoPC 750Z 1.2 3.0 serial NiMH internal, CompactFlash
Ricoh RDC-5300 22 3.0 serial, USB AA internal, SmartMedia
Sony Mavica DSC-D700 | 1.4 5.0 None lithium MemoryStick
Pentax | Optio 33WR 3.1 2.8 usB AA, lithium | MultiMediaCard, SecureDigital
Toshiba |PDR-M11 1.2 no use AA SmartMedia
FujiFilm | MX-1700 1.3 3.2 serial lithium SmartMedia
FujiFilm | FinePix S20 Pro  |6.0 6.0 USB, FireWire |AA xD-PictureCard
Nikon Coolpix 600 0.8 no serial NiCd CompactFlash
6an-5ﬁ"" +xuss§0 1.9 3.0 usB lithium CompactFlash
B Brand Model Megapixels |Zoom |Interface |Battery |Storage ]
Canon |S3018 14.0 35.0 |USB lithium | SecureDigital, SecureDigital HC
Canon A520 39 4.0 usB AA MultiMediaCard, SecureDigital
p Canon A400 3.1 22 usB AA SecureDigital
Canon ELPH Sd10(3.9 no usB lithium | SecureDigital
g Canon A200 1.9 no usB AA CompactFlash
Canon  |S30 30 30 |usB lithium | CompactFlash

Figure 4.3: Zooming-in a specific camera.

ones. Then, we extend our definition of DisC diversity to support a different radius for
each item. Finally, we present a graph based model of DisC diversity and show that
locating a DisC diverse subset is equivalent to finding an independent and dominating
set of the corresponding graph.

4.1.1 Definition of DisC Diversity

Let P be a set of items returned as the result of a user query. We want to select a
representative subset S of these items such that each item of P is represented by a
similar item in S and the items selected to be included in S are dissimilar to each other.

We define similarity between two items using a distance metricd : P x P — RT.
For a real number r, r > 0, we use N,(p;) to denote the set of neighbors (or, the

neighborhood) of an item p; € P, i.e., the items lying at distance at most r from p;:

N, (p;) =A{p; | pi # p; Nd(pi,pj) <71} (4.1)

We use N (p;) to denote the set N,.(p;) U {p;}, i.e., the neighborhood of p; including p;
itself. Items in the neighborhood of p; are considered similar to p;, while items outside
its neighborhood are considered dissimilar to p;. We define an r-DisC diverse subset
as follows:

Definition 4.1. (r-DisC DIVERSE SUBSET) Let P be a set of items and r, » > O, a
real number. A subset S of P is an r-Dissimilar-and-Covering diverse subset, or r-
DisC diverse subset, of P, if the following two conditions hold: (i) (coverage condition)
Vp; € P, 3 p; € N7 (p;), such that p; € S and (ii) (dissimilarity condition) ¥V p;, p; € S
with p; # p;, it holds that d(p;, p;) > .

The first condition ensures that all items in P are represented by at least one similar
item in S and the second condition that the items in S are dissimilar to each other. We
call every item p; € S an r-DisC diverse item and r the radius of S. When the value of

r is clear from context, we simply refer to r-DisC diverse items as diverse items.
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Figure 4.4: (a) A set of items: the (minimum) r-DisC diverse subset {ps,ps,ps} is
preferred over the larger r-DisC diverse subset {p1, ps, ps, ps}, (b) their graph represen-

tation.

There may be more than one dissimilar and covering diverse subsets for the same
set of items P. Since we want a concise representation of P, we select the smallest one
(see Figure 4.4(a) for an example). Formally, we define the Minimum 7-DisC diverse
subset problem as follows:

Definition 4.2. (MintMuM 7-DisC DIVERSE SUBSET PROBLEM) Given a set P of items and

a radius r, r > 0, find an r-DisC diverse subset 5* of P, such that, for every r-DisC
diverse subset S of P, it holds that f(S*) < f(.5), where f(S) = |S|.

Often, items are associated with a weight indicating their importance under some
specific context, e.g., satisfying some specific user information need. We use w(p;)
to denote the weight of p;. Larger weights indicate items of higher importance. For
simplicity, we consider that all weights are in (0, 1]. Now, given P, we want to select
items that are both diverse to each other and also highly relevant. We define the

Minimum Weighted r-DisC diverse subset problem as follows:

Definition 4.3. (MINlMUM WEIGHTED 7-DISC DIVERSE SUBSET PROBLEM) Given a set of
items P, with each item p; € P associated with a weight w(p;), and a radius r, r > O,
find a DisC diverse subset S* of P, such that, for every DisC diverse subset S of P, it
holds that f(5*) < f(S5), where

f<s>=2@

piES

If we consider all weights equal, i.e., when we are only interested in the diversity of
the selected set and not the individual weights of the selected items, then the Minimum
Weighted r-DisC diverse subset problem is reduced to the Minimum r-DisC diverse
subset problem, i.e., locating the minimum sized subset of dissimilar items that can
cover the available space. Between two subsets of equal size, Definition 4.3 selects the

one with the largest sum of weights.
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Figure 4.5: Manhattan independent neighbors.

4.1.2 General Bounds

Next, we present a number of theoretical results concerning the size of an r-DisC
diverse subset. In the following, we use the terms dominance and coverage, as well
as, independence and dissimilarity interchangeably. In particular, two items p; and
p; are independent, if d(p;,p;) > r. We also say that an item covers all items in its
neighborhood.

Theorem 4.1. Let B be the maximum number of independent neighbors of any item in
P. Any r-DisC diverse subset S of P is at most B times larger than any minimum r-DisC
diverse subset S5*.

Proof. Since S is an independent set, any item in S* can cover at most B items in S
and thus |S| < B|S*|.

Note that, since a minimum weighted r-Disc subset for P cannot be smaller than a
minimum 7-DisC diverse subset P, it also holds that any r-DisC diverse subset S of P
is at most B times larger than any minimum weighted r-DisC diverse subset S*.

The value of B depends on the distance metric used and also on the dimensionality
dim of the data space. For many distance metrics, B is a constant. Next, we show how
B is bounded for specific combinations of the distance metric and data dimensionality.

Lemma 4.1. If d is the Euclidean distance and dim = 2, each item p; in P has at most
B = 5 neighbors that are independent from each other.

Proof. Let p;, py be two independent neighbors of p. Then, it must hold that Zp;pp, is
larger than Z. Otherwise, d(p1,p2) < max{d(p,p1),d(p,p2)} < r which contradicts the
independence of p; and p,. Therefore, p can have at most (27/%) — 1 = 5 independent
neighbors. 1

Lemma 4.2. [fd is the Manhattan distance and dim = 2, each item p; in P has at most
B = T neighbors that are independent from each other.

Proof. Let py, p2 be two independent neighbors of p. Then, it must hold that Zp;pps (in

the Euclidean space) is larger than %. We will prove this using contradiction. p;, po

are neighbors of p so they must reside in the shaded area of Figure 4.5. Without loss
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Figure 4.6: (a) A set of items associated with different radii and their graph represen-
tation for the (b) Covering and (c) CoveredBy problems. A directed edge from v; to v;
indicates that d(p;, p;) < r(p;) and d(p;, p;) < r(p,) respectively.

of generality, assume that one of them, say p;, is aligned to the vertical axis. Assume
that Zp;ppy < §. Then cos(ZLp1p;p2) > ? It holds that b < r and ¢ < r, thus, using the
cosine law we get that a? < 7"2(2 — \/5) (1). The Manhattan distance of p;, ps is equal
tox +y = \/m (2). Also, the following hold: z = Vb2 — 22, y=c—zand z =
bcos(Lpipip2) > %ﬁ Substituting z and c in the first two equations, we get x < \% and
y<r— %ﬁ From (1), (2) we now get that x4y < r, which contradicts the independence
of p; and p,. Therefore, p can have at most (27/%) — 1 = 7 independent neighbors. &

Lemma 4.3. If d is the Euclidean distance and dim = 3, each item p; in P has at most
B = 24 neighbors that are independent from each other.

Proof. Assume a sphere of radius r centered at p;. To fit as many independent items in
the sphere as possible, we place them on the surface of the sphere at distance r from
each other. Let p;, p; be two such items. Since the radius of the sphere is also r, it
holds that Zpip;ps = 7. Thus, the arc on the surface of the sphere between p; and po
is equal to 7. The problem of how many such independent items can be placed on the
surface of the sphere is equivalent to that of how many equilateral spherical triangles
of side length %r can be packed on the surface of the sphere, without overlap except at
the edges. This number is not known exactly but it has been shown to be between 20
and 22 (e.g., [111]). The proof is based on dividing the area of the surface of the sphere
by the the area of such a triangle. To form these triangles, 24 items are required (3 for
the first triangle plus 1 for each of the rest of the triangles), which proves the lemma. 1

4.1.3 DisC Diversity with Multiple Radii

So far, we considered that the radius r is global, i.e., r is the same for all items in
P. Radius r specifies the granularity with which the selected DisC diverse subset
represents the underlying result space. A large r results in a small subset, whereas
a small r results in a large subset. There may be cases, however, in which we want
different parts of the data space to be represent with more or less items in the DisC
diverse subset. To allow this, we consider the more general case where each item p; is
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associated with a different radius r(p;), i.e., r is not a constant but, instead, a function
r:P — RT assigning a radius r(p;) € R* to each item p; € P.

The problem now loses its symmetry, since an item p; may be in the neighborhood
of an item p;, while p; is not in the neighborhood of p;. This gives rise to two different
interpretations of radius. One interpretation is that p; can represent all items in its
neighborhood (i.e., all items lying at a distance at most r(p;) around it). The other
interpretation is that p; can be represented by all items its neighborhood. We call the
first problem Covering DisC diverse subset problem and the second one CoveredBy DisC
diverse subset problem.

For example, in Figure 4.6(a), under the Covering DisC semantics, the radius of p;
means that p3 represents, or covers, p; and p;, whereas, based on their radius, neither
P2 MoOr p; can represent, or cover, p;. On the contrary, under the CoveredBy semantics,
the radius of p3; means that p; can be represented, or covered, by p, or p;, but neither
P2 nor p; can be represented, or covered, by ps.

Next, we present the corresponding formal definitions.

Definition 4.4. (CoveERING DISC DIVERSE SUBSET) Let P be a set of items and r :
P — RT be a function determining the radius of each item in P. A subset S of P is
a Covering Dissimilar-and-Covering diverse subset, or Covering DisC diverse subset,
of P, if the following two conditions hold: (i) (coverage condition) Vp; € P, 3 p; with
d(pi,p;) < r(pj), such that p; € S and (ii) (dissimilarity condition) V p;, p; € S with p; #
p;. it holds that d(p;, p;) > max{r(p;),r(p;)}.

For example, in Figure 4.6, {ps, ps, ps, p7} is a Covering DisC subset of the depicted
set of items.

Definition 4.5. (CovEREDBY DisC DIVERSE SUBSET) Let P be a set of items and r :
P — R be a function determining the radius of each item in P. A subset S of P is a
CoveredBy Dissimilar-and-Covering diverse subset, or CoveredBy DisC diverse subset,
of P, if the following two conditions hold: (i) (coverage condition) Vp;, € P, 3 p; with
d(pi,p;) < r(p;), such that p; € S and (ii) (dissimilarity condition) V p;, p; € S with p; #
p;. it holds that d(p;, p;) > max{r(p;),r(p;)}.

For example, in Figure 4.6, {ps, p4, p7} is a CoveredBy DisC subset of the depicted
set of items.

4.1.4 Graph Representation and NP-hardness

The various DisC subsets presented so far all have a corresponding graph representa-
tion. Consider first a single radius r and let Gp, = (V, E) be an undirected graph such
that there is a vertex v; € V for each item p; € P and an edge (v;,v;) € E, if and only if,
d(pi, pj) < r for the corresponding items p;, p;. An example is shown in Figure 4.4(b).
Let us recall a couple of graph-related definitions. A dominating set D for a graph G

is a subset of vertices of GG such that every vertex of G not in D is joined to at least one

61



(b)

Figure 4.7: (a) Minimum dominating set ({vg,v5}) and (b) a minimum independent
dominating set ({vs, vy, v6}) of the depicted graph.

vertex in D by some edge. An independent set [ for a graph G is a set of vertices of G
such that for every two vertices in /, there is no edge connecting them. It is easy to see
that a dominating set of G'p, satisfies the covering condition of Definition 4.1, whereas
an independent set of G, satisfies the dissimilarity condition of Definition 4.1. Thus:

Lemma 4.4. Finding an r-DisC diverse subset for a set P is equivalent to finding an
independent dominating set of the corresponding graph Gp ;.

We next present some useful properties that relate the coverage (i.e., dominance) and
dissimilarity (i.e., independence) conditions. A maximal independent set of a graph is
an independent set such that adding any other vertex to the set forces the set to contain
an edge, that is, an independent set that is not a subset of any other independent set.
It is known that:

Lemma 4.5. An independent set of a graph is maximal, if and only if, it is dominating.
From Lemma 4.5, we conclude that:

Observation 4.1. A minimum maximal independent set is also a minimum independent
dominating set.

However,
Observation 4.2. A minimum dominating set is not necessarily independent.

For example, in Figure 4.7, the minimum dominating set of the depicted items is of size
2, while the minimum independent dominating set is of size 3.

The above also holds for the Minimum Weighted 7-DisC diverse subset problem.

We next consider the multiple radii case. Our graph-based view of the problem is
now the following. Let G'pm(') = (V, E) be a directed graph such that there is a vertex
v; € V for each item p; € P and a (directed) edge (v;,v;) € E, if and only if, for the
corresponding items p;, p;, it holds that d(p;, p;) < r(p;) (Covering problem) or d(p;, p;) <
r(p;) (CoveredBy problem). In Figure 4.6, we see an example. The coverage relationship
is not symmetric anymore. In Figure 4.6(b), for example, item p; covers p; and ps, but

neither p; nor p, cover ps. Independence between two items means that none of them
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covers the other. In Figure 4.6(b), p; and p; are independent, but points p; and p; are
not.

A dominating, or covering, set D for a directed graph G is a subset of vertices of
G such that every vertex of G not in D is joined to at least one vertex of D by some
incoming edge. An independent set / for a directed graph G is a set of vertices of G

such that, for every two vertices in /, there is no edge connecting them.

Lemma 4.6. Finding a Covering or CoveredBy DisC diverse subset for a set P is equiv-
alent to finding an independent dominating set of the corresponding graph Gp ().

Proof. Let S be a DisC diverse subset for P. Due to the coverage condition, for every
item p; not in .S, there must be an item p; in S with d(p;,p;) < r(p,) (Covering problem)
or d(p;,pj) < r(p;) (CoveredBy problem), thus S is a dominating set of G'p,(). Also,
due to the dissimilarity condition, no item p; in S can cover some other item p; in
S. Thus, S is also an independent set. Now, let S be an independent dominating set
S of the directed graph Gp,(). Then, for every item p; not in S there is some item
p; in S such that an edge (p;,p;) exists, i.e., d(p;,p;) < r(p;) (Covering problem) or
d(pi, pj) < r(p;) (CoveredBy problem). Also, there is no edge connecting p;, p; in S, i.e.,
d(pi,p;) > max{r(p;),r(p;)}. Thus, both the coverage and dissimilarity conditions of
Definition 4.4 (Covering problem) or Definition 4.5 (CoveredBy problem) hold and S is
also a DisC diverse subset for P. 1

Note that, when all items are associated with equal radii, it holds that d(p;,p;) <
r(p;) if an only if d(p;, p;) < r(p;). In this case, the graph representation of a set P for
the Covering problem is equivalent to that for the CoveredBy problem and, in addition,
all edges of the graph are bidirectional, i.e., the graph can be reduced to an undirected
graph.

