
Testing 2-vertex connectivity and computing
pairs of vertex-disjoint s-t paths in digraphs?

Loukas Georgiadis

Department of Informatics and Telecommunications Engineering, University of
Western Macedonia, Greece. E-mail: lgeorg@uowm.gr

Abstract. We present an O(m+n)-time algorithm that tests if a given
directed graph is 2-vertex connected, where m is the number of arcs and
n is the number of vertices. Based on this result we design an O(n)-space
data structure that can compute in O(log2 n) time two internally vertex-
disjoint paths from s to t, for any pair of query vertices s and t. The
two paths can be reported in additional O(k) time, where k is their total
length.

1 Introduction

A directed (undirected) graph is k-vertex connected if it has at least k+1 vertices
and the removal of any set of at most k − 1 vertices leaves the graph strongly
connected (connected). The vertex connectivity κ ≡ κ(G) of a graph G is the
maximum k such that G is k-vertex connected. Graph connectivity is one of
the most fundamental concepts in graph theory with numerous practical appli-
cations [3]. Currently, the fastest known algorithm for computing κ is due to
Gabow [12], with O((n+min{κ5/2, κn3/4})m) running time. In [12], Gabow also
showed how to test αδ-vertex connectivity in O((κ +

√
n)
√

nm) time, where δ
is the minimum degree of the given graph and α is an arbitrary fixed constant
less than one. Henzinger et al. [18] showed how to test k-vertex connectivity in
time O(min{k3 + n, kn}m). They also gave a randomized algorithm for com-
puting κ with error probability 1/2 in time O(nm). For an undirected graph,
a result of Nagamochi and Ibaraki [21] allows m to be replaced by κn or kn
in the above bounds. Cheriyan and Reif [9] showed how to test k-vertex con-
nectivity in a directed graph with a Monte Carlo algorithm with running time
O((M(n) + nM(k)) log n) and error probability < 1/n, and with a Las Vegas
algorithm with expected running time O((M(n) + nM(k))k). In these bounds,
M(n) is the time to multiply two n× n matrices, which is O(n2.376) [10].

Note that for constant κ or k the above bounds are O(nm) for deterministic
algorithms and O(M(n)) for randomized algorithms. To the best of our knowl-
edge, these are also the best previously known bounds for testing k = 2 for a
directed graph. In Section 2 we present a linear-time algorithm for this prob-
lem. In the undirected case, linear-time algorithms were given by Tarjan [23] for
? This research project has been funded by the John S. Latsis Public Benefit Founda-

tion. The sole responsibility for the content of this paper lies with its author.

testing k = 2, and by Hopcroft and Tarjan [19] for testing k = 3. Our algorithm
is based on a new characterization of 2-vertex connected directed graphs, based
on the concept of dominators in flowgraphs. A flowgraph G(s) = (V, A, s) is a
directed graph with a distinguished source vertex s ∈ V such that every vertex
is reachable from s. The dominance relation in G(s) is defined as follows: A
vertex w dominates a vertex v if every path from s to v includes w. We denote
by dom(v) the set of vertices that dominate v. Obviously, dom(s) = {s} and
dom(v) ⊇ {s, v}, for any v 6= s; s and v are the trivial dominators of v. The
dominance relation is transitive and its transitive reduction is the dominator tree
D, which is rooted at s and satisfies the following property: For any two vertices
v and w, w dominates v if and only if w is an ancestor of v in D [1]. For any ver-
tex v 6= s, the immediate dominator of v is the parent of v in D. It is the unique
vertex that dominates v and is dominated by all vertices in dom(v) \ {v}. The
computation of dominators appears in several application areas, such as program
optimization and code generation, constraint programming, circuit testing, and
theoretical biology [17]. There is an O(mα(m,n))-time algorithm [20] to compute
dominators that has been used in many of these applications, where α(m,n) is
a functional inverse of Ackermann’s function, which is very slow-growing. This
algorithm also works very well in practice [17], even though it has some concep-
tual complexities. There are even more complicated truly linear-time algorithms
that run on random-access machines [2, 6] and on pointer machines [15, 14, 5].
Our 2-vertex connectivity algorithm needs to test whether certain flowgraphs,
derived from the input directed graph, have trivial dominators only (i.e., the
immediate dominator of all vertices is the source vertex of the flowgraph). This
can be done by computing the dominators of the flowgraph, but for our purpose
a simpler alternative is to use a dominator-verification algorithm [16]. The algo-
rithm given in [16] requires a linear-time solution to a special case of the disjoint
set union problem [13] in order to achieve linear running time. With a standard
disjoint set union structure the algorithm runs in O(mα(m,n)) [24], and avoids
the complexities of the Lengauer-Tarjan algorithm for computing dominators.

The second part of the paper (Section 3) deals with the task of computing
two internally vertex-disjoint s-t paths (i.e., paths directed from s to t), for
any given source vertex s and target vertex t. This problem can be reduced
to computing two edge-disjoint paths (by applying a standard vertex splitting
procedure), which in turn can be carried out in O(m) time by computing two
flow-augmenting paths [3]. In Section 3 we present a faster algorithm for 2-
vertex connected directed graphs. First we note that our linear-time algorithm
for testing 2-vertex connectivity allows us to find a 2-vertex connected spanning
subgraph of the input directed graph with O(n) arcs. Hence, the flow-augmenting
algorithm can compute two internally vertex-disjoint s-t paths in O(n) time. We
can improve this further with the use of independent branchings. A branching
of a directed graph G is a rooted spanning tree of G such that all vertices other
than the root have in-degree one, whereas the root has in-degree zero. Two
branchings of G are independent if for each vertex v, the two root-to-v paths are
internally vertex-disjoint. In [16], a linear-time algorithm that constructs two

independent branchings rooted at the same vertex is presented. Based on this
result, we construct a data structure that can compute two internally vertex-
disjoint s-t paths, for any s and t, in O(log2 n) time, so that the two paths can
be reported in constant time per vertex.

