
Treewidth, partial k-trees, and chordal graphs

Delpensum INF 334 - Institutt for informatikk

Pinar Heggernes

September 26, 2006

Many graph problems that are NP-hard on general graphs, have polynomial
time solutions if the input graph has bounded treewidth or if it belongs to a
restricted graph class. In this document, we review some of the techniques for
coping with NP-hardness of graph problems. In particular, we explain graph
parameters treewidth and pathwidth, and give examples of polynomial time
algorithms for graphs of small treewidth and pathwidth. Furthermore, we study
the class of chordal graphs and several subclasses of chordal graphs, since many
hard problems are polynomially solvable on these classes. In addition, some
important and useful graph theoretical notions are mentioned and explained.

1 Subgraphs and separators

In this section we give some basic definitions concerning graphs and some graph
problems.

Given a graph G, if its vertex and edge sets are not given names, then V (G)
denotes the set of vertices of G, and E(G) denotes the set of edges of G. Usually,
we use n = |V (G)| and m = |E(G)|. We denote the neighbors of a vertex v by
N(v). Given a graph G = (V, E), let Kn = (V, EV) denote the complete graph
on vertex set V ; thus every vertex in V is adjacent to every other vertex of V .
The complement of G is the following graph: Ḡ = (V, EV − E).

Let us now define subgraphs and induced subgraphs. For a given graph
G = (V, E), any graph that has a subset of V as its vertex set and a subset of
E as its edge set, is a subgraph of G. We need to distinguish between subgraphs
and induced subgraphs. For example, removing a vertex (and all its incident
edges) from G results in an induced subgraph. However, just removing an edge
between two vertices of G results in a subgraph which is not necessarily induced.

Definition 1.1 Given a graph G = (V, E) and a subset U ⊆ V , the subgraph
of G induced by U is the graph G[U] = (U, D), where (u, v) ∈ D if and only if
u, v ∈ U and (u, v) ∈ E.

A clique is a set of vertices that induce a complete subgraph of G, and a
maximal clique is a clique which is not a subset of any other clique. The size of

1

the largest, or maximum, clique of G is denoted by ω(G), and it is called the
clique number of G. A clique cover of size c is a partition of the vertices of G

into c disjoint cliques. (Note that an edge is a clique consisting of two vertices.)
k(G) is the size of a smallest possible clique cover of G.

An independent set is a set of vertices no two of which are adjacent. α(G)
is the number of vertices in an independent set of maximum cardinality. A
c-coloring is a partition of the vertices into c independent sets. The vertices
belonging to the same independent set are “colored” with the same color, and
adjacent vertices receive different colors. We say that G is c-colorable. χ(G) is
the smallest possible number c for which there exists a c-coloring of G, and it
is called the chromatic number of G.

Observe that ω(G) ≤ χ(G) and α(G) ≤ k(G), since every vertex of a max-
imum clique (maximum independent set) must be contained in a different par-
tition segment in any minimum coloring (minimum clique cover). Note also the
following equalities: ω(G) = α(Ḡ) and χ(G) = k(Ḡ). Deciding ω(G), α(G), χ(G),
and k(G) are NP-hard problems [13].

We end this section with the definition of a minimal separator, which is
central in coming sections. Given a graph G = (V, E), a set of vertices S ⊂ V

is a separator if the subgraph of G induced by V −S is disconnected. The set S

is a uv-separator if u and v are in different connected components of G[V − S].
A uv-separator S is minimal if no subset of S separates u and v.

Definition 1.2 S is a minimal separator of G if there exist two vertices u and
v in G such that S is a minimal uv-separator.

2 Treewidth, pathwidth and partial k-trees

Treewidth is a parameter that gives a measure of how “tree-like” or “close to
being a tree” a graph is. The smaller the treewidth, the more tree-like the
graph is. As many NP-hard graph problems have simple and polynomial (even
linear) time solutions on trees, it is often the case that these problems can also
be solved in polynomial time for graphs that have constant treewidth, using
dynamic programming techniques. In order to define treewidth, we need first
to define a tree decomposition of a graph.

Definition 2.1 A tree decomposition of a graph G = (V, E) is a pair

({Xi | i ∈ I} , T =(I, M))

where {Xi | i ∈ I} is a collection of subsets of V (also called bags), and T is a
tree, such that:

•
⋃

i∈I Xi = V

• (u, v) ∈ E ⇒ ∃i ∈ I with u, v ∈ Xi

• For all vertices v ∈ V , {i ∈ I | v ∈ Xi} induces a connected subtree of T .

2

The last condition of Definition 2.1 can be replaced by the following equiv-
alent condition:

• i, k, j ∈ I and j is on the path from i to k in T ⇒ Xi ∩ Xk ⊆ Xj .

Lemma 2.2 [7] Let ({Xi | i ∈ I} , T = (I, M)) be a tree decomposition of
G = (V, E), and let K ⊆ V be a clique in G. Then there exists an i ∈ I with
K ⊆ Xi.

Exercise 2.3 Prove Lemma 2.2.

The width of a decomposition ({Xi | i ∈ I} , T = (I, M)) is maxi∈I |Xi| −
1. The treewidth of a graph G, tw(G), is the minimum width over all tree
decompositions of G.

