Approximating the Smallest 2-Vertex Connected
Spanning Subgraph of a Directed Graph*

Loukas Georgiadis

Department of Informatics and Telecommunications Engineering, University of
Western Macedonia, Greece. E-mail: 1georg@uown.gr

Abstract. We consider the problem of approximating the smallest 2-
vertex connected spanning subgraph (2-VCSS) of a 2-vertex connected
directed graph, and explore the efficiency of fast heuristics. First, we
present a linear-time heuristic that gives a 3-approximation of the small-
est 2-VCSS. Then we show that this heuristic can be combined with
an algorithm of Cheriyan and Thurimella that achieves a (1 4+ 1/k)-
approximation of the smallest k-VCSS. The combined algorithm pre-
serves the 1.5 approximation guarantee of the Cheriyan-Thurimella algo-
rithm for k = 2 and improves its running time from O(m?) to O(m/n+
nz), for a digraph with n vertices and m arcs. Finally, we present an ex-
perimental evaluation of the above algorithms for a variety of input data.
The experimental results show that our linear-time heuristic achieves in
practice a much better approximation ratio than 3, suggesting that a
tighter analysis may be possible. Furthermore, the experiments show
that the combined algorithm not only improves the running time of the
Cheriyan-Thurimella algorithm, but it may also compute a smaller 2-
VCSS.

1 Introduction

A directed (undirected) graph is k-vertex connected if it has at least k41 vertices
and the removal of any set of at most k—1 vertices leaves the graph strongly con-
nected (connected). The computation of a smallest (i.e., with minimum number
of edges) k-vertex connected spanning subgraph (k-VCSS) of a given k-vertex
connected graph is a fundamental problem in network design with many prac-
tical applications [11]. This problem is NP-complete for k£ > 2 for undirected
graphs, and for k£ > 1 for directed graphs [10]. Recently, the more general prob-
lem of approximating minimum-cost subgraphs that satisfy certain connectivity
requirements has also received a lot of attention. See, e.g., [8,21].

Here we consider the problem of approximating the smallest k-VCSS of a
directed graph (digraph) for k = 2. The key contribution of this work is a linear-
time heuristic that provides a 3-approximation of the smallest 2-VCSS. Our new
heuristic is based on recent results on independent spanning trees [14], test-
ing 2-vertex connectivity [12], and computing strong articulation points [18] in

* Research funded by the John S. Latsis Public Benefit Foundation. The sole respon-
sibility for the content of this paper lies with its authors.

digraphs. The approximation bound of the new heuristic is by a factor of two
worse compared to the currently best known bound of 1.5. The latter is achieved
by the algorithm of Cheriyan and Thurimella [4], which computes a (1 + 1/k)-
approximation of the smallest k-VCSS and runs in O(km?) time for a k-vertex
connected digraph with m arcs. However, our experimental results show that
in practice the linear-time heuristic performs much better than the 3 approxi-
mation bound suggests, which implies that a tighter analysis may be possible.
Furthermore, we provide a simplified version of the Cheriyan-Thurimella algo-
rithm for £ = 2, and present a combination of our linear-time heuristic with this
algorithm. The combined algorithm achieves the same approximation guarantee
of 1.5 as the Cheriyan-Thurimella algorithm, and it runs in O(m+/n +n?) time.
Finally, we present some experimental results for all the above algorithms on arti-
ficial and synthetic graphs. The experiments show that the combined algorithm,
besides improving the running time of the Cheriyan-Thurimella algorithm, can
also compute a smaller 2-VCSS.

1.1 Definitions and Notation

We denote the vertex set and the arc (edge) set of a directed (undirected) graph
G by V(G) and A(G) (E(G)), respectively.

For an undirected graph G and a subset of edges M C E(G), we let deg,, (v)
denote the degree of vertex v in M, i.e., the number of edges in M adjacent to
v. The subset M is a matching if for all vertices v, deg,,;(v) < 1. A vertex v
is free (with respect to M) if deg,,(v) = 0. If for all vertices v, deg,,(v) > k,
then we call M a (> k)-matching. Given a function b : V' — Z the b-matching
problem is to compute a maximum-size subgraph G’ = (V, E(G’)) of G such
that degp(g/)(v) < b(v) for all v. This problem is also referred to as the degree-
constrained subgraph problem [9].