2 Testing 2-vertex connectivity

Let G = (V, A) be the input directed graph (digraph). For any vertex s ∈ V ,
we denote by G(s) = (V, A, s) the corresponding flowgraph with source vertex s.
We can assume that G is strongly connected, which implies that all vertices are
reachable from s and reach s. We also let Gr(s) be the flowgraph derived from
G(s) after reversing all arc directions. For any u, v ∈ V , the local connectivity
κ(u, v) of G is defined as the maximum number of internally vertex-disjoint paths
from u to v. By Menger’s theorem (see, e.g., [3]) this is equal to the minimum
number of cut vertices in an u-v separator if (u, v) 6∈ A. The next lemma relates
local and global connectivity.

Lemma 1. (See, e.g., [3]) κ(G) = minu,v∈V κ(u, v).

Thus, a 2-vertex connected digraph G = (V, A) satisfies the following property.

Lemma 2. Let G = (V, A) be a 2-vertex connected digraph. Then, for any vertex
s ∈ V , both flowgraphs G(s) and Gr(s) have trivial dominators only.

Proof. Lemma 1 and the fact that κ(G) ≥ 2 imply that, for any vertex v ∈ V −s,
there are at least two internally vertex-disjoint paths from s to v. Hence s is the
immediate dominator of v in G(s). Similarly, there are at least two internally
vertex-disjoint paths from v to s. Hence s is also the immediate dominator of v
in Gr(s). 2

Our goal is to prove that the following property characterizes 2-vertex connected
digraphs.

Property 1. Let a and b be two distinct vertices of a digraph G. Then, all four
flowgraphs G(a), G(b), Gr(a) and Gr(b) have trivial dominators only.

2.1 Dominators and 2-vertex connectivity

Lemma 2 implies that Property 1 is necessary for a digraph to be 2-vertex
connected. Therefore, it remains to show that Property 1 is also sufficient. First
we introduce some additional notation. We denote by P [a, b] a simple path (i.e.,
a path with no repeated vertices) from a to b, and let P (a, b] denote this path
excluding a. Similarly, P [a, b) excludes b, and P (a, b) excludes both a and b.
We define the rank of a vertex c ∈ P [a, b] as the number of vertices in P [a, c].
(There is no ambiguity in this definition since P [a, b] is a simple path.) Let P [x, y]
and Q[y, z] be two simple paths. We denote by P [x, y] · Q[y, z] the catenation

of these two paths (which is not necessarily a simple path). Furthermore, let
R = P [x, y] · Q[y, z]. We denote by R[x, z] a simple path from x to z that can
be formed from R. One way to accomplish this is as follows. We find the vertex
w ∈ P [x, y] ∩ Q[y, z] with the highest rank in Q[y, z]. Then we let R[x, z] =
P [x,w] ·Q[w, z].

For our construction we will need a series of technical lemmas.

Lemma 3. ([16]) Consider the flowgraph G(s) = (V, A, s) and a vertex v 6= s,
such that s is the immediate dominator of v in G(s). If (s, v) 6∈ A then there are
two internally vertex-disjoint paths from s to v.

Lemma 4. Let G = (V,A) be a digraph such that for each (u, v) 6∈ A there are
two internally vertex-disjoint paths from u to v. Then G is 2-vertex connected.

Proof. By Lemma 1 we need to show that there is a pair of vertex-disjoint paths
between any pair u, v ∈ V , so we consider the case (u, v) ∈ A. Observe that for
any w ∈ V \ {u, v} there is a path P [u,w] that does not contain v. This is clear
when (u,w) ∈ A. If (u,w) 6∈ A then there are two vertex-disjoint paths from
u to w, so they cannot both contain v. Similarly, we have a path Q[w, v] that
does not contain u. Therefore (u, v) and P [u, w] · Q[w, v] is a pair of internally
vertex-disjoint paths from u to v. 2

Lemma 5. Consider three distinct vertices a,c and d such that the following two
pairs of internally vertex-disjoint paths exist: P1[a, c] and P2[a, c], and P3[d, a]
and P4[d, a]. If P3[d, a)∩P1(a, c] 6= ∅ then there are two internally vertex-disjoint
paths from d to c.

Proof. Let x be the vertex with the lowest rank in P3[d, a] such that x ∈
P3[d, a) ∩ (

P1(a, c] ∪ P2(a, c]
)
. (The premises of the lemma imply that x exists.)