Corollary 2.4 (of Lemma 2.2) For every graph G, tw(G) ≥ ω(G) − 1.

A path decomposition is a tree decomposition ({Xi | i ∈ I} , T = (I, M))
such that T is a path. The pathwidth of a graph G, pw(G), is the minimum
width over all path decompositions of G. Since every path decomposition is also
a tree decomposition, pathwidth ≥ treewidth for all graphs.

Example 2.5 Let G be the graph shown in Figure 1 a).
Let I = {1, 2, 3, 4}, X1 = {a, b, f}, X2 = {b, d, f}, X3 = {b, c, d}, X4 =

{d, e, f}. Let T be the tree shown in Figure 1 b). ({Xi | i ∈ I}, T) is a tree
decomposition of G.

Let J = {1, 2, 3}, Y1 = {a, b, f}, Y2 = {b, c, e, f}, Y3 = {c, d, e}. Let P be the
path shown in Figure 1 c). ({Yj | j ∈ J}, P) is a path decomposition of G.

c e

d

f

a

b

3 4

2

1

2

3

1

a) b) c)

Figure 1: The graph of Example 2.5 has treewidth 2 and pathwidth 2 (why?).

A tree decomposition of width equal to the treewidth is called an optimal
tree decomposition. A path decomposition of width equal to the pathwidth is
called an optimal path decomposition. Unfortunately, computing treewidth and
pathwidth are NP-hard problems.

3

Theorem 2.6 [1] The following problems are NP-complete:

• Given a graph G = (V, E) and an integer k < |V |, is the treewidth of
G ≤ k?

• Given a graph G = (V, E) and an integer k < |V |, is the pathwidth of
G ≤ k?

However, the k-treewidth problem can be solved in linear time [6]: Given a
graph G, is the treewidth of G at most k? In this case, k is a constant and not
a part of the input (the hidden constant in the running time of the algorithm is
exponential in k). If the answer is yes, the algorithm of Bodlaender constructs
also an optimal tree decomposition in linear time. Thus for graphs that have
treewidth bounded by a constant, their treewidth and a corresponding optimal
tree decomposition can be constructed in linear time. This is important, since we
need an optimal tree decomposition when designing polynomial time algorithms
for graphs of bounded treewidth.

3 Dynamic programming based on a tree de-

composition

Several problems that are NP-complete on general graphs have polynomial time
algorithms for graphs that have treewidth bounded by a constant. We will look
at one such example, maximum independent set [5]. In this problem, given a
graph G, we want to compute α(G).

As we have seen in Chapter 10 of [19], any non-redundant tree decomposition
of a graph with n vertices has at most n tree nodes. Given any non-redundant
tree decomposition of G with decomposition tree T , a binary decomposition tree
T ′, with the same width as T , can be constructed in polynomial time, such that
T ′ has a polynomial number of tree nodes. Of course this new tree decompo-
sition might be redundant, but the number of tree nodes stay polynomial in
n. Consequently, when we have a graph of treewidth at most k, we can first
compute its treewidth and an optimal tree decomposition in linear time, and
then we can turn this tree decomposition into a binary tree decomposition with
the same width in polynomial time. Therefore, we can always assume that we
have an optimal binary tree decomposition.

Suppose that we have a binary tree decomposition ({Xi | i ∈ I}, T = (I, M))
of input graph G, with root r and width k = tw(G). For each i ∈ I , let
Yi = {v ∈ Xj | j = i or j is a descendant of i}.

Note that if v ∈ Yi, and v ∈ Xj for some node j ∈ I that is not a descendant
of i in T , then v ∈ Xi. Similarly, if v ∈ Yi and v is adjacent to a vertex w ∈ Xj

in G with j not a descendant of i in T , then v ∈ Xi or w ∈ Xi (or both).
As a consequence, when we have an independent set W of G[Yi], and we want
to extend this to an independent set of G, then we only need to examine the
vertices of Xi rather than whole Yi. The only important part is which vertices

4

of Xi belong to W , and we do not need to consider which vertices of Yi − Xi

belong to W . Of the latter, only the number of the vertices in W is important.
For i ∈ I and Z ⊆ Xi, let si(Z) be the maximum size of an independent

set W in G[Yi] under the constraint W ∩ Xi = Z. Let si(Z) = −∞ if no such
independent set exists.

The algorithm to solve the independent set problem on G basically consists
of computing the tables si for each node i ∈ I (each table si has an entry si(Z)
for each subset Z of Xi). This is done in a bottom-up manner in the tree T :
each table si is computed after the tables of the children of node i are computed.
For a leaf node i in T , the following formula can be used to compute all 2|Xi|

values in the table si.

si(Z) =

{

|Z| if Z is an independent set
−∞ if Z is not an independent set

For an internal node i with children t and q, and for each subset Z of Xi,
the entry si(Z) equals to:

max
Z∩Xt=Z′∩Xi and Z∩Xq=Z′′∩Xi

{st(Z
′)+sq(Z

′′)+|Z∩(Xi−Xt−Xq)|−|Z∩Xt∩Xq|}

when Z is an independent set, and si(Z) = −∞ when Z is not an independent
set.

