Available online at www.sciencedirect.com

H H Electronic Notes in
ScienceDirect DISCRETE
£l MATHEMATICS
ELSEVIER Electronic Notes in Discrete Mathematics 31 (2008) 143—149

www.elsevier.com/locate/endm

Planarity Algorithms via PQ-Trees
(Extended Abstract)

Bernhard Haeupler!

Department of Computer Science , Princeton University, Princeton NJ

Robert E. Tarjan

Department of Computer Science , Princeton University, Princeton NJ
HP Laboratories, Palo Alto CA

In Memory of Shimon Even

Abstract

We give an abstract vertex-addition method for planarity testing that encompasses
the algorithms of Lempel, Even, and Cederbaum, Shih and Hsu, and Boyer and
Myrvold. The main difference between the former and the latter two is the order of
vertex addition; the latter two differ only in implementation details. For the general
method we give a direct proof of correctness that avoids the use of Kuratowski’s
theorem. We give a linear-time implementation that simplifies and unifies the Shih-
Hsu and Boyer-Myrvold methods. Our algorithm extends to generate embeddings
uniformly at random, to count embeddings, to represent all embeddings, and to
produce a Kuratowski subgraph of a non-planar graph. Our algorithm keeps track of
all possible embeddings by reinterpreting Booth and Lueker’s PQ-tree data structure
to represent circular instead of linear orders. This interpretation of PQ-trees gives
the PC-trees of Shih and Hsu and leads to a simpler, more-symmetric form of PQ-
tree reduction.

1571-0653/$ — see front matter © 2008 Published by Elsevier B.V.
doi:10.1016/j.endm.2008.06.029


http://www.elsevier.com/locate/endm

144 B. Haeupler, R.E. Tarjan / Electronic Notes in Discrete Mathematics 31 (2008) 143—149
1 Introduction

The problem of testing a graph for planarity has a long and rich history;
Hopcroft and Tarjan [7] gave the first linear-time algorithm, an implementa-
tion of the path-addition approach of Auslander and Parter. Earlier, Lempel,
Even, and Cederbaum [9] gave a different planarity test that builds an embed-
ding by adding vertices in a precomputed order, called an st-order. Booth and
Lueker [1], acting on a suggestion of Tarjan, obtained a linear-time implemen-
tation of the Lempel-Even-Cederbaum algorithm by combining a linear-time
st-ordering method [6] with their efficient PQ-tree reduction algorithm. They
had independently developed the PQ-tree as a data structure to solve several
ordering problems on matrices and graphs.

More recently, Shih and Hsu [10] and later but apparently independently
Boyer and Myrvold [3,4] developed closely-related planarity tests and embed-
ding algorithms that add vertices in postorder with respect to a depth-first
spanning tree. Shih and Hsu’s first paper [10] did not address important im-
plementation issues, and subsequent papers [11,8] gave incorrect algorithms;
Boyer et al. [2] finally gave a correct version of the Shih-Hsu algorithm.

2 Planarity Testing via Vertex Addition

Consider testing the planarity of a connected graph by building a planar em-
bedding, adding a vertex at a time. At any step, each edge will be of one
of three types: embedded, meaning both ends are embedded, half-embedded,
meaning exactly one end is embedded, or unembedded, meaning neither end is
embedded. Addition of a vertex converts some edges from half-embedded to
embedded, and some other edges from unembedded to half-embedded. The
half-embedded edges form the boundary between the embedded vertices and
the unembedded vertices.

We would like to avoid backtracking. This requires some way of main-
taining all possible embeddings of the half-embedded edges, as constrained by
the embedded ones. In general the half-embedded edges can lie in many dif-
ferent faces of the partial embedding; keeping track of the possibilities seems
difficult. As a first simplification, we require that the unembedded vertices
induce a connected subgraph; that is, the vertex order is leaf-to-root on some
spanning tree. Then, if the partial embedding can be extended to a complete
embedding, the half-embedded edges lie in a common face, which we can take

L corresponding author: Bernhard Haeupler, haeupler@cs.princeton.edu

2 The second author thanks Janet S. Yoon for contributions to an early phase of this work.



B. Haeupler, R.E. Tarjan / Electronic Notes in Discrete Mathematics 31 (2008) 143—149 145

to be the outside face. The partial embedding in general consists of one or
more connected components. These components partition the half-embedded
edges. The half-embedded edges incident to each component are circularly
ordered around the outside of the component. The set of all possible partial
embeddings corresponds to a set of circular orders of half-embedded edges for
each component.

Now consider the effect of adding a vertex. The half-embedded edges that
become embedded as a result of this vertex addition are partitioned among the
connected components existing before the vertex addition. These components
are combined into a single component by the vertex addition. The effect of
the vertex addition on the possible circular orders of the half-embedded edges
is two-fold:

1. Reduce: For each connected component existing before the vertex addition,
retain only those circular orders in which all the half-embedded edges that
become embedded occur consecutively; if for some component there are no
such orders, the graph is non-planar.