Furthermore, we can assume that x ∈ P3[d, a) ∩ P1(a, c], since we can alternate
the role of P1[a, c] and P2[a, c] if x 6∈ P1(a, c]. This also implies that d 6∈ P2[a, c].
We distinguish the following cases:

a) P4(d, a) ∩ P1(a, c) = ∅ and P4(d, a) ∩ P2(a, c) = ∅. (See case (a) of Figure
1 in Appendix A.) Let R = P4[d, a] · P2[a, c]. Then the paths P3[d, x] · P1[x, c]
and R[d, c] are internally vertex-disjoint.1

b) P3(d, a)∩P2(a, c) = ∅ and P4(d, a)∩P2(a, c) = ∅. (See case (b) of Figure 1
in Appendix A.) Suppose P4(d, a)∩P1(a, c) 6= ∅, otherwise we have case (a). Let
e be the vertex with the highest rank in P1[a, c] such that e ∈ P3[d, a)∩P1(a, c].
Also let f be the vertex with the highest rank in P1[a, c] such that f ∈ P4(d, a)∩
P1(a, c]. Since P3[d, a) and P4(d, a) are vertex-disjoint we have e 6= f . If e has
higher rank in P1[a, c] than f then the paths P3[d, e] ·P1[e, c] and P4[d, a] ·P2[a, c]
are internally vertex-disjoint. Otherwise, the paths P4[d, f] ·P1[f, c] and P3[d, a] ·
P2[a, c] are internally vertex-disjoint.

c) P3(d, a)∩P2(a, c) 6= ∅ and P4(d, a)∩P2(a, c) = ∅. If P4(d, a)∩P1(a, c) = ∅
then we have case (a), so suppose P4(d, a) ∩ P1(a, c) 6= ∅. Let g be the vertex
1 Note that we can have c ∈ P4(d, a), in which case R is not a simple path.

with the lowest rank in P3[d, a] such that g ∈ P3(d, a)∩P2(a, c]. Also, let e be the
vertex with the highest rank in P1[a, c] such that e ∈ P3[d, g]∩P1(a, c], and let f
be the vertex with the highest rank in P1[a, c] such that f ∈ P4(d, a) ∩ P1(a, c].
Suppose the rank of e in P1[a, c] is lower than that of f . (See case (c1) of Figure
1 in Appendix A.) Then the paths P3[d, g] · P2[g, c] and P4[d, f] · P1[f, c] are
internally vertex-disjoint. If, on the other hand, the rank of e in P1[a, c] is higher
than that of f , then the paths P3[d, e] ·P1[e, c] and P4[d, a] ·P2[a, c] are internally
vertex-disjoint. (See case (c2) of Figure 1 in Appendix A.)

d) P3(d, a) ∩ P2(a, c) 6= ∅ and P4(d, a) ∩ P2(a, c) 6= ∅. Let y be the vertex
with the lowest rank in P4[d, a] such that y ∈ P4[d, a)∩(

P1(a, c]∪P2(a, c]
)
. First

suppose that y ∈ P2(a, c]. Then the paths P3[d, x] · P1[x, c] and P4[d, y] · P2[y, c]
are internally vertex-disjoint.

Now consider that y ∈ P1(a, c). Let g be the vertex with the lowest rank in
P3[d, a] such that g ∈ P3(d, a)∩P2(a, c], and let h be the vertex with the lowest
rank in P4[d, a] such that h ∈ P4(d, a) ∩ P2(a, c]. Also, let e be the vertex with
the highest rank in P1[a, c] such that e ∈ P3[d, g] ∩ P1(a, c], and let f be the
vertex with the highest rank in P1[a, c] such that f ∈ P4(d, h] ∩ P1(a, c]. Since
P3[d, a) and P4(d, a) are vertex-disjoint we have e 6= f . If the rank of e in P1[a, c]
is lower than that of f then the paths P3[d, g] · P2[g, c] and P4[d, f] · P1[f, c] are
internally vertex-disjoint. (See case (d1) of Figure 1 in Appendix A.) Otherwise,
the paths P3[d, e] ·P1[e, c] and P4[d, h] ·P2[h, c] are internally vertex-disjoint. (See
case (d2) of Figure 1 in Appendix A.) 2

Lemma 6. Consider three distinct vertices a,b and c such that the following two
pairs of internally vertex-disjoint paths exist: P1[a, c] and P2[a, c], and P3[b, c]
and P4[b, c]. Then there are two internally vertex-disjoint paths Q[a, c] and Q′[b, c].

Proof. If P1[a, c) ∩ P3[b, c) = ∅ then, clearly, the lemma holds with Q[a, c] =
P1[a, c] and Q′[b, c] = P3[b, c]. Now suppose that P3[b, c) intersects P1[a, c).
Let e be the vertex with the lowest rank in P3[b, c] such that e ∈ P3[b, c) ∩(
P1[a, c)∪P2[a, c)

)
. We can assume, with no loss of generality, that e ∈ P1[a, c).

If e = a then the paths Q[a, c] = P3[a, c] and Q′[b, c] = P4[b, c] are inter-
nally vertex-disjoint. Otherwise, if e 6= a, the paths Q[a, c] = P2[a, c] and
Q′[b, c] = P3[b, e] · P1[e, c] are internally vertex-disjoint. 2

Lemma 7. Let a, b be any two distinct vertices of a digraph G = (V, A) that
satisfy Property 1. Then for any vertex c 6∈ {a, b} there are two internally vertex-
disjoint paths Q[a, c] and Q′[b, c].

Proof. Property 1 and Lemma 3 imply that for any c 6= a, if (a, c) 6∈ A then
there are two internally vertex-disjoint paths from a and c. Similarly, for any
c 6= b, if (b, c) 6∈ A then there are two internally vertex-disjoint paths from b and
c. It is clear that the lemma holds when G contains both arcs (a, c) and (b, c).
Next consider that G contains the arc (a, c) but not (b, c). Then there are two
internally vertex-disjoint paths from b and c, therefore they cannot both contain

a and the lemma follows. The case (a, c) 6∈ A and (b, c) ∈ A is symmetric. Finally,
assume that (a, c) 6∈ A and (b, c) 6∈ A. Now we have two internally vertex-disjoint
paths from a to c and two internally vertex-disjoint paths from b to c, hence the
result follows from Lemma 6. 2

Symmetrically we also get the following results for paths entering a and b.