For a directed graph (digraph) G and a subset of arcs M C A(G), we let
degy;(v) denote the in-degree of vertex v in M, i.e., the number of arcs in
M entering v, and let deng(v) denote the out-degree of vertex v in M, i.e.,
the number of arcs in M leaving v. If for all vertices v, degj;(v) > k and
degy;(v) > k, then we call M a (> k)-matching.

2 Approximation Algorithms

In this section we describe the three main algorithms and their combinations
that we consider in our experimental study. First, we describe a simple heuris-
tic that computes a minimal k-VCSS (Section 2.1). It considers one arc of the
digraph at a time and decides whether to include it in the computed k-VCSS or
not. This heuristic computes a 2-approximation of the smallest k-VCSS. Next we
consider the algorithm of Cheriyan and Thurimella that computes a (1 + 1/k)-
approximation of the smallest k-VCSS, and present a simplified version of this
algorithm for the & = 2 case (Section 2.2). Despite the vast literature on con-
nectivity and network design problems, the above two algorithms are, to the

best of our knowledge, the only previously known algorithms for approximat-
ing the 2-VCSS of a digraph. (We refer to [4] for results on the undirected or
edge-connected versions of the problem.) Then, we present our linear-time heuris-
tic (Section 2.3) and two hybrid algorithms that are derived by combining the
linear-time heuristic with either the minimal k-VCSS or the Cheriyan-Thurimella
algorithm (Section 2.4).

The quality of the k-VCSS computed by any algorithm can be bounded by
the following simple fact: In any k-vertex (or arc) connected digraph each vertex
has outdegree > k. Thus any k-vertex (arc) connected digraph has at least
kn arcs. We use this to bound the approximation ratio of the fast heuristic of
Section 2.3. We note, however, that the approximation ratio achieved by the
algorithm of Cheriyan and Thurimella [4] is based on deeper lower bounds on
the number of arcs in k-connected digraphs.

2.1 Minimal k-VCSS

Results of Edmonds [7] and Mader [20] imply that every minimal k-VCSS has at
most 2kn arcs [4]. This fact implies that the following simple heuristic guarantees
a 2-approximation of the smallest k-VCSS. We process the arcs in an arbitrary
order, and while doing so we maintain a current subgraph G of G. Initially
G = G When we process an arc (z,y) we test if G contains at least k+ 1 vertex-
disjoint paths from z to y (including the arc (x,y)). If this is the case then we
can set G — G — (x,y). At the end of this procedure G is a minimal k-VCSS of
G, i.e., for any arc (z,y) € A(@)7 G- (z,y) is not k-vertex connected.

Testing if a digraph G has k + 1 vertex-disjoint paths from x to y can be
carried out efficiently, for constant k£, by computing k + 1 arc-disjoint paths in
a derived digraph Gger using a flow-augmenting algorithm [1]. The vertex set
V(Gger) contains a pair of vertices v_ and v, for each vertex v € V(G). The
arc set A(Gger) contains the arcs (v_, v4) corresponding to all v € V(G). Also,
for each arc (v,w) in A(G), A(Gger) contains the arc (vy,w_). A single flow-
augmentation step in G4er takes O(m) time, therefore the k + 1 arc-disjoint z-y
paths are constructed in O(km), and the overall running time of the algorithm
is O(km?).

In the k = 2 case, if we wish to avoid the construction of the derived graph,
we can replace the flow-augmenting algorithm with an algorithm that computes
dominators in G — (x,y) with x as the source vertex. The arc (x,y) can be
removed if and only if y is not dominated by any vertex other than and y. (See
Section 2.3 and also [14].) We refer to the resulting algorithm as MINIMAL.

