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1. Introduction

Informally, the maximum st-flow problem is as follows: given a graph with positive
arc-capacities, and given a source vertex s and a sink vertex t , the goal is to find a
way to route the maximum amount of a single commodity along s-to-t paths in such
a way that the amount of commodity passing through an arc is at most the capacity
of the arc. In the minimum st-cut problem, the goal is to find a minimum-capacity
set of arcs such that each s-to-t path includes at least one arc in the set. Formal
definitions will be given in Section 4.5.

The history of maximum-flow and minimum-cut problems [Schrijver 2002] is
tied closely to planar graphs. During the height of the cold war, the United States
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9:2 G. BORRADAILE AND P. KLEIN

spent considerable effort analyzing the Soviet rail network: “The success of in-
terdiction depends largely on [the] interdiction-program efforts on the enemy’s
capability to move men and supplies.” [Harris and Ross 1955] Modeling the Soviet
rail network as a planar graph (by taking the dual of the planar graph composed
of boundaries of administrative districts with edges representing transportation ca-
pacity between these districts), Harris and Ross [1955], as members of the RAND
corporation, studied the problem of determining the best way to interdict the Soviet
rail network. That is, they found the minimum number of rail lines that must be cut in
order to stop movement of supplies and men between tactically important locations:
they found a minimum cut in the graph. Ford and Fulkerson [1956] picked up on this
line of research, leading to their landmark paper proving the max-flow, min-cut the-
orem and formulating the augmenting-path algorithm [Ford and Fulkerson 1956].

THEOREM 1.1 (MAX-FLOW MIN-CUT). The value of the maximum st-flow is
equal to the capacity of the minimum st-cut.

The Max-Flow Min-Cut Theorem was discovered independently by Ford and
Fulkerson [1956], Kotzig [1956], and Elias et al. [1956].

2. Maximum Flow Algorithms

In the same paper that proved the Max-Flow Min-Cut Theorem, Ford and Fulkerson
[1956] suggested an algorithm (actually, a paradigm) for finding a maximum flow
called the augmenting path algorithm. The algorithm is iterative: find a path P from
the source to the sink and push flow on this path. The residual capacity of an arc is
the capacity less the flow on the arc. That is, the value of the flow for each dart in
P is increased by an amount � that does not exceed the residual capacity of any
arc on P . A formal description will be given in Section 4.5.

Dinitz [1970] and Edmonds and Karp [1972] showed that if the shortest (with
respect to number of arcs) augmenting path is chosen then there are at most nm
iterations. Dinitz gave an O(n2m) analysis for this using the notion of a block-
ing flow. Goldberg and Rao [1998] gave a clever implementation resulting in an
O(min(n2/3, m1/2)m log n2

m log U )-time algorithm (where U is the largest integral
capacity) by using a different, adaptive notion of distance that is related to the resid-
ual capacities. This is the fastest known algorithm for maximum flow in a general
graph and results in an O(n3/2 log n log U )-time algorithm for planar graphs. For a
more detailed survey see Goldberg [1998].

We briefly mention another type of maximum flow algorithm: the push-relabel
algorithm, alternatively known as the preflow-push algorithm [Goldberg and Tarjan
1988]. Rather than pushing flow along paths, flow is pushed on individual arcs. This
algorithm does not maintain a feasible flow during its execution; it augments arcs
in order to bring the flow closer to feasibility.

3. History of Planar Maximum Flow

Ford and Fulkerson [1956] gave a particular augmenting-path algorithm for the
case of finding the maximum st-flow in a planar graph in which the source and
the sink are on the boundary of a common face, the infinite face. Such a graph
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is termed st-planar. With the graph viewed with the source embedded on the left
and the sink on the right, the algorithm iteratively augments (in fact, saturates) the
uppermost residual path. This algorithm has the property that the flow on an arc is
never decreased. Since each augmentation makes at least one arc non-residual, the
algorithm requires at most m augmentations, where m is the number of arcs. Itai
and Shiloach [1979] showed that each iteration of the uppermost path algorithm
could be implemented in O(log n) time, where n is the number of vertices, using a
priority queue of the residual darts. Consequently, the algorithm can be carried out
in O(n log n) time (using the fact that a simple planar graph with n vertices has at
most 3n arcs).

Hassin [1981] demonstrated that a maximum st-flow in an st-planar graph G
could be derived from shortest-path distances in the planar dual G∗ (see Section 4.3)
of G where capacities in G are interpreted as lengths in G∗. With this insight, it can
be seen that the uppermost-path algorithm can be interpreted in the planar dual as
Dijkstra’s algorithm. The fact that the uppermost path algorithm can be implemented
to run in O(n log n) time corresponds to the observation, due to Johnson [1977],
that Dijkstra’s algorithm could be implemented to run in O(n log n) time by using
a priority queue. Frederickson [1987] showed later that shortest-path distances in a
planar graph with nonnegative lengths could be computed in O(n

√
log n) time, and

Henzinger et al. [1997] showed subsequently that the same problem could be solved
in O(n) time. Combining this with Hassin’s result yields an O(n)-time algorithm
for maximum st-flow in st-planar graphs.

There remained, however, the more general and more natural problem of st-flow
in a planar graph in which s and t need not be on the boundary of a common face.
Reif [1983] showed that the minimum st-cut (and so, via the Max-Flow Min-Cut
Theorem, also the value of the max st-flow) could be found in O(n log2 n) time for
the special case of undirected planar graphs. This algorithm uses the observation
that the edges crossing a min st-cut form a minimum length cycle C that separates
s from t in the planar dual graph (where s and t are faces). The algorithm finds a
shortest path P in the planar dual from a vertex incident to s to a vertex incident to
t . Reif proves that C only crosses P once. A divide-and-conquer algorithm is given
in which a minimum separating cycle is found that contains the middle edge e of
P: this cycle corresponds to a min cut in the primal separating the endpoints of e.
This results in an O(n log2 n)-time algorithm, using the aforementioned O(n log n)
st-planar flow algorithm of Itai and Shiloach. Hassin and Johnson [1985] drew on
Reif’s technique to show that the flow assignment could also be found within the
same time bound, again for undirected planar graphs. The shortest-path algorithms
of Henzinger et al. [1997] or Klein [2005] can be used to re-implement these
algorithms in O(n log n) time.