Lemma 8. Consider three distinct vertices a,b and d such that the following two
pairs of internally vertex-disjoint paths exist: P1[d, a] and P2[d, a], and P3[d, b]
and P4[d, b]. Then there are two internally vertex-disjoint paths Q[d, a] and
Q′[d, b].

Lemma 9. Let a, b be any two distinct vertices of a digraph G = (V, A) that
satisfy Property 1. Then for any vertex d 6∈ {a, b} there are two internally vertex-
disjoint paths Q[d, a] and Q′[d, b].

Before proceeding to our main lemma we make the following observation.
Our goal is to show that for any pair of vertices d and c there are two internally
vertex-disjoint paths from d to c. Unfortunately we cannot obtain the desired
result immediately by applying Lemmas 7 and 9; Lemma 7 gives us two paths,
from a and b to c, that only meet at c. Lemma 9 gives us two paths, from d to a
and b, that only meet at d. These paths, however, do not suffice to construct two
internally vertex-disjoint paths from d to c. (A counterexample is illustrated in
Figure 2(a) in Appendix A.) Therefore our arguments need to be more subtle.

Lemma 10. Let a, b be any two distinct vertices of a digraph G = (V, A) that
satisfy Property 1. Then G is 2-vertex connected.

Proof. In light of Lemma 4 it suffices to show that for any pair c, d ∈ V , G
contains the arc (d, c) or two internally vertex-disjoint paths from d to c. This
follows immediately from Lemma 3 when d ∈ {a, b} or c ∈ {a, b}. Now consider
d 6∈ {a, b} and c 6∈ {a, b}. We will exhibit two internally vertex-disjoint paths
from d to c. By Lemma 9 we have two internally vertex-disjoint paths Q[d, a]
and Q′[d, b], i.e., Q(d, a] ∩Q′(d, b] = ∅. In particular, note that a 6∈ Q′[d, b] and
b 6∈ Q[d, a]. We distinguish the following cases:

a) Suppose (a, c) ∈ A. First consider that also (b, c) ∈ A. If none of the
paths Q[d, a] and Q′[d, b] contains c then Q[d, a] · (a, c) and Q′[d, b] · (b, c) are
internally vertex-disjoint. If Q[d, a] contains c then Q′[d, b] does not, so Q[d, c]
and Q′[d, b]·(b, c) are internally vertex-disjoint. The case c ∈ Q′[d, b] is symmetric.

If (b, c) 6∈ A then there are two internally vertex-disjoint paths P1[b, c] and
P2[b, c]. Suppose Q[d, a] ∩ P1[b, c] = ∅. Let R = Q[d, a] · (a, c) and R′ = Q′[d, b] ·
P1[b, c]. Then R[d, c](= R) and R′[d, c] are internally vertex-disjoint. Now con-
sider Q[d, a] ∩ P1[b, c] 6= ∅. We would like to apply Lemma 5 for vertices d, b
and c but we need two internally vertex-disjoint paths from d to b. To that end,
let us assume that (a, b) ∈ A and set Q′′[d, b] = Q[d, a] · (a, b). Then Lemma 5
provides two internally vertex-disjoint paths R[d, c] and R′[d, c]. If none of these
paths uses the arc (a, b) then we have found two internally vertex-disjoint paths

from d to c in G. Otherwise, suppose that R[d, c] contains (a, b). Then the paths
R[d, a] · (a, c) and R′[d, c] are internally vertex-disjoint.

The case (b, c) ∈ A is symmetric.
b) The case (d, a) ∈ A can be analyzed similarly to case (a) but we provide

the details for completeness. From Lemma 7 we have two internally vertex-
disjoint paths Q[a, c] and Q′[b, c], i.e., Q[a, c) ∩ Q′[b, c) = ∅. In particular, note
that a 6∈ Q′[b, c] and b 6∈ Q[a, c]. First consider that also (d, b) ∈ A. If none of
the paths Q[a, c] and Q′[b, c] contains d then (d, a) ·Q[a, c] and (d, b) ·Q′[b, c] are
internally vertex-disjoint. If Q[a, c] contains d then Q′[b, c] does not, so Q[d, c] and
(d, b) ·Q′[b, c] are internally vertex-disjoint. The case d ∈ Q′[b, c] is symmetric.

If (d, b) 6∈ A then there are two internally vertex-disjoint paths P1[d, b]
and P2[d, b]. Suppose Q[a, c] ∩ P1[d, b] = ∅. Let R = (d, a) · Q[a, c] and R′ =
P1[d, b] · Q′[b, c]. Then R[d, c](= R) and R′[d, c] are internally vertex-disjoint.
Now consider Q[a, c]∩P1[d, b] 6= ∅. We apply Lemma 5 for vertices d, b and c as
in case (a). We assume at first that (b, a) ∈ A and set Q′′[b, c] = (b, a) · Q[a, c].
Then Lemma 5 gives us two internally vertex-disjoint paths R[d, c] and R′[d, c].
If none of these paths uses the arc (b, a) then we have found two internally
vertex-disjoint paths from d to c in G. Otherwise, suppose that R[d, c] contains
(b, a). Then the paths (d, a) ·R[a, c] and R′[d, c] are internally vertex-disjoint.