The idea behind the formula for internal nodes is to take the maximum over
all sets Z ′ ⊆ Xt that agree with Z in which vertices of Xi ∩ Xt belong to the
independent set, and similarly for Z ′′ ⊆ Xq . Vertices in Z ∩ (Xi −Xt −Xq) are
not counted yet, so their number should be added, while vertices in Z ∩Xt ∩Xq

are counted twice, hence their number should be subtracted once.
For each node i ∈ I the table si is computed in a bottom-up order until the

table sr is computed. The maximum size of an independent set in G is equal
to maxZ⊆Xr

sr(Z). This describes an algorithm that solves the independent set
problem on G in O(23kn) time, since |Xi| ≤ k+1 for all i ∈ I . It is also possible
to construct the independent set itself using standard dynamic programming
techniques.

In this example each table entry gives information about an equivalence class
of partial solutions. The number of such equivalence classes is bounded by some
constant when the treewidth is bounded by a constant. Tables can be computed
using only the tables of the children nodes. This is thus an example of dynamic
programming, where solutions for subproblems are stored in tables and used
when needed for the solutions of larger subproblems.

4 Partial k-trees

Partial k-trees are equivalent to graphs of treewidth at most k. Thus any poly-
nomial time algorithm for graphs of bounded treewidth is a polynomial time
algorithm for partial k-trees. Partial k-trees are useful as they might be seen as
a tool to gain more insight in graphs of bounded treewidth.

5

Definition 4.1 The class of k-trees is defined recursively as follows:

• The complete graph on k vertices i a k-tree.

• A k-tree G with n+1 vertices (n ≥ k) can be constructed from a k-tree H

with n vertices by adding a vertex adjacent to exactly k vertices, namely
all vertices of a k-clique of H.

The following theorem gives several alternative characterizations of k-trees.

Theorem 4.2 [23] Let G = (V, E) be a graph. The following statements are
equivalent:

• G is a k-tree.

• G is connected, G has a k-clique, but no (k+2)-cliques, and every minimal
separator of G is a k-clique.

• G is connected, |E| = k|V | − 1

2
k(k + 1), and every minimal separator of

G is a k-clique.

• G has a k-clique, but not a (k + 2)-clique, and every minimal separator of
G is a clique, and for all distinct non-adjacent pairs of vertices x, y ∈ V ,
there exist exactly k vertex disjoint paths from x to y.

Definition 4.3 A partial k-tree is a graph that contains all the vertices and a
subset of the edges of a k-tree.

Theorem 4.4 [25] G is a partial k-tree if and only if G has treewidth at most
k.

Proof. ⇒: In this direction, we want to show that every partial k-tree has
treewidth at most k. We will actually show a stronger result, namely that k-
trees have treewidth at most k. Since every partial k-tree is a subgraph of a
k-tree, and the treewidth of a graph is at least as large as the treewidth of any
of its subgraphs, the result in this direction will follow. Let G = (V, E) be a
k-tree with |V | > k+1. There is a vertex v ∈ V such that G[V −{v}] is a k-tree,
and the neighbors of v induce a clique K of size k in G. Using induction, we
can assume that G[V −{v}] has treewidth at most k with a corresponding tree
decomposition ({Xi | i ∈ I}, T = (I, M)). (The base case of induction is when
G[V −{v}] is a complete graph on k vertices; such a graph has clearly treewidth
k − 1.) By Lemma 2.2, there is an i′ ∈ I with Xi′ containing all neighbors of v

in G, with K ⊆ Xi′ . Let J = I ∪ {j}, where j 6∈ I , and let Xj = K ∪ {v}. Now,
({Xi | i ∈ J}, T = (J, M ∪ {i′, j})) is a tree decomposition of G with width k.

⇐: In this direction, we want to show that every graph with treewidth at
most k is a partial k-tree. Let G = (V, E) be a graph with |V | > k + 1, and
let ({Xi | i ∈ I}, T = (I, M)) be a tree decomposition of G of width at most k.
We will prove, with induction on |V |, that there is a k-tree H = (V, E ′) such
that for every i ∈ I , G[Xi] is a subgraph of a clique of H with k + 1 vertices.

6

If |V | = k + 1 then we are done. Otherwise, take a leaf node l ∈ I and let
j ∈ I be the only neighbor of l ∈ T . If Xl ⊆ Xj , then we can remove l from T

and continue with the remaining tree decomposition. Let v be the only vertex
in Xl − Xj (otherwise Xl can be divided into several tree nodes such that the
resulting new leaf node satisfies this requirement). Now it is important to note
the following things: Since v does not appear in any Xi for i 6= l, all neighbors
of v must appear in Xl. Since |Xl| ≤ k + 1, v has at most k neighbors. Also,
because v is the only vertex in Xl−Xj , all neighbors of v must also appear in Xj .
Suppose that the induction hypothesis on G[V − {v}] with tree decomposition
({Xi} | i ∈ I, i 6= l}, T [I − {l}]) results in a k-tree H ′. Note in particular that
G[Xj] is a subgraph of a clique of size at most k+1 in H ′. Remember that v has
at most k neighbors in G and they all belong to Xj . Therefore, the neighbors
of v induce a subgraph of a k-clique C of H ′ in G. Now, we can add v with
edges to all vertices of C to H ′ (which will make a (k + 1)-clique), and get the
desired k-tree H . 2

5 Chordal graphs

In addition to the fact that several NP-complete problems have polynomial time
solutions for chordal graphs, chordal graphs are a large and important class of
graphs with applications in several areas, like the solution of sparse symmetric
systems of linear equations [22], data-base management systems [24], knowledge-
based systems [11], and computer vision [9].