Finding a minimum independent dominating set of a graph has been proven to
be NP-hard [53], even for special cases of graphs such as unit disk graphs [34], i.e.,
graphs in the Euclidean space whose vertices can be put in one to one correspondence
with equisized circles in a plane such that two vertices are joined by an edge, if and
only if the corresponding circles intersect. Next, we provide a suite of algorithms for

computing approximate solutions.

4.2 Computing DisC Diverse Subsets

Next, we present a suite of algorithms for locating DisC diverse subsets. We first
present general algorithms for both the single radius and multiple radii cases and then
a number of variations.
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Algorithm 4.1 Locating DisC diverse subsets.

Input: A set of items P, a radius function r(.) and a selection criterion C(.).
Output: A DisC diverse subset S of P.

1: S0

2: for all p; € P do

color p; white

o

4: while there exist white items do

5:  select the white item p; with the largest value of C(p;)
6: S=5UuU {pz}

7 color p; black
8: forallp; € N%i)(pi) (Covering) or p; s.t. p; € Ny(p,)(pj) (CoveredBy) do
9: color p; grey

10: return S

4.2.1 General Algorithms

Our various algorithms are based on Algorithm 4.1. For presentation convenience, let
us call black the items of P that are in the diverse subset S, grey the items covered by
some item in S and white the items that are neither black nor grey. N (p;) denotes
the set of white neighbors of p;. Initially, S is empty and all items are white. Items are

selected for inclusion in S in rounds based on some selection criterion C.

Lemma 4.7. In the single radius case, Algorithm 4.1 produces an r-DisC diverse subset

S of P for any selection criterion.

Proof. At first all items are white. Once an item enters S, all its neighbors become grey
and are withdrawn from consideration. Any white item is independent from all selected
items in S and thus can be selected to be included in S. To see that, assume for the
purpose of contradiction, that for a white item p,; and black item p;, it holds d(p;, p;)
<'r, then p; € N,(p;), thus it should have been colored grey, when p; was selected for
inclusion in S. Thus, the set produced by selecting any white item is an independent
set. It is also a maximal independent set, since at the end there are only grey items left,
thus adding any of them to S would violate the independence of .S. From Lemma 4.5,

S is an r-DisC diverse subset. 1

While an undirected graph always has an independent dominating subset, this is
not the case for directed graphs (e.g., [83]). To illustrate this, consider the following
simple example of Figure 4.9 where V' = {vy,v9,v3} and E = {(v1, v2), (va, v3), (v3,v1)}.
In this graph, no single item is able to cover the whole set, while, at the same time,
no two items are independent from each other. Thus, this graph has no independent
dominating subset. However, such a graph cannot exist in our case. Assume, for the
purposes of contradiction, that such as a graph exists. For the Covering case, since
there is an edge (vy, v9) but there is no edge (vq, v1), we get that r(p1) > d(p1, p2) > r(p2).
Similarly, it also holds that r(ps) > r(ps) and r(p3) > 7(p1). Therefore, we get that
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Figure 4.8: A directed graph example.

r(p1) > r(p1) which cannot be true. Similarly, for the CoveredBy problem, we get that
r(p1) < r(p1) which, also, cannot be true.

However, in our case, where d is a distance metric, we can always construct an
independent dominating subset for our directed graphs. To achieve this, we need to
select white items using some specific criterion as the following lemma shows. Note,
that the proof of Lemma 4.7 does not hold, since not all white items are necessarily
independent from the selected diverse items. For example, consider the Covering prob-
lem for the graph of Figure 4.8 and assume that v; is selected first. Then, v; will be
colored black and v, will be colored grey, while v3 will remain white. However, vs cannot
enter the selected subset in a following step, since it is not independent from v;. Thus,

Algorithm 4.1 does not produce an r-DisC diverse subset for any selection criterion.

Lemma 4.8. Algorithm 4.1 produces a (multiple radii) DisC diverse subset S of P when
selecting white items in (i) decreasing order of their radius for the Covering problem and
(ii) increasing order of their radius for the CoveredBy problem.

Proof. We prove the lemma for the Covering problem. The proof for the CoveredBy
problem is similar. At first all items are white. Upon selecting an item for inclusion,
all its neighbors become grey and are thus withdrawn from consideration. Let p; be a
white item considered at some round and p; be an already selected, i.e., black, item.
Since p; is still white, there can be no directed edge (p;,p;). Since p; was considered
for inclusion in S prior to p;, it holds that r(p;) < r(p;). Moreover, since p; is still
white, it holds that r(p;) < r(p;) and there can be no directed edge (p;,p;). Therefore,
each white item selected to be colored black at some round is independent from all
previously selected items, i.e., the produced set is an independent one. It is also a
maximal independent set, since at the end there are only grey items left (line 5), thus
selecting any of them would violate the independence of S. From Lemma 4.5, S is a

DisC diverse subset. 1

Now, Algorithm 4.1 for the example of Figure 4.8, would select v3 first, since v3 has
the largest radius (it covers both v; and vy) and the Covering DisC diverse subset {p;}
will be produced.

Furthermore, in our example of Figure 4.6, by visiting white items in decreasing
order of their radius (solving the Covering problem), Algorithm 4.1 would first select ps,
followed by ps, pg and p7, in that order, resulting in a DisC diverse subset of P. Visiting
white items in increasing order of their radius (solving the CoveredBy problem) would

result in the selection of p,, p; and p4, in that order.
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v, v,

Figure 4.9: A directed graph with no independent dominating set.

4.2.2 Greedy Algorithms

As shown, we can compute a DisC subset by selecting any of the white items in the
single radii case, or by selecting any among the white items having the largest (smallest)
radius in the Covering (resp. CoveredBy) multiple radii case. We call these algorithms
Basi c- Di sC algorithms. As shown by Lemma 4.1, the size of any DisC subset, and
thus the size of the DisC subset produced by Basi c- Di SCis at most B times larger
than that of a minimum r-DisC diverse subset or a minimum weighted r-DisC diverse
subset.

We now consider the following intuitive greedy variation of Basi c- Di sC, that we
call G eedy- Di sC. Instead of selecting white items arbitrarily at each step for inclusion
in the diverse subset S, we select the white item that minimizes the objective function
f. That is, in the case of the Minimum 7r-DisC diverse subset problem, we set C'(p;) =
IV (pi)
items. In the case of the Minimum Weighted r-DisC diverse subset problem, we select

, i.e., we select the white item that covers the largest number of uncovered

the white item that has the best combination of weight and white neighborhood size.
We normalize the size of a white neighborhood in [0, 1] (recall that we have assumed
that weights are in (0, 1]) and use C(p;) = w(p;) (|N7W(pi)‘/maxpjep\s|N,W(pj)|). In case of
ties, we select the white item with the largest number of white neighbors.

4.2.3 Greedy Algorithms for Coverage Only

While the size of the subsets produced by & eedy- Di sCis expected to be smaller than
that of the subsets produced by Basi c- Di sC, the fact that we consider for inclusion
in S only white, i.e., independent, items may still not reduce the size of S as much
as expected. From Observation 4.2, it is possible that an independent covering set is
larger than a covering set that also includes dependent items. For example, consider
the vertices (or equivalently the corresponding items) in Figure 4.7. Assume that vy is
inserted in S first, resulting in v, v3 and vs becoming grey. Then, we need two more
vertices, namely, v; and vg, for covering the whole set. However, if we consider for
inclusion grey items as well, then v5 can join S, resulting in a smaller covering set.
Motivated by this observation, we also define r-C diverse subsets that satisfy only the
coverage condition of Definition 4.1 and modify G eedy- Di sC accordingly to compute
r-C diverse sets. The only change required is that in line 6 of Algorithm 4.1, we select
both white and grey items. This allows us to select at each step the item that covers

the largest possible number of uncovered items, even if this item is grey. We call this
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variation & eedy- C.

For G eedy- C, we get a covering but not necessarily dissimilar subset of P, whose
size is generally different than the size of the subset produced by G eedy- Di sC for
the same radius r. In this case, we get a different bound for the size of the produced
r-C diverse subset S.

Theorem 4.2. Let A be the maximum number of neighbors of any item in P. The
weighted r-C diverse subset produced by G eedy- C is at most In A times larger than
the minimum weighted r-DisC diverse subset S*.

Proof. We consider that inserting a vertex (item) p into S has cost 1/w(p). We distribute
this cost equally among all covered vertices, i.e., after being labeled grey, vertices are
not charged anymore. Assume an optimal minimum dominating set S*. The graph
G can be decomposed into a number of star-shaped subgraphs, each of which has
one vertex from S* at its center. The cost of an optimal minimum dominating set is
exactly 1/w(p) for each star-shaped subgraph centered around p. We show that for a
non-optimal set S, the cost for each star-shaped subgraph is at most In A, where A
is the maximum degree of the graph. Consider a star-shaped subgraph of S* with p
at its center and let NV (p) be the number of white vertices in it. If a vertex in the
star is labeled grey by G- eedy- C, these vertices are charged some cost. By the greedy
condition of the algorithm, this cost can be at most 1/w(p)|N" (p)| per newly covered
vertex. Otherwise, the algorithm would rather have chosen p for the dominating set
because p would contribute 1/w(p)| N (p)| to the selected set. In the worst case, no
two vertices in the star of p are covered at the same iteration. In this case, the first
vertex that is labeled grey is charged at most 1/w(p)(d(p) + 1), the second vertex is
charged at most 1/w(p)d(p) and so on, where d(p) is the degree of p. Therefore, the
total cost for covering the star of p is at most:

1 1 1 1 1 .
w(p) (5(p)+1 +5(p) +...+§+1) :@H(é(pwrl) < MH<A+1>

where H (i) is the i harmonic number. The total cost of the set S produced by
G eedy- Cfor covering all the stars of S* is:

CESY

DiES*

w(;)H(A +1) = H(A+1)f(S") = InAf(S")

Since the size of a minimum weighted dominating set is equal or smaller than the size
of a minimum weighted independent dominating set, the theorem holds. 1

Note that, Theorem 4.2 also holds in the case of the (unweighted) Minimum 7-
DisC diverse subset problem, where we simply consider the cost of each star-shaped
subgraph around p to be equal to 1.
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(a) Zooming-in. (b) Zooming-out.

Figure 4.10: Zooming (a) in and (b) out. Dashed and solid circles correspond to radius
r and r’ respectively.

4.3 Incremental DisC

The radius r determines the desired degree of diversification. A large radius corre-
sponds to fewer and less similar to each other representative items, whereas a small
radius results in more and less dissimilar representative items. At one extreme, a ra-
dius equal to the largest distance between any two items results in a single item being
selected and at the other extreme, a radius smaller than the smallest pairwise distance
in the result set results in all items of P being selected.

In this section, we consider an interactive mode of operation where, after being pre-
sented with an initial set of results for some radius 7, a user asks to see either more or
less results by correspondingly decreasing or increasing the radius. For simplicity, we
shall focus on zooming in the case of a single radius. The results are easily transferred
to the case of multiple radii. First, we present results relating the size of DisC diverse
subsets for different radii and then propose algorithms for incrementally changing the
radius.

4.3.1 Zooming

Given a set of items P and an r-DisC diverse subset S of P for some specific radius,
we want to compute an r’-DisC diverse subset S’ of P. There are two cases: (i) 1’ < r
and (ii) 7 > r which we call zooming-in and zooming-out respectively.

Since we want to support an incremental mode of operation, the set S’ should be as
close as possible to the already seen result S. Ideally, S’ O S, for 7’ < r and S’ C S, for
r’ > r. However, this is not always possible as the following lemma shows.

Lemma 4.9. Let S be a covering and dissimilar subset of P forr.

(i) S is a covering but not necessarily dissimilar subset of P forr' > r,
(ii) S is a dissimilar but not necessarily covering subset of P forr’ < r.

Proof. (i) Let ' > r. Since S is a covering subset of P for r, for each item p; € P, there
is an item p; € S such that d(p;,p;) < r < 1/, thus S is also a covering subset of P
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(a) Euclidean plane. (b) Manhattan plane.

Figure 4.11: Independent neighbors.

for r’. However, for two items p;, p; € S, it is possible that p; € N, (p;). Therefore, S
may not be a dissimilar subset of P for r’. (ii) Let ' < r. Since S is a dissimilar subset
of P for r, for any two items p;, p; € P, it holds d(p;,p;) > r > 1/, thus S is also a
dissimilar subset of P for r’. However, it is possible that there exists some item p; € P
for which there does not exist an item p; € S with p; € N,v(p;). Therefore, S may not
be a covering subset of P for /. 1

To study the relationship between S and S’ when changing the radius, we focus on
the items lying at distance between r and ' from the selected items of the initial DisC
diverse subset (Figure 4.10). These are items of interest since they are possibly either
left uncovered when the radius decreases (zooming-in), thus violating the covering
property, or covered by other diverse items when the radius increases (zooming-out),
thus violating the dissimilarity property.

For two radii ry, ro, 79 > r;, we define the set N!

1 (Pi), as the set of items at

distance at most 7, from p; which are at distance at least r; from each other, i.e.,
items in N,,(p;)\V,,(p;) that are independent from each other considering the radius
r1. The following lemma bounds the size of NTIM2 (p;) for specific distance metrics and
dimensionality.

Lemma 4.10. Let ry, 5 be two radii with ro > r1. Then, for dim = 2:
(i) if d is the Euclidean distance:

1+
2

S

IN] (9] < 9[logs(ra/r1)] , where § =

(i) if d is the Manhattan distance:

¥
. o —T

N/ ()] <4) (2i+ 1), wh _

| 7‘1,7’2(p)‘— i:1(2+ )W ere vy ’7 " —‘

Proof. Euclidean distance: For the proof, we use a technique for partitioning the annu-
lus between r; and r, similar to the one in [102] and [112]. Let r; be the radius of an
item p (Figure 4.11(a)) and « a real number with 0 < a < % We draw circles around the
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item p with radii (2cosa)®, (2cosa)®™t (2cosa)® ™2, ..., (2cosa)¥ !, (2cosa)¥?, such
that (2cosa)™ < ry and (2cosa)™ " > ry and (2cosa)¥»~! < 1y and (2cosa)¥» > ry. It

holds that x, = m(lzncié Q)J and y, = IH(IQHCZZ a)—‘ . In this way, the area around p is parti-
tioned into y, — z,, annuli plus the 7-disk around p. Consider an annulus A. Let p; and
p2 be two neighbors of p in A with d(p1,p2) > 7. Then, it must hold that Zp;pps; > «.
To see this, we draw two segments from p crossing the inner and outer circles of A at
a, b and ¢, d such that p, resides in pb and Zbpd = «, as shown in the figure. Due to
lpbl _ |pd|
pe

the construction of the circles, it holds that el = Tpal — 2 cos «. From the cosine law

for pﬁd, we get that |ad| = |pa| and, therefore, it holds that |cb| = |ad| = |pa| = |pc].