Still, the more general problem of st-flow in a planar directed graph remained
open. This problem is more general since the problem of maximum st-flow in
an undirected graph can be converted to a directed problem by introducing two
oppositely oriented arcs of equal capacity for each edge. Johnson and Venkatesan
[1982] gave a divide-and-conquer algorithm that finds a flow of input value v in a
directed planar graph in O(n1.5 log n) time. The algorithm divides the graph using
an O(

√
n)-balanced separator, and recursively finds a flow in each side of value v .

The flow on the O(
√

n)-boundary edges of each subproblem might not be feasible;
each boundary edge is made feasible via an st-planar flow computation.

Journal of the ACM, Vol. 56, No. 2, Article 9, Publication date: April 2009.



9:4 G. BORRADAILE AND P. KLEIN

TABLE I. PLANAR MAXIMUM-FLOW AND MINIMUM-CUT ALGORITHMS

Year Restriction Time Reference
1956 st-planar O(n2) [Ford and Fulkerson 1956]
1979 st-planar O(n log n) [Itai and Shiloach 1979]
1982 fixed value O(n

√
n log n) [Johnson and Venkatesan 1982]

1983 value
undirected O(n log2 n) [Reif 1983]

1985 undirected O(n log2 n) [Hassin and Johnson 1985]
1987 st-planar O(n

√
log n) [Hassin 1981] using

[Frederickson 1987]
1997 st-planar O(n) [Hassin 1981] using

[Henzinger et al. 1997]
1997 undirected O(n log n) [Hassin and Johnson 1985] using

[Henzinger et al. 1997]
2001 O(n log3 n log C) [Miller and Naor 1995] using

[Fakcharoenphol and Rao 2001]

In 1989, Miller and Naor [1995] showed that finding a maximum st-flow can
be reduced to a sequence of shortest-path computations in a graph with positive
and negative lengths. Fakcharoenphol and Rao [2001] presented an O(n log3 n)
algorithm for the latter problem, implying an O(n log3 n log C) bound on maximum
flow where C is the sum of the integral capacities. (See Table 1).

3.1. TOWARD AN O(n log n) ALGORITHM. In 1994, Weihe [1997] published an
O(n log n) algorithm for planar directed maximum st-flow. The algorithm, though
perhaps influenced by Ford and Fulkerson’s uppermost-path algorithm, is quite
different. From the example included in his paper, it is clear that an augmenting
path is not necessarily an uppermost path (as generalized to non-st-planar graphs).
The algorithm and proof of correctness are quite complicated.

In a preprocessing step of the algorithm, the input graph is transformed into one
satisfying the following three requirements.

(1) Each vertex but the source and sink has degree exactly three;

(2) there are no clockwise cycles; and

(3) each arc uv belongs to a simple s-to-v path and a simple u-to-t path.

Satisfying Requirement (1) involves: splicing together every two successive arcs
sharing an endpoint of total degree two; and replacing each vertex of high degree by a
cycle, increasing the number of vertices to 2m, which is at most 6n. Requirement (2)
can be satisfied by using a reduction of Khuller et al. [1993] to computing shortest-
path distances in the dual (and so can be computed in O(n) time using the algorithm
of Henzinger et al. [1997]). Details of this step will be given in Section 5.1.

Requirement (3) is problematic. Weihe states “To satisfy this assumption, simply
remove all arcs that violate it. None of these arcs will help us solve our problem.”
However, as pointed out by Biedl et al. [2000], there is no known O(n log n)-time
algorithm to delete all such arcs. They give the best known algorithm to date,
which runs in O(n2) time. To our knowledge, the dependence of Weihe’s proof of
correctness on Requirement (3) has not been resolved. Although Weihe has claimed
that his algorithm can be corrected, this has not been verified.
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4. Preliminaries

4.1. GRAPHS. Let G be a directed graph with arc-set A. For each arc a ∈ A,
we define two oppositely directed darts, one in the same orientation as a (which
we sometimes identify with a) and one in the opposite orientation.

We define rev (·) to be the function that takes each dart to the corresponding dart in
the opposite direction. Formally, the dart set is A×{±1}, and rev (〈a, i〉)) = 〈a, −i〉.
The head and tail of a dart d in a graph G (written headG(d) and tailG(d)) are such
that the dart is oriented from tail to head. We may omit the subscript when doing so
introduces no ambiguity. We may use uv to indicate a dart d such that u = tail(d)
and v = head(d) when there is no ambiguity due to parallel darts.

Walks, Paths and Cycles. A nonempty x-to-y walk is a nonempty sequence
of darts d1 . . . dk such that headG(d1) = x , tailG(dk) = y and, for i = 2, . . . , k,
headG(di−1) = tailG(di ). The walk is said to contain a vertex if the vertex is the head
or tail of one of the darts making up the walk. The start vertex of the walk is defined
to be the tail of d1, and the end vertex is defined to be the head of dk . We denote
the start and end vertices of a walk W by start(W ) and end(W ), respectively. An
empty walk W is specified by a single vertex v such that start(W ) = end(W ) = v .

A walk in which no dart appears more than once is a path. If in addition
headG(dk) = tailG(d1) then the path is a cycle. A path/cycle of darts is simple
if no vertex occurs twice as the head of a dart in the path/cycle. A path/cycle is said
to be directed if each of its darts has the same orientation as the corresponding arc.
We use the term undirected when we wish to emphasize that a path/cycle need not
be directed. A graph or subgraph is connected if for every pair u, v of vertices it
contains an undirected u-to-v path.

Subpaths and Path Concatenation. For a walk W containing vertices u and v ,
W [u, v] denotes the u-to-v subwalk of W . (If u or v occurs more than once in W ,
we will use this notation only when it is clear which occurrence is intended.) If W
is a cycle, W [u, v] denotes a subpath of the cycle.

W [·, v] is shorthand for W [start(W ), v], and W [u, ·] is shorthand for
W [u, end(W )]. We use W [u, v) to denote the walk obtained from W [u, v] by
deleting the last dart; W (u, v] and W (u, v) are defined similarly. The reverse of
W = d1 · · · dk , denoted by rev (W ), is the walk rev (dk) rev (dk−1) . . . rev (d1).

