
© Copyright IBM Corporation 2010 Trademarks
An NIO.2 primer, Part 1: The asynchronous channel APIs Page 1 of 11

An NIO.2 primer, Part 1: The asynchronous channel
APIs
Learn about the new channels that support asynchronous I/O

Catherine Hope (catherine.hope@uk.ibm.com)
Apache Harmony Developer
IBM

Oliver Deakin (odeakin@uk.ibm.com)
Apache Harmony Developer
IBM

21 September 2010

The More New I/O APIs for the Java™ Platform (NIO.2) is one of the major new functional
areas in Java 7, adding asynchronous channel functionality and a new file system API to the
language. Developers will gain support for platform-independent file operations, asynchronous
operations, and multicast socket channels. Part 1 of this two-part article focuses on the
asynchronous channel APIs in NIO.2, and Part 2 covers the new file system functionality.

View more content in this series

An asynchronous channel represents a connection that supports nonblocking operations, such
as connecting, reading, and writing, and provides mechanisms for controlling the operations after
they've been initiated. The More New I/O APIs for the Java Platform (NIO.2) in Java 7 enhance
the New I/O APIs (NIO) introduced in Java 1.4 by adding four asynchronous channels to the
java.nio.channels package:

• AsynchronousSocketChannel
• AsynchronousServerSocketChannel
• AsynchronousFileChannel
• AsynchronousDatagramChannel

These classes are similar in style to the NIO channel APIs. They share the same method and
argument structures, and most operations available to the NIO channel classes are also available
in the new asynchronous versions. The main difference is that the new channels enable some
operations to be executed asynchronously.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
mailto:catherine.hope@uk.ibm.com
mailto:odeakin@uk.ibm.com
http://www.ibm.com/developerworks/java/library/j-nio2-2/index.html
http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=An+NIO.2+primer

developerWorks® ibm.com/developerWorks/

An NIO.2 primer, Part 1: The asynchronous channel APIs Page 2 of 11

The asynchronous channel APIs provide two mechanisms for monitoring and controlling the
initiated asynchronous operations. The first is by returning a java.util.concurrent.Future
object, which models a pending operation and can be used to query its state and
obtain the result. The second is by passing to the operation an object of a new class,
java.nio.channels.CompletionHandler, which defines handler methods that are executed after
the operation has completed. Each asynchronous channel class defines duplicate API methods for
each operation so that either mechanism can be used.

This article, the first in a two-part series on NIO.2, introduces each of the channels and provides
some simple examples to demonstrate their use. The examples are available in a runnable state
(see Download), and you can try them out on the Java 7 beta releases available from Oracle and
IBM® (both still under development at the time of this writing; see Resources). In Part 2, you'll
learn about the NIO.2 file system API.

Asynchronous socket channels and futures
To start, we'll look at the AsynchronousServerSocketChannel and AsynchronousSocketChannel
classes. Our first example demonstrates how a simple client/server can be implemented using
these new classes. First we'll set up the server.

Server setup
An AsychronousServerSocketChannel can be opened and bound to an address similarly to a
ServerSocketChannel:

AsynchronousServerSocketChannel server =
 AsynchronousServerSocketChannel.open().bind(null);

The bind() method takes a socket address as its argument. A convenient way to find a free port is
to pass in a null address, which automatically binds the socket to the local host address and uses
a free ephemeral port.

Next, we can tell the channel to accept a connection:

Future<AsynchronousSocketChannel> acceptFuture = server.accept();

This is the first difference from NIO. The accept call always returns immediately,
and — unlike ServerSocketChannel.accept(), which returns a SocketChannel — it
returns a Future<AsynchronousSocketChannel> object that can be used to retrieve an
AsynchronousSocketChannel at a later time. The generic type of the Future object is the result
of the actual operation. For example, a read or write returns a Future<Integer> because the
operation returns the number of bytes read or written.