Therefore, for any item p; in the area abed of A, it holds that |pps| > |bps| which means

that all items in that area are neighbors of p,, i.e., at distance less or equal to ;. For

this reason, p, must reside outside this area which means that Zp;pp, > «. Based on

this, we see that there exist at most %’T — 1 independent (for ;) nodes in A. The same
2

holds for all annuli. Therefore, we have at most (y, —z,) (; — ) independent nodes in

the annuli. For 0 < a < % this has a minimum when « is close to % and that minimum

. 1
value is 9 [%-‘ =9 [logg(ra/r1)]. where § = L5,
Manhattan distance: Let r; be the radius of an item p. We draw Manhattan circles
around the item p with radii 7y, 27, ... until the radius r, is reached. In this way,

the area around p is partitioned into v = [_’"2;17"1

—‘ Manhattan annuluses plus the r;-
Manhattan-disk around p. Consider an annulus A. The items shown in Figure 4.11(b)
cover the whole annulus and their Manhattan pairwise distances are all greater or

equal to r;. Assume that the annulus spans among distance ir; and (i + 1)r; from

ab| = \/2 (ir, +71/2)%. Also, for two items

p, where ¢ is an integer with ¢ > 1. Then,

p1. p2 it holds that |pips| = 1/2(r1/2)>. Therefore, at one quadrant of the annulus
there are % = 2i + 1 independent neighbors which means that there are 4(2i + 1)

independent neighbors in A. Therefore, there are in total ) ), 4(2i 4+ 1) independent
(for 1) neighbors of p. 1

4.3.2 Incremental Zooming Algorithms

Next, we describe our algorithms for incrementaly adapting an r-DisC diverse subset S
to an r’-DisC diverse subset .S’ and provide bounds concerning the size relationship of

S and 5.

Zooming-in

Let us first consider the case of zooming-in to a smaller radius, i.e., 7’ < r. Here, we
aim at producing a small independent covering solution S’, such that, S’ O S. For this
reason, we construct r’-DisC diverse sets that are supersets of S by adding items to S
to make it maximal.

Consider an item of S, for example p; in Figure 4.10(a). Items at distance at most
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Algorithm 4.2 Greedy-Zoom-In.

Input: A set of items P, a solution S and initial and new radii r(p;), 7/ (p;), 7’ (p;) < r(p;), for
each item p; in P.
Output: An adapted DisC diverse subset of P.
1: 8« S
2: for all p; € S do
3:  color items in {N,(,,)(pi)\ Ny (p,) (Pi) } White
4: while there exist white items do

5.  select the white item p; with the largest ’N%H) (pi)
6: color p; black

7: S'=5"U {pl}

8: forallp; € NTV(‘;i)(pi) do

9: color p; grey

10: return S’

r’ from p; are still covered by p; and cannot enter S’. Items at distance greater than r’
and at most 7 may be uncovered and join S’. Each of these items can enter S’ as long
as it is not covered by some other item of S that lays outside the former neighborhood
of p;. For example, in Figure 4.10(a), p, and ps may enter S’ while p3 can not, since,
even with the smaller radius 7/, p3 is covered by ps.

To adapt a DisC diverse subset, we consider such items in turn. This turn can
be either arbitrary (Basi c- Zoom | n algorithm) or proceed in a greedy way, where
at each turn the item that covers the largest number of uncovered items is selected
(G eedy- Zoont | n, Algorithm 4.2).

Concerning the size relationship between S and ', the following lemma holds.

Lemma 4.11. Let S be the initial DisC diverse subset and S’ be the adapted one gener-
ated by the Basi c- Zoomt | n or Gr eedy- Zoom | n algorithm. It holds that:
i S CS and

(@ [S'| < [S]+ 3,5 NG (i)

Proof. Condition (i) trivially holds from step 1 of the algorithm. Condition (ii) holds since
for each item in S there are at most | N/, .(p;)| independent items at distance greater
than 7/(p;) from each other that can enter S’. 1

In practice, items selected to enter S’, such as p, and p5 in Figure 4.10(a), are likely
to cover other items left uncovered by the same or similar items in .S. Therefore, the
size difference between S and S’ is expected to be smaller than this theoretical upper

bound.

Zooming-out

Next, we consider zooming-out to a larger radius, i.e., 7’ > r. In this case, the user is
interested in seeing less and more dissimilar items, ideally a subset of the already seen
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results for r, that is, S’ C S. However, in this case, in contrast to zooming-in, it may
not be possible to construct a diverse subset S’ that is a subset of S (take, for example,
the items of Figure 4.10(b) with S = {py, p2, p3}; no subset of S is an r’-DisC diverse
subset for this set of items).

We focus on the following sets of items: (i) S\ S’ and (ii) S’\S. The first set consists of
the items that belong to the previous diverse subset but are removed from the new one,
while the second set consists of the new items added to S’. To illustrate, let us consider
the items of Figure 4.10(b) and that p;, ps, ps € S. Since the radius becomes larger, p;
now covers all items at distance at most 7’ from it. This may include a number of items
that also belonged to S, such as p,. These items have to be removed from the solution,
since they are no longer dissimilar to p;. However, removing such an item, say ps in
our example, can potentially leave uncovered a number of items that were previously
covered by ps (these items lie in the shaded area of Figure 4.10(b)). In our example,
requiring p; to remain in S’ means than ps should be now added to 5.

To produce the new adapted DisC diverse subset, we proceed in two passes. In the
first pass, we examine all items of S in some order and remove their diverse neigh-
bors that are now covered by them. At the second pass, items from any uncovered
areas are added to S’. Again, we have an arbitrary and a greedy variation, denoted
Basi c- Zoom Qut and G eedy- Zoom Qut respectively. Algorithm 4.3 shows the
greedy variation; the first pass (lines 4-11) considers S\.S’, while the second pass (lines
12-19) considers S’\S. Initially, we color all previously black items red. All other
items are colored white. We consider three variations for the first pass of the greedy
algorithm: selecting the red items with (a) the largest number of red neighbors, (b) the
smallest number of red neighbors and (c) the largest number of white neighbors. Vari-
ations (a) and (c) aim at minimizing the items to be added in the second pass, that is,
S’\ S, while variation (b) aims at maximizing S N S’. Algorithm 4.3 depicts variation (a),

where N (p;) denotes the set of red neighbors of item p;.

Concerning the size relationship between S and ', the following lemma holds.

Lemma 4.12. For the solution S’ generated by the Basi c- Zoom Qut or G eedy-
Zoom Qut algorithm, it holds that:

() There are at most ) _s|N} . (p)| items in S\S".
(ii) For each item of S not included in S’, at most B — 1 items are added to S’.

Proof. Condition (i) is a direct consequence of the definition of Nr{ o (p;). Concerning
condition (ii), recall that each removed item p; has at most B independent neighbors for
' (p;). Since p; is covered by some neighbor, there are at most B — 1 other independent
items that can potentially enter S’. 1
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Algorithm 4.3 Greedy-Zoom-Out(a).
Input: A set of items P, a solution S and initial and new radii r(p;), 7' (p;), 7’ (p;) > r(p;), for

each item p; in P.
Output: An adapted DisC diverse subset of P.
1: S0

2: color all black items red

3: color all grey items white

4: while there exist red items do

5:  select the red item p; with the largest |V ﬁ(pi) (pi)]
6: color p; black

7: S'=5"U {pi}

8: forallp; € NT/(pi)(pz‘) do

9: color p; grey

10: while there exist white items do

11:  select the white item p; with the larger |N:f,‘?pi) (pi)]
12:  color p; black

13: S'=5"U {pz}

14:  forall p; € Nr,(pi)(pi) do

15: color p; grey

16: return S’

4.4 Comparison of Diversification Models

In this section, we first show how our DisC model relates to other widely used diversi-
fication methods and then compare the various variations of the DisC model.

4.4.1 Comparison with Other Models

Next, we present both theoretical and qualitative results concerning the relation be-

tween DisC diversity and various other diversification approaches.

Theoretical Results

Two widely used diversification models are MAXMIN and MaxSum that aim at selecting a
subset S of P so as the minimum or the average pairwise distance of the selected items
is maximized (e.g., [57, 109, 19]). More formally, an optimal MAXMIN (resp., MAXSum)

subset of P is a subset with the maximum fyy(S) = miny, p,es dist(p;, p;) (resp., foum(S)
PiFP;j
= > pipses dist(p;, pj)) over all subsets of the same size. Input in both approaches is
PiF#P;j
the size k] of the diverse subset.

The following lemma provides a bound for the fy, distance of the items in any
r-DisC set with regards to the optimal distance fy, of a subset of the same size.
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Figure 4.12: Counter example for the MaxSumMm case (a > 1).

Lemma 4.13. Let P be a set of items, S be an r-DisC diverse subset of P and )\ be the
fuw distance between the items of S. Let S* be an optimal MAXMIN subset of P for k =
|S| and \* be the fy, distance of S*. Then, \* < 3 \.

Proof. Each item in S* is covered by (at least) one item in S. There are two cases, either
(i) all items p3, p5 € S*, pj # p;, are covered by different items is .S, or (ii) there are at
least two items in S*, p, p5, p} # p5 that are both covered by the same item p in S. Case
(i): Let p; and py be two items in S such that d(p;,p2) = A and p} and p; respectively
be the items in S* that each covers. Then, by applying the triangle inequality twice, we
get: d(py,p3) < d(pi.p1) + d(p1,p3) < d(pi.p1) + d(p1,p2) + d(p2, p3). By coverage, we
get: d(pj,p5) <r+ XA+ r <3\ thus \* <3 \. Case (b): Let pj and p} be two items
in S* that are covered by the same item p in S. Then, by coverage and the triangle
inequality, we get d(p}, p5) < d(pi,p) + d(p,p3) <27, thus \* <2\ 1

Lemma 4.13 asks how much smaller the fy, distance of an r-DisC subset is with
regards to the optimal fyy, of a subset of the same size. The following lemma looks into
the size of an r-DisC subset that attains the same fy,, distance as an optimal MAXMIN

subset of size k.

Lemma 4.14. Let P be a set of items, S* be an optimal subset of P of size k and \*
be the fu distance of S*. Let S be an r-DisC diverse subset with r = \*. It holds that
|S| < k', where k' is the first integer larger than k for which the corresponding optimal
MAXMIN subset of P S* has fu distance equal to \*, with \* < \*.

Proof. Since the optimal (i.e., maximum) minimum distance for k' is smaller than \*,
then there can be no DisC set for » = \* with size equal or larger than £’. Therefore, a
DisC diverse subset for = \* can be of size up to £’. 1

A bound similar to that of Lemma 4.13 does not exist for the MAxSum case!. To
illustrate this, consider the example of Figure 4.12, where k — 1 of the items are located

'We would like to thank Dr. Anirban Dasgupta from Yahoo! Labs for suggesting this example.
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in a line, at distance r from each other, while the rest of the items are very close to each
other and located at a large distance from the other items, i.e., a > 1. Let us call the
two groups of items “group X” and “group Y” respectively. For simplicity, let r = 1.

An optimal DisC diverse set for r = 1 is of size k£ and consists of the £ — 1 items
of group X plus one item from group Y. Let (G be the sum of the pairwise distances of
all items of group X. The sum of pairwise distances fp;;c of the optimal DisC set is
approximately equal to a(k — 1) + G. A MaxSuMm solution for k£ would instead select
k/2 items from group X and ¥/2 items from group Y. The corresponding sum of pairwise
distances fyaxsuv in this case would be a(¥/2)* + G’, where G’ < G is the sum of the
pairwise distances of all items from group X. Since a can be arbitrarily large, for a
sufficiently large value of a, we can assume that fp;sc ~ a(k — 1) and fyuxson = a(¥/2)%.

]{?2

i i M — K SfMaxsum
Therefore, for a sufficiently large value of a, it holds that e = A1) Thus, ==

can grow arbitrarily large as k increases.

Qualitative Results

Next, we present some qualitative results of applying different approaches for selecting
diverse items, namely DisC, MAXMIN and MaxSuM. We also show results for k-medoids,

a widespread clustering algorithm that seeks to minimize ‘%' > d(p;, c(p;)), where

EP
¢(p;) is the closest item of p; in the selected subset, since the lopcated medoids can be
viewed as a representative subset of the dataset. We used a 2-dimensional “Clustered”
dataset. To implement MaXMIN and MaxSuM, we used greedy heuristics which have
been shown to achieve good solutions [42]. To allow for a comparison, we first run
G eedy- Di sC for a given r and then use the size of the produced diverse subset as

the input £ of the other approaches. In this example, k£ = 12 for » = 0.15 (Figure 4.13).

MaxSum diversification and k-medoids fail to cover all areas of the dataset; MaxSum
tends to focus on the outskirts of the dataset, whereas k-medoids clustering reports
only central items, ignoring items that are further away. MaxMIN performs better in
this aspect. However, since MAXMIN seeks to retrieve items that are as far apart as
possible, it fails to retrieve items from dense areas; see, for example, the central areas
of the clusters in Figure 4.13. Note also that MaxSum and k-medoids may select near
duplicates, as opposed to DisC and MaxMin. We also experimented with variations of
MaxSuMm proposed in [109] but the results did not differ substantially from the ones in
Figure 4.13(b).

In Figure 4.14, we see how the DisC solution (Figure 4.14(a)) is affected when the
dissimilarity condition is raised, i.e., we have a covering but not necessarily indepen-
dent subset of the data (Figure 4.14(b)). Raising the dissimilarity condition slightly
decreases the size (by one item) in this example. However, the selected items are close
together (see, for example, the cluster on the right of the dataset).
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(a) r-DisC. (b) MaxSum. (c) MaxMin. (d) k-medoids.

Figure 4.13: Solutions by the various diversification methods for a clustered dataset.
All items are associated with equal weights and radii. Selected items are shown as solid
circles. Circles around items of the DisC solution denote the radius r of the selected
items.

(a) m-DisC. (b) r-C.

Figure 4.14: Solutions for (a) the Dissimilar-and-Covering (r-DisC) and (b) Covering-
only (r-C) problems. Selected items are shown as solid circles. Circles around items
denote the radius r of the selected items.

4.4.2 Comparison of DisC Models

We next present a qualitative comparison of how the assignment of different weights
and/or different radii to each item affect the retrieved DisC diverse subsets. To do
this, we use again our “Clustered” dataset. Unless otherwise noted, we use the
G eedy- Di sCalgorithm.

Using weights. We first compare the unweighted and weighted problems for a single
radius 7. We use two different ways to assign weights: (i) assigning a uniformly dis-
tributed weight to each item (uniform case) and (ii) assigning larger weights to items
closer to the center of their cluster (clustered case). The second approach models the
common case in which we have a number of different interpretations of the query and
items close to one of these interpretations are more important. All weights are in (0, 1].

We used the same radius (r = 0.09) to generate unweighted and weighted 7-DisC
diverse subsets for both the uniform and the clustered cases. Figure 4.15(a) and
Figure 4.15(d) depict the unweighted r-DisC diverse subsets, while Figure 4.15(b) and

Figure 4.15(e) depict the weighted r-DisC diverse subsets. For comparison, we used
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(@) Uniform weights: Unweighted(b) Uniform weights: Weighted r- (c) Uniform weights: Top items.
r-DisC. DisC.