If P = d1 · · · dk and Q = e1 · · · e� are walks such that end(P) = start(Q), we
use P◦Q to denote the walk d1 · · · dke1 · · · e�.

Subgraphs. A subgraph H of a graph G is identified with a subset of arcs.
A spanning tree T of G is a connected subgraph of G that contains all vertices of

G and contains no undirected simple cycle. For vertices u and v , T [u, v] denotes
the unique (undirected) u-to-v path through T .

If a vertex of T is designated as a root, we use T [u] to denote the u-to-root path
in T . Let xy be an edge of T where T [x] includes y. Then the corresponding dart,
oriented from x to y, is called the parent dart of x in T .

For a graph G and a set S of vertices of G, δ+
G (S) is the set of darts whose tails

are in S and whose heads are not. (We omit the subscript when the choice of graph
is clear from the context.) Such a set of darts is called a cut. A cut is a simple cut if
both S and V \ S are connected. A simple cut is also known as a bond.
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4.2. VECTOR SPACES. The arc space of a graph G = 〈V, A〉 is the vector
space RA: a vector δ in arc space assigns a real number δ[a] to each arc a ∈ A.
It is notationally convenient to interpret a vector δ in arc space as assigning real
numbers to all darts. For a dart 〈a, i〉 (i = ±1), we define

δ[〈a, i〉] = i · δ[a].

That is, if d is a dart in the same direction as the corresponding arc a then δ[d] =
δ[a], and if d points in the opposite direction then δ[d] = −δ[a].

For each arc a, we define δ(a) to be the vector in arc space that assigns 1 to a
and zero to all other arcs:

∀a′ ∈ A, δ(a)[a′] =
{

1 if a′ = a,
0 otherwise.

For a multi-set S of darts, we define δ(S) = ∑
d∈S δ(d).

The cycle space of G is the subspace of the arc space spanned by

C = {δ(C) : C a cycle of darts in G}.
We will refer to vectors in cycle space alternatively as circulations.

4.3. PLANAR GRAPHS. According to the geometric definition, a planar graph is
a graph for which there exists a planar embedding. A planar embedding of a graph
is a drawing of the graph on the plane (or the surface of a sphere) so that vertices
are mapped to distinct points and edges are mapped to non-crossing curves. A face
is a connected component in the set of points that are not in the image of any arc
or vertex. For a connected graph embedded on the plane, there is one infinite face.
For a connected graph embedded on the sphere, an arbitrary face can be designated
as the infinite face. We denote the infinite face by f∞.

One can alternatively define embeddings combinatorially, without reference to
topology [Heffter 1891; Edmonds 1960; Youngs 1963]. A combinatorial embedding
is sometimes called a rotation system. A combinatorial embedding is given by a
permutation π such that for each dart d, π (d) is the dart e such that x = tail(d) =
tail(e) and e is the dart immediately after d in the counterclockwise ordering of the
darts around x . While such a formulation frequently makes the implementation of
algorithms simpler, we will only use the permutation π explicitly in a few places
throughout this work. However, we note that for all the algorithms contained herein,
a combinatorial embedding is sufficient for implementation.

Duals of Planar Graphs. Corresponding to every connected planar embedded
graph G there is another connected planar embedded graph denoted G∗. The faces of
G are the vertices of G∗ and vice-versa. The arcs (and hence darts) of G correspond
one-to-one with those of G∗. If d is a dart of G, the tail of the corresponding dart
of G∗ is the face to the left of d, and the head is the face to the right of d. Thus,
intuitively the geometric orientation in G∗ of the dart corresponding to d is obtained
by rotating the embedding of d clockwise roughly 90 degrees. It is notationally
convenient to equate the darts of G with the darts of G∗. We call G the primal
graph and G∗ the dual. An example is given in Figure 1. The rotation system for
the combinatorial embedding of G∗ is denoted π∗ and is equal to π ◦ rev.

The boundary of a face f of a planar embedded graph is the cycle consisting
of darts whose tail in the planar dual is f , ordered according to the cycle of π∗
corresponding to f . Figure 1 gives an example. We denote the boundary of f by
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FIG. 1. A planar graph and its dual: the primal is given by solid vertices and solid arcs and the dual
is given by open vertices and dotted arcs. The boundary of one of the faces is the cycle a rev (b) c d.

FIG. 2. The primal is given by solid arcs and the dual by dotted arcs. The dark bold edges form a
spanning tree T of the primal. The edges not in T form a spanning tree T ∗ of the dual.

∂ f . The boundary of the planar embedded graph G is denoted by ∂G and is defined
to be the boundary of its infinite face. In accordance with our convention, for a face
f other than the infinite face, ∂ f is oriented counterclockwise, and ∂ f∞ is oriented
clockwise.

We will liberally use the following two classical results on planar graphs. These
theorems are illustrated in Figures 2 and 3, respectively.

THEOREM 4.1 (INTERDIGITATING SPANNING TREES). For a spanning tree T of
G, the set of arcs not in T form a spanning tree of the dual G∗ [Eppstein et al.
1990; Sommerville 1929].

We denote the set of arcs not in T by T ∗.

THEOREM 4.2 (CYCLE-CUT DUALITY [WHITNEY 1933]). In a connected pla-
nar graph, a set of darts forms a simple directed cycle in the primal iff it forms a
simple directed cut in the dual.

Circulations. Recall that the cycle space of G is the subspace of the arc space
spanned by C = {δ(C) : C a cycle of darts in G}. Recall that ∂ f consists of the
darts making up the boundary of face f . In a connected planar graph, the set of
vectors

{δ(∂ f ) : f a face of G, f �= f∞}
is a basis for the cycle space of G. Therefore, any vector η ∈ C can be represented
as a linear combination of these basis vectors. We use φ to denote the vector of
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9:8 G. BORRADAILE AND P. KLEIN

FIG. 3. The primal is given by solid edges and the dual by dotted edges. The dark bold (directed)
darts form a simple directed cycle in the dual and a directed bond, δ+(S), in the primal, where S is
the set of the lower 4 vertices.