2.2 The Cheriyan-Thurimella Algorithm

Cheriyan and Thurimella [4] proposed an elegant algorithm that achieves an
(14 1/k)-approximation of the smallest k-VCSS. The algorithm consists of the
following two phases:

Phase 1. This phase computes a minimum (> k — 1)—matching M of the input
digraph G. This is transformed to a b-matching problem on a bipartite graph
B associated with G. The bipartite graph is constructed as follows. For each
vertex v € V there is a pair of vertices v_ and v4 in V(B). For each arc (v, w)
in A(G) there is an edge {v4,w_} in F(B). The problem of computing M in G
is equivalent to computing a minimum (> k — 1)-matching Mp in B. This, in
turn, is equivalent to computing a maximum b-matching My in B, where b(v) =
degp(p)(v) — (k—1), since Mp = E(B)\ Mp. A b-matching problem on a graph
with n vertices and m edges can be solved in O(y/ma(m,m)logm mlogm)
time [9)].

Phase 2. The second phase runs the minimal k-VCSS algorithm of Section 2.1
but only for the arcs in A(G) \ M. The algorithm maintains a current graph G.
Initially we set A(@) = A, and at the end of this phase A(@) = M U F, where
F C A(G) \ M is a minimal subset of arcs such that G is k-vertex connected.
Using the algorithm of Section 2.1, phase 2 takes O(k|E|?) time, which is also

the asymptotic running time of the whole algorithm.

Simplification for k = 2. Although the Cheriyan-Thurimella algorithm is
conceptually simple (but its analysis is intricate), it is challenging to provide an
efficient implementation, especially for phase 1. For the case k = 2 we propose
the following simpler implementation of phase 1. First we compute a maximum
matching M in B. Then we augment this matching to a set M5 by adding an
edge incident to each free vertex. Next we show that My is indeed a minimum
(> 1)-matching in B.

Lemma 1. My is a minimum (> 1)-matching in B.

Proof. Clearly, My is a (> 1)-matching in B, so it remains to show that it
is minimum. Let M’ be a minimum (> 1)-matching in B. Let X = {z €
V(B) | degy(z) > 1}. If X = @ then deg,, (z) = 1 for all z € V(B). In
this case M’ is a perfect matching, hence |M’| = | Ma|.

Consider now X # (). Let = be any vertex in X. Then, for any edge {z,y} in
M’, deg,; (y) = 1. Otherwise, M’ — {x,y} is a (> 1)-matching in B which con-
tradicts the fact that M’ is minimum. Therefore, there is no edge {z,y} € M’
such that both z and y are in X. Let N be a subset of M’ that is left after
removing deg,; (x) — 1 edges for each z € X. Suppose that ¢ edges are removed
from M’ to form N. Then |N| = |M’'| — ¢ and B has ¢ free vertices with respect
to N. We show that N is a maximum matching in B. Suppose, for contradiction,
that it is not. Let M be a maximum matching. Then, for some ¢ > 1 we have
|M| = |[N|+ ¢ =|M'| + (¢ — ¢). Next note that there are £ — 2¢' free vertices
with respect to M. Therefore |[Ma| < | M|+ (£ —20) = |M'|+ 0 —L+L -2 =
|M'| — ¢ < |M'|, a contradiction. So |M| = |N| which implies |Ms| = |M’|. O

We refer to the above implementation of the Cheriyan-Thurimella algorithm,
for k = 2, as CT.

2.3 Linear-Time Algorithm

Now we present a fast heuristic which is based on recent work on independent
spanning trees [14], testing 2-vertex connectivity [12], and computing strong
articulation points [18] in digraphs. Our algorithm uses the concept of domina-
tors and semi-dominators. Semi-dominators were introduced by Lengauer and
Tarjan [19] in their fast algorithm for computing dominators in flowgraphs.

A flowgraph G(s) = (V, A, s) is a directed graph with a distinguished source
vertex s € V such that every vertex is reachable from s. A vertex w dominates a
vertex v if every path from s to v includes w. By Menger’s theorem (see, e.g., [6]),
it follows that if G is 2-vertex connected then, for any = € V, G(x) has only
trivial dominators, meaning that any vertex in G(x) is dominated only by itself
and .

Let D be a depth-first search tree of G(s), rooted at s. We assign to each
vertex a preorder number with respect to D and identify the vertices by their
preorder numbers. Then, u < v means that u was visited before v during the
depth-first search. A path P = (u = vg, v1,...,05_1, U = v) is a semi-dominator
path (abbreviated sdom-path) if v < v; for 1 < i < k — 1. The semi-dominator
of vertex v is defined by

sdom(v) = min{u | there is an sdom-path from u to v}.