(d) Clustered weights: Un-(e) Clustered weights: Weighted(f) Clustered weights: Top items.
weighted r-DisC. r-DisC.

Figure 4.15: Unweighted r-DisC diverse subsets (left column), weighted r-DisC diverse
subsets (middle column) and top largest-weighted items (right column) for roughly the
same number of items (r = 0.09 and k£ =~ 30). Selected items are shown as solid circles.
Larger circles correspond to items with larger weights. Circles around items denote the
radius 7 of the selected items.

the size k of the weighted r-DisC diverse subsets as the input for retrieving the top-k
items with the largest weights (without enforcing diversity), i.e., 33 and 35 items for
the uniform and clustered case respectively. Figure 4.15(c) and Figure 4.15(f) show
the corresponding results. Clearly, the top-weighted items in the clustered case are
very close to each other. In the uniform case they are more spread but, still, not
highly diverse. In both cases, the weighted subsets are roughly of the same size as the
unweighted ones. However, the selected items have clearly larger weights as expected
and are diverse.

In Figure 4.16, we see how the weighted DisC solution (Figure 4.16(a)) is affected
when the dissimilarity condition is raised (Figure 4.16(b)). While, in our example, the
size remains the same, the selected items are closed together, i.e., not as dissimilar.
However, this allows us to get more items with larger weights, since the selected items
are not required to be dissimilar to each other.

Using multiple radii. Next, we present a qualitative view of various options of assigning
radii to items. Our motivation behind multiple radii is to place different importance to
different items in the dataset. We present three different scenaria for assigning radii to
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Figure 4.16: Weighted solutions for the Dissimilar-and-Covering and Covering-only
problems. Selected items are shown as solid circles. Larger circles correspond to items

with larger weights. Circles around items denote the radius r of the selected items.
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(a) Covering. (b) CoveredBy.

Figure 4.17: Using multiple radii based on areas of interest. Selected items are shown
as solid circles. More items from areas of higher interest enter the diverse set. (In the
CoveredBy case, each item p; not in the diverse subset is represented by an item in
the diverse subset within distance 7(p;) from it. Since there is a large number of such

items, we do not draw their radius for clarity.)

the items.

The first one corresponds to the case where some parts of the dataset are considered
more important than others and we want them to be represented with more items in
the selected diverse subset. In Figure 4.17, we see such an example, where each of the
four quadrants is assumed to have different importance, with the most important one
being the bottom left quadrant and importance decreasing as we move clockwise. To
achieve a representation corresponding to importance, we assign to each area clock-
wise increasing radius values. As seen, areas associated with smaller radii (i.e., more
important ones) are represented by more items in the diverse set, since items in these
areas have to be closer together to be considered similar. The basic difference between
the results of the CoveredBy and the Covering approach is near the boundaries of the
quadrants. In the Covering approach, items in the quadrant with the larger radii cover
the items in the neighboring quadrant, thus excluding them from the diverse set.

The second scenario corresponds to the case in which we want to relate representa-
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Figure 4.18: Using multiple radii based on density. Items in denser areas are associated
with smaller radii. Selected items are shown as solid circles. Larger circles correspond
to items in denser areas. (In the CoveredBy case, each item p; not in the diverse subset
is represented by an item in the diverse subset within distance r(p;) from it. Since
there is a large number of such items, we do not draw their radius for clarity.)

tion with density, so that dense areas are not under-represented in the diverse subset.
To achieve this, we assign smaller radii to items in denser areas of the dataset. Fig-
ure 4.18 shows the retrieved solutions for the Covering and CoveredBy variations of
the multiple radii problem (in our example, items closer to the centers of their clusters
are in denser areas and, thus, are assigned smaller radii). In both cases, the dense
areas of the dataset are better represented in the diverse set due to their items being
associated with smaller radii. Again, as explained above, in the CoveredBy case, more
items from dense areas enter the diverse subset (see, for example, the items selected
from the outskirts of the top cluster).

The third scenario corresponds to the case in which we want to relate representation
with weights. For the Covering problem, we assign larger radii to items wither larger
weights. This is to model the case where we want highly relevant items to cover a
large area around them. For the CoveredBy problem, we assign smaller radii to items
wither larger weights. This ensures that each item can be covered only by items that
have a larger weight than it. We consider again the uniform and clustered distribution
of weights (Figure 4.19). The Covering variation of the multiple radii problem works
well for uniformly distributed weights. However, this does not seem to be the case for
clustered weights. This happens because, in the latter case, items with large weights,
and thus large radii, block each other from entering the diverse set. The CoveredBy
variation does not face this issue. In general, the Covering variation results in smaller
sets, since the algorithm starts with the item with the largest radii and, thus, with the
item that possibly covers the largest number of items. However, in neighboring areas
with different radii, the items with the larger radii disallow items with the smaller radii
from entering the diverse set. Thus, when radii is associated with relevance weights, the
CoveredBy approach produces better results in the sense that it allows more relevant
items to be included in the diverse set.
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Figure 4.19: Using multiple radii based on weights. Items with larger weights are
associated with larger radii in the Covering case and with smaller radii in the CoveredBy
case. Selected items are shown as solid circles. Larger circles correspond to items
with larger weights. (In the CoveredBy case, each item p; not in the diverse subset is
represented by an item in the diverse subset within distance r(p;) from it. Since there
is a large number of such items, we do not draw their radius for clarity.)

4.5 Implementation

A central operation in computing DisC diverse subsets is locating neighbors. For this
reason, we introduce implementations of our algorithms that exploit a spatial index
structure, namely, the M-tree [33]. An M-tree is a balanced tree index that can handle
large volumes of dynamic data of any dimensionality in general metric spaces. In
particular, an M-tree partitions space around some of the indexed items, called pivots,
by forming a bounding ball region of some covering radius around them. Let c be
the maximum node capacity of the tree. Internal nodes have at most ¢ entries, each
containing a pivot item p,, the covering radius r, around p,, the distance of p, from its
parent pivot and a pointer to the subtree ¢,. All items in the subtree ¢, rooted at p,
are within distance at most equal to the covering radius r, from p,. Leaf nodes have
entries containing the indexed items and their distance from their parent pivot.

The construction of an M-tree is influenced by the splitting policy that determines
how nodes are split when they exceed their maximum capacity c. Splitting policies
indicate (i) which two of the c 4 1 available pivots will be promoted to the parent node
to index the two new nodes (promote policy) and (ii) how the rest of the pivots will be
assigned to the two new nodes (partition policy). These policies affect the overlap among

the nodes of the trees. For computing diverse subsets:

(i) We link together all leaf nodes. This allows us to visit all items in a single left-to-
right traversal of the leaf nodes and exploit some degree of locality in covering the
items.

(ii) To compute the neighbors N,(p;) of an item p; at radius r, we perform a range
query centered around p; with distance r, denoted Q(p;, 7).

(iii) We build trees using splitting policies that minimize overlap. In most cases, the
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(@) Grey-Greedy-DisC. (b) White-Greedy-DisC.

Figure 4.20: Greedy-DisC variations.

policy that resulted in the lowest overlap was (a) promoting as new pivots the pivot
p; of the overflowed node and the item p; with the maximum distance from p; and
(b) partitioning the items by assigning each item to the node whose pivot has the
closest distance with the item. We call this policy “MinOverlap”.

4.5.1 Computing Diverse Subsets

Basic-DisC. The Basi c- Di sC algorithm selects white items in random order. In the
M-tree implementation of Basi c- Di sC, we consider items in the order they appear
in the leaves of the M-tree, thus taking advantage of locality. Upon encountering a
white item p; in a leaf, the algorithm colors it black and executes a range query Q(p;, )
to retrieve and color grey its neighbors. Since the neighbors of an indexed item are
expected to reside in nearby leaf nodes, such range queries are in general efficient. We
can visualize the progress of Basi c- Di sC as gradually coloring all items in the leaf
nodes from left-to-right until all items become either grey or black.

Greedy-DisC. The G eedy- Di sCalgorithm selects at each iteration the best white item
according to the selection criterion C' (line 6 of Algorithm 4.1). To efficiently implement
this selection, we maintain a sorted list, L, of all white items ordered as C' dictates,
that is, by

e decreasing order of the size of their white neighborhood for the Minimum 7-DisC
Diverse Subset problem,

e decreasing order of the product of their weight and the (normalized) size of their
white neighborhood for the Minimum Weighted r-DisC Diverse Subset problem,
and

e decreasing (resp. increasing) order of their radius for the Covering (resp. Cov-
eredBy) problem for the multiple radii case.

Remember that, in all cases, ties are resolved by selecting the item with the largest
white neighborhood.
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Instead of performing one range query per item after building the tree to compute the
size of the white neighborhoods to initialize L, we compute such values incrementally
as we build the M-tree. At first, for each item p;, it holds that NV (p;) = N,(p;). To
compute the neighborhood size of each item incrementally, when an item p; is inserted
into the M-tree, a range query Q(p;,r) is executed, the white neighborhood of p; is
initialized to |Q(p;, )| and the size of the white neighborhoods of all items retrieved by
the range query are incremented by one. We found this incremental approach reduces
node accesses up to 45%.

Considering the maintenance of L, each time an item p; is selected and colored
black, its neighbors at distance r(p;) are colored grey. Therefore, we need to update the
ordering of a number of affected items. We consider two variations. The first variation,
termed G ey- Gr eedy- Di sC, executes, for each newly colored grey neighbor p; of p;,
a range query (Q(p;,r(p;)) to locate its neighbors and reduce by one the size of their
white neighborhood. The second variation, termed Wi t e- G eedy- Di sC, executes
one range query for all remaining white items within distance less than or equal to
7(pi) + max, en(y,) 7(p;) from p;. These are the only white items whose white neigh-
borhood may have changed. Consider, for example, the items of Figure 4.20. For
simplicity, let all items have the same radius r. Assume that p; has just been colored
black. Both variations will first execute a query )(pi, ) to retrieve and color grey the
neighbors of p1, i.e., po and p3. After this, G ey- G eedy- Di sCwill execute the queries
Q(p2,r) and Q(ps,r) (thus retrieving ps twice) to update the affected white neighbor-
hoods of p4, ps and pg, while G ey- G eedy- Di sCwill execute ()(p;, 2r) instead. Since
the cost of maintaining the exact size of the white neighborhoods may be large, we also
consider “lazy” variations. Lazy- G ey- G eedy- Di sC only retrieves grey neighbors
at some distance smaller than r(p;), while Lazy- Wi t e- G eedy- Di sConly retrieves
white items at some distance smaller than 7(p;) + max, en(,) 7(p;)-

Pruning. We make the following observation that allows us to prune subtrees while
executing range queries. Items that are already grey do not need to be colored grey
again when some other of their neighbors is colored black.

PRUNING RULE: A leaf node that contains no white items is colored grey. When all its
children become grey, an internal node is colored grey. While executing range queries,
any top-down search of the tree does not need to follow subtrees rooted at grey nodes.

As the algorithms progresses, more and more nodes become grey, and thus, the
cost of range queries reduces over time. For example, we can visualize the progress of
the Basi c- Di sC ( Pruned) algorithm as gradually coloring all tree nodes grey in a

post-order manner.

Greedy-C. The G eedy- C algorithm considers at each iteration both grey and white
items. A sorted structure L has to be maintained as well, which now includes both
white and grey items and is substantially larger. Furthermore, the pruning rule is no
longer useful, since grey items and nodes need to be accessed again for updating the

size of their white neighborhood.

82



Table 4.1: Input parameters.

Parameter Default value | Range

M-tree node capacity 50 25 - 100

M-tree splitting policy MinOverlap various

Dataset cardinality 10000 579 - 50000

Dataset dimensionality 2 2-10

Dataset spatial distribution | clustered uniform, clustered
Dataset weight distribution | clustered uniform, clustered
Distance metric Euclidean Euclidean, Hamming
Radius assignment uniform uniform, weight-based

4.5.2 Adapting the Radius

For zooming-in, given an r-DisC diverse subset S of P, we would like to compute an
r’-DisC diverse subset S’ of P, ' < r, such that, S’ O S”. A naive implementation would
require as a first step locating the items in NTI,,T (p;) (line 3 of Algorithm 4.2) by invoking
two range queries for each p; (with radius r and 7’ respectively). Then, a diverse subset
of the items in Nrf,ﬂ,(pi) is computed either in a basic or in a greedy manner. However,
during the construction of S, items in the corresponding M-tree have already been

colored black or grey. We use this information based on the following rule.

ZooMING RULE: Black items of S maintain their color in S’. Grey items maintain their

color as long as there exists a black item at distance at most 7’ from them.

Therefore, only grey nodes with no black neighbors at distance ' may turn black
and enter S’. To apply this rule, we augment the leaf nodes of the M-tree with the
distance of each indexed item p; to its closest black neighbor p;, since p; will continue
to be covered by p; for all ' < d(p;, p;).

The Basi c- Zoom | n algorithm requires one pass of the leaf nodes. Each time
a grey item p; is encountered, we check whether it is still covered, i.e., whether its
distance from its closest black neighbor is smaller or equal to 7’. If not, p; is colored
black and a range query Q(p;, ') is executed to locate and color grey the items for which
p; is now their closest black neighbor. At the end of the pass, the black items of the
leaves form S’. The G eedy- Zoom | n algorithm involves the maintenance of a sorted
structure L of all white items. To build this structure, the leaf nodes are traversed,
grey items that are now found to be uncovered are colored white and inserted into L.
After this, L is sorted accordingly.

Zooming-out algorithms are implemented similarly to the zooming-in case.

4.6 Experimental Evaluation

In this section, we evaluate the efficiency and effectiveness of our algorithms using both
synthetic and real datasets. We first describe our datasets and algorithms and, then,
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Table 4.2: Algorithms.

Algorithm Abbreviation Description

Basi c-Di sC B-Di sC Single radius: Selects items in order of appear-
ance in the leaf level of the M-tree. Multiple
radii: Selects items in order of their radius.
G eedy- Di Sc G DisC Selects at each step the white item p; with the
largest value of C(p;).

— Grey-Geedy-DisC G-GDsC One range query per grey node at distance
r(pi) from p;.

— Lazy-Gey-Geedy-Di sC | L-G -G Di sC | One range query per grey node at distance
r(pi)/2 from p;

— Wi te- Greedy-Di sC Wh- G Di sC One range query per white node at distance
7(pi) + max, e n(p,) r(p;) from p;.

— Lazy- Wi te-G eedy-Di sC| L-Wh-G Di sC | One range query per white node at distance
r(p:) + (maxpjeN(m) 7‘(17_7'))/2 from p;.

G eedy-C GC Selects at each step the non-black item p; with
the largest value of C(p;).

present experimental results.

Datasets. Our synthetic datasets consist of multidimensional items, which are either
uniformly distributed in space or form (hyper) spherical clusters of different sizes. We
assign weights to items either uniformly or in a “clustered” manner around specific
target items, so that items that are closer to the target items get larger weights than
items further away. Clustered assignment is used to model the common case where we
have large weights around specific items that correspond to different interpretations of
the query. Thus, we have four combinations for our synthetic data based on the spatial
and weight distributions, namely “Uniform-Uniform”, “Uniform-Clustered”, “Clustered-
Uniform” and “Clustered-Clustered”. We also employ four real datasets. Three of them
contain geographic information about (i) 5922 cities and villages in Greece (“Greek
Cities”) [5], (i) the 590 highest populated cities in the world (“World Cities”) [8] and
(iii) 1000 apartments for sale in London (“Nestoria”) [6]. Weights are assigned uniformly
for “Greek Cities”, based on higher population for “World Cities” and based on lower
price for “Nestoria”. The fourth real dataset (“Cameras”) consists of 7 characteristics
for 579 digital cameras, such as brand and storage type [1]. We assign weights based
on a combination of the megapixels and the optical zoom of the cameras.