FIG. 4. (a) A clockwise cycle. (b) A cycle that is neither clockwise nor counterclockwise.

coefficients for this linear combination, so

η =
∑
f �= f∞

φ[ f ]δ(∂ f )

We call φ a potential assignment, and we refer to φ[ f ] as the potential of face f .
This use of potentials was introduced by Hassin [1981] for st-planar graphs, and
by Miller and Naor [1995] for general planar graphs. We adopt the convention that
φ[ f∞] = 0.

Encloses. For a simple cycle C with a geometric embedding, we can say that C
strictly encloses a dart, vertex or face if the dart, vertex or face is embedded inside
C with respect to f∞. We formalize this definition for any cycle C (not necessarily
simple).

Let C be a cycle and let φ be the potential corresponding to the circulation δ(C).
Cycle C encloses a face f if φ[ f ] �= 0. Cycle C strictly encloses a dart d if C
encloses the faces to the left and right of d (tailG∗(d) and headG∗(d), respectively).
Cycle C encloses a dart d if C strictly encloses d, d ∈ C or rev (d) ∈ C . Cycle C en-
closes or strictly encloses a vertex v if C encloses or strictly encloses, respectively)
all the darts incident to v .

Clockwise and Counterclockwise. A circulation is defined as counterclockwise
(abbreviated c.c.w.) if the potential of every face is nonnegative [Khuller et al. 1993].
A circulation is defined as clockwise (abbreviated c.w.) if the potential of every face
is non-positive. A directed cycle C of darts is clockwise if δ(C) is clockwise. A
cycle or circulation may be neither counterclockwise nor clockwise, but a simple
cycle is either clockwise or counterclockwise. These definitions have geometric
interpretations, as illustrated by Figure 4.
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FIG. 5. The dart d enters the path a ◦b from the right because d does not appear among the sequence
of darts in counterclockwise order between b and rev (a).

FIG. 6. (a) P crosses Q: P enters Q on the right at x and P leaves Q on the left at y. (b) P and
Q are non-crossing. (c) This is a self-crossing cycle. (d) This is a non-self-crossing but non-simple
cycle, since vertex v occurs twice.

For any face f , the boundary of f is a clockwise cycle if f �= f∞ and a
counterclockwise cycle if f = f∞.

Entering and Crossing. The notions of entering and crossing are illustrated in
Figures 5 and 6.

Suppose a, b, and d are darts such that head(a) = tail(b) = head(d): we say d
enters a ◦ b at head(a). If in addition rev (d) is not among b, π (b), π (π (b)), . . . ,
π k(b) = rev (a) then d is said to enter a◦b from the right at head(a). (See Figure 5.)
A path that contains d is said to enter a walk that contains a ◦ b from the right.
Enters from the left, leaves from the right, etc., are defined similarly.

Suppose paths P and Q are such that R is a maximal common subpath of P and
Q. We say that P crosses Q if

—P enters Q from the right at start(R) and P leaves Q from the left at end(R), or
—P enters Q from the left at start(R) and P leaves Q from the right at end(R).

If P and Q are paths that do not cross, then they are noncrossing. A path/cycle
is non-self-crossing if for every pair P and Q of subpaths of the path, P does
not cross Q. Note that, for any face f , the boundary of f is a non-self-crossing
cycle.

We will use the following lemma in Section 6 where we will use non-self-crossing
cycles (simple cycles are not sufficiently general). This lemma allows us to build
non-self-crossing cycles from other non-self-crossing cycles.
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9:10 G. BORRADAILE AND P. KLEIN

LEMMA 4.3 (COMPOSITION LEMMA). Let C be a non-self-crossing cycle and
let A be a non-self-crossing path with endpoints on C such that no part of A is
enclosed by C. Then

A◦C[end(A), start(A)]

is a non-self-crossing cycle.

PROOF. Since no part of A is enclosed by C , A does not cross C . It follows
that A◦C[end(A), start(A)] is non-self-crossing.

4.4. CLOCKWISE AND LEFTMOST. An x-to-y walk A is left of an x-to-y walk
B if δ(A) − δ(B) is a clockwise circulation. (This definition was given by Klein
[2005] for paths, but generalizes naturally to walks.) Likewise A is right of B if
δ(A) − δ(B) is a counterclockwise circulation. Left of and right of are transitive,
reflexive, antisymmetric relations. An x-to-y path A is the leftmost x-to-y path in a
graph if, for every x-to-y path B, A is left of B. There is not necessarily a leftmost
walk: suppose P = Q◦C is the leftmost path where Q is an x-to-y path and C is
a c.w. cycle; then R = P◦C is a walk that is left of P and R◦C is left of R and so
on. However, the following lemma allows us to consider only simple paths when
we are considering graphs with no clockwise cycles.

LEMMA 4.4. Let G be a graph with no clockwise cycles. If P is a leftmost walk,
then P is a simple path.

PROOF. Assume for a contradiction that P is not a simple path. Let x be a vertex
that occurs at least twice on P . Let x1 be the first occurrence of x on P and let x2
be the last. Then, C = P[x1, x2] is a cycle. Since G has no clockwise cycles, C
must be counterclockwise. Let P ′ = P[·, x1]◦P[x2, ·] be the path that is obtained
from P by removing C . The circulation

δ(P) − δ(P ′) = δ(C)

is counterclockwise, so P is strictly right of P ′. Thus, P is not leftmost, a contra-
diction.

LEMMA 4.5. Every subpath of a leftmost path is a leftmost path.

PROOF. Let P be a leftmost path. Let Q be an x-to-y subpath of P . Suppose
there is another x-to-y path Q′ �= Q that is left of Q. Let P ′ = P[·, x]◦Q′◦P[y, ·].
The circulation

δ(P ′) − δ(P) = δ(P[·, x]◦Q′◦P[y, ·]) − δ(P[·, x]◦Q◦P[y, ·])
= δ(Q′) − δ(Q)

is clockwise since Q′ is left of Q. So P ′ �= P is left of P , a contradiction.

THEOREM 4.6 (NON-CROSSING THEOREM). If P and Q are disjoint non-self-
crossing x-to-y paths that do not cross each other, then P is either right of or left
of Q.