Using the Future object, the current thread can block to wait for the result:

AsynchronousSocketChannel worker = future.get();

Here it blocks with a timeout of 10 seconds:

http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=An+NIO.2+primer
http://www.ibm.com/developerworks/java/library/j-nio2-2/index.html

ibm.com/developerWorks/ developerWorks®

An NIO.2 primer, Part 1: The asynchronous channel APIs Page 3 of 11

AsynchronousSocketChannel worker = future.get(10, TimeUnit.SECONDS);

Or it can poll the current state of the operation, and also cancel the operation:

if (!future.isDone()) {
 future.cancel(true);
}

The cancel() method takes a boolean flag to indicate whether the thread performing the accept
can be interrupted. This is a useful enhancement; in previous Java releases, blocking I/O
operations like this could only be aborted by closing the socket.

Client setup
Next, we can set up the client by opening and connecting a AsynchronousSocketChannel to the
server:

AsynchronousSocketChannel client = AsynchronousSocketChannel.open();
 client.connect(server.getLocalAddress()).get();

Once the client is connected to the server, reads and writes can be performed via the channels
using byte buffers, as shown in Listing 1:

Listing 1. Using byte buffers for reads and writes
// send a message to the server
ByteBuffer message = ByteBuffer.wrap("ping".getBytes());
client.write(message).get();

// read a message from the client
worker.read(readBuffer).get(10, TimeUnit.SECONDS);
System.out.println("Message: " + new String(readBuffer.array()));

Scattering reads and writes, which take an array of byte buffers, are also supported
asynchronously.

The APIs of the new asynchronous channels completely abstract away from the
underlying sockets: there's no way to obtain the socket directly, whereas previously
you could call socket() on, for example, a SocketChannel. Two new methods —
getOption and setOption — have been introduced for querying and setting socket
options in the asynchronous network channels. For example, the receive buffer size
can be retrieved by channel.getOption(StandardSocketOption.SO_RCVBUF) instead of
channel.socket().getReceiveBufferSize();.

Completion handlers
The alternative mechanism to using Future objects is to register a callback to the asynchronous
operation. The CompletionHandler interface has two methods:

• void completed(V result, A attachment) executes if a task completes with a result of type
V.

developerWorks® ibm.com/developerWorks/

An NIO.2 primer, Part 1: The asynchronous channel APIs Page 4 of 11

• void failed(Throwable e, A attachment) executes if the task fails to complete due to
Throwable e.

The attachment parameter of both methods is an object that is passed in to the asynchronous
operation. It can be used to track which operation finished if the same completion-handler object is
used for multiple operations.

Open commands
Let's look at an example using the AsynchronousFileChannel class. We can create a new channel
by passing in a java.nio.file.Path object to the static open() method:

AsynchronousFileChannel fileChannel = AsynchronousFileChannel.open(Paths.get("myfile"));

New open commands for FileChannel
The format of the open commands for asynchronous channels has been backported to the
FileChannel class. Under NIO, a FileChannel is obtained by calling getChannel()
on a FileInputStream, FileOutputStream, or RandomAccessFile. With NIO.2, a
FileChannel can be created directly using an open() method, as in the examples shown
here.

Path is a new class in Java 7 that we look at in more detail in Part 2. We use the
Paths.get(String) utility method to create a Path from a String representing the filename.

By default, the file is opened for reading. The open() method can take additional options to specify
how the file is opened. For example, this call opens a file for reading and writing, creates it if
necessary, and tries to delete it when the channel is closed or when the JVM terminates:

fileChannel = AsynchronousFileChannel.open(Paths.get("afile"),
 StandardOpenOption.READ, StandardOpenOption.WRITE,
 StandardOpenOption.CREATE, StandardOpenOption.DELETE_ON_CLOSE);

An alternative open() method provides finer control over the channel, allowing file attributes to be
set.