We normalize the values of all datasets in [0, 1]. We use the Euclidean distance
for the synthetic and geographical datasets, while for “Cameras”, whose attributes are
categorical, we use d(p;,p;) = >.;0'(pi,p;), where §'(p;, p;) is equal to 1, if p; and p;
differ in the " dimension and O otherwise, i.e., the Hamming distance. Note that the
choice of an appropriate distance metric is an important but orthogonal to our problem
issue.

Algorithms. We next briefly summarize the algorithms used throughout this section.
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e Unweighted DisC: We employ the Basi c- Di sC and & eedy- Di sC algorithms.
Basi c- Di sC simply selects a valid DisC diverse subset, while G eedy- Di sC
also attempts to minimize the size of the selected subset by selecting at each
step the white item p; with the largest |N"(p;)|. We use both variations of
G eedy-Di sC, i.e., G ey- G eedy-Di sC and Wi te- G eedy- D sC, as well
as their lazy variations, i.e., Lazy- G ey- G eedy- D sC and Lazy- Wi te-
G eedy- Di sC (for 7"/2 and 3”/2 respectively), as described in Section 4.5.

e Weighted DisC: Again, we employ Basi c- Di sC and G eedy- Di sC. The differ-
ence now is that the greedy algorithms select at each step the white item p; with
the largest w(p;) (‘Nyv(pi”/maxpjep\s \NXV(pj)|). In case of ties, the item p; with the
largest |N" (p;)| is selected.

e Multiple radii DisC: When each item is assigned a different radius, Basi c- D sC
is modified to consider items in decreasing or increasing order of their radius
for the Covering and CoveredBy problems respectively. G ey- Di sC also con-
siders the items in order of their radius but, in addition, selects the item p;
with the largest |[N"(p;)| in case of ties. For the Covering problem, we use
r(p;) and "#i)/2 for G ey- G eedy- Di sC and Lazy- G ey- G eedy- Di sC re-
spectively. Note that, for the CoveredBy problem, our Wi t e- G eedy- Di sCand
Lazy- Wi t e- G eedy- Di sC algorithms are no longer applicable, since at each
step, after an item is selected for inclusion in the diverse set S, we have to check
every other item p; in P\S to see whether d(p;,p;) < r(p;). Let 74, be the largest
radius in the dataset. Then, the affected items at each step are at distance at
most 7,,,, from the selected item p;. Our implementation of G ey- G eedy- Di sC
checks all items at distance 7,,,, to update their white neighborhoods, while the
lazy variation checks all items at some distance smaller than that.

In all cases, we also consider the G eedy- C algorithm that produces covering but not
necessarily independent sets. G eedy- C works as G eedy- Di sC with the difference
that both white and grey items are consider as candidates at each step.

Table 4.1 summarizes the values of the input parameters used in our experiments

and Table 4.2 summarizes the algorithms employed.

4.6.1 Unweighted DisC

We first consider the unweighted DisC case. We first compare the various algorithms
for computing DisC subsets in terms of cost and of the size of the produced subset.
We also evaluate the effect of specific characteristics of the datasets and of the M-tree.
We conclude the evaluation with a comparison of the result of DisC with the results of

other diversification methods.

Computational Cost. We measure the computational cost of our algorithms in terms
of node accesses in the employed M-trees. Figure 4.21 reports this cost, as well as, the
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Figure 4.21: Node accesses for Basi c- Dl sC, G eedy- Di sCand G eedy- Cwith and
without pruning for the unweighted case.

cost savings when the pruning rule of Section 4.5 is employed for Basi c- Di sC and
G eedy- Di sC (as previously detailed, this pruning cannot be applied to G eedy- C).
G eedy- Di sChas higher cost than Basi c- Di sC. The additional computational cost
becomes more significant as the radius increases. The reason for this is that G eedy-
Di sC performs significantly more range queries. As the radius increases, items have
more neighbors and, thus, more M-tree nodes need to be accessed in order to retrieve
them, color them and update the size of the neighborhoods of their neighbors. On
the contrary, the cost of Basi c- Di sCis reduced when the radius increases, since it
does not need to update the size of any neighborhood. For larger radii, more items
are colored grey by each selected (black) item and, therefore, less range queries are
performed. Both algorithms benefit from pruning (up to 50% for small radii). We also
experimented with employing bottom-up rather than top-down range queries. At most
cases, the benefit in node accesses was less than 5%.

Figure 4.22 compares G ey- G eedy- Di sCwith Wi t e- G eedy- Di sCand their
corresponding lazy variations. We see that Whi t e- G eedy- Di sCperforms better than
G ey- G eedy- Di sC for the clustered dataset as r increases. This is because in this
case, grey items share many common white neighbors which are accessed multiple
times by G ey- G eedy- Di sSC for updating their white neighborhood size and only
once by Wit e- & eedy- Di SC. The lazy variations reduce the computational cost

further as expected.
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Figure 4.22: Node accesses for Basi c- Di sCand all variations of G eedy- Di sC with

pruning for the unweighted case.

Solution Size. We next compare our various algorithms in terms of the size of the com-
puted diverse subset (Table 4.3). We present results for our synthetic and one of our
real datasets. Results are similar for the omitted datasets. We consider Basi c- Di sC,
G eedy- Di sC (note that, both G ey- G eedy- Di sCand Wi t e- G eedy- Di sCpro-
duce the same solution) and G eedy- C. We also tested the lazy variations of the greedy
algorithm, namely Lazy- Gr ey- G eedy- Di sC with distance /2 and Lazy- Wi t e-
G eedy- Di sC with distance 3r/2. G ey- & eedy- Di sC locates a smaller DisC di-
verse subset than Basi c- Di sCin all cases. The lazy variations also perform better
than Basi c- Di sCand comparable with G ey- G eedy- Di sC. Lazy- Wi te- G ey-
Di sC seems to approximate better the actual size of the white neighborhoods than
Lazy- G ey- G eedy- Di sCand produces smaller subsets. G eedy- Cproduces sub-
sets with size similar with those produced by G ey- G eedy- Di sC. This means that
raising the independence assumption does not lead to substantially smaller diverse

subsets in our datasets.

Impact of Dataset Cardinality and Dimensionality. In the rest of this section, unless
otherwise noted, we use the (G ey-) G eedy- Di sC ( Pruned) algorithm.

For this experiment, we employ the “Clustered” dataset. We vary its cardinal-
ity from 5000 to 15000 items and its dimensionality from 2 to 10 dimensions. Fig-
ure 4.23 shows the corresponding computational cost and solution size as computed
by Gr eedy- Di sC. We observe that the solution size is more sensitive to changes in
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Table 4.3: Solution size (unweighted case).

(a) Uniform.

r
0.01 0.02 0.03 | 0.04 | 0.05 | 0.06 | 0.07
B-DisC 3798 | 1364 | 679 395 272 187 145
G-DisC 3217 | 1133 | 571 352 230 170 132
L-Gr-G-DisC 3332 | 1250 | 635 378 252 180 143
L-Wh-G-DisC | 3248 | 1160 | 571 354 243 167 131
G-C 3393 | 1113 | 558 347 224 163 128

(b) Clustered.

r

0.01 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07
B-DisC 1203 | 443 237 147 103 71 57
G-DisC 1060 | 376 197 127 88 66 47
L-Gr-G-DisC 1133 | 435 254 167 118 88 65
L-Wh-G-DisC | 1059 | 377 194 125 86 64 47
G-C 1058 | 374 205 130 90 67 47

(c) World Cities.

r
0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07
B-DisC 288 161 104 75 56 39 33
G-DisC 274 129 87 63 44 33 28
L-Gr-G-DisC 276 141 95 68 50 35 32
L-Wh-G-DisC | 274 136 87 61 48 35 30
G-C 282 137 89 64 43 34 30

cardinality when the radius is small. The reason for this is that for large radii, a se-
lected item covers a large area in space. Therefore, even when the cardinality increases
and there are many available items to choose from, these items are quickly covered by
the selected ones. In Figure 4.23(a), the increase in the computational cost is due to
the increase of range queries required to maintain correct information about the size of
the white neighborhoods.

Increasing the dimensionality of the dataset causes more items to be selected as
diverse as shown in Figure 4.23(d). This is due to the “curse of dimensionality” effect,
since space becomes sparser at higher dimensions. The computational cost may how-
ever vary as dimensionality increases, since it is influenced by the cost of computing
the neighborhood size of the items that are colored grey.

Impact of M-tree Characteristics. Next, we evaluate how the characteristics of the
employed M-trees affect the computational cost of computed DisC diverse subsets. Note
that, different tree characteristics do not have an impact on which items are selected
as diverse.

Different degree of overlap among the nodes of an M-tree may affect its efficiency for

executing range queries. To quantify such overlap, we employ the fat-factor [63] of a
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tree 1" defined as:
7 —nh 1

n m—h

1) =

where Z denotes the total number of node accesses required to answer point queries
for all items stored in the tree, n the number of these items, h the height of the tree and
m the number of nodes in the tree. Ideally, the tree would require accessing one node
per level for each point query which yields a fat-factor of zero. The worst tree would
visit all nodes for every point query and its fat-factor would be equal to one.

We created various M-trees using different splitting policies which result in different
fat-factors. We present results for four different policies. The lowest fat-factor was
acquired by employing the “MinOverlap” policy. Selecting as new pivots the two items
with the greatest distance from each other resulted in increased fat-factor. Even higher
fat-factors were observed when assigning an equal number of items to each new node
(instead of assigning each item to the node with the closest pivot) and, finally, selecting
the new pivots randomly produced trees with the highest fat-factor among all policies.

Figure 4.24 reports our results for our uniform and clustered 2-dimensional datasets
with cardinality equal to 10000. For the uniform dataset, we see that a high fat-factor
leads to more node accesses being performed for the same solution. This is not the case
for the clustered dataset, where items are gathered in dense areas and thus increasing
the fat-factor does not have the same impact as in the uniform case, due to pruning
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and locality. As the radius of the computed subset becomes very large, the solution
size becomes very small, since a single item covers almost the entire dataset, this is
why all lines of Figure 4.24 begin to converge for r > 0.5.

We also experimented with varying the capacity of the nodes of the M-tree. Trees
with smaller capacity require more node accesses since more nodes need to be recovered
to locate the same items; when doubling the node capacity, the computational cost was
reduced by almost 45%.

Comparison with Other Methods. Next, we compare the diverse subsets produced by
DisC with those produced by other diversification methods, in particular by MaAXMIN
and MaxSuMm. To implement MAXMIN and MaxSuM, we used the most widely used greedy
algorithms for these problems. MAXMIN selects items so as to maximize their minimum
pairwise distance, while MAXSUM so as to maximize their average pairwise distance.
Both algorithms take as input the desired size k of the result. To compare the results,
we compute DisC for various values of r. For each value of r, we compute MAXMIN
and MAxSuM setting k equal to the size of the result produced by DisC. In Figure 4.25,
we report the minimum and average pairwise distances of the results. The minimum
distance among the items selected by G eedy- Di sCis very close to that of MAXMIN.
For comparison, we also report the minimum and average distance among k£ random
items. Note that, MAXMIN and MaAXSuM attempt to optimize only the minimum and
average distance respectively and do not consider coverage or other criteria.

4.6.2 Weighted DisC

Next, we consider the weighted DisC problem and evaluate the quality (i.e, size, weight
and diversity) of the results produced by various algorithms when the weight of the
items is taken into account. We report results for Basi c- Di sC, G eedy- Di sC and
G eedy- C for the weighted version of the problem. We also report results for the lazy
variations of & eedy- Di sC (the two non-lazy versions of G eedy- Di sC produce the

same sets, only at different computational cost).
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G eedy- C for the unweighted case.

Solution Size. The produced subsets are slightly larger than those of the unweighted
version (Table 4.4) in all cases (except from Basi c- Di sC which is the same, since
Basi c- D sC produces an independent and covering subset without considering the
size or the weight of the resulting subset). This happens because our algorithms are now
selecting items based on both the weight and the neighborhood size of the items and,
thus, items with large weights enter the diverse set even if they do not cover as many
other items. Finally, note that, when weights are considered, the subsets produced for
“Uniform-Clustered” are generally smaller than those of “Uniform-Uniform”, since in
this case items with larger weights are closer to each other.

Average Weight. Figure 4.26 shows the average weight of the subsets produced by
our algorithms. We also report the average weight of the top-k items with the largest
weights, for k equal to the size of the subset generated by G eedy- Di sC. Gr eedy-C
achieves a larger average weight. This happens because G eedy- Cis not restricted to
selecting dissimilar items and, thus, nearby items with large weights can all be selected.
The Lazy- G ey- G eedy- Di sCalgorithm performs better than the non-lazy variation
for the “Clustered-Clustered” dataset, since items with large weights are located nearby
in that case and the lazy update of the white neighborhoods of the items allows more
such items to enter the diverse subset.

Minimum Distance. Next, we report the minimum pairwise distance among the se-

lected items for the weighted version of the problem as compared to selecting the top-k
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Table 4.4: Solution size (weighted case).

(a) Uniform-Uniform.

r
0.01 0.02 0.03 | 0.04 | 0.05 | 0.06 | 0.07
B-DisC 3798 | 1364 | 679 395 272 187 145
G-DisC 3557 | 1226 | 624 382 259 187 141
L-Gr-G-DisC 3601 1283 | 645 387 264 185 144
L-Wh-G-DisC | 3560 | 1227 | 618 371 248 179 131
G-C 3643 | 1235 | 612 370 249 176 131

(b) Uniform-Clustered.

r
0.01 0.02 0.03 | 0.04 | 0.05 | 0.06 | 0.07
B-DisC 3798 | 1364 | 679 395 272 187 145
G-DisC 3201 1133 | 569 358 234 168 126
L-Gr-G-DisC 3324 | 1250 | 640 378 255 180 142
L-Wh-G-DisC | 3230 | 1149 | 576 359 232 173 128
G-C 3323 | 1103 | 558 336 229 162 123

(c) World Cities.

r
0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07
B-DisC 288 161 104 75 56 39 33
G-DisC 288 160 94 73 55 38 33
L-Gr-G-DisC 292 158 94 73 57 41 34
L-Wh-G-DisC | 289 159 95 73 55 38 33
G-C 301 165 100 82 60 40 35

most relevant items, for k equal to the size of the subset generated by G eedy- Di sC.
Figure 4.27 shows the results. We see that the results produced by just selecting the
items with the top-k weights are very close to each other and thus exhibit very poor
diversity. We also see that the increased average weight of G eedy- C (Figure 4.26)
has the trade-off of selecting items that are much closer to each other, especially for
smaller radii.

4.6.3 Multiple Radii DisC

Next, we evaluate some interesting issues concerning using multiple radii.