PROOF. Let C = Q◦rev (P): C is a non-self-crossing cycle. Let GC be the
graph consisting of the edges and vertices of C . Since GC is a connected graph,
each face of GC has a connected boundary. We show that δ(C) is either a clockwise
or counterclockwise circulation.
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FIG. 7. If A◦A′◦B◦B ′ is a cycle and A ∪ rev (B) ∈ ∂ f , then A′ must cross B ′.

We claim that each face of GC uses either darts of C or darts of rev (C) (but
not both). Suppose for a contradiction that f is a face that uses darts of both
C and rev (C). Let A and B be maximal subpaths of C such that A ∈ ∂ f and
rev (B) ∈ ∂ f and end(A) = start(rev (B)). Let A′ and B ′ be the subpaths of C such
that C = A◦A′◦B◦B ′. Since f is a face, C does not cross ∂ f and so A◦A′ must
leave ∂ f from the left (at end(A), by the maximality of A). Likewise, B◦B ′ leaves
∂ f from the left. Since C is non-self-crossing, A◦A′ does not cross B◦B ′. However
B ′ is an end(B)-to-start(A) path and A′ is a end(A)-to-start(B), so A′ crosses B ′,
a contradiction, proving the claim. See Figure 7 for an illustration.

Consider the following assignment of numbers to faces.

φ[ f ] =
{ −1 if ∂ f ⊂ C

0 if rev (∂ f ) ⊂ C

By the claim, every face is assigned a number.
If φ[ f∞] = 0, then φ is a valid potential assignment and corresponds to the

circulation η = δC . Then C is clockwise and Q is left of P .
If φ[ f∞] = −1, then φ+1 is a valid potential assignment (where 1 is the all-ones

vector). It follows that C is counterclockwise and Q is right of P .

4.5. MAXIMUM FLOWS AND MINIMUM CUTS. We now give the formal state-
ment of the maximum-flow and minimum-cut problems. Given a graph G, a source
vertex s, a sink vertex t , and an assignment c(·) of real-valued capacities to the arcs
of G, the maximum-flow problem is as follows:

max f · δ(δ+({s}))
such that f is a vector in arc-space (1)

f · δ(δ+({v})) = 0, ∀v ∈ V \ {s, t} (2)
0 ≤ f[a] ≤ c(a), ∀ arcs a (3)

Constraint (2) is the conservation constraint: the net flow at every non-source-or-
sink vertex is zero. Constraint (3) is the capacity constraint.

A flow assignment f or st-flow is called feasible if it satisfies these constraints.
The goal is to maximize the value of the flow, f · δ(δ+({s})). A flow of value zero
is called a circulation and is a vector in cycle space.

Given the same input, the minimum st-cut problem is:

min c(δ+(S))
such that s ∈ S ⊆ V \ {t} (4)
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A set of vertices S satisfying Constraint (4) is called an st-cut. The value of a cut
is given by the objective function.

The capacity function c(·) assigns capacities to arcs. We extend it to darts as
follows: c(〈a, 1〉) = c(a) and c(〈a, −1〉) = 0 for each arc a. That is, a dart in the
same direction as the corresponding arc has the same capacity as the arc, and a dart
in the opposite direction has capacity zero.

A flow f assigns values to arcs. We extend it to darts as follows: f[〈a, 1〉] = f[a]
and f[〈a, −1〉] = −f[a].

For any flow f, the residual capacity of a dart d, written cf(d), is c(d) − f[d].
A dart d is residual with respect to f and c if its residual capacity is positive.

Otherwise, d is nonresidual. A path is residual if all its darts are residual. It follows
from the Max-Flow Min-Cut Theorem that a feasible st-flow f is maximum if and
only if there is no residual s-to-t path with respect to f and c. Augmenting an st-flow
f along a residual s-to-t path P , means increasing f[d] by the same amount for each
dart d in P . We call this path the augmenting path. Suppose that f is feasible with
respect to c. If the amount of the increase is no more than

� = min
d∈P

c(d) − f[d],

then after augmentation the st-flow f is still feasible. If the increase is exactly �,
then we say the augmentation saturates the path P . In this case, at least one dart of
P becomes saturated (i.e., nonresidual).

5. The Max-Flow Algorithm

We present an algorithm to find a maximum st-flow in a directed planar graph that
runs in O(n log n) time. The algorithm is a direct generalization of the uppermost-
path algorithm. Ford and Fulkerson’s [1956] algorithm finds the uppermost flow:
one in which no flow can be rerouted above the existing flow. Our generalization
finds the leftmost flow (which we define in the next section, and is defined with
respect to the infinite face). At the start of the algorithm, we start with a leftmost flow
of value zero, which is achieved via a preprocessing step equivalent to satisfying
Requirement 2 of Weihe’s algorithm. The algorithm, which we call MAXFLOW, is
as follows:

—Designate a face incident to t as f∞.
—Saturate the clockwise cycles. (LEFTMOSTCIRCULATION)
—While there is a residual s-to-t path, saturate the leftmost such path. (LEFTMOST-

FLOW)

In Section 5.1, we review an algorithm due to Khuller et al. [1993] for carrying out
the second step, LEFTMOSTCIRCULATION. This algorithm was previously used by
Weihe [1997]. In Section 5.2, we discuss the third step, LEFTMOSTFLOW. We state a
theorem, the Unusability Theorem, that implies that the third step, LEFTMOSTFLOW,
takes O(n) iterations. We give an implementation in which each iteration takes
O(log n) time. (More precisely, the implementation allows for some degenerate
iterations in which zero flow is pushed, but the Unusability Theorem enables us
to show that the total number of iterations is nevertheless linear.) In Section 6, we
prove the Unusability Theorem.
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5.1. LEFTMOSTCIRCULATION. The second step of the MAXFLOW algorithm,
LEFTMOSTCIRCULATION, is implemented using the following algorithm, due to
Khuller et al. [1993]. It computes an assignment of potentials to the faces us-
ing single-source shortest-path distances in the dual planar graph, interpreting ca-
pacities as distances. (We denote the length of the shortest x-to-y path in G as
distG(x, y).)

LEFTMOSTCIRCULATION(G), c(·), f∞)

—Interpret capacities c(d) as lengths of darts in the dual graph G∗.
—Let φ[ f ] = distG∗( f, f∞) for every face f .
—Let η[d] = φ[tailG∗(d)] − φ[headG∗(d)] for every dart d.
—Return η.