Implementing a completion handler
Next, we want to write to the file and then, once the write has completed, execute something. We
first construct a CompletionHandler that encapsulates the "something" as shown in Listing 2:

Listing 2. Creating a completion handler
CompletionHandler<Integer, Object> handler =
 new CompletionHandler<Integer, Object>() {
 @Override
 public void completed(Integer result, Object attachment) {
 System.out.println(attachment + " completed with " + result + " bytes written");
 }
 @Override
 public void failed(Throwable e, Object attachment) {
 System.err.println(attachment + " failed with:");
 e.printStackTrace();
 }
};

http://www.ibm.com/developerworks/java/library/j-nio2-2/index.html

ibm.com/developerWorks/ developerWorks®

An NIO.2 primer, Part 1: The asynchronous channel APIs Page 5 of 11

Now we can perform the write:

fileChannel.write(ByteBuffer.wrap(bytes), 0, "Write operation 1", handler);

The write() method takes:

• A ByteBuffer containing the contents to write
• An absolute position in the file
• An attachment object that is passed on to the completion handler methods
• A completion handler

Operations must give an absolute position in the file to read to or write from. It doesn't make sense
for the file to have an internal position marker and for reads/writes to occur from there, because
the operations can be initiated before previous ones are completed and the order they occur in is
not guaranteed. For the same reason, there are no methods in the AsynchronousFileChannel API
that set or query the position, as there are in FileChannel.

In addition to the read and write methods, an asynchronous lock method is also supported, so that
a file can be locked for exclusive access without having to block in the current thread (or poll using
tryLock) if another thread currently holds the lock.

Asynchronous channel groups

Each asynchronous channel constructed belongs to a channel group that shares a pool of Java
threads, which are used for handling the completion of initiated asynchronous I/O operations.
This might sound like a bit of a cheat, because you could implement most of the asynchronous
functionality yourself in Java threads to get the same behaviour, and you'd hope that NIO.2 could
be implemented purely using the operating system's asynchronous I/O capabilities for better
performance. However, in some cases, it's necessary to use Java threads: for instance, the
completion-handler methods are guaranteed to be executed on threads from the pool.

By default, channels constructed with the open() methods belong to a global channel group that
can be configured using the following system variables:

• java.nio.channels.DefaultThreadPoolthreadFactory, which defines a
java.util.concurrent.ThreadFactory to use instead of the default one

• java.nio.channels.DefaultThreadPool.initialSize, which specifies the thread pool's initial
size

Three utility methods in java.nio.channels.AsynchronousChannelGroup provide a way to create
new channel groups:

• withCachedThreadPool()
• withFixedThreadPool()
• withThreadPool()

developerWorks® ibm.com/developerWorks/

An NIO.2 primer, Part 1: The asynchronous channel APIs Page 6 of 11

These methods take either the definition of the thread pool, given as a
java.util.concurrent.ExecutorService, or a java.util.concurrent.ThreadFactory. For
example, the following call creates a new channel group that has a fixed pool of 10 threads, each
of which is constructed with the default thread factory from the Executors class:

AsynchronousChannelGroup tenThreadGroup =
 AsynchronousChannelGroup.withFixedThreadPool(10, Executors.defaultThreadFactory());

The three asynchronous network channels have an alternative version of the open() method that
takes a given channel group to use instead of the default one. For example, this call tells channel
to use the tenThreadGroup instead of the default channel group to obtain threads when required by
the asynchronous operations:

AsynchronousServerSocketChannel channel =
 AsynchronousServerSocketChannel.open(tenThreadGroup);

Defining your own channel group allows finer control over the threads used to service the
operations and also provides mechanisms for shutting down the threads and awaiting termination.
Listing 3 shows an example:

Listing 3. Controlling thread shutdown with a channel group
// first initiate a call that won't be satisfied
channel.accept(null, completionHandler);
// once the operation has been set off, the channel group can
// be used to control the shutdown
if (!tenThreadGroup.isShutdown()) {
 // once the group is shut down no more channels can be created with it
 tenThreadGroup.shutdown();
}
if (!tenThreadGroup.isTerminated()) {
 // forcibly shutdown, the channel will be closed and the accept will abort
 tenThreadGroup.shutdownNow();
}
// the group should be able to terminate now, wait for a maximum of 10 seconds
tenThreadGroup.awaitTermination(10, TimeUnit.SECONDS);

The AsynchronousFileChannel differs from the other channels in that, in order to use
a custom thread pool, the open() method takes an ExecutorService instead of an
AsynchronousChannelGroup.