Tuning the radius of a specific area. First, we see how we can use multiple radii so
as to tune the number of diverse items selected from a specific area of the dataset. For
this experiment, we consider our “Uniform” dataset. We partition the dataset in four
areas of equal size and set the radius of all items in the first three areas equal to 0.05,
while varying the radius of the items in the fourth area from 0.01 to 0.10. Figure 4.28(a)
reports the number of selected items from the fourth, “tunable” area, as well as, each of
the other three “non-tunable” areas. We see that by varying the radius of the “tunable”
area, we can over- or under-represent it in the diverse subset, according to our liking.

The percentage of the items this tunable area contributes to the diverse set is depicted
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Figure 4.26: Average weight for Basi c- Di SC, G eedy- C and all variations of
G eedy- Di sC for the weighted case.

in Figure 4.28(b).

Covering vs. CoveredBy problems. Figure 4.29 shows the size and average weight
for the Covering and CoveredBy problems for our uniform dataset, when weights are
assigned both uniformly (“Uniform-Uniform”) or in a clustered manner (“Uniform-
Clustered”). For comparison, rather than assigning radii based on specific charac-
teristics of our datasets, we assign radii uniformly in (0, 2r|, where r is the one shown
in the x-axis of the figures. In the case of uniformly distributed weights, the Covering
variation achieves a larger average weight. This, however, is not the case for clustered
weights, where the CoveredBy variation performs better. This happens because, for
CoveredBy, it is more difficult for items with large weight to block other items with
large weight that are close to them from entering the diverse subset. This is also the

reason, however, why the solutions retrieved by CoveredBy are generally larger in size.

93



o
o
o
o
=}
o
©

0.07] 0.0 0.07|
» 00 » 0.0 » 0.06
2 2 2
8 0.0 8 0.0 £ 0.05
@ k7] o
[a} [a] [a)
£ 0.0 £ 0.0 £ 0.04
g g g
£ 0.0 € 0.0 € 0.03
s s s
0.02) 0.0 0.02
0.0 0.0 0.0
001 002 003 004 005 006 007 001 002 003 004 005 006 007 001 002 003 004 005 006 0.07
radius radius radius
(a) Uniform-Uniform. (b) Uniform-Clustered. (c) Clustered-Uniform.
0.0 0.01 0.08
0.07] 0.01. 0.07]
" 0.0 g 001 s 0.06|
g g g
£ oo £ 001 £ 005
a a a
£ 0.0 £ 0.00 £ 0.04
g g g
£ 0.0 ‘£ 0.00 ‘£ 0.03
= = =
0.02) 0.00: 0.02|
0.0 0.00: 0.0
001 002 003 004 005 006 007 1 25 5 75 10 12.5 15 001 002 003 004 005 006 0.07
radius radius X 10° radius
(d) Clustered-Clustered. (e) Greek Cities. (f) World Cities.
0.08, —%— B-DisC
—¥— Gr-G-DisC
0.07} 6
0.06 3
£ 0.05 B
.é’ o
£ 0.04 g
3 E
£ 003 £3
s =
0.02|
2
0.0
b o i £ e} £
001 002 003 004 005 006 007 1 2 3 4 5 6
radius radius
(g) Nestoria. (h) Cameras.

Figure 4.27: Minimum distance among the selected items for G eedy- Di sC,
G eedy- Cand the top-weighted items for the weighted case.

4.6.4 Zooming.

In the following, we evaluate our zooming algorithms. We begin with the zooming-in
algorithms. To do this, we first generate solutions with Gr eedy- Di sC for a specific
radius r and then adapt these solutions for radius 1. We use G eedy- Di sC because
it gives the smallest sized solutions. We compare the results to the solutions generated
from scratch by Gr eedy- Di sC for the new radius. The comparison is made in terms
of solution size, computational cost and also the relation of the produced solutions. In
general, we would like the solutions produced to share many common items so as to
achieve a sense of continuity for the results presented to the user. We evaluate the
similarity between solutions using the Jaccard distance. Given two sets 57, S;, their
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Jaccard distance is defined as:

|S1 N Ss

Jaccard(Sy,5) =1 —
(51, 52) 51 U Sy

The Jacard distance is O when S; = S; and 1 when the 57 and S, are disjoint. Fig-
ure 4.30 and Figure 4.31 report the corresponding results for different radii. Due to
space limitations, we report results for the “Clustered” and “Cities” datasets. Simi-
lar results are obtained for the other datasets as well. Each solution reported for the
zooming-in algorithms is adapted from the G eedy- Di sC solution for the immediately
larger radius and, thus, the x-axis is reversed for clarity; e.g., the zooming solutions
for » = 0.02 in Figure 4.30(a) and Figure 4.31(a) are adapted from the G eedy- Di sC
solution for » = 0.03.

We observe that the zooming-in algorithms provide similar solution sizes with those
of Gr eedy- Di sC in most cases, while their computational cost is smaller, even for
G eedy- Zoom | n. More importantly, the Jaccard distance of the adapted solutions
for ' to the G eedy- Di sC solution for r is much smaller than the corresponding
distance of the G eedy- Di sCsolution for 7’ (Figure 4.32). This means that computing
a new solution for 7’ from scratch changes most of the items returned to the user, while
a solution computed by a zooming-in algorithm maintains many common items in the
new solution. Therefore, the new diverse subset is intuitively closer to what the user
expects to receive.

Figure 4.33 and Figure 4.34 show corresponding results for the zooming-out al-
gorithms. The G eedy- Zoom Qut ( ¢) algorithm achieves the smallest adapted DisC
diverse subsets. However, its computational cost is very high and generally exceeds the
cost of computing a new solution from scratch. G eedy- Zoom Qut (a) also achieves
similar solution sizes with G eedy- Zoom Qut ( ¢), while its computational cost is
much lower. The non-greedy algorithm has the lowest computational cost. Again, all
the Jaccard distances of the zooming-out algorithms to the previously computed so-
lution are smaller than that of G eedy- Di SC (Figure 4.35), which indicates that a
solution computed from scratch has only a few items in common from the initial DisC
diverse set.

95



4501 700

400t 600!

350

500
300

] 250 400
3

Size

200 300
150

2001
100

5001 100

o) o)
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.01 0.02 0.03 0.04 0.05 0.06 0.07
radius radius

(a) Uniform-Uniform: size. (b) Uniform-Clustered: size.

gUum—

—%— Covering
—¥— CoveredBy

0.6
0.7
0.55

0.7 05
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.01 0.02 0.03 0.04 0.05 0.06 0.07

radius radius

[N
14
©

o
S x
® &

°
o 9
N g

o
o
o]

Average Relevance
Average Relevance

(¢) Uniform-Uniform: average (d) Uniform-Clustered: average
weight. weight.

Figure 4.29: Covering vs. CoveredBy variations for the multiple radii case.

4.7 Related Work

In this section, we first overview other diversity definitions proposed in the related
literature and discuss how our DisC definition of diversity is related to them. Then, we
review related work on the use of indices for the efficient implementation of diverse item
selection. Finally, we present related work from the field of graph theory concerning

independent and dominating sets.

Other Diversity Definitions. Diversity has recently attracted a lot of attention as a
means of counter-acting the over-specialization problem and enhancing user satisfac-
tion [109, 15, 57, 19]. Diverse results have been defined in various ways [42], namely
in terms of content (or similarity), novelty and semantic coverage.

Most content-based definitions (e.g., [114]) interpret diversity as an instance of
the p-dispersion problem, which is generally defined as selecting p out of n items, so
that some objective function based on the chosen items is optimized. A number of
variations of the p-dispersion problem have been extensively studied in the field of
operations research (e.g., [48, 91, 26]). In the field of result diversification, the objective
most usually employed is that of maximizing the minimum distance among any pair of
selected items. This problem is most often referred to as the MaxMiN diversification
problem (e.g., [45]). Other works consider the MaxSuwm diversification problem instead
(e.g., [109, 19]), whose objective is to select p out of n items, so that the average

distance between the chosen items is maximized. Owur approach here differs from
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those two traditional diversification problems, in that the size of the diverse subset
is not an input parameter. Instead, users can explicitly define the desired degree of
diversification via the radius r and later adapt the retrieved solutions by tuning 7 to
see more or less diverse results.

Diversity is often combined with other criteria, most often that of relevance, to se-
lect items that are both highly relevant to a user query, as well as, diverse to each
other. Assuming that each item p; is associated with some weight w(p;), a common
way to combine the two criteria is to use a diversification factor A, A > 0, and se-

lect the subset with the largest value of min,,csw(p;) + Aminy, p.es d(p;,p;) and (k —
DiFDj
)Y esw®i)+ 223, p;es d(pi, p;) for the MAXMIN and MAXSUM problems respectively

(e.g., [57]). Another common approach is Maximal Marginal Relevance (MMR) [23], in
which weights and diversity are linearly combined when items are selected. For exam-
ple, for the MAXMIN problem, for some ), 0 < ) < 1, at each iteration of the various
greedy algorithms, the item p; with the largest value of N'w(p;) + (1 — ') miny, s d(p;, p;)
is selected. Our approach here is different, since we are not restricted by the number
k of selected items but, instead, seek a subset of dissimilar items that can cover the
available space. Therefore, we aim at selecting a valid DisC subset that minimizes the
objective of Definition 4.3, i.e., we favor smaller DisC subsets containing highly relevant
items. Also, we can employ multiple radii to tune the importance of different areas in
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the dataset, as opposed to treating all items in the same way as in those traditional
approach.

Another line of research aims at selecting diverse results similarly to top-k results
by employing some sort of threshold algorithm, often attempting to incorporate weights
to this threshold (e.g., [87, 22]). This approach is more common in novelty-based defi-
nitions of diversity in information retrieval (e.g., [35, 115]). There is a crucial difference
between the two problems, however, in that the diversity of a single item cannot be
computed independently from the other items as in the top-k case, since all diversity
measures require comparing the item with any previously selected ones. In this spirit,
[24] presents an approach for low-dimensional vector spaces in which the computation
of the solution requires the availability of both relevance-based and distance-based
sorted access methods. Items are selected in rounds; at each round a portion of the
available space around the already selected items is pruned from further consideration.
A number of variations of sorted and random accesses are also employed in [15] to re-
trieve a top-k list of relevant and diverse results. However, the focus of that work is on
scheduling the order of the various accesses for cost efficiency rather than maximizing
the quality of the retrieved solutions. Generally, such diversity threshold scores are
hard to interpret, since they do not depend solely on the item. Instead, the score of each

item is relative to which items precede it in the rank. Our approach is fundamentally
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Figure 4.35: Jaccard distance for zooming-out.

different in that we treat the result as a whole and select DisC diverse subsets of it that
fully cover it.

Another related problem is that of extending nearest neighbor search to selecting
k neighbors that are not only spatially close to the query item but are also diverse to
each other [92, 62, 10]. Such works usually focus on exploiting thresholds and space
pruning techniques to enforce diversity during the retrieval of the nearest neighbors
of a query item. Our work is different since our goal is not to locate the nearest and
most diverse neighbors of a single item but rather to locate an independent and covering
subset of the whole dataset. On a related issue, selecting k representative skyline items
is considered in [101], where representative items are selected so that the distance
between a non-selected skyline item from its nearest selected item is minimized and
[105], where the dominance relationships among items are exploited to select a diverse
subset of the skyline items.

Clustering is a research field related to that of diversification, since cluster medoids
can be viewed as representative items (e.g., [79]). Medoids were extended in [18] to
include some sense of relevance (priority medoids). However, there are fundamental
differences between the two problems, since clustering aims at selecting representatives
that minimize some intra-cluster distance, which leads medoids to be drawn to dense

areas of items. Thus, items selected by clustering algorithms may not be as distant
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from each other as items selected by diversification algorithms. Furthermore, medoids
may not cover all the available space. Perhaps the clustering works mostly related to
our are those on detecting distance-based outliers (e.g., [70]). An item is considered a
distance-based outlier if there are less than m other items lying at distance at most r
from it. However, outliers and r-DisC diverse items are two distinctive sets. A major
difference is that the decision whether an item is an outlier depends only on the size
of its neighborhood and not on whether other neighbor items are outliers or not. This
is not the case for r-DisC diverse items, since the decision to select an item as r-DisC
diverse affects other items as well.

Finally, the problem of diversifying continuous data has been recently considered in
[45, 86, 84] using a number of variations of the MAXxMIN and MaxSuwm diversification
models.

Index-Based Implementations of Diversification Algorithms. Due to the NP-hard-
ness of the diversification problem (e.g., [38]), many heuristics have been proposed
for locating approximate solutions. Most of these can be classified as either greedy
or interchange (swap) heuristics [42]. In greedy heuristics, items are iteratively se-
lected in rounds in the diverse set. The complexity of greedy heuristics in terms of
computed distances ranges from O(k?n) to O(n?) depending on the initialization step,
while 1/2-approximations of the optimal solutions can be achieved for both the MAXMIN
and MaxSuMm problems (e.g., [100]). Interchange heuristics initialize S with a random
solution and then iteratively attempt to improve it by interchanging an item in S with
another item that is not in S. Their worst case complexity is O(n*).

Here, we used the M-tree to implement our approach and exploited its properties,
as well as our pruning rule, to reduce the computational cost of our approach. Indices
have been used in the past for result diversification, most recently in [45], where a
number of algorithms, as well as a fast implementation of the greedy heuristic, based
on Cover Trees are proposed for the MAXMIN diversification problem. A Dewey encoding
of database tuples enables them to be organized in a tree structure which is later
exploited to select the £ most diverse of them in [107]. A similar approach is followed
in [76]. However, the proposed methods are limited to a specific diversity measure and
cannot be applied in the general case. A spatial index is also exploited in [59] to locate
those relevant nearest neighbors of an item that are the most distant to each other.

Results from Graph Theory. The properties of independent and dominating (or cov-
ering) subsets have been extensively studied in graph theory. A number of different
variations exist (e.g., [58, 55]). Among these, the Minimum Independent Dominating
Set problem is equivalent to the r-DisC diversity problem. The problem of locating a
Minimum Independent Dominating Set has been shown to have some of the strongest
negative approximation results: in the general case, it cannot be approximated in poly-
nomial time within a factor of n'~¢ for any € > 0 unless P = NP [58]. However, some
approximation results and faster algorithms have been found for special graph cases,
such as bounded degree graphs and unit disk graphs (e.g, [32, 14, 52, 36, 56, 20]). In
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our work, rather than providing polynomial approximation bounds for DisC diversity,
we focus on the efficient computation of non-minimum but small DisC diverse subsets
and their adaptation to new radii.

Weighted variations of independent and dominating graphs also exist (e.g., [120,
65]). Most commonly, graph vertices are associated with some weight and we seek to
locate the independent and dominating subgraph with the maximum or the minimum
sum of weights. This is usually referred as the Maximum (or Minimum) Weighted In-
dependent Dominating Set problem. Clearly, the weighted case is at least as hard to
be solved as the unweighted one. Moreover, since most approximation bounds for the
unweighted problem rely on the average degree of the underlying graph, locating such
bounds for the weighted case is even more challenging, since adding vertices of any
weight can arbitrarily change the average degree of the graph.

We have seen that our multiple radii approach can be modeled via directed graphs.
Related work on directed graphs is considerably more limited. An extra challenge in
this case is that not all directed graphs have an independent dominating set. In [83] a
number of conditions for the existence of an independent dominating set for a number
of different kinds of graphs are provided. Some related work also exists on locating
minimum dominating (but not independent) sets (e.g., [85, 28]).