Definition 5.1 A graph is chordal if every cycle of length > 3 has a chord.

A chord is an edge joining two nonconsecutive vertices of a cycle. Equivalent
to Definition 5.1, a chordal graph does not contain an induced cycle of length
> 3. All induced subgraphs of a chordal graph are also chordal (why?).

Theorem 5.2 [10] A graph G is chordal if and only if every minimal separator
of G is a clique.

Proof. ⇒: Let G = (V, E) be chordal and let S be a minimal separator of G.
Let x and y be any two vertices in S. We will show that (x, y) must be an edge
of G. Let a and b be the vertices for which S is a minimal ab-separator, and
let A and B be the connected components of G[V − S] containing respectively
a and b. There must exist a path between x and y through vertices belonging
to A. Let p1 be a shortest such path. Let analogously p2 be a shortest path
between x and y through vertices of B. Paths p1 and p2 joined together make
a cycle of length at least 4. Since G is chordal, this cycle must have a chord.
Since no edges exist between vertices of A and vertices of B, the edge (x, y)
must be present and a chord of the mentioned cycle.

⇐: Let G be a graph where each minimal separator is a clique. Assume
that G is not chordal, and let w, x, y, z1, ..., zk, w be a chordless cycle of length
at least 4 in G (k ≥ 1). Any minimal wy-separator of G must contain x and

7

at least one zi for 1 ≤ i ≤ k. Since all minimal separators are cliques, the edge
(x, zi) must belong to G contradicting that the mentioned cycle is chordless. 2

Corollary 5.3 k-trees are chordal.

Definition 5.4 A vertex is called simplicial if its adjacency set induces a clique.

Lemma 5.5 [10] A chordal graph is either complete or has at least two nonad-
jacent simplicial vertices.

Proof. Let G be a chordal graph which is not complete. The proof is by
induction on the number of vertices n. The base case is when n = 2 and G

has two isolated vertices that are both simplicial. Let n > 2 and assume that
the lemma holds for all such graphs with fewer than n vertices. Let a and b

be two nonadjacent vertices of G and let S be a minimal ab-separator. The
induced subgraph G[V − S] has at least two connected components. Let G[A]
be the connected component containing a and G[B] the connected component
containing b. Now G[A ∪ S] is a chordal graph with fewer than n vertices
and thus is either complete (every vertex of A is simplicial) or has at least two
nonadjacent simplicial vertices one of which must belong to A since S is a clique.
Since A has no neighbors outside of A∪S, all simplicial vertices of G[A∪S] that
belong to A are also simplicial vertices of G. Thus G has at least one simplicial
vertex that belongs to A. With the same argument, G has another simplicial
vertex that belongs to B, and the proof is complete. 2

This lemma provides a necessary condition for recognizing chordal graphs.
Consider the following algorithm [12]. Repeat the following step until no sim-
plicial vertices are left: Find a simplicial vertex and remove it from the graph.
If the graph is chordal, there will be a simplicial vertex at each step, by the
above lemma. Therefore, if the remaining graph is not empty at the end of
this process, then we can conclude that the input graph is not chordal. If no
vertices remain at the end of the process, then the order in which the vertices
are removed is called a perfect elimination order. Chordal graphs are exactly
the class of graphs having perfect elimination orders, as will be proved in the
following theorem. Consequently, if the remaining graph is empty, then we can
conclude that the input graph is chordal.

Theorem 5.6 [12] A graph is chordal if and only if it has a perfect elimination
ordering.

Proof. ⇒: We have already explained, in the discussion above, how a perfect
elimination ordering of a chordal graph can be found. More formally, assume
that G is a chordal graph with n vertices, and assume that the theorem is true
for chordal graphs with fewer vertices. Let v be a simplicial vertex of G. Now,
the graph G[V −{v}] has a perfect elimination ordering β. Let β be an ordering
that orders v first and the rest of the vertices in G in the same order as β.
Clearly, β is a perfect elimination ordering of G.

8

⇐: Let G be a graph and let v1, v2, ..., vn be a perfect elimination ordering of
the vertices of G. Assume that G has a chordless cycle c of length greater than
3. Let vi be the vertex on c whose label i is smaller than any other vertex on c.
Since the given ordering is a perfect elimination ordering, the higher numbered
neighbors of vi induce a clique in G. But then c must have at least one chord,
namely the edge joining the two neighbors of vi in c. 2

Any graph G can be turned into a chordal graph by adding edges, and the
resulting chordal graph is called triangulation of G. The above idea can be
used to compute a triangulation of input graph G: Choose any vertex x to
start with, and add the necessary edges so that the neighbors of x become a
clique. Remove x from the modified graph, and continue this process until all
vertices are processed. In the end, all the added edges of each step are added to
the original graph G and this results in a filled graph, which is a triangulation
of G. This algorithm is popularly referred to as the elimination game. Let
β = v1, v2, ..., vn be the order in which the elimination game processes the
vertices of a given graph G and produces the filled graph G+

β . To see that G+

β is

indeed chordal, observe that β is a perfect elimination order of G+

β . How many

edges G+

β has depends on the ordering β. Triangulations can also be computed
in other ways [17], for example by making every minimal separator into a clique
by adding edges. Nevertheless, computing a triangulation with the minimum
number of edges is equivalent to computing an ordering β that results in a G+

β

with the minimum number of edges. Unfortunately, this is an NP-hard problem
[26].