From the properties of depth-first search it follows that, for every v # s, sdom(v)
is a proper ancestor of v in D [19].

For any vertex v # s, we define t(v) to be a predecessor of v that belongs to
an sdom-path from sdom(v) to v. Such vertices can be found easily during the
computation of semi-dominators [14]. Therefore, by [3], we can compute ¢(v) for
all v # s in linear time. Next, we define the minimal equivalent sub-flowgraph of
G(s), min(G(s)) = (V, A(min(G(s))), s), where

A(min(G(s))) = {(p(v),v) | v eV = s} U{(t(v),v) |v eV —s}.

The following lemma from [14] shows that G(s) and min(G(s)) are equivalent
with respect to the dominance relation.

Lemma 2 ([14]). The flowgraphs G(s) and min(G(s)) have the same domina-
tors.

Let Gy denote the graph that remains after deleting s from G. Since G is
2-vertex connected then Gy is strongly connected. For any digraph H, let H"
denote the digraph that is formed after reversing all arc directions in H; we apply
the same notation for arc sets. In particular, the notation min(G”(s)) refers to
the minimal equivalent sub-flowgraph of G”(s).

The algorithm constructs a subgraph G* = (V, A*) of G as follows. First,
it chooses two arbitrary vertices s,s’ € V, where s’ # s. Then, it computes
min(G(s)), min(G7(s)), a spanning out-tree Ty of Gy(s’) (e.g., a depth-first
search tree of Gy, rooted at s') and a spanning out-tree Ty, of Gis’). Then,
it sets

A* = A(min(G(s))) U A" (min(G"(s))) U A(Ty) U A"(Ty).

Theorem 1. G* is 2-vertex connected.

Proof. From [12, 18], we have that a digraph H is 2-vertex connected if and only
if it satisfies the following property: H(s) and H"(s) have trivial dominators
only, and Hy is strongly connected, where s € V(H) is arbitrary. Lemma 2,
implies that G* satisfies the above property by construction. Therefore, G* is
2-vertex connected. [

An alternative way to express the construction of G* is via independent
spanning trees [14]. Two spanning trees, T3 and T of a flowgraph G(s) are
independent if, for all vertices x # s, the paths from s to = in 77 and T have
only s and « in common. In [14] it is shown that min(G(s)) is formed by two
independent spanning trees of G(s). Therefore, G* is formed by two independent
spanning trees of G(s), two independent spanning trees of G"(s) (with their arcs
reversed), a spanning tree of Gy(s'), and a spanning tree of G(s’) (with its arcs
reversed).

Theorem 2. G* is a 3-approzximation of the smallest 2VCSS.

Proof. Since G* is formed by 4 spanning trees on n vertices and 2 spanning trees
on n — 1 vertices, we have |[A(G*)| < 4(n — 1) + 2(n — 2). (The inequality holds
because the spanning trees may have some arcs in common.) In any 2-vertex
connected digraph each vertex has outdegree at least 2, so a 2-vertex connected
digraph has at least 2n arcs. These facts imply an approximation ratio of at
most 3 — %.]

Practical Implementation. The experimental results presented in Section 3
show that in fact our algorithm performs much better than the bound of Theorem
2 suggests, especially after taking the following measures. First, when we have
computed min(G(s)) and min(G"(s)) the algorithms checks if A(min(G(s))) U
A"(min(G"(s))) already forms a 2-vertex connected digraph. If this is the case
then it returns this graph instead of G*, therefore achieving a 2-approximation
of the smallest 2-VCSS. Another idea that helps in practice is to run the algo-
rithm from several different source vertices and return the best result. For our
experiments we used five sources, chosen at random. In all of our experiments,
the returned 2-VCSS was formed only by the set A(min(G(s)))UA" (min(G"(s)))
for one of the five randomly chosen sources s. (We note that for some choices of
s the above set did not suffice to produce a 2-VCSS.) We leave as open question
whether there is a tighter bound on the approximation ratio of our heuristic, or
whether some variant of the heuristic can achieve better than a 2-approximation.