Finally, there is a substantial amount of related work in the field of wireless networks
research, since a Minimum Connected Dominating Set of wireless nodes can be used as
a backbone for the entire network (e.g, [103]). However, allowing the dominating set
to be connected has an impact on the complexity of the problem and allows different
algorithms to be designed. Here, we require diverse items to be dissimilar to each other,

thus, such approaches cannot be exploited.

4.8 Summary

In this chapter, we proposed a novel, intuitive definition of diversity as the problem
of selecting a minimum representative subset S of a result P, such that each item
in P is represented by a similar item in S and that the items included in S are not
similar to each other. Similarity is modeled by a radius r around each item. We
call such subsets r-DisC diverse subsets of P. We introduced weighted and multiple
radii variations of DisC subsets and, also, adaptive diversification through decreasing
r, termed zooming-in, and increasing r, called zooming-out. Since locating minimum
r-DisC diverse subsets is an NP-hard problem, we introduced heuristics for computing
approximate solutions, including incremental ones for zooming, and provided corre-
sponding theoretical bounds. We also presented efficient implementations based on
spatial indexing.
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CHAPTER 5

PoOIKILO: A SYSTEM FOR EVALUATING THE
RESULTS OF DIVERSIFICATION MODELS AND
ALGORITHMS

5.1 Diversification Models
5.2 Algorithms

5.3 Other Features

5.4 System Description

5.5 Summary

N the previous chapters, we described result diversification in detail and detailed a
I wide range of its applications. Different diversification methods aim at optimizing

different diversification criteria. Often, it is not clear what method is more suitable
for a specific application. Here, we present PoikiLo (from the greek morxilo, meaning
“diverse”), a system designed to assist users in locating, visualizing and comparing
diverse results based on a suite of different diversification models and algorithms. We
provide implementations of a wide variety of diversification approaches for retrieving
diverse results. For the case in which the degree of diversification is specified by
a radius, we also provide an interactive zoom-in and zoom-out form of functionality
(Figure 5.2).

Often, results are associated with a relevance score. PoikiLo includes various meth-
ods for combining relevance and diversity in selecting representative results. Further-
more, we consider the case of streaming data, where the query results change over
time and so does the diverse result presented to the users. We employ a sliding win-
dow streaming model and provide options to navigate between consequent windows of

diverse results.

103



{

*Raxiho
QR

& Diversify 7 Upload

Dataset: ‘ clustered-uniform.txt  |¥| Size: 10
Kept: 0

Min distance: | 0.153

Distance: ‘ Euclidean &

|
|
Model: ‘ MaxMin ¥ ‘
|

S [ ] Sum distance: | 0.44

Algorithm: [ Greedy & &) ° Avg distance: | 0.044
Relevance:
Relevance ‘ - |

A 05
weight: [ ] ° @
k: ‘ 10 a
Streaming: 7] @®
Show all
data: ®

@
Data M Diverse Subset
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their size varies based on their relevance.

Users of PoIKILO can submit queries to a number of different datasets and see a
visualization of a diversified subset of their query result (Figure 5.1). We provide vari-
ous synthetic and real datasets. Users can also upload their own datasets. Users can
choose among a wide selection of diversification algorithms and specify various config-
uration parameters. Furthermore, they can zoom-in and zoom-out of this initial diverse
subset and navigate between consequent windows in the case of streaming data.

5.1 Diversity Models

Various models have been proposed for result diversification [42]. In this section, we
describe the various models made available to users by PoikiLo. Most of these models
involve the use of a distance function. We have implemented the most common distance
functions (e.g., Euclidean, cosine). In addition, users can select which of the attributes

of each item will be used for diversification.

Dispersion models. The most widespread diversity models are related to the k-
dispersion problem, defined as selecting k out of a set P of items in some space, such
that some objective function is maximized. Common variations include the MaxMIN
and MaxSum methods. Given a distance metric d and an integer £, £ > 1, MAXMIN aims
at locating a subset S of P with k items, such that, the minimum pairwise distance
among any items in S is maximized. MAXSuM, on the other hand, aims at maximizing

the sum of the respective pairwise distances. That is, the two models aim at maximizing
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(a) Initial diverse items. (b) Zooming-in. (c) Zooming-out.

Figure 5.2: Zooming operations in action in PoikiLo. Selected items are shown as solid
circles.

(a) DisC. (b) MaxMin. (c) MaxSum. (d) k-Medoids.

Figure 5.3: Comparison of various diversification models.

the following diversity functions:

fun(S,d) = min_d(p;,p;) and fow(S,d) = Y d(pi.p;) (5.1)
Pz 7p] p“pj ES
Intuitively, MAXMIN aims at discouraging the selection of nearby items, while MaxSum
at increasing the average pairwise distance among all items.

DisC diversity. DisC is a recently proposed model that combines coverage and diversity
[44]. Let N, (p;) be the neighborhood of an item p; € P, i.e., the items lying at distance
at most r from p;. r, 7 > 0, is a tuning parameter called radius. Let also N, (p;) be the
set N,.(p;) U {p;}. Intuitively, we would like to select exactly one item from each item’s
neighborhood.

Definition 5.1. (r-DisC DIVERSE SUBSET) Let P be a set of items and r, » > 0, a real
number. A subset S C P is an r-Dissimilar and Covering subset, or r-DisC diverse
subset, of P, if the following two conditions hold: (i) (coverage condition) Vp; € P,
dp; € N;M(p;), such that p; € S and (ii) (dissimilarity condition) V p;, p; € S with ¢ # j,
it holds that d(p;,p;) > 7.

Given P, we would like to select the smallest number of dissimilar and covering
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items.

Definition 5.2. (MiniMuM r-DisC DIVERSE SUBSET) Given a set P of items and a radius
r, find an r-DisC diverse subset S* of P, such that, for every r-DisC diverse subset S
of P, it holds that |S*| < |S].

The DisC model allows an interactive mode of operation where, after being presented
with an initial set of results for some radius r, a user can see either more or less results
by decreasing or increasing r. Specifically, given a set of items P and an r-DisC diverse
subset S” of P, we want to compute an 7/-DisC diverse subset S” of P. Zooming can be
global, in the sense that the radius r is modified similarly for all items in P, or local, i.e.,
modifying the radius only for a specific area of the data set. To support an incremental
mode of operation, the set S™ should be as close as possible to the already seen result
S”. Ideally, S D S, for ' < rand S” C S", for ' > r. Although in general there is no
monotonic property among the optimal r-DisC diverse and r’-DisC diverse subsets of a
set of items P, for r # 1/, we provide heuristics that achieve these requirements.

Other models. Often, clustering methods have been proposed as an alternative to
selecting diverse items. In this case, the diverse set consists of representatives from

each cluster. For example, k-medoids seeks to minimize ‘%' > d(p;, c(p;)), where

i €P
¢(p;) is the closest item of p; in the selected subset. We also congider other diversifica-
tion models, such as the Greedy Marginal Contribution and Greedy Randomized with
Neighborhood Expansion models presented in [109]. Our tool can be easily extended
with additional methods as well.

Figure 5.3 shows the diverse sets located by PoikiLo for some of the different ap-
proaches. Generally, MaxSuMm and k-medoids fail to cover all areas of the dataset;
MaxSumMm tends to focus on the outskirts of the dataset, whereas k-medoids clustering
reports only central points, ignoring sparser areas. MAXMIN performs better in this as-
pect. However, since MAXMIN seeks to retrieve objects that are as far apart as possible,
it fails to retrieve objects from dense areas; see, for example, the central areas of the
clusters in Figure 5.3. DisC gives priority to such areas and, thus, such areas are
better represented in the solution. Note also that MaxSumMm and k-medoids may select
near duplicates, as opposed to DisC and MAXMIN.

5.2 Algorithms

Due to the NP-hardness of most of the models of the diversification problem, a number
of different heuristics have been proposed (e.g., see [48]). PokiLO provides various
implementations of different variations of such heuristics.

For MAXMIN and MaxSuM, a simple iterative greedy heuristic has been shown to
provide l/2-approximations of the optimal solution. In this heuristic, first, the two
furthest apart items of P are added to S. Then, at each iteration, one more item is
added to S. The item that is added is the one that has the maximum distance from
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Figure 5.4: Zooming-in in action.

the items already in S. Interchange heuristics are often used as well. Such heuristics
are initialized with a random solution S and then iteratively attempt to improve that
solution by interchanging an item in the solution with another item that is not in the
solution. Usually, the item that is eliminated from the solution at each iteration is one of
the two closest items in it. We provide various interchange heuristics, e.g., performing
at each iteration the first interchange that improves the solution (First-Interchange) or
considering all possible interchanges and perform the one that improves the solution
the most (Best-Interchange).

PoikiLo also provides an implementation of all the algorithms presented in [44] for
computing DisC diverse subsets. These are graph-based algorithms that use a spatial
index structure, namely the M-tree, to efficiently execute neighborhood queries. We
briefly describe some of them next. Let us call black the items of P that are in S, grey
the items covered by S and white the items that are neither black nor grey. The Basic-
DisC heuristic initially considers that S is empty and all items are white. The algorithm
proceeds in rounds; until there are no more white items, it selects an arbitrary white
item p;, colors p; black and colors all items in N, (p;) grey. The Greedy-DisC heuristic,
instead of selecting white items arbitrarily at each round, selects the white item with
the largest number of white neighbors, that is, the white item that covers the largest
number of uncovered items. For zooming-in, i.e., for v’ < r, we can construct ’-DisC
diverse sets that are supersets of S” by adding items to S” (Figure 5.4). The items to be
added are either selected randomly or in a greedy manner, where at each turn the item
that covers the largest number of uncovered items is selected. For zooming-out, i.e.,
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Figure 5.5: Zooming-out in action.

for 7’ > r, in general, there may be no subset of S” that is r’-DisC diverse. We provide
a suite of algorithms that focus on minimizing S’"\S”', i.e., the set of items that belong
to the previous diverse subset but are removed from the new one, and 5"\ 5", i.e., the
set of the new items added to S” (Figure 5.5).

5.3 Other Features

We also consider a number of aspects complimentary to diversification, namely, com-
bining diversity with relevance and handling streaming data.

5.3.1 Relevance

In many cases, the items in a result set are associated with a relevance score, most
often based on their relevance to the user query. In such cases, it is important to
retrieve items that are highly relevant to the user query. In general, the relevance score
of an item is application dependent. Without loss of generality, we assume a relevance
function w : P — R™ that assigns a relevance score to each item, where a higher value
indicates that the item is more relevant to a particular query.

Dispersion-based models combine relevance and diversity using parameters for tun-
ing the degree of diversification. Most common approaches use weights, for example
a parameter o, 0 < o < 1, to weight the relevance of each item against its distance
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Figure 5.6: Combining diversity and relevance. Larger item size denotes higher rel-
evance. In (a) some areas are covered by items with very low relevance, while in (b)
highly relevant items are selected.

from other items during the selection process (a method called MMR [23]) or using a
parameter A\, A > 0 to favor the selection of diverse results among relevant ones. In
the latter case, the corresponding relevance-aware diversity functions for MAXxMIN and
MAXSUM are:

fun(S,d) = minrel(p;) + A min d(p;, p;) and (5.2)
pi€S Pi,p; €S
fom(S,d) = (K —1) Z rel(p;) + 2\ Z d(pi, pj) (5.3)
pi€S Pisp; €S

In PoikiLO, users can select how to combine relevance with diversity and specify the
value of related tuning parameters.
Concerning the DisC model, we define the Weighted r-DisC Diverse Subset Problem:

Definition 5.3. (MintMuM WEIGHTED 7-DisC DIVERSE SUBSET) Given a set P of items with
each object p; € P associated with a weight w(p;) and a radius r, find an r-DisC
diverse subset S* of P, such that, for every r-DisC diverse subset S of P, it holds that

1 1
zpies* w(p;) = ZPiGS w(pi)

Figure 5.6 reports solutions for the same dataset and radius when relevance is
considered or not. Again, we provide implementations of many different algorithms for
handling relevance.

5.3.2 Streaming data

We also consider the dynamic case in which items change over time, as for example, in
the case of notification services. We adopt a sliding-window model where diverse items
are computed over sliding windows of length w in the input data. The length of the
window w can be defined either in time units (e.g., “the most diverse items in the last
hour”) or in number of items (e.g., “the most diverse items among the 100 most recent

ones”).
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We have implemented the index-based algorithms proposed in [39, 45], using Cover
Trees to dynamically update the diverse subset of each window. We also provide the
option to enforce the continuity properties proposed in [39, 45] among consequent
windows. For example, the order in which the diverse items are delivered to the users
should follow the order of their generation. Also, an item should not appear, disappear

and then re-appear in the diverse set.

5.4 System Description

PoikiLo is a Web Application implemented in Java EE using JavaServer Faces 2.0.
PolkiLo can be accessed via a simple web browser using an intuitive GUI (Figure 5.1).
The system architecture can be seen in Figure 5.7. During the demonstration, users
will be allowed to submit queries to a number of different datasets, see diverse results

and tune a variety of diversification parameters.

We provide a number of datasets, both real and synthetic. Our synthetic datasets
consist of points in the 2D plane. Points are either uniformly distributed in space or
form clusters of different sizes. Relevance scores are also assigned to items in a uniform
or clustered way. We also use a number of real datasets, such as two spatial datasets
containing geographic information about the location of (i) 5922 cities and villages in
Greece [5], (ii) apartments in various cities (London, Paris etc.) collected from [6] and
also a dataset consisting of images of people posing with different facial expressions [2].
Users can also upload their own datasets to the system via the GUI.

Upon entering the system, users are presented with a panel providing a wide variety
of different diversification options (Figure 5.8). First, they select a dataset along with a
distance metric (e.g., Euclidean, cosine, Harversine) and a diversification model (e.g.,
DisC, MAaXMIN, MaxSuM). Then, according to the selected model, a number of algorithms
and options become available to them. For example, they can select a diversification
algorithm (e.g., Basic-DisC or Best-Interchange) and algorithm-specific parameters (e.g.,
r, k). Also, they can choose whether to also account for relevance or not during the
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Figure 5.9: Diverse results for our images dataset.

selection of representative results and also whether to treat the input data as streaming
by specifying a window length.

The computed diverse subset is presented to the users along with additional infor-
mation, such as the size of the diverse subset and the average pairwise distance among
the selected items. For point data, a visualization of the whole dataset is presented, in
which diverse items are represented in a different size and color (Figure 5.1). If rele-
vance is considered, the size of each diverse item corresponds to its relevance score, i.e.,
the larger this score is, the larger the item appears. Users have the option to hide the
non-diverse items if they wish. For image data, the diverse set of images is presented
to the user (Figure 5.9).

When the DisC model is employed, after being presented with the diverse subset,
users have the option to tune the degree of diversification by zooming-in or zooming-out
of the presented subset. A sliding bar is provided, which users can slide to dynamically
increase or decrease the value of  without having to specify it explicitly.

Finally, when users use the streaming option, they have the opportunity to see how
diverse items change as items enter and leave the current window by navigating between
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windows via “‘next” and “previous” buttons. Users can also request the enforcement of
continuity properties among consequent windows.