LEMMA 5.1 (KHULLER ET AL. 1993). The graph has no clockwise cycle that is
residual with respect to the circulation returned by LEFTMOSTCIRCULATION.

PROOF. Let C be a clockwise cycle of darts in G and let T be the tree repre-
senting the shortest-path distances computed in LEFTMOSTCIRCULATION. There is
a path in T to f∞ from every face enclosed by C , so at least one dart of C is in the
shortest-path tree. Let d be such a dart:

cη(d) = c(d) − η[d]
= c(d) − (distG∗(tailG∗(d), f∞) − distG∗(headG∗(d), f∞))
= c(d) − c(d) since d is in the shortest-path tree
= 0

Since d is not residual, the cycle C is not residual.

5.2. LEFTMOSTFLOW. Weihe [1997] defined a leftmost maximum st-flow. We
slightly generalize this. We say an st-flow f (not necessarily maximum) is a leftmost
flow if the residual graph with respect to f has no clockwise residual cycles.

LEMMA 5.2. Let f be a leftmost flow and let P be the leftmost residual path.
The flow f′ that results from saturating P is a leftmost flow.

PROOF. Assume for a contradiction that f′ is not a leftmost flow. By the defi-
nition of leftmost, there must then be a clockwise residual cycle C with respect to
f′. Assume without loss of generality that C is simple. Since f was leftmost, C was
not residual prior to the augmentation, and so P must have a dart d in common
with rev (C).

Let P ′ = P[·, tail(d)] ◦ C[tail(d), tail(d)]◦P[tail(d), ·] where C[tail(d), tail(d)]
is the clockwise cycle starting at tail(d). P ′ is a walk and δ(P ′) − δ(P) = δ(P) +
δ(C) − δ(P) = δ(C) is a clockwise circulation and so P ′ is left of P . Therefore,
P was not the leftmost residual path.

Next we discuss the third step of our MAXFLOW algorithm, LEFTMOSTFLOW:
starting with the circulation η output by the second step (LEFTMOSTCIRCULATION),
repeatedly saturate the leftmost residual s-to-t path until none remains. It is conve-
nient for the analysis to describe LEFTMOSTFLOW as an algorithm that takes as input
a new graph G0 and new capacity function c0(·), derived from the original input
graph G in and capacity function cin(·), that satisfies the following preconditions.
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PRECONDITION 5.3. G0 has no clockwise cycle of arcs.

PRECONDITION 5.4. For every arc a in G0, c0(a) > 0.

To obtain G0 and c0(·) from the original input graph G in and original capacity
function cin(·) in the MAXFLOW algorithm, we use the leftmost circulation η found
in the second step. For each dart of G in that is residual with respect to η, we include
a corresponding arc in G0, and we assign the residual capacity of the dart as the
capacity of the new arc in G0. Because G in has no cycle of darts that is residual
with respect to η, G0 satisfies Precondition 5.3. Because each arc in G0 arises from
a residual dart, G0 satisfies Precondition 5.4.

The algorithm LEFTMOSTFLOW finds a maximum st-flow f in G0. By adding η
to f, we obtain a maximum st-flow in the original graph G in.

However, it should be emphasized that this distinction between the input graph
G in and G0 is purely for notational convenience; it enables the analysis to use the
term arc to refer to a dart that is residual with respect to the leftmost circulation. A
simpler and equivalent version of LEFTMOSTFLOW would simply continue working
with the input graph G in using the circulation found by LEFTMOSTCIRCULATION as
the initial flow assignment.

We start with an abstract version of LEFTMOSTFLOW.

(Abstract) LEFTMOSTFLOW(G0, c0, s, t, f∞)
—Initialize f = 0.
—While there is an s-to-t path that is residual with respect to f and c0,

saturate the leftmost residual s-to-t path, modifying f.
—Return f.

The following invariant of LEFTMOSTFLOW follows from Lemma 5.2:

INVARIANT 5.5. During the execution of LEFTMOSTFLOW, G0 has no clockwise
residual cycles with respect to f.

COROLLARY 5.6. During the execution of LEFTMOSTFLOW, there is no cycle
of darts all assigned positive flow.

PROOF. Assume for contradiction that C is a cycle of darts all assigned positive
flow. If C is counterclockwise, then rev (C) is residual, contradicting Invariant 5.5.
If C is clockwise, then C contradicts Precondition 5.3.

In Ford and Fulkerson’s uppermost-path algorithm for st-planar graphs, once
flow is pushed on an arc, flow can never be removed from that arc. For planar
graphs that are not st-planar, such a strong property does not hold, as illustrated in
Figure 8. However, we prove a weaker property that suffices for the analysis.

THEOREM 5.7 (UNUSABILITY THEOREM). Consider the algorithm Leftmost-
Flow. Suppose an arc a is augmented and some time later rev (a) is augmented.
Then arc a cannot be augmented again.

We informally explain how this theorem enables us to bound the number of
iterations; a more formal explanation appears later in this section. If an arc a is
saturated, the algorithm must augment rev (a) before augmenting a again. The the-
orem therefore shows that each arc is saturated at most once. If rev (a) is saturated,
the algorithm must previously have augmented a; after rev (a) is saturated, a itself
must be augmented before rev (a) can be saturated a second time. The theorem
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FIG. 8. A simple example illustrating that flow can be removed from an arc in LEFTMOSTFLOW, even
in the case of unit capacities. On the left, the leftmost residual path (dotted) pushes flow along the
bottom arc. On the right is the resulting residual graph. The leftmost residual path (dotted) removes
flow from the bottom arc.

TABLE II. A NETWORK-SIMPLEX TYPE IMPLEMENTATION OF THE LEFTMOSTFLOW

ALGORITHM

(Implementation) LEFTMOSTFLOW(G0, c0, s, t)
(1) Initialize f = 0.
(2) Initialize T to be the right-first search tree searching backwards from t .