2. Combine: Form the set of circular orders of the new half-embedded edges
as follows. For each connected component before the vertex addition, choose
one of the circular orders remaining after reduction and delete from it all
half-embedded edges that become embedded, to give a linear order. Catenate
these linear orders, one from each connected component, with the new half-
embedded edges incident to the newly added vertex (each of which forms a
singleton linear order) to form a circular order. Doing this in all possible
ways gives the set of circular orders for the component formed by the vertex
addition.

We can prove the correctness of this abstract method by using an appropri-
ate combinatorial corollary of the Jordan curve theorem. This is simpler than
the alternative (used by Shih and Hsu and Boyer and Myrvold) of using Ku-
ratowski’s theorem (if the algorithm halts and declares the graph non-planar,
then it contains a Kuratowski subgraph), which requires a tedious case anal-
ysis.

The PQ-tree data structure described in the next section allows efficient
representation, reduction, and combination of sets of circular orders. This
leads directly to linear-time implementation of the abstract method. But
using PQ-trees further restricts the possible vertex orders of the planarity
test, because PQ-trees can be combined efficiently only by attaching the root
of one to an arbitrary node of the other. Restricting the method in this way
leads to two natural vertex orders: st-order, the Lempel et al. strategy, or
leaf-to-root order of a depth-first spanning tree, the Shih and Hsu and Boyer



146 B. Haeupler, R.E. Tarjan / Electronic Notes in Discrete Mathematics 31 (2008) 143—149

and Myrvold strategy.

3 Circular Orders via PQ-trees

The PQ-trees of Booth and Lueker represent sets of permutations of a set, as
follows. An ordered tree is a tree with a root, such that the children of every
node are totally ordered. The leaf order of an ordered tree is the order in
which the leaves are visited by a preorder traversal of the tree that visits the
children of each node in the given total order. A PQ-tree is an ordered tree
each of whose internal nodes is either a P-node or a Q-node. Two PQ-trees
are equivalent if they are isomorphic up to arbitrary reordering of the children
of P-nodes and reversal of the order of the children of Q-nodes. A PQ-tree
represents the set of permutations of its leaves that are the leaf order of some
equivalent tree. Given a PQ-tree T" and a subset S of its leaves, a reduction
of T on S modifies T' to form a tree 7" that represents the subset of the
permutations represented by T such that the elements of S occur consecutively
(but in arbitrary order). 7' is the null tree if there are no such permutations.
Booth and Lueker gave an on-line algorithm for reduction that takes O(n+m)
time for a sequence of reductions of an n-node tree on sets of total size m.
We give a simple way to reinterpret PQ-trees to represent sets of circular
orders instead of linear orders: Given a PQ-tree, we add a new root, whose only
child is the original root. We call the new root the special leaf. (It is a leaf if
we unroot the tree.) The leaf order of the augmented tree is the circular order
of its leaves including the special leaf that begins with the special leaf, lists the
other leaves in leaf order, and returns to the special leaf. The augmented tree
represents the set of circular leaf orders of its equivalent trees, with equivalence
defined as above. There is a one-one correspondence between leaf orders of
trees equivalent to the original tree and leaf orders of trees equivalent to the
augmented tree; all the properties of PQ-trees apply to the new interpretation.
We also get a more symmetric view of reduction: given a subset S of the set
of leaves, a reduction of the augmented tree modifies it to produce a new tree
that represents the subset of circular orders in which all the elements of S
occur consecutively. If S does not contain the special leaf, this corresponds
to reduction of the original tree on S. If S does contain the special leaf,
this corresponds to reduction of the original tree on the set of leaves that are
not in S, which we call complement reduction. The Booth-Lueker reduction
algorithm extends to the new interpretation of PQ-trees, and in particular
gives an efficient implementation of complement reduction, for which some
slight simplification is possible. A reduction can be done purely bottom-up.



B. Haeupler, R.E. Tarjan / Electronic Notes in Discrete Mathematics 31 (2008) 143—149 147

A global view of reduction given in the Master’s thesis of Young [12] avoids
the template-based description of Booth and Lueker, which has many cases.

Augmented PQ-trees representing sets of circular orders correspond to the
unrooted PC-trees of Shih and Hsu [10,11], if we ignore the root. A root seems
to be required for efficient implementation of reduction, however. We view the
implementation of PC-trees by Hsu and McConnell [8] as just a reinvention of
PQ-trees and PQ-tree reduction, with the more symmetric view of reduction
given by considering circular orders instead of linear orders and the global
view of reduction given previously by Young.

The Shih-Hsu and Boyer-Myrvold planarity-testing methods in effect use
complement reduction. Boyer and Myrvold describe their reduction process
as operating on a representation of the partially embedded graph rather than
on a separate data structure, but the computation is still an implementation
of complement reduction: their pointer structure can be interpreted as repre-
senting a PQ-tree. Their reduction method walks down the tree and reduces
it node-by-node, which seems to limit the method to handling complement re-
duction, and requires extra pointers, to support both bottom-up and top-down
walks on the tree.