5.5 Summary

In this chapter, we presented PoIKILO, a tool to assist users in locating and evaluating
diverse results. We provide implementations of a wide suite of models and algorithms
found in the related literature to compute and compare diverse results. Users can tune
various diversification parameters, combine diversity with relevance and also see how
diverse results change over time in the case of streaming data. When the diversification
model allows it, they can also zoom-in and zoom-out of the diversified results.
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CHAPTER O

CONCLUSIONS AND FUTURE WORK

6.1 Summary of Contributions

6.2 Directions for Future Work

HE purpose of this thesis was the development, implementation and evalua-

tion of models, algorithms and techniques for ranking information based on

both relevance to user information needs and diversity. Next, in Section 6.1,
we summarize our contributions along these axes while, in Section 6.2, we describe
directions for future work.

6.1 Summary of Contributions

During the elaboration of this thesis, we mainly focused on two interesting aspects of
diversification. First, we considered the problem of diversifying dynamic data based
on a traditional, widely used definition of diversity, namely MaXMIN. Second, we in-
troduced a novel definition of diversity, called DisC diversity, which is based on item
dissimilarity and coverage. Generally, given a positive real number 7, which we call
radius, two items are dissimilar to each other when their distance is larger than r,
while they cover each other when their distance is smaller than or equal to r. We
also considered the problem of incrementally adapting a DisC diverse subset to a new
radius. Finally, we developed a system prototype, called PoikiLo, for evaluating the
results of various diversification models and algorithms. Next, we briefly summarize
the contributions of this thesis.

Despite the considerable recent interest in diversification, most previous research
considers the static version of the problem. This means that the available items out of
which a diverse subset is selected do not change over time. Here, we focused on the

113



dynamic MAxXMIN diversification problem, where insertions and deletions of items are
allowed and the diverse subset needs to be refreshed to reflect such updates.

We proposed an index-based approach based on cover trees and introduced a suite
of algorithms that exploit the cover tree to provide solutions with varying accuracy
and complexity. We also provided theoretical results that bound the accuracy of the
solutions achieved with regards to the optimal solution.

Concerning dynamic data diversification, our main contributions can be outlined
as follows:

e We proposed a novel, index-based approach for solving the MaxMin diversification
problem. We also introduced a number of continuity requirements for increasing
the quality of diverse results in a streaming scenario.

e We showed that locating optimal solutions is an NP-hard problem and provided
a number of cover tree based algorithms for locating approximate solutions. We
presented an efficient implementation of a traditional greedy algorithm which
provides an l/2-approximation of the optimal solution. We also introduced a new
family of algorithms which provide a *~1/2»2-approximation of the optimal solution,
where b is the base of the cover tree.

e We extended our algorithms for selecting items that are both relevant and diverse.
We considered two different approaches. The first one considers the relevance of
the items when inserting them into the index, while the second one combines

relevance with diversity when selecting items from the index.

We also addressed diversity through a different perspective, via defining r-Dissimilar
and covering or r-DisC diverse subsets, based on some radius 7. To ensure that all
items are represented by at least one similar item in the diverse subset, we require all
available items to be covered by at least one diverse item. We also require diverse items
to be dissimilar to each other.

Instead of specifying a required size k of the diverse set or a threshold, as is the case
with most other diversity definitions, our tuning parameter r explicitly expresses the
degree of diversification and determines the size of the diverse set. To retrieve a concise
representation of all items, among all DisC diverse subsets that answer the user query,
we aim at selecting the one containing the smallest number of items. In case items are
also associated with weights, we also take them into consideration when selecting our
diverse items. Also, to allow different areas of the data to contribute more or less items
to the selected diverse subset, we extended the definition of DisC diverse subsets to
allow each item to be associated with a different radius.

We formalized the problem of locating minimum and minimum weighted DisC di-
verse subsets as an independent dominating set problem on graphs. We showed that
locating minimum DisC diverse subsets is an NP-hard problem and provided a suite of
algorithms for locating approximate solutions. We explored the relation among DisC
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diverse subsets of different radii and provided algorithms for incrementally adapting a
DisC diverse subset to a new radius (zooming). We provided theoretical upper bounds
for the size of the diverse subsets produced by our algorithms for computing DisC
diverse subsets as well as for their zooming counterparts.

Concerning diversification based on dissimilarity and coverage, our main contribu-
tions can be outlined as follows:

e We introduced a novel, intuitive definition of diversity, called DisC diversity, based
on using a radius r rather than a size limit & to select diverse items. We extended
DisC diversity to the weighted case, in which items are associated with a weight
indicating their importance, or relevance. We also considered the case in which
different items are associated with different radii and defined two variations of
DisC diversity.

e We exploited a graph-based view of the problem and showed that locating mini-
mum DisC diverse subsets is an NP-hard problem.

e We provided a suite of algorithms for locating approximate solutions. We showed
that our solutions are at most B times larger than any optimal solution, where
B be the maximum number of independent neighbors of any item in our data.
B depends on the dimensionality of the data and the employed distance metric.
We derived the value of B for a number of different dimensionalities and distance
metrics.

e We introduced incremental diversification to a new radius through zooming-in
and zooming-out and studied the size relationship between the diverse subsets
for the two radii. Again, we derived specific bounds for a number of different
dimensionalities and distance metrics.

e We provided efficient implementations of our algorithms based on spatial index
structures, namely the M-Tree.

e We provided a thorough qualitative comparison of the various DisC variations and
also compared DisC diversity with other popular diversity models, both analyti-
cally and qualitatively.

Finally, we also developed a system prototype, called PoikiLo, which is a system
designed to assist users in locating, visualizing and comparing diverse results based
on a suite of different diversification models and algorithms. We provided implementa-
tions of a wide variety of diversification approaches found in the related literature for
retrieving diverse results. Users of POIKILO can submit queries to a number of different
datasets and see a visualization of a diversified subset of their query result. They can
choose among a wide selection of diversification algorithms and specify various config-
uration parameters. Furthermore, they can also zoom-in and zoom-out of this initial
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diverse subset and navigate between consequent windows in the case of streaming
data.

6.2 Directions for Future Work

Next, we offer some insights on a number of open issues related to this thesis that are
the subject of our on-going and future work. We make a distinction between short term
plans, that consist of extensions to work done during the elaboration of this thesis, and
long term plans, that outline ideas for future research related to our work.

Short term plans

Diversification has a wide range of applications, ranging from database and web search
to notification systems and recommenders. We next briefly describe our previous work
on database exploration, multiple search results diversification and keyword search and

present future work ideas for these lines of research.

Diversification in Database Exploration. Users usually interact with databases by
formulating queries. This query-response mode of interaction assumes that users are
to some extent familiar with the content of the database and, also, that they have a
clear understanding of their information needs. However, as the volume of information
becomes larger and accessible to a more diverse and less technically-oriented audi-
ence, a more exploratory/recommendation-based mode of information seeking seems
relevant and useful.

Previous approaches for assisting users in querying a database mainly focus on
query rewriting for retrieving more or less results, for example, by adding constraints
to the query (e.g., [95]) or automatically ranking query results and presenting to users
only the top-k most highly ranked among them (e.g., [30]). With facet search (e.g.,
[90, 66, 54]), users start with a general query and progressively narrow its results
down to a specific item by specifying at each step restrictions on attribute values.

In our previous work [40, 43, 97], we introduced a novel exploratory mode of
database interaction that allows users to discover items that, although not part of
the result of their original query, are highly correlated to this result. For example, as-
sume a user asking about movies by a specific director, e.g., M. Scorsese. We want to
highlight interesting aspects of these results, e.g., interesting years, production coun-
tries, pairs of genre and years etc. To do this, at first, interesting parts of the result
of the initial user query are identified. These are sets of (attribute, value) pairs, called
JaSets, that are highly distinctive for the query. The interestingness of a faSet is based
on its frequency, both in the query result and the database. Intuitively, the more fre-
quent a faSet in the query result and the less frequent a faSet in the database, the more
interesting it is for the query.

To avoid the costly on-line computation of the frequency of each faSet, in [40, 43],
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we proposed maintaining an appropriate summary that allows us to estimate such
frequencies when needed. Our approach is based on storing the frequencies of a set of
representative rare faSets which are then used to estimate the interestingness of the

faSets that appear in the result of any given user query.

After the k most interesting faSets have been located for a specific user query,
exploratory queries are constructed whose results possess these interesting faSets. The
results of the exploratory queries, called YMAL (“You May Also Like”) results, are also
presented to the user. For example, by clicking on each important aspect of the query
about movies by M. Scorsese, the user gets additional recommended YMAL results, i.e.,
other directors who have directed movies with characteristics similar to the selected
ones. This way, users get to know other, possibly unknown to the them, directors who
have directed movies similar to those of M. Scorsese in our example.

In some respect, exploratory queries may be seen as recommendations. Extending
database queries with recommendations has been suggested in some recent works,
namely [72] and [29, 12]. [72] proposes a general framework and a related engine for
the declarative specification of the recommendation process. The recommendations in
our case are of a very specific form. Recommendations in [29, 12] have the form of
queries and are based on the relations they involve and the similarity of their structure
to that of the original user query. Those recommendations are based on the past
behavior of similar users, whereas we consider only the content of the database and
the query result. The functionality we propose is complementary to query-response
and recommendation systems. Contrary to facet search and related approaches, our
goal is not to refine the original query so as to narrow its results. Instead, we provide
users with items that do not belong to the results of their original query but are highly
related to them. We do this based solely on the database content and the initial query
and not based on any log of previous user queries or results.

However, the most interesting faSets may often be similar to each other, since
interesting faSets are often sub-faSets of other interesting faSets. For this reason,
diversification can greatly improve the quality of presented faSets. In our previous
user studies [40], we saw that most users find larger faSets, i.e., faSets containing
more (attribute, value) pairs, to be more interesting. We reckon that some coverage-
based definition of diversity can be employed to select a concise subset of faSets by
promoting faSets that cover more (attribute, value) pairs. Another interesting direction
is to employ some notion of novelty to dynamically change the ordering of presented
faSets after the user has clicked on one or more faSets and returned back to the list,
to reflect the fact that the user has already explored some part of the database and did
or did not find it to their liking.

Besides incorporating diversity, another interesting extension of this line of research
is to consider using information from resources external to the database, such as the
web, when forming exploratory queries. For example, consider that “Italy” is an inter-
esting faSet when searching for movies of M. Scorsese. Then, besides retrieving other
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directors related to Italy, we could also adjust our exploratory query to retrieve further
information about the country itself from some external source, such as Wikipedia [7].

Diversification of Multiple Search Results. The explosion of accessible data empha-
sizes the need for data diversification in a wide range of web, scientific, and business
applications. The challenge of efficient diversification is further accentuated in a multi-
user environment, in which multiple search queries are to be executed and diversified
at the same time. The focus of previous research, however, is on diversifying the results
of a single query. In our previous work [68, 69], we addressed the problem of scalable
diversification of multiple search results. Our approach leverages the natural overlap
in results of different queries for the concurrent diversification of those overlapping re-
sults. This allows us to reduce computational costs. Moreover, we extend our approach
to exploit a spatial grid structure that allows us to further reduce computational costs
while maintaining comparable quality of diversification.

A number of issues are open in this line of research. One of them concerns the
efficient detection of overlapping results of different queries by exploiting spatial indices
to quickly browse similar results. Another one concerns the trade-off of accuracy for
efficiency in such multi-user environments. For example, consider two queries ¢; and
g2 and their corresponding result sets P; and P,. Let ¢; and ¢, be very similar to
each other. In this case, a diversified subset of P; is probably a good answer for ¢, as
well. However, there may be items in P, that do not belong to P; and, thus, are never
retrieved for ¢, even if they are diverse to the rest of the returned items. However, users
may be willing to disregard such items in exchange for quick result retrieval, as long
as the overall quality of the retrieved results does not degrade considerably. Studying
the relation between the similarity of two queries and their optimal diversified subsets
is an interesting open problem.

Diversification of Keyword Search Results in Databases. In our previous work [98],
we considered keyword-based search in relational databases. Keyword-based search
allows users to discover relevant information without knowing the database schema
or using complicated queries. However, such searches may return an overwhelming
number of results, often loosely related to the user intent. We proposed ranking results
based on both their relevance to the query and user preferences and presenting users
with only the top-k most highly ranked results. We also considered diversifying the
retrieved results based on content. To do this, first, the top-m most highly ranked
results are retrieved, for m > k. Then, the k£ most diverse items are presented to the
user. The larger the value of m, the larger the computational cost but, also, the larger
the diversity of the retrieved results.

Although common in the related literature, computing first m results out of which
the final k£ ones are retrieved induces extra computational overheads. An interesting
direction for future research is moving diversification in the initial ranking phase. One
approach is to use some mono-objective formulation of the problem. Also, a coverage-

based definition of diversity may be better suited in this context, due to the distinctive
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form of results, which are in the form of joining trees of tuples, i.e., tuples from the
database linked through foreign key constraints.

Long term plans

In our future work, we plan to focus on result diversification in a distributed setting,
where the available items are not gathered in a single site but are rather distributed
over a set of different sources.

Our motivation emanates from a number of reasons. First, nowadays, a large num-
ber of information sources are distributed over the network. This, in addition to the
huge volume of accessible information, renders the transferring of all relevant informa-
tion to a single site as a pre-processing step before computing diverse subsets imprac-
tical. Diversifying information at the source and later aggregating partial results seems
a much more attractive approach. Second, computing diverse subsets has inherently
high computational cost, since the diversity of a single item is not an individual prop-
erty but rather depends on the selection of other items. Computing distances among all
available items is the main factor for this high computational cost. Computing diverse
subsets of partitions of data and later aggregating such partial results can, thus, also
greatly decrease cost overheads. Finally, another reason for “pushing” diversification
closer to the information sources is the possible exploitation of shared computations for
diversifying items corresponding to results of different queries, issued by one or more
users. This scenario finds many applications in modern notification services, in which
users are both generators and consumers of information. Locating optimal nodes in
such an overlay network of users to conduct result diversification can reduce both the
computational as well as the communication costs in the network.

A great challenge of the distributed computation of diverse items is that the optimal
solutions computed for different partitions of the data may be generally very different
from the optimal solution for the whole data. However, in many applications, such as
web search and recommenders, diverse items are often used as a first step towards pre-
senting the user with a representative, concise overview of the underlying information.
Users can then refine such diverse results to their liking. Therefore, quickly locating
diverse subsets is of high importance. We believe that efficient algorithms for fast re-
trieval of approximate solutions, withing some acceptable bound, are of great practical
interest.
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Evpwmaikn Evwon EIATKH YNMHPEXIA AIAXEIPIXHX

Evpwmaikoé Kovwviké Tapeio

Me tn ovyxpnpatodotnon ¢ EANadag kat tn¢ Evpwnaikng Evwong

H napouoa £peuva €xel ouyxpnuatodowBel anod v Evpenaiky ‘Eveoon (Eupernaiko Kowveviko
Tapeio - EKT) kat amo eBvikoug mopoug péowm tou Emyeipnoiaxkou [poypappatog <Exkmnaidsuon kat
Ala Biou Mda6norp tou EBvikou Ztpatnyikou ITAaioiou Avagopdg (EXIIA) - Epsuvnuiko Xpnpatodo-
toupevo 'Epyo: HpdxAettog II. Enévéuon otnv kowevia tng yvoong péon tou Euponaikou Kov-

wvikou Tapeiou.