The case (d, b) ∈ A is symmetric.
c) It remains to examine the case where none of the arcs (a, c), (d, a), (b, c) and

(d, b) is present. By Lemma 3 we have the following pairs of internally vertex-
disjoint paths: P1[d, a] and P2[d, a], P3[a, c] and P4[a, c], P5[d, b] and P6[d, b],
and P7[b, c] and P8[b, c]. (See Figure 2(b) in Appendix A.) If P1[d, a) or P2[d, a)
intersects P3(a, c] or P4(a, c] then Lemma 5 gives us two internally vertex-disjoint
paths from d to c. Similarly, if P5[d, b) or P6[d, b) intersects P7(b, c] or P8(b, c]
then Lemma 5 gives us two internally vertex-disjoint paths from d to c. Now we
suppose that P1[d, a) and P2[d, a) do not intersect P3(a, c] and P4(a, c], and also
that P5[d, b) and P6[d, b) do not intersect P7(b, c] and P8(b, c].

First we consider that P5[d, b] intersects P3[a, c]∪P4[a, c]. Let f be the vertex
with the lowest rank in P5[d, b] such that f ∈ P5[d, b] ∩ (

P3[a, c] ∪ P4[a, c]
)
.

Without loss of generality we can assume that f ∈ P3[a, c]. Suppose f = a.
Then a 6∈ P6[d, b]. If P6[d, b] intersects P3[a, c] ∪ P4[a, c] then we can alternate
the role of P5[d, b] and P6[d, b] and consider the case f 6= a. So now let P6[d, b]∩(
P3[a, c] ∪ P4[a, c]

)
= ∅. Let h be the vertex with the lowest rank in P7[b, c]

such that h ∈ P7[b, c] ∩
(
P3[a, c] ∪ P4[a, c]

)
. Without loss of generality, suppose

h ∈ P3[a, c]. Then the paths P5[d, a] · P4[a, c] and P6[d, b] · P7[b, h] · P3[h, c] are
internally vertex-disjoint. Next, consider f 6= a. Let e be the vertex with the
highest rank in P5[d, f] such that e ∈ P5[d, f] ∩ (

P1[d, a] ∪ P2[d, a]
)
. Note that

e 6= a. (Also e 6= f). Without loss of generality, suppose e ∈ P1[d, a]. Then
P1[d, e] · P5[e, f] · P3[f, c] and P2[d, a] · P4[a, c] are internally vertex-disjoint.

The cases P6[d, b]∩ (
P3[a, c]∪P4[a, c]

) 6= ∅, P1[d, a]∩ (
P7[b, c]∪P8[b, c]

) 6= ∅,
and P2[d, a] ∩ (

P7[b, c] ∪ P8[b, c]
) 6= ∅ are treated similarly.

Finally suppose that P5[d, b] and P6[d, b] do not intersect P3[a, c] and P4[a, c],
and also that P1[d, a] and P2[d, a] do not intersect P7[b, c] and P8[b, c]. We apply

Lemma 8 for a, b, and d and get two internally vertex-disjoint paths Q1[d, a] and
Q2[d, b]. Then we apply Lemma 6 for a, b, and c get two internally vertex-disjoint
paths Q3[a, c] and Q4[b, c]. Since

(
P1[d, a] ∪ P2[d, a]

) ∩ (
P7[b, c] ∪ P8[b, c]

)
= ∅

and
(
P5[d, b] ∪ P6[d, b]

) ∩ (
P3[a, c] ∪ P4[a, c]

)
= ∅, we have Q1[d, a] ∩ (

Q3(a, c] ∪
Q4[b, c]

)
= ∅ and Q2[d, b] ∩ (

Q3[a, c] ∪ Q4(b, c]
)

= ∅.Thus Q1[d, a] · Q3[a, c] and
Q2[d, b] ·Q4[b, c] are internally vertex-disjoint. 2

Combining Lemmas 2 and 10 we have:

Theorem 1. Let a, b be two arbitrary but distinct vertices of a digraph G. Then
G is 2-vertex connected if and only if it satisfies Property 1 for a and b.

2.2 Linear-time algorithm

Based on Theorem 1 we propose the following algorithm for testing 2-vertex
connectivity: Given the input digraph G = (V, A), we first compute the reverse
graph Gr = (V,Ar), where Ar = {(x, y) | (y, x) ∈ A}. Then we pick two distinct
vertices a, b ∈ V and verify that for each s ∈ {a, b} the flowgraphs G(s) and
Gr(s) have trivial dominators only; we report that G is 2-vertex connected if
and only if this is true. If the input graph is strongly connected but not 2-vertex
connected, then we would like to report a cut vertex, i.e., a vertex whose removal
increases the number of strongly connected components. To that end, we can use
another property of the trivial-dominator-verification algorithm in [16]. Namely,
if a flowgraph G(s) has non-trivial dominators then the verification algorithm
reports two vertices x 6= s and y, such that x is the immediate dominator of y
in G(s). Thus, the removal of x destroys all paths from s to y.

The correctness of the above algorithm follows immediately from Theorem 1.
We now turn to the running time. Computing Gr in O(m+n) time is easy. Fur-
thermore, we can test if a flowgraph has only trivial dominators in O(m+n) time
using the algorithm [16]. (Alternatively, we can use a linear-time algorithm for
computing the dominators of the flowgraph but this computation is more com-
plicated [5].) Since our 2-vertex-connectivity algorithm uses four such tests, the
total running time is O(m + n). In practice, we can use a simpler O(mα(m,n))-
time version of the trivial-dominator-verification algorithm in [16], which uses a
standard disjoint set union data structure [13] instead of the linear-time algo-
rithm of Gabow and Tarjan [13].