5.1 Chordal graphs as intersection graphs

Definition 5.7 Let F be a family of nonempty sets. The intersection graph
of F is obtained by representing each set in F by a vertex, and connecting two
vertices by an edge if and only if their corresponding sets intersect.

Definition 5.8 A family {Ti | i ∈ I} of subsets of a set T is said to satisfy the
Helly property if the following condition is satisfied:

J ⊆ I and Ti ∩ Tj 6= ∅ ∀i, j ∈ J ⇒
⋂

j∈J

Tj 6= ∅

Lemma 5.9 A family of subtrees of a tree satisfies the Helly property.

Proof. Let T be a tree and let {Ti | i ∈ I} be a set of subtrees of T . Suppose
Ti ∩ Tj 6= ∅ for all i, j ∈ J . Consider three vertices a, b, and c on T . Let S

be a set of indices s such that Ts contains at least two of these three vertices,
and let P1, P2, and P3 be paths in T connecting a with b, b with c, and a with
c, respectively. Since T is a tree, it follows that P1 ∩ P2 ∩ P3 6= ∅. But each
Ts, s ∈ S, contains one of these paths Pi. Therefore,

⋂

s∈S

Ts ⊇ P1 ∩ P2 ∩ P3 6= ∅. (1)

9

Assume now by induction that

Ti ∩ Tj 6= ∅ ∀i, j ∈ J ⇒
⋂

j∈J

Tj 6= ∅

for all index sets J of size ≤ k. This is certainly true for k = 2. Consider
then a family of subtrees {T1, ..., Tk+1}. By the induction hypothesis there exist
vertices a, b, c on T such that

a ∈
k

⋂

j=1

Tj , b ∈
k+1
⋂

j=2

Tj , c ∈ T1 ∩ Tk+1.

Moreover, every Tj contains at least two of the vertices a, b, c. Hence, by (1),
⋂k+1

j=1
Tj 6= ∅. 2

Theorem 5.10 [14] Let G = (V, E) be an undirected graph, and let K be the
set of maximal cliques of G, with Kv the set of all maximal cliques that contain
vertex v of G. The following statements are equivalent:

(i) G is chordal.
(ii) G is the intersection graph of a family of subtrees of a tree.
(iii) There exists a tree T = (K, E) whose vertex set is the set of maximal

cliques of G such that each of the induced subgraphs T [Kv] is connected.

Proof. (iii) ⇒ (ii) : Assume that there exists a tree T = (K, E) that satisfies
(iii) and let u, v ∈ V . Now (u, v) ∈ E ⇔ u, v ∈ A for some clique A ∈ K ⇔
Ku ∩ Kv 6= ∅ ⇔ T [Ku] ∩ T [Kv] 6= ∅. Thus G is the intersection graph of the
family of subtrees {T [Kv] | v ∈ V } of T .

(ii) ⇒ (i) : Let {Tv | v ∈ V } be a family of subtrees of a tree T such
that (u, v) ∈ E ⇔ Tu ∩ Tv 6= ∅. Suppose that G contains a chordless cy-
cle v0, v1, ..., vk−1, v0 with k > 3 corresponding to the sequence of subtrees
T0, T1, ..., Tk−1, T0 of the tree T ; that is Ti ∩ Tj 6= ∅ ⇔ i and j differ by at most
1 modulo k. All arithmetic will be done in modulo k.

Choose a vertex ai from Ti ∩ Ti+1 for i = 0, ..., k − 1. Let bi be the last
common vertex on the unique simple paths from ai to ai−1 and ai to ai+1.
These paths lie in Ti and Ti+1 respectively, so that bi also lies in Ti ∩ Ti+1. Let
Pi+1 be the simple path connecting bi and bi+1. Clearly Pi ⊆ Ti, so Pi ∩Pj = ∅
for i and j differing by more than 1 mod k. Moreover, Pi ∩ Pi+1 = {bi} for
i = 0, ..., k − 1. Thus,

⋃

i Pi is a simple cycle in T contradicting the definition
of a tree.

(i) ⇒ (iii) : We use induction on the size of G. Assume that the implication
is true for all graphs having fewer vertices than G. If G is complete then T is
a single vertex and the result is trivial. If G is disconnected then by induction
there exists a corresponding tree satisfying (iii) for each connected component
of G. These trees can combined to a connected tree satisfying (iii) by adding
edges between the trees.

10

Let us assume that G is connected and not complete. Choose a simplicial
vertex a of G, and let A = {a} ∪ N(a). Clearly A is a maximal clique of G.
Let U = {u ∈ A | N(u) ⊂ A}, and Y = A − U . The sets U, Y , and V − A

are nonempty since G is connected and not complete. Consider the induced
subgraph G′ = G[V − U], which is chordal and has fewer vertices than G. By
induction, let T ′ be a tree whose vertex set K ′ is the set of maximal cliques of
G′ such that for each vertex v ∈ V −U , the set K ′

v = {X ∈ K ′ | v ∈ X} induced
a connected subtree of T ′.