The above algorithm runs in O(m + n) time using a linear-time algorithm to
compute semi-dominators [2, 3,13], or in O(ma(m,n)) time using the Lengauer-
Tarjan algorithm [19]. (Here a(m,n) is a very slow-growing functional inverse
of Ackermann’s function.) Previous experimental studies (e.g., [15]) have shown

that in practice the simple version of the Lengauer-Tarjan algorithm, with O(m logn)
worst-case running time, outperforms the O(ma(m,n))-time version. In view of
these experimental results, our implementation of the above heuristic, referred

to as FAST, was based on the simple version of Lengauer-Tarjan.

2.4 Hybrid Algorithms

We can get various hybrid algorithms by combining FAST with either MINIMAL
or CT. A first idea is to run MINIMAL with the 2-VCSS returned by FAST as
input. We call this algorithm FASTMINIMAL. Since this algorithm also computes
a minimal 2-VCSS, it also achieves a 2-approximation. The running time is
improved from O(m?) to O(n?).

The above idea does not work for CT, since FAST may filter out the wrong
arcs and, therefore, the final 2-VCSS may not be a 1.5-approximation. To fix
this problem we propose the following combination of FAST and CT, referred
to as FASTCT, which runs FAST between the two phases of CT. Following the
computation of the (> 1)-matching M, we run FAST with the initial digraph G
as input. This returns a 2-VCSS G* of G. The input to the second phase of CT
is the digraph with arc set A(G*) U M.

Theorem 3. Algorithm FASTCT computes a 1.5-approzimation of the smallest
2-VCSS in O(m+/n +n?) time.

Proof. After having computed a minimum (> 1)—matching M of the input
digraph G, the Cheriyan-Thurimella algorithm can process the arcs in A(G)\ M
in an arbitrary order. So if it processes the arcs in A(G) \ (A(G*) U M) first,
all these arcs will be removed from the current graph G that is maintained
during the second phase. Thus, the approximation guarantee of the Cheriyan-
Thurimella algorithm is preserved.

Regarding the running time, by Lemma 1 we have that a minimum (>
1)—matching can be computed in O(m+/n) time using the Hopcroft-Karp max-
imum bipartite matching algorithm [17]. Also, by Section 2.3, the computation
of A(G*) takes linear time. Then, we are left with a 2-VCSS with O(n) arcs, so
the last phase of the algorithm runs in O(n?) time. O

3 Experimental Results

3.1 Implementation and Experimental Setup.

For the first phase of CT and FASTCT, we used an implementation of the push-
relabel maximum-flow algorithm of Goldberg and Tarjan [16] from [5]. This
implementation does not use a dynamic tree data structure [22], which means
that the worst-case bound for the first phase of these algorithms is O(n?). How-
ever, as we confirmed experimentally, the push-relabel algorithm runs very fast
in practice. For the implementation of FAST, as well as for the last phase of CT,

MINIMAL, and FASTCT, we adapted the implementation of the simple version of
the Lengauer-Tarjan dominators algorithm [19] from [15]. The source code was
compiled using g++ v. 3.2.2 with full optimization (flag -04). All tests were con-
ducted on an Intel Xeon E5520 at 2.27GHz with 8192KB cache, running Ubuntu
9.04 Server Edition.

The main focus of the experiments in this paper is the quality of the 2-
VCSS returned by each algorithm. Therefore we did not put much effort in
optimizing our source code. (Note, however, that the implementations in [5] and
[15] are highly optimized.) For completeness we do mention the running times
for a subset of the experiments, but leave a thorough experimental study of the
running times for the full version of the paper.

3.2 Instances

We considered three types of instances: bicliques, internet peer-to-peer networks
taken from the Stanford Large Network Dataset Collection [23], and random
digraphs. Some of these graphs are not 2-vertex connected to begin with, so we
need to apply a suitable transformation to make them 2-vertex connected. We
tested two transformations: adding a bidirectional Hamiltonian cycle (indicated
by the letter H in the tables below), and removing strong articulation points
(indicated by the letter A in the tables below).