(Every arc in T is directed towards t .)
(3) Let G be the graph obtained from G0 by deleting all vertices not in T .
(4) Initialize T ∗ to consist of the edges of G∗ that are not in T .
(5) Repeat:
(6) If T [s] is residual, saturate T [s], modifying f.
(7) Let d be the last non-residual dart in T [s].
(8) If tailG∗ (d) is a descendent in T ∗ of headG∗ (d), return f.
(9) Let e be the parent dart in T ∗ of headG∗ (d).
(10) Eject e from T ∗ and insert d into T ∗.
(11) Eject d from T and insert e into T .

therefore shows that the reverse of each arc is saturated at most once. Each iteration
of the abstract version of LEFTMOSTFLOW saturates some arc or the reverse of some
arc, so the number of iterations is at most twice the number of arcs.

In order to achieve O(log n) time per iteration, we give an implementation of
LEFTMOSTFLOW in which some iterations do not actually push any flow, but we
can nevertheless use the Unusability Theorem to bound the number of iterations by
thrice the number of arcs.

The algorithm is given in Table II. It maintains a spanning tree T of the graph
rooted at the sink t and the corresponding dual spanning tree T ∗ rooted at the infinite
face f∞.

The tree is an undirected structure, so we modify it by ejecting or inserting
undirected edges, but as shorthand we speak of ejecting or inserting darts.

Right-first search [Ripphausen-Lipa et al. 1995] in Step (2) constructs a tree T
spanning every vertex v that can reach t in G0, such that the path T [v] is the leftmost
directed v-to-t path in G0. The primal tree T is represented using a dynamic-tree
data structure [Acar et al. 2004; Alstrup et al. 2005; Frederickson 1987; Sleator
and Tarjan 1983; Tarjan and Werneck 2005], enabling Steps (6), (7), and (11) to
run in amortized O(log n) time. The dual tree T ∗ is represented by an Euler-tour
tree data structure [Henzinger and King 1999], so Steps (8), (9) and (10) can also
be implemented in amortized O(log n) time.

An iteration of Step (5) is a pivot step and is illustrated in Figure 9. To show
that LEFTMOSTFLOW(G0, c, s, t) takes O(m log n) time, we show that there are at
most 3m pivot steps (Theorem 5.15). It therefore follows that the algorithm runs in
O(m log n) time.

Journal of the ACM, Vol. 56, No. 2, Article 9, Publication date: April 2009.



9:16 G. BORRADAILE AND P. KLEIN

FIG. 9. The edges of T are solid, non-tree edges are dashed. The root of T is the sink t . T ∗ is
represented by light edges, and its root is the infinite face f∞. In an iteration of LEFTMOSTFLOW, the
s-to-t path is saturated and d is the rootmost nonresidual edge. The shaded face is headG∗ (d). This
face’s parent dart e in T ∗ is ejected from T ∗ and inserted into T , and rev (d) is inserted into T ∗ and
becomes the new parent dart. The edge that immediately precedes d in the s-to-t path gets reversed:
the parent endpoint becomes the child endpoint and vice-versa.

First, we show that the algorithm does maintain spanning trees of G and G∗.

INVARIANT 5.8. T is a spanning tree of G and T ∗ is a spanning tree of G∗.

PROOF THAT THE ALGORITHM MAINTAINS THE INVARIANT. Initially, Step (2)
establishes that T is a spanning tree of G and Step (4) establishes that T ∗ is a
spanning tree of G∗, by the Interdigitating Spanning Trees Theorem. Ejecting e
from T ∗ in Step (10) breaks T ∗ into two connected component, one consisting of
the descendents of headG∗(d) in T ∗ and one consisting of the nondescendents. At
the time Step (10) is about to be executed, the condition in Step (8) is false, so
tailG∗(d) is not a descendent of headG∗(d) in T ∗. It follows that in T ∗ inserting d
joins the two connected components, so T ∗ is a spanning tree of G∗ at the end of
Step (10). By the Interdigitating Spanning Trees Theorem, therefore, T is a tree of
G after Step (11).

Note that Step (11) can result in reversing parent and child in some edges.
Specifically, as illustrated in Figure 9, the path in T between tailG(d) and tailG(e)
is reversed. However, this is within the scope of the dynamic-tree data structure.

INVARIANT 5.9. Let e be an edge of T ∗, and let d be the corresponding dart
that is oriented away from f∞. Then, d is nonresidual.

PROOF THAT THE ALGORITHM MAINTAINS THE INVARIANT. First we show that
the invariant holds initially. T ∗ is composed of edges not in T . Let a be any arc not
in T . By construction of T , the path of arcs a◦T [headG(a)] is right of T [tailG(a)].
Let C = a◦T [headG(a), tailG(a)]. Then C is a simple c.c.w. cycle. The face to the
left of a is enclosed by C and the face to the right is not. Let S be the set of faces
enclosed by C . In G∗, a is directed out of S (i.e. a ∈ δ+

G∗(S)). Since a is the only
arc in C that is not in T and therefore is in T ∗, and since f∞ is not enclosed by C ,
〈a, 1〉 is directed towards f∞ in T ∗ and 〈a, −1〉 is oriented away from f∞. Since
the reverses of arcs have zero capacity, the invariant holds initially.

See Figure 9 for an illustration of the next argument. Note that, in each nontermi-
nating pivot step, tailG∗(d) is not a descendent in T ∗ of headG∗(d). Dart e, the parent
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FIG. 10. An illustration of Corollary 5.12. Darts of the dual tree are dark, with darts of T ∗ solid.
In the dual, s and t are faces, shown shaded. Upon termination, tailG∗ (d) is a descendent in T ∗ of
headG∗ (d). Since rev (d) is nonresidual and the reverses of dual tree darts are nonresidual, the cycle
shown is a saturated cut separating s from t . The darts of this cut (in the primal) are light.

of headG∗(d), is removed from T ∗. The component of T ∗ − {e} that contains f∞
contains tailG∗(d) and not headG∗(d), so when d is inserted into T ∗, d is oriented
away from f∞. Since d was saturated in Step (6), d is nonresidual.

Let c be a dart that remains in T ∗ during a pivot. The residual capacity of c does
not change and the orientation of c in T ∗ does not change. Therefore, the invariant
holds.

We say that a dart d is a nontree dart if the corresponding edge is not in T .

LEMMA 5.10. There is no clockwise simple cycle whose nontree darts are all
residual.