Now, either K = K ′+{A}−{Y } or K = K ′+{A} depending on whether or
not Y is a maximal clique of G′. Let B be any maximal clique of G′ containing
Y . 1. If B = Y , then we obtain T from T ′ by renaming B → A. 2. If B 6= Y ,
then we obtain T from T ′ by connecting a new vertex A to B. In either case (1
or 2), Ku = {A} for all u ∈ U and Kv = K ′

v for all v ∈ V − A, each of which
induces a subtree of T . We need only worry about the sets {Ky | y ∈ Y }. In
case 1, Ky = K ′

y + {A} − {B}, which induces the same subtree as K ′
y since

only names were changed. In case 2, Ky = K ′
y + {A}, which clearly induces a

subtree.
Thus we have constructed the required tree T and the proof of the theorem

is complete. 2

Example 5.11 Let G be the graph shown in Figure 2 a). Let T1 be the tree
given in b) and T2 the tree shown in c) of the same figure. We will show that
both trees have families of subtrees which G is an intersection graph of.

Let F1 be the family of subtrees of T1 induced by the following subsets:
{1}, {1, 2, 3}, {3}, {3, 2, 4}, {4}, {1, 2, 4}. Then G is the intersection graph of F1,
where vertices a, b, c, ..., f of G correspond to the subsets in the given order.

Let F2 be the family of subtrees of T2 induced by the following subsets: {t,u},
{u,v,w}, {w,x}, {w,v,y},{y,z}, {y,v,u}. Again, G is the intersection graph of
F2, where the vertices of G correspond to the subsets in the presented order.

5.2 Clique trees

A tree with the property described in Theorem 5.10 (iii) is in fact called a
clique tree of G. Recall the definition of a tree decomposition. If G is a chordal
graph, then any clique tree of G is also a tree decomposition of G. However,
the opposite is not necessarily true. The proof of Theorem 5.10 described how
to construct a clique tree. In this section, we will concentrate on constructing
the clique tree in practice. We will first see how to find all the maximal cliques
of a chordal graph efficiently.

The problem of finding all the maximal cliques of a general graph is NP-hard.
However, for chordal graphs, the number of maximal cliques is at most |V |, and
these can be found in linear time by a modification of Maximum Cardinality
Search (MCS) [24]. The original MCS algorithm proceeds as follows: Start
with an arbitrary vertex v and give v the label |V |. Next, select a vertex w

with highest number of already labeled neighbors, and give w the label |V | − 1.

11

3 4

2

1

c)

c e

d

f

a

b

a) b)

t

u

v

w

x

y

z

Figure 2: The graphs of Example 5.11.

Continue this process until all the vertices are labeled. The resulting labeling
is actually a perfect elimination ordering of G when G is a chordal graph [24].
The MCS algorithm can be implemented to run in O(n + m) time for a graph
with n vertices and m edges.

The modified MCS algorithm finds all the maximal cliques of a chordal graph
[4]. It proceeds as follows: Start with an arbitrary vertex v, give v the label
|V |, and start a new maximal clique that contains v. Let k = 0. At each next
step, select a vertex w with highest number of already labeled neighbors and let
this number be k′; give w the label |V | − 1. If k′ > k then this means that we
are still within the same maximal clique as in the previous step; thus place w

in the current clique. Otherwise, start a new clique which w and all its already
numbered neighbors belong to. In either case, set k′ = k at the end of each step.
With a few additions to this algorithm, it can actually construct the clique tree,
too.

A general graph can have many minimal separators. However, for connected
chordal graphs the number of minimal separators is at most |V |− 1. The clique
tree is a useful structure to express the information on maximal cliques and
minimal separators of a chordal graph.

Definition 5.12 The clique graph of a chordal graph G is a graph G whose
vertices are the cliques of G and two vertices are connected by an edge if their
corresponding cliques intersect in G.

Let us define an edge (Ci, Cj) in a clique graph to be equivalent to the
set of vertices in Ci ∩ Cj for the cliques Ci and Cj in G. It is important
to note that both the vertices and the edges represent cliques that belong to
G. The vertices represent the maximal cliques, where the edges represent the
intersection between maximal cliques. For the next theorem, let the weight of
an edge of G be the number of vertices in the intersection it represents.

12

Theorem 5.13 [3] A clique tree of a chordal graph G is a maximum weight
spanning tree of the clique graph of G.

Example 5.14 Let G be the graph given in Figure 3 a). The clique graph G of
G is given in Figure 3 b), and a clique tree, which for this example is unique,
is given in Figure 3 c). The numbers on the edges of the clique graph are the
weights of the edges.

c)

c e

d

f

a

b

a) b)

b c d d e f

b f d

a b f a b f

b f d

d e fb c d

2 2

2
1 1

1

Figure 3: The graphs of Example 5.14.

Note that the clique graph of G is unique, whereas G may have several
different clique trees.

Theorem 5.15 [18] Given a chordal graph G and any clique tree T of G, a set
of vertices S is a minimal separator of G if and only if S = Ci ∩Cj for an edge
(Ci, Cj) in T .

Thus a clique tree is a convenient tool to represent all the maximal cliques
and the minimal separators of a chordal graph. It follows that the number of
minimal separators of a chordal graph G = (V, E) is at most |V | − 1.