Theorem 2. There is a linear-time algorithm for testing 2-vertex connectivity
of a digraph G. If G is strongly connected but not 2-vertex connected then the
algorithm returns a cut vertex.

3 Computing two vertex-disjoint s-t paths

We now consider the problem of preprocessing a 2-vertex connected digraph
G = (V, A) into a data structure that can efficiently compute two internally

vertex-disjoint paths from d to c, for any pair of distinct vertices d, c ∈ V . Our
data structure is based on the proof of Theorem 1 and on a linear-time algorithm
of [16], which computes two branchings T1 and T2 of a flowgraph G(s) = (V, A, s).
These are (directed) spanning trees of G, which are rooted at s and have the
following property: For any vertex v ∈ V , the two directed paths from s to
v in T1 and T2, denoted by T1[s, v] and T2[s, v] respectively, meet only at the
dominators of v in G(s). Therefore, if G = (V, A) is 2-vertex connected then, by
Lemma 2, T1[s, v] and T2[s, v] are internally vertex-disjoint; two branchings that
have this property are called independent. We begin by computing the following
pairs of independent branchings: T1 and T2 of Gr(a), T3 and T4 of G(a), T5 and
T6 of Gr(b), and T7 and T8 of G(b), where a and b are two arbitrary but distinct
vertices of G. Let A′ be the set of arcs in these eight trees. Then, Theorem 1
implies that the digraph G′ = (V,A′) is a 2-vertex connected spanning subgraph
of G. Therefore, we can compute a pair of internally vertex-disjoint d-c paths in
G′. This computation takes O(n) time with a flow-augmenting algorithm (see,
e.g., [3]), since A′ has O(n) arcs.

Next, we describe how to compute these paths in O(log2 n) time, so that we
can report them in additional O(k) time, where k is the total length of the two
paths. The proof of Theorem 1 finds two internally vertex-disjoint paths from
d to c, using the following four pairs of internally vertex-disjoint paths: P1[d, a]
and P2[d, a], P3[a, c] and P4[a, c], P5[d, b] and P6[d, b], and P7[b, c] and P8[b, c].
In order to answer a query for two internally vertex-disjoint paths from d to c,
we can use the corresponding paths on the branchings T1, . . . , T8, i.e., we set
P1[d, a] = (T1[a, d])r, P2[d, a] = (T2[a, d])r, P3[a, c] = T3[a, c], P4[a, c] = T4[a, c],
P5[d, b] = (T5[b, d])r, P6[d, a] = (T6[a, d])r, P7[a, c] = T7[a, c], P8[a, c] = T8[a, c].

Let S1 and S2 be any two rooted trees on the same set of vertices. We define
a set of operations on S1 and S2 that enable an efficient implementation of the
construction given in Section 2.1. Consider four vertices x1, y1, x2 and y2, such
that x1 is an ancestor of y1 in S1 and x2 is an ancestor of y2 in S2. We need a
data structure that supports the following set of operations:

(i) Test if S1[x1, y1] contains x2.
(ii) Return the topmost vertex in S1(x1, y1].
(iii) Test if S1[x1, y1] and S2[x2, y2] contain a common vertex.
(iv) Find the lowest ancestor of y2 in S2[x2, y2] that is contained in S1[x1, y1].
(v) Find the highest ancestor of y2 in S2[x2, y2] that is contained in S1[x1, y1].

By examining the construction of Section 2.1 we can verify that the above oper-
ations suffice for our needs. (We need a constant number of these operations per
query.) For instance, we can find the vertex e with the highest rank in P5[d, f]
such that e ∈ P5[d, f] ∩ P1[d, a] (refer to case (c) in the proof of Lemma 10) by
applying operation (v) with S1 = T1, S2 = T5, x1 = a, y1 = d, x2 = f and
y2 = d. Operation (ii) is useful when we want to exclude the first vertex of a
path in some computation. Excluding the last vertex on a path of Sj (j ∈ {1, 2})
is straightforward if we maintain a pointer from a node to its parent in Sj .

We develop an O(n)-space data structure that supports operations (i)-(v)
efficiently. First note that operation (i) can be answered from (iii) if we set y2 =

x2. Furthermore, operation (iii) can be answered from (iv) or (v); if S1[x1, y1]∩
S2[x2, y2] = ∅ then these operations return null. Now it remains to implement
operations (ii), (iv) and (v). We begin by assigning a depth-first search interval
(as in [11]) to each vertex in S1. Let I1(x) = [s1(x), t1(x)] be the interval of a
vertex x in S1; s1(x) is the time of the first visit to x (during the depth-first
search) and t1(x) is the time of the last visit to x. (These times are computed by
incrementing a counter after visiting or leaving a vertex during the search.) This
way all the assigned s1() and t1() values are distinct, and for any vertex x we
have 1 ≤ s1(x) < t1(x) ≤ 2n. Moreover, by well-known properties of depth-first
search, we have that x is an ancestor of y in S1 if and only if I1(y) ⊆ I(x); if x
and y are unrelated in S1 then I1(x) and I1(y) are disjoint. Now, for operation
(ii) we simply need to locate the child z of x1 in S1 such that s1(y1) ∈ I1(z). This
is a static predecessor search problem that can be solved in O(log n) time with
binary search (which suffices here) or in O(log log n) time with more advanced
structures [4].