4 A Simple Linear-Time Implementation

Our linear-time implementation of the abstract planarity testing method does
a depth-first search on every connected component of the input graph, testing
planarity on the fly using PQ-trees. For each ancestor v in the depth-first
spanning tree of the current vertex of the search it maintains a PQ-tree and
a set of PQ-tree leaves S(v):

e When advancing along a tree arc (v, w), construct a PQ-tree for w consisting
of a root that is the special leaf and represents (v, w), with a single child that
is a P-node and represents w. Initialize S(v) to contain just the special leaf.

e When advancing along a back arc (v, w), add a leaf child representing (v, w)
to the P-node for v, and add this leaf to S(w).

e When retreating along a tree arc (v, w), reduce the PQ-tree for w to represent
the circular orders such that the leaves in S(v) are consecutive. If this produces
the null tree, stop and declare the graph non-planar. Otherwise, delete from
the reduced tree all the leaves in S(v), simplify the tree by deleting P-nodes
and Q-nodes with no children and repeating until all P-nodes and Q-nodes
have children, and do the appropriate part of the combining step by making
the root of the simplified tree a child of the P-node for v, unless v is the start
vertex of the depth-first search.



148 B. Haeupler, R.E. Tarjan / Electronic Notes in Discrete Mathematics 31 (2008) 143—149

This simple algorithm works for arbitrary graphs possibly having multiple
edges, loops and more than one (bi-)connected component. Its proof of cor-
rectness follows easily from the correctness of the abstract planarity method.
We can avoid storing the leaves and roots of the PQ-trees explicitly, at the cost
of making the implementation of PQ-tree reduction a little more complicated.

5 Remarks

Our algorithm extends in various ways. If instead of deleting nodes during re-
duction and simplification, we remove and save the subtrees containing these
nodes, we get a linear-time algorithm that produces a representation of all
possible embeddings. We can also generate a single embedding, either arbi-
trary or uniformly randomly chosen, or count embeddings. An alternative way
to view the vertex-embedding process is as the time reversal of a process of
contracting a graph to a single vertex by contracting edges, which might offer
some conceptual advantages.

Our interpretation of PQ-trees as representing sets of either linear or circu-
lar orders allows us to efficiently solve ordering problems with mixed circular
and linear constraints.

We see at least two possible directions for further research, one concerning
planarity-testing, the other concerning PQ-trees. Is there a way to unify and
simplify path-addition planarity tests such as those of Hopcroft and Tarjan
and Fraysseix, Mendez and Rosenstiehl [5]? Is there a way to obtain the path-
addition and vertex-addition methods as different versions of a more-general
approach? Is there an efficient way to re-root a PQ-tree and so allow more
general ways to combine such trees efficiently? This would allow a more-
general strategy for planarity-testing to run in linear time.

References

[1] Booth, K. and G. Lueker, Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms, Journal of Computer
and System Sciences 13 (1976), pp. 335-379.

[2] Boyer, J., C. Fernandas, A. Noma and J. de Pina, Lempel, Even, and Cederbaum
Planarity Method, Lecture Notes in Computer Science 3059 (2004), pp. 129-
144.

[3] Boyer, J. and W. Myrvold, Stop minding your P’s and Q’s: a simplified O
(n) planar embedding algorithm, Proceedings of the 10th annual ACM-STAM



B. Haeupler, R.E. Tarjan / Electronic Notes in Discrete Mathematics 31 (2008) 143—149 149

symposium on Discrete algorithms (1999), pp. 140-146.

[4] Boyer, J. and W. Myrvold, On the Cutting Edge: Simplified O (n) Planarity
by Edge Addition, Journal of Graph Algorithms and Applications 8 (2004),
pp. 241-273.

[5] de Fraysseix, H., P. de Mendez and P. Rosenstiehl, Trémaux trees and planarity,
International Journal of Foundations of Computer Science 17 (2006), p. 1017.

[6] Even, S. and R. Tarjan, Computing an st-numbering, Theoretical Computer
Science 2 (1976), pp. 339-344.

[7] Hopcroft, J. and R. Tarjan, Efficient planarity testing, Journal of the ACM 21
(1974), pp. 549-568.

[8] Hsu, W. and R. McConnell, PC trees and circular-ones arrangements,
Theoretical Computer Science 296 (2003), pp. 99-116.

[9] Lempel, A., S. Even and I. Cederbaum, An algorithm for planarity testing of
graphs, in: Rosentiehl, P.; editor, Theory of Graphs: International Symposium
(1967), pp. 215-232.

[10] Shih, W. and W. Hsu, A simple test for planar graphs, Proceedings of the
International Workshop on Discrete Mathematics and Algorithms (1993),
pp. 110-122.

[11] Shih, W. and W. Hsu, A new planarity test, Theoretical Computer Science 223
(1999), pp. 179-191.

[12] Young, S., “Implementation of PQ-Tree Algorithms,” Master’s thesis,
University of Washington (1977).