Asynchronous datagram channels and multicasting
The final new channel is the AsynchronousDatagramChannel. It's similar to the
AsynchronousSocketChannel but worth mentioning separately because the NIO.2 API
adds support for multicasting to the channel level, whereas in NIO it is only supported
at the level of the MulticastDatagramSocket. The functionality is also available in
java.nio.channels.DatagramChannel from Java 7.

An AsynchronousDatagramChannel to use as a server can be constructed as follows:

AsynchronousDatagramChannel server = AsynchronousDatagramChannel.open().bind(null);

ibm.com/developerWorks/ developerWorks®

An NIO.2 primer, Part 1: The asynchronous channel APIs Page 7 of 11

Next, we set up a client to receive datagrams broadcast to a multicast address. First, we must
choose an address in the multicast range (from 224.0.0.0 to and including 239.255.255.255), and
also a port that all clients can bind to:

// specify an arbitrary port and address in the range
int port = 5239;
InetAddress group = InetAddress.getByName("226.18.84.25");

We also require a reference to which network interface to use:

// find a NetworkInterface that supports multicasting
NetworkInterface networkInterface = NetworkInterface.getByName("eth0");

Now, we open the datagram channel and set up the options for multicasting, as shown in Listing 4:

Listing 4. Opening a datagram channel and setting multicast options

// the channel should be opened with the appropriate protocol family,
// use the defined channel group or pass in null to use the default channel group
AsynchronousDatagramChannel client =
 AsynchronousDatagramChannel.open(StandardProtocolFamily.INET, tenThreadGroup);
// enable binding multiple sockets to the same address
client.setOption(StandardSocketOption.SO_REUSEADDR, true);
// bind to the port
client.bind(new InetSocketAddress(port));
// set the interface for sending datagrams
client.setOption(StandardSocketOption.IP_MULTICAST_IF, networkInterface);

The client can join the multicast group in the following way:

MembershipKey key = client.join(group, networkInterface);

The java.util.channels.MembershipKey is a new class that provides control over the group
membership. Using the key you can drop the membership, block and unblock datagrams from
certain addresses, and return information about the group and channel.

The server can then send a datagram to the address and port for the client to receive, as shown in
Listing 5:

developerWorks® ibm.com/developerWorks/

An NIO.2 primer, Part 1: The asynchronous channel APIs Page 8 of 11

Listing 5. Sending and receiving a datagram

// send message
ByteBuffer message = ByteBuffer.wrap("Hello to all listeners".getBytes());
server.send(message, new InetSocketAddress(group, port));

// receive message
final ByteBuffer buffer = ByteBuffer.allocate(100);
client.receive(buffer, null, new CompletionHandler<SocketAddress, Object>() {
 @Override
 public void completed(SocketAddress address, Object attachment) {
 System.out.println("Message from " + address + ": " +
 new String(buffer.array()));
 }

 @Override
 public void failed(Throwable e, Object attachment) {
 System.err.println("Error receiving datagram");
 e.printStackTrace();
 }
});

Multiple clients can also be created on the same port and joined to the multicast group to receive
the datagrams sent from the server.