In order to support operations (iii)-(v) efficiently we also assign a depth-
first search interval I2(x) = [s2(x), t2(x)] to each vertex x in S2. Next, we map
each vertex x to an axis-parallel rectangle R(x) = I1(x)×I2(x). (See Figure 3 in
Appendix A.) LetR be the set of all axis-parallel rectangles R(x). We implement
operations (iv) and (v) as ray shooting queries in the subdivision induced by
R. For any two vertices x and y, we define R(x, y) = I1(x) × I2(y). Then,
R(x) ≡ R(x, x). Consider two rectangles R(x1, x2) and R(y1, y2). If I1(x1) ∩
I1(y1) = ∅ or I2(x2) ∩ I2(y2) = ∅, then R(x1, x2) and R(y1, y2) do not intersect.
Now suppose that both I1(x1)∩ I1(y1) 6= ∅ and I2(x2)∩ I2(y2) 6= ∅. Let I1(y1) ⊆
I1(x1). If also I2(y2) ⊆ I2(x2) then R(y1, y2) is contained in R(x1, x2); we denote
this by R(y1, y2) ⊆ R(x1, x2). Otherwise, if I2(x2) ⊆ I2(y2) then both vertical
edges of R(y1, y2) intersect both horizontal edges of R(x1, x2). Next, consider
a rectangle R(x1, x2) and let R(x1, x2) = {R(z) ∈ R : R(x1, x2) ⊆ R(z)},
i.e., the rectangles in R containing R(x1, x2). The properties of the intervals
I1() and I2() imply that we can order the rectangles in R(x1, x2) with respect to
their vertical distance from R(x1, x2).2 More formally, let R(z1), R(z2), . . . , R(zξ)
be the rectangles in R(x1, x2) ordered by increasing t2(zj) (the height of the
upper horizontal edge). Also, let R(zi1), R(zi2), . . . , R(ziξ

) be the rectangles in
R(x1, x2) ordered by decreasing s2(zij) (the height of the lower horizontal edge).
Then ij = j, j = 1, . . . , ξ. Now let Q = R(y1, y2) and let Q′ = R(x1, x2). To
perform operation (iv) we locate the rectangle R(z) ∈ R(y1, y2) with minimum
t2(z) (and maximum s2(z)). For operation (v) we locate the rectangle R(z) ∈
R(y1, y2) with maximum t2(z) (and minimum s2(z)) such that R(z) ⊆ Q′. (See
Figure 3 in Appendix A.) We can perform these operations efficiently by adapting
a data structure of Chazelle [8]. The data structure consists of a binary search
tree T on the vertical coordinates s2() and t2() of the vertices, and is constructed
as follows. Let ` be an infinite horizontal line with |R| horizontal rectangle edges
on each side. This line partitionsR into three subsets:R↑ contains the rectangles

2 The same holds for the horizontal distance, but we only need the vertical distance
for the operations as defined.

completely above `, R↓ contains the rectangles completely bellow `, and R`

contains the rectangles intersecting `. We associate with the root r of T the set
R`. The left (resp. right) subtree of r is defined recursively for the set R↓ (resp.
R↑). Clearly, T has O(log n) height. For any node v ∈ T , we let R(v) denote the
set of rectangles associated with v.

Let q = (s1(y1), s2(y2)), i.e., the lower left corner of Q. (Any corner of Q
will do as well.) We implement operation (iv) as a ray shooting query in the
subdivision induced by R(vi), for each node vi ∈ T on the path (v0, v1, . . . , vh)
from r = v0 to the leaf vh that corresponds to the vertical coordinate s2(y2).
Suppose that the horizontal line `(vi) associated with node vi is above q. Then,
we locate the first rectangle Ri

q ∈ R(vi) that is intersected by the vertical ray
[q, (s1(y1),−∞)]. If `(vi) is below q then we locate the first rectangle Ri

q ∈ R(vi)
that is intersected by the vertical ray [q, (s1(y1),+∞)]. In either case, Ri

q can be
found in O(log n) time using a planar point location data structure [22]. The an-
swer to query (iv) is the rectangle R(z) ∈ {R0

q , R
1
q , . . . , R

h
q } with minimum t2(z),

therefore it can be found in total O(h log n) = O(log2 n) time. Operation (v) is
carried out similarly. Let q′s = (s1(y1), s2(x2)) and q′t = (s1(y1), t2(x2)), respec-
tively, be the projection of q on the lower and upper edge of Q′. Again we perform
a ray shooting query in the subdivision induced byR(vi), for each node vi ∈ T on
the path (v0, v1, . . . , vh) from r = v0 to the leaf vh that corresponds to the verti-
cal coordinate s2(y2). Suppose that the horizontal line `(vi) associated with node
vi is above q. Then, we locate the first rectangle Ri

q ∈ R(vi) that is intersected
by the vertical ray [q′s, (s1(y1),+∞)]. If `(vi) is below q then we locate the first
rectangle Ri

q ∈ R(vi) that is intersected by the vertical ray [q′t, (s1(y1),−∞)].
The answer to query (v) is the rectangle R(z) ∈ {R0

q , R
1
q , . . . , R

h
q } with maximum

t2(z) such that Q ⊆ R(z) ⊆ Q′. Therefore, it can be found in total O(log2 n)
time. It is easy to verify that the space bound for the above data structure is
O(n). For the construction of Section 2.1 we actually need such a data structure
for several pairs of the branchings T1, . . . , T8, but the total space is still O(n).