The term bidirectional Hamiltonian cycle refers to two oppositely directed
Hamiltonian cycles. We create these cycles by taking a random permutation
of the vertices of the input digraph, say wvg,v1,...,v,_1, and adding the arcs
(vi,vir1) and (vi11,v;), where the addition is computed mod n. Note that a
bidirectional Hamiltonian cycle is by itself a minimum 2-VCSS with exactly 2n
arcs, so in this case it is easy to assess how close to optimal are the 2-VCSS
produced by the tested algorithms.

A strong articulation point of a strongly connected digraph is a vertex whose
removal increases the number of strongly connected components [18]. To apply
the second transformation method, we first introduce a directed Hamiltonian
cycle to the input digraph if it is not strongly connected. Then we compute the
strong articulation points of the resulting digraph and add appropriate arcs so
that the final digraph is 2-vertex connected. More details are given below.

Bicliques. Graphs that consist of a complete bipartite graph (biclique) together
with a Hamiltonian cycle were suggested in [4] as instances for which getting a
better than a 2-approximation of the smallest k-VCSS may be hard. We let
bcH(n1, n2) denote a graph that consists of a biclique K, ,, plus a Hamiltonian
cycle; we convert this graph to a digraph by making all edges bidirectional, i.e.
replace each edge {x,y} with the arcs (z,y) and (y,).

We remark that the order in which the arcs are read from the input file can
affect the quality of the returned 2-VCSS significantly. To that end we considered
the following example using bcH(1000, 2) as input. If the arcs of the Hamiltonian
cycle are read first then FAST, running from an appropriately chosen source

vertex, returns a 2-VCSS with 2004 arcs, which is the optimal value. On the
other hand, MINIMAL returns 4000 arcs. The situation is reversed if the arcs of
the Hamiltonian cycle are read last, i.e., FAST returns 4000 arcs and MINIMAL
returns 2004 arcs. The cause of this effect is that FAST favors the arcs that are
explored first during a depth-first search, while MINIMAL favors the arcs that are
processed last. The number of arcs that FASTCT returns is 2005 for both graphs.
Also, FASTMINIMAL returns 2004 arcs for the first graph and 2006 for the second.

In view of the above effect, we created several instances of each digraph
bcH(n1,n2) used in our experiments, by permuting randomly its arcs. The results
are shown in Table 1.

Table 1. Bicliques with embedded bidirectional Hamiltonian cycle. Average number
of arcs and standard deviation in the computed 2-VCSS for 20 seeds. The best result
in each row is marked in bold.

INSTANCE cT FASTCT FAST MINIMAL FASTMINIMAL
bcH(1000,2) 2664.75 2045.65 2458.00 2791.65 2061.90
16.12 38.29 95.95 17.54 41.13

bcH(1000,10) 2925.90 2132.40 2771.75 3558.50 2199.50
7.85 3777 57.65 14.78 36.27

bcH(1000,20) 2977.00 2159.55 2916.80 3752.90 2230.90
5.30 20.44 19.90 12.34 27.90

bcH(1000,40) 3020.00 2227.00 3048.50 3871.40 2315.50
4.27 20.25 2391 11.07 14.97

Internet Peer-to-Peer Networks. We tested digraphs of the family p2p-
Gnutella taken from the Stanford Large Network Dataset Collection [23], after
performing some preprocessing. These graphs are internet peer-to-peer networks,
and therefore relevant for problems concerning the design of resilient communi-
cation networks. Also, their size is small enough so that they could be processed
within a few hours by the slower algorithms in our study.

The goal of preprocessing was to make these digraphs 2-vertex connected.
(Most of these graphs are not strongly connected, and some are not even weakly
connected.) To that end we applied the two transformations mentioned earlier,
indicated in Table 2 by the letters H and A. The former indicates that a bidirec-
tional Hamiltonian cycle was added to the digraph. The latter transformation
first adds a unidirectional Hamiltonian cycle, producing a strongly connected
digraph, say G’. Then it chooses two random source vertices r; and ro and
computes strong articulation points (cut vertices) in G’ using dominator and
post-dominator (i.e., dominator in the reverse digraph) computations with rq
and 7o as roots. (We refer to [12, 18] for details.) A strong articulation point x
is removed by adding one of the arcs (r1,z), (x,71), (r2,2) or (x,r2) depending
on which dominators calculation revealed the specific articulation point.