The following connections can be proved using the previous lemmas and
theorems.

Lemma 5.16 Given any graph G and a tree decomposition ({Xi | i ∈ I} , T =
(I, M)) of G, let H be the graph obtained by adding edges to G so that each Xi

becomes a clique. Then H is chordal.

Lemma 5.17 Let G be any graph, and let H be a triangulation of G with the
smallest possible treewidth. Then tw(G) = tw(H).

Exercise 5.18 Prove the two lemmas above.

13

From the two lemmas above, we can readily conclude that any clique tree of
a chordal graph G is a tree decomposition of G of minimum width. Thus for a
chordal graph G, the treewidth is one less than the size of the largest clique in G,
and hence can be found in linear time. Note also that, as a consequence, when
G is not chordal, finding a triangulation of minimum treewidth is equivalent to
finding a triangulation of minimum largest clique size (i.e., the largest clique is
as small as possible). Finding such a triangulation is an NP-hard problem.

6 Interval graphs

In the previous sections we mentioned that chordal graphs are intersection
graphs of subtrees of a tree. Interval graphs are an important subclass of chordal
graphs, and they are the intersection graphs of subpaths of a path. This will be
clear from the following definition:

Definition 6.1 A graph G = (V, E) is an interval graph if there is a mapping
I of the vertices of G into sets of consecutive integers such that for each pair of
vertices v, w ∈ V the following is true: (v, w) ∈ E ⇔ I(v) ∩ I(w) 6= ∅.

Theorem 6.2 [15] G is an interval graph if and only if G has a clique tree that
is a simple path.

Example 6.3 Let G be the graph shown in Figure 4 a). A clique tree T of G is
given in b). To see that G is an interval graph, we can use the following mapping
I: I(a) = {1}, I(b) = {1, 2, 3}, I(c) = {3, 4}, I(d) = {4}, I(e) = {2, 3, 4},
I(f) = {1, 2}.

c e

d

f

a

b

a) b)

1

2
3

4

2

3

4

1

Figure 4: The graphs of Example 6.3.

Observe that the given clique tree is also a tree decomposition and a path
decomposition of G. Since interval graphs have clique trees that are paths,

14

these will also correspond to path decompositions. Because of the connection
between tree decompositions and clique trees for chordal graphs, we can see that
pathwidth equals to treewidth for interval graphs.

For a general graph G, the pathwidth is one less than the minimum size of
the largest clique in an interval completion of G. Finding an interval completion
where the size of the largest clique is as small as possible is an NP-hard problem.
Even for chordal graphs it is an open question whether or not such an interval
completion can be found in polynomial time.

Interval graphs have at least as many applications as chordal graphs. Many
scheduling problems can be modeled as interval graphs, since the intervals of-
ten represent time intervals. Here is an example from [16]: Let c1, c2, ..., cn be
chemical compounds that must be refrigerated under closely monitored condi-
tions. If compound ci must be kept at a constant temperature between ti and
t′i degrees, how many refrigerators are needed to store all the compounds? To
model this problem, let G be an interval graph with vertices c1, c2, ..., cn, and
connect two vertices whenever the temperature intervals of their corresponding
compounds intersect. By the Helly property, for each clique K in G, there will
be at least one temperature t such that t is within the interval of each vertex
of K. A refrigerator that is set at temperature t will thus be able to store all
compounds whose vertices belong to K. Thus the number of refrigerators can
be minimized by finding a minimum clique cover of G.

7 NP-hard problems that are solvable in poly-

nomial time for chordal and interval graphs

In Section 5, we already saw how to compute ω(G) in linear time when G is a
chordal graph. Actually, when G is chordal, also χ(G), α(G), and k(G) can be
computed in linear time.

Lemma 7.1 If G is a chordal graph, then ω(G) = χ(G) and α(G) = k(G).

The above lemma can be proved using a clique tree of G. Let us, for example,
consider a maximum independent set of G. Let T be a clique tree of G, and
let Z be a bag which is a leaf in T . Observe that Z must contain at least one
simplicial vertex v, and that G has a maximum independent set S that contains
v. The idea behind this is very similar to the idea of maximum independent
sets for trees. At most one vertex of Z can belong to S. If any other vertex of Z

belongs to S, we can swap this vertex with v. If no other vertex of Z belongs to
S then v can definitely be placed in S, which contradicts S being of maximum
size. So, we can place a simplicial vertex in S, delete the whole neighborhood
of this vertex from G, and continue in this manner. This process will also give
us a minimum clique cover of G. For the chromatic number, the algorithm for
listing all maximal cliques of G can be modified to give χ(G).

Exercise 7.2 Prove Lemma 7.1.

15

In fact, chordal graphs belong to a larger class of graphs called perfect graphs.

Definition 7.3 A graph G = (V, E) is perfect if it satisfies the following prop-
erties:

1. ω(G[X]) = χ(G[X]) for all X ⊆ V

2. α(G[X]) = k(G[X]) for all X ⊆ V .

Obviously, any graph G satisfies 1. if and only if its complement graph Ḡ

satisfies 2. In fact, it can be shown that these two requirements are equivalent.
Thus a graph is perfect if and only if its complement is perfect.