Theorem 3. Let G = (V, A) be a 2-vertex connected digraph G = (V, A) with n
vertices. We can construct an O(n)-space data structure that can compute two
internally vertex-disjoint paths from d to c in O(log2 n) time, for any two distinct
vertices d, c ∈ V . The two paths can be reported in additional O(k) time, where
k is their total length.

We remark that the query time can be reduced to O(log n
√

log n/ log log n) by
applying the result of [7]. We leave the design of more efficient structures for the
operations (i)-(v) as an open problem.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA, 1986.

2. S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thorup. Dominators in linear time.
SIAM Journal on Computing, 28(6):2117–32, 1999.

3. J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications
(Springer Monographs in Mathematics). Springer, 1st ed. 2001. 3rd printing edi-
tion, 2002.

4. P. Beame and F. E. Fich. Optimal bounds for the predecessor problem and related
problems. J. Comput. Syst. Sci., 65(1):38–72, 2002.

5. A. L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R. E. Tarjan, and J. R.
Westbrook. Linear-time algorithms for dominators and other path-evaluation prob-
lems. SIAM Journal on Computing, 38(4):1533–1573, 2008.

6. A. L. Buchsbaum, H. Kaplan, A. Rogers, and J. R. Westbrook. A new, simpler
linear-time dominators algorithm. ACM Transactions on Programming Languages
and Systems, 20(6):1265–96, 1998. Corrigendum appeared in 27(3):383-7, 2005.

7. T. M. Chan and M. Patraşcu. Transdichotomous results in computational geom-
etry, i: Point location in sublogarithmic time. SIAM Journal on Computing,
39(2):703–729, 2009.

8. B. Chazelle. Filtering search: A new approach to query-answering. SIAM Journal
on Computing, 15(3):703–24, 1986.

9. J. Cheriyan and J. H. Reif. Directed s-t numberings, rubber bands, and testing
digraph k-vertex connectivity. Combinatorica, pages 435–451, 1994.

10. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-
sions. J. Symb. Comput., 9(3):251–280, 1990.

11. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms, Second Edition. The MIT Press, 2001.

12. H. N. Gabow. Using expander graphs to find vertex connectivity. Journal of the
ACM, 53(5):800–844, 2006.

13. H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint
set union. Journal of Computer and System Sciences, 30(2):209–21, 1985.

14. L. Georgiadis. Linear-Time Algorithms for Dominators and Related Problems.
PhD thesis, Princeton University, 2005.

15. L. Georgiadis and R. E. Tarjan. Finding dominators revisited. In Proc. 15th
ACM-SIAM Symp. on Discrete Algorithms, pages 862–871, 2004.

16. L. Georgiadis and R. E. Tarjan. Dominator tree verification and vertex-disjoint
paths. In Proc. 16th ACM-SIAM Symp. on Discrete Algorithms, pages 433–442,
2005.

17. L. Georgiadis, R. E. Tarjan, and R. F. Werneck. Finding dominators in practice.
Journal of Graph Algorithms and Applications (JGAA), 10(1):69–94, 2006.

18. M. R. Henzinger, S. Rao, and H. N. Gabow. Computing vertex connectivity: New
bounds from old techniques. Journal of Algorithms, 34:222–250, 2000.

19. J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components.
SIAM Journal on Computing, 2(3):135–158, 1973.

20. T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flow-
graph. ACM Transactions on Programming Languages and Systems, 1(1):121–41,
1979.

21. H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph. Algorithmica, 7:583–596.

22. N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees.
Communications of the ACM, 29(7):669–679, 1986.

23. R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–59, 1972.

24. R. E. Tarjan. Edge-disjoint spanning trees and depth-first search. Acta Informatica,
6(2):171–85, 1976.

A Omitted Figures

d

c

a

2
P

4
P

1
P

3
P

c

a

2
P

1

d

e

case (a) case (b)

f

P

4
P

3
P

a

d

c

1
P

2
P

3
P

e

g
f

4
P

case (c1)

P
2

c

f

e

g

P
3

P
4

P
1

d

a

case (c2)

a

d

c

f

e

g

h

a

d

c

1
P

2
P

f

e

g

h

P
34

P

case (d1) case (d2)

3
P4

P

P
2P

1

x

Fig. 1. Cases considered in the proof of Lemma 5.

d

a b

c

(a)

a b

d

c

P
7

P
8

P
4

P
3

P
1

P
5

P
6

P
2

(b)

Fig. 2. (a) An example where a pair of internally vertex-disjoint paths from d to a and
from d to b (solid arcs) and a pair of internally vertex-disjoint paths from a to c and
from b to c (dashed arcs) do not suffice to give us a pair of internally vertex-disjoint
paths from d to c. (b) Paths used in the proof of case (c) of Lemma 10.

[6,7] h

f [11,14]

g [13,14]

S1

[3,10] c

[2,11] b

[1,16] a

e [8,9][4,7] d

[5,6] f

h [12,15]

2 4 6 8 10 14 16

2

4

12

8

6

16

14

12

10

S1

S2

b

a

g

h

e
d

c
f

c [12,13]

2

[3,10] d

[2,15] g

[1,16] a

[4,9] e

[5,8] b

S

Fig. 3. Answering queries of type (iv) and (v). In this example x1 = b, y1 = f , x2 = g
and y2 = h. The small dashed rectangle is Q = R(y1, y2), and the large dashed rectangle
is Q′ = R(x1, x2). The answer to queries (iv) and (v) are, respectively, vertices b and
d.