10

Table 2. Internet peer-to-peer networks; the number of vertices n and the average
number of arcs m for each type of instances is shown. Average number of arcs and
standard deviation in the computed 2-VCSS for 20 seeds. The best result in each row
is marked in bold.

INSTANCE cT FASTCT FAST MINIMAL FASTMINIMAL
p2p-Gnutella04-H 23461.80 23340.10 30024.10 23488.10 23254.55
(n = 10876, ™ = 61692) 23.54 17.37 35.18 21.74 29.86
p2p-Gnutella04-A 28203.35 27929.60 33920.60 28131.05 28055.95
(n = 10876, m = 63882.50) 304.09 38.64 414.36 288.35 102.18
p2p-Gnutella08-H 13561.30 13459.60 17048.15 13584.95 13395.55
(n = 6301, m = 33137) 14.23 15.65 35.00 14.00 15.45
p2p-Gnutella08-A 16858.20 16727.85 19357.65 16859.20 16778.45
(n = 6301, = 33913.35) 140.13 15.82 198.89 153.26 36.96
p2p-Gnutella09-H 17410.75 17321.40 21922.30 17449.70 17232.60
n = 8114, m = 41977 14.49 18.28 35.55 21.28 20.95
p2p-Gnutella09-A 21740.70 21606.25 25076.60 21714.80 21679.15
n = 8114, m = 44081.70 141.43 14.44 293.33 134.11 42.52

Random Graphs. The last type of digraphs we consider are random directed
graphs. We denote by rand(n,m) a random directed graph with parameters n
and m; n is the number of vertices and m is the expected number of arcs, i.e.,
each of the n(n — 1) possible arcs is chosen with probability ﬁ Since we
need to construct 2-vertex connected digraphs, we have to choose large values for
m. In order to get a view of the situation for smaller values of m we also include
the family of graphs randH(n,m), which contain a bidirectional Hamiltonian
cycle. The results are shown in Table 3. Table 4 gives us an indication of the
corresponding running times.

Table 3. Random directed graphs. Average number of arcs and standard deviation in
the computed 2-VCSS for 20 seeds. The best result in each row is marked in bold.

INSTANCE cT FASTCT FAST MINIMAL FASTMINIMAL
rand(1000,20000) 2301.40 2167.25 2991.65 2222.65 2164.00
7.41 9.57 13.03 11.09 10.23

rand(1000,40000) 2336.85 2167.95 2997.10 2224.70 2163.55
10.58 9.46 11.63 7.73 9.20

randH(1000,2000) 2165.65 2149.75 2694.10 2167.00 2145.95
7.04 7.80 1294 9.22 5.35

randH(1000,4000) 2205.80 2159.25 2851.45 2200.15 2159.30

8.13 8.55 13.46 8.52 7.79

11

Table 4. Random directed graphs. Average running time (in seconds) and standard
deviation for 20 seeds.

INSTANCE CT FASTCT FAST MINIMAL FASTMINIMAL
rand(1000,20000) 14.17 0.79 0.02 14.63 4.54
0.25 0.02 0.01 0.19 0.09

rand(1000, 40000) 52.59 0.77 0.02 54.52 8.89
0.63 0.02 0.00 0.77 0.14

randH(1000,2000) 0.81 0.70 0.01 1.00 1.00
0.03 0.02 0.00 0.03 0.03

randH(1000,4000) 1.65 0.77 0.01 1.79 1.45
0.04 0.02 0.00 0.04 0.03

3.3 Evaluation

The above experimental results show that although our fast heuristic returned a
larger 2-VCSS than the other algorithms in all tested cases (with the exception
of bicliques), the approximation ratio of 3 seems pessimistic, at least in practice.
Moreover, the hybrid algorithms FASTCT and FASTMINIMAL had the best per-
formance in all of our tests. The sizes of the subgraphs returned by these two
algorithms were very close to each other, with FASTCT being slightly better for
bicliques, the A-instances of the peer-to-peer networks, and the larger H-instance
of the random digraphs.