Conclusion

NIO.2's asynchronous channel APIs provide a convenient and standard way of performing
asynchronous operations platform-independently. They allow application developers to write
programs that use asynchronous I/O in a clear manner, without having to define their own Java
threads and, in addition, may give performance improvements by using the asynchronous support
on the underlying OS. As with many Java APIs, the amount that the API can exploit an OS's native
asynchronous capabilities will depend on the support for that platform.

ibm.com/developerWorks/ developerWorks®

An NIO.2 primer, Part 1: The asynchronous channel APIs Page 9 of 11

Downloads

Description Name Size
Sample Java code j-nio2-1.zip 5KB

http://www.ibm.com/developerworks/apps/download/index.jsp?contentid=521336&filename=j-nio2-1.zip&method=http&locale=

developerWorks® ibm.com/developerWorks/

An NIO.2 primer, Part 1: The asynchronous channel APIs Page 10 of 11

Resources

Learn

• "Java technology, IBM style: A new era in Java technology" (Chris Bailey, developerWorks,
April 2010): The technical architect for the IBM Java service and support organisation
provides an overview of some of the features in Java 7.

• JSR 203: More New I/O APIs for the Java Platform ("NIO.2"): The NIO.2 libraries implement
this Java Specification Request.

• OpenJDK 7: The project is producing an open source implementation of the next major
revision of the Java SE platform, available under the GPL2 license.

• "Merlin brings nonblocking I/O to the Java platform" (Aruna Kalagnanam and Balu G,
developerWorks, March 2002): Read about the nonblocking features of the NIO package
introduced in Java 1.4.

• "Getting started with new I/O (NIO)" (Greg Travis, developerWorks, July 2003): This hands-
on tutorial covers the NIO library in detail, from the high-level concepts to under-the-hood
programming.

• developerWorks Java technology zone: Find hundreds of articles about every aspect of Java
programming.

Get products and technologies

• Java Early Access downloads from Oracle: Download the latest preview version of JDK 7
from Oracle.

• IBM SDK, Java Technology Edition, Version 7 Early Access Release: Take the latest version
out for a test drive.

Discuss

• IBM SDK for Java 7.0 forum: Help shape the direction of the IBM SDK for Java 7.
• IBM Java Runtimes and SDKs discussion forum: The IBM JTC team invites you to this

discussion forum to share knowledge and ask questions about your experiences of using the
various IBM runtimes and kits.

• Get involved in the My developerWorks community. Connect with other developerWorks
users while exploring the developer-driven blogs, forums, groups, and wikis.

http://www.ibm.com/developerworks/library/j-java7/index.html
http://jcp.org/en/jsr/detail?id=203
http://openjdk.java.net/projects/jdk7/
http://www.ibm.com/developerworks/java/library/j-javaio/
http://www.ibm.com/developerworks/java/tutorials/j-nio/
http://www.ibm.com/developerworks/java
http://java.sun.com/javase/downloads/ea.jsp
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=swg-sdk7
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=2152&cat=10
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=367
http://www.ibm.com/developerworks/mydeveloperworks/mydeveloperworks

ibm.com/developerWorks/ developerWorks®

An NIO.2 primer, Part 1: The asynchronous channel APIs Page 11 of 11

About the authors

Catherine Hope

Catherine Hope has worked in the Hursley Runtime Deliveries department of the IBM
Java Technology Centre since starting as a graduate in 2006. After three years as a
system tester, she has spent the past year working as a Java class library developer
and contributor to the Apache Harmony project.

Oliver Deakin

Oliver Deakin joined IBM's Java Technology Centre in 2003. For the last five years, he
has been a developer, committer, and PMC member for the Apache Harmony project,
an open source implementation of the Java runtime. He has experience working in
many areas of the class libraries in both Java and native code. In his spare time, he
enjoys rock climbing.

© Copyright IBM Corporation 2010
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Asynchronous socket channels and futures
	Server setup
	Client setup

	Completion handlers
	Open commands
	Implementing a completion handler

	Asynchronous channel groups
	Asynchronous datagram channels and multicasting
	Conclusion
	Downloads
	Resources
	About the authors
	Trademarks