Theorem 7.4 [21] (The perfect graph theorem) For a graph G = (V, E), the
following are equivalent:

• ω(G[X]) = χ(G[X]) for all X ⊆ V

• α(G[X]) = k(G[X]) for all X ⊆ V .

• ω(G[X]) · α(G[X]) ≥ |X | for all X ⊆ V .

Theorem 7.5 [16] Chordal graphs are perfect.

In 1960 Claude Berge conjectured that a graph is perfect if and only if neither
the graph nor its complement contains a chordless cycle of odd length at least 5.
Recently, this conjecture was proved by Paul Seymour and one of his students,
Maria Chudnovsky, based upon their previous work with Neil Robertson and
Robin Thomas. The proof is 150 pages long.

Theorem 7.6 [8] (The strong perfect graph theorem) A graph G is perfect if
and only if neither G nor Ḡ contains a chordless cycle of odd length ≥ 5.

We have seen examples of NP-hard problems that become solvable in linear
time for chordal, and thus, interval graphs. Since interval graphs are a more
restricted class than chordal graphs, there are naturally problems for which
polynomial time algorithms are developed for interval graphs, but not for chordal
graphs. Two such examples are vertex ranking and bandwidth.

The vertex ranking (also called minimum elimination tree height) problem
asks to find a labeling of the vertices of the input graph G with a minimum
number of different labels in such a way that every path between a pair of
vertices with the same label should contain at least one vertex with a higher
label. This problem is solvable in polynomial time for interval graphs [2], but it
is not known whether a polynomial time algorithm exists for chordal graphs.

The bandwidth problem asks to find an ordering of the vertices of G from
1 to n, such that the largest difference between the endpoints of an edge is
minimized. This problem is also solvable in polynomial time for interval graphs
[20], whereas it is NP-hard for chordal graphs and even for trees with maximum
degree 3 [13].

16

References

[1] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding
embeddings in a k-tree. SIAM J. Alg. Disc. Meth., 8:277–284, 1987.

[2] B. Aspvall and P. Heggernes. Finding minimum height elimination trees
for interval graphs in polynomial time. BIT, 34:484–509, 1994.

[3] P. A. Bernstein and N. Goodman. Power of natural semijoins. SIAM J.
Comput., 10(4):751–771, 1981.

[4] J. R. S. Blair and B. W. Peyton. An introduction to chordal graphs and
clique trees. In J. A. George, J. R. Gilbert, and J. W. H. Liu, editors, Sparse
Matrix Computations: Graph Theory Issues and Algorithms, pages 1–30.
Springer Verlag, 1993. IMA Volumes in Mathematics and its Applications,
Vol. 56.

[5] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica,
11:1–21, 1993.

[6] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions
of small treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.

[7] H. L. Bodlaender and R. H. Möhring. The pathwidth and treewidth of
cographs. SIAM J. Disc. Meth., 6:238–255, 1993.

[8] M. Chudnovsky, N. Roberston, P. Seymour, and R. Thomas. The strong
perfect graph theorem. Annals of Mathematics. To appear.

[9] F. R. K. Chung and D. Mumford. Chordal completions of planar graphs.
J. Comb. Theory, 31:96–106, 1994.

[10] G.A. Dirac. On rigid circuit graphs. Anh. Math. Sem. Univ. Hamburg,
25:71–76, 1961.

[11] R. E. England, J. R. S. Blair, and M. G. Thomason. Independent com-
putations in a probablistic knowledge-based system. Technical Report CS-
90-128, Department of Computer Science, The University of Tennessee,
Knoxville, Tennessee, 1991.

[12] D.R. Fulkerson and O.A. Gross. Incidence matrices and interval graphs.
Pacific Journal of Math., 15:835–855, 1965.

[13] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H.
Freeman and Co., 1978.

[14] F. Gavril. The intersection graphs of subtrees in trees are exactly the
chordal graphs. J. Combin. Theory Ser. B, 16:47–56, 1974.

[15] P. C. Gilmore and A. J. Hoffman. A characterization of comparability
graphs and of interval graphs. Canadian Journal of Mathematics, 16:539–
548, 1964.

17

[16] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, 1980.

[17] P. Heggernes. Minimal triangulations of graphs: A survey. Discrete Math-
ematics. To appear.

[18] C. W. Ho and R. C. T. Lee. Counting clique trees and computing perfect
elimination schemes in parallel. Information Processing Letters, 31:61–68,
1989.

[19] J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesley, 2005.

[20] D. J. Kleitman and R. V. Vohra. Computing the bandwidth of interval
graphs. SIAM J. Disc. Math., 3(3):373–375, 1990.

[21] L. Lovasz. A characterization of perfect graphs. J. Comb. Theory, 13:95–98,
1972.

[22] D. J. Rose. A graph-theoretic study of the numerical solution of sparse
positive definite systems of linear equations. In R. C. Read, editor, Graph
Theory and Computing, pages 183–217. Academic Press, New York, 1972.

[23] D. J. Rose. On simple characterizations of k-trees. Discrete Math., 7:317–
322, 1974.

[24] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs. SIAM J. Comput., 13:566–579, 1984.

[25] J. van Leeuwen. Graph algorithms. In Handbook of Theoretical Computer
Science, A: Algorithms and Complexity Theory. North Holland, 1990.

[26] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J.
Alg. Disc. Meth., 2:77–79, 1981.

18