The comparison between FASTCT and FASTMINIMAL favors the former, since
it guarantees a better approximation ratio, and, as Table 4 shows, it can run
significantly faster. The reason for this difference in the running times is that
the maximum-flow computation (used for bipartite maximum matching) is com-
pleted a lot faster than the time it takes FASTMINIMAL to process the arcs of the
matching that are excluded from the corresponding processing during the last
phase of FASTCT. We will investigate thoroughly the relative running times of
different implementations in the full version of the paper.

Acknowledgements We would like to thank Renato Werneck for providing the
implementation of the push-relabel maximum-flow algorithm from [5] and for
several helpful discussions, and the anonymous referees for some useful com-
ments.

References

1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algorithms,
and applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

2. S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thorup. Dominators in linear time.
SIAM Journal on Computing, 28(6):2117-32, 1999.

3. A. L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R. E. Tarjan, and J. R.
Westbrook. Linear-time algorithms for dominators and other path-evaluation prob-
lems. SIAM Journal on Computing, 38(4):1533-1573, 2008.

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

J. Cheriyan and R. Thurimella. Approximating minimum-size k-connected span-
ning subgraphs via matching. SIAM J. Comput., 30(2):528-560, 2000.

D. Delling, A. V. Goldberg, I. Razenshteyn, and R. F. Werneck. Graph partition-
ing with natural cuts. In 25th International Parallel and Distributed Processing
Symposium (IPDPS’11), 2011.

R. Diestel. Graph Theory. Springer-Verlag, New York, second edition, 2000.

J. Edmonds. Edge-disjoint branchings. Combinatorial Algorithms, pages 91-96,
1972.

H. N. Gabow and S. Gallagher. Iterated rounding algorithms for the smallest
k-edge connected spanning subgraph. In Proceedings of the nineteenth annual
ACM-SIAM symposium on Discrete algorithms, Proc. 19th ACM-SIAM Symp. on
Discrete Algorithms, pages 550-559, 2008.

H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for general graph match-
ing problems. J. ACM, 38:815-853, 1991.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.
N. Garg, V. S. Santosh, and A. Singla. Improved approximation algorithms for
biconnected subgraphs via better lower bounding techniques. In Proc. 4th ACM-
SIAM Symp. on Discrete Algorithms, pages 103111, 1993.

L. Georgiadis. Testing 2-vertex connectivity and computing pairs of vertex-disjoint
s-t paths in digraphs. In Proc. 87th Int’l. Coll. on Automata, Languages, and
Programming, pages 738-749, 2010.

L. Georgiadis and R. E. Tarjan. Finding dominators revisited. In Proc. 15th
ACM-SIAM Symp. on Discrete Algorithms, pages 862—871, 2004.

L. Georgiadis and R. E. Tarjan. Dominator tree verification and vertex-disjoint
paths. In Proc. 16th ACM-SIAM Symp. on Discrete Algorithms, pages 433-442,
2005.

L. Georgiadis, R. E. Tarjan, and R. F. Werneck. Finding dominators in practice.
Journal of Graph Algorithms and Applications (JGAA), 10(1):69-94, 2006.

A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem.
Journal of the ACM, 35:921-940, October 1988.

J. E. Hopcroft and R. M. Karp. An n®/? algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2:225-231, 1973.

G. Italiano, L. Laura, and F. Santaroni. Finding strong bridges and strong ar-
ticulation points in linear time. In Combinatorial Optimization and Applications,
volume 6508 of Lecture Notes in Computer Science, pages 157-169. Springer Berlin
/ Heidelberg, 2010.

T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flow-
graph. ACM Transactions on Programming Languages and Systems, 1(1):121-41,
1979.

W. Mader. Minimal n-fach zusammenhéngende digraphen. Journal of Combina-
torial Theory, Series B, 38(2):102-117, 1985.

Z. Nutov. An almost O(log k)-approximation for k-connected subgraphs. In Proc.
20th ACM-SIAM Symp. on Discrete Algorithms, SODA ’09, pages 912-921, 2009.
D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of
Computer and System Sciences, 26:362-391, 1983.

Stanford network analysis platform (snap). http://snap.stanford.edu/.