PROOF. Suppose for a contradiction that C was such a cycle. Let S be the set
of non-tree darts in C . By Invariant 5.8, for every dart d ∈ S, the tree T ∗ contains
the edge corresponding to d. Since every dart in S is residual, Invariant 5.9 implies
that in T ∗ the darts of S are oriented towards the root f∞. Since C is clockwise,
headG∗(d) is enclosed by C for every dart d in C . Since T is a tree, C contains at least
one non-tree dart d. The directed path T ∗[headG∗(d)] is completely enclosed by C ,
implying that C also encloses f∞ = end(T ∗[headG∗(d)]), a contradiction.

We show in the next two corollaries that the network-simplex version of LEFT-
MOSTFLOW implements the abstract version. Corollary 5.11 shows that every aug-
mentation is along the leftmost residual s-to-t path and Corollary 5.12 shows that
the algorithm does not terminate until there is no s-to-t residual path.

COROLLARY 5.11. For every vertex v, there is no residual path strictly left of
T [v].

PROOF. Suppose for a contradiction that there is a residual path strictly left of
T [v]. Then the leftmost residual v-to-t path P must be strictly left of T [v]. Let
Q be a subpath of P such that the endpoints of Q are on T [v] but Q and rev (Q)
are both edge disjoint from T [v]. Since P is leftmost, by Lemma 4.5, Q is left of
T [end(Q), start(Q)], so Q◦rev (T [end(Q), start(Q)]) is a simple c.w. cycle whose
non-tree darts are residual, contradicting Lemma 5.10.

COROLLARY 5.12. The st-flow f returned by the algorithm is maximum.

PROOF. Refer to Figure 10. When the algorithm terminates in Step 7, tailG∗(d)
is a descendent in T ∗ of headG∗(d). Let C be the simple cycle d◦T ∗[headG∗(d),
tailG∗(d)] in the dual. In the primal G, the darts of C form a directed cut δ+

G (S).
Every dart in C except d is a nontree dart, so the headG(d)-to-t path in T does not
use any dart in C or the reverse of any dart in C . Since t is on the infinite face, C
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does not enclose t and so S does not contain t . Likewise the s-to-tailG(d) path in
T does not use any dart in C or the reverse of any dart in C . Since d crosses C , S
contains s. Since every dart comprising the cut is non-residual, there is no residual
s-to-t path. By the Max-Flow Min-Cut Theorem, the flow is maximum.

We now show that there are at most 3m pivot steps in the LEFTMOSTFLOW
algorithm. Let d be a dart. We have the following facts with regards to the LEFT-
MOSTFLOW algorithm:

Fact 1. If d is residual at time i and nonresidual at time j (i < j), there was an
augmentation including d at some time between i and j .

Fact 2. If d is nonresidual at time i and residual at time j (i < j), there was an
augmentation including rev (d) at some time between i and j .

Fact 3. When e is inserted into T , e is residual. (Just before e was inserted into T ,
e was a parent dart in T ∗. By Invariant 5.9, rev (e) is nonresidual. Precon-
dition 5.4 implies that e is residual.)

Fact 4. When d ejected from T , d is nonresidual. (This holds by choice of d in
Step 7.)

CLAIM 5.13. A dart 〈a, 1〉 where a is an arc of G0 is ejected at most once.

PROOF. Let a be an arc and let d = 〈a, 1〉. Suppose for a contradiction that a
is ejected at time i1 and at time i2 (i1 < i2).

To be ejected at time i1, d must be nonresidual by Fact 4. Fact 1 implies that
there was an augmentation including d at some time k0 where 0 < k0 < i1.

To be ejected at time i2, d must have been inserted at some time j1 where
i1 < j1 < i2. At time j1, d is residual by Fact 3. By Fact 2, there was an augmentation
including rev (d) at some time k1 where i1 < k1 < j1.

Since there was an augmentation including d at time k0 and there was an aug-
mentation including rev (d) at time k1 > k0, d cannot be augmented after time k1
by the Unusability Theorem.

Finally, to be ejected at time i2, d must be nonresidual by Fact 4. By Fact 2, there
was an augmentation including d at some time k2 where j1 < k2 < i2. But d cannot
be augmented after time k1. This is a contradiction.

COROLLARY 5.14. A dart 〈a, −1〉 where a is an arc of G0 is ejected at most
twice.

PROOF. Let a be an arc and let d = 〈a, −1〉.
Suppose d is ejected at times i1 and i2. Then, d must be inserted at time i1 < j1 <

i2. By Fact 4, d is nonresidual at time i1 and by Fact 3, d is residual at time j1. By
Fact 2, rev (d) must be part of an augmentation at some time k1 where i1 < k1 < j1.

Likewise, by Fact 4, d is nonresidual at time i2 and by Fact 1 d must be augmented
at time k2 where j1 < k2 < i2.

At time i2, d is out of the tree and nonresidual. Since rev (d) cannot be augmented
after time k2 by Claim 5.13, d can never become residual again and so cannot be
inserted or ejected again.

As a consequence of the above, we have the following theorem:

THEOREM 5.15. There are at most 3m pivot steps in the LEFTMOSTFLOW
algorithm.
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6. Unusability Theorem

In this section, we prove the Unusability Theorem. The structure of the proof is
as follows. We show that if an arc a is augmented and later rev (a) is augmented,
then a structure in the residual graph arises called an obstruction (Lemma 6.11).
We show that this structure persists under leftmost augmentations (Lemma 6.12).
We also prove (Lemma 6.10) that the existence of the obstruction ensures that no
leftmost residual path includes arc a, which shows that a is never augmented again.

The idea of the proof is as follows. We assume for a contradiction that the
leftmost residual path A does include a. We use a suffix of the s-to-tail(a) subpath
of A together with paths comprising the obstruction to construct a cycle C such
that the arc a is completely enclosed by C , as shown in Figure 16(b), and we show
that the head(a)-to-s subpath of A cannot escape from this cycle (escaping would
imply that an invariant failed to hold).

We make use of Preconditions 5.3 (no c.w. cycles) and 5.4 (every arc is initially
residual). We will use the term arc to refer to an arc of G0 (and to the corresponding
dart), and use anti-arc to refer to a dart whose reverse is an arc.

Before commencing the proof, we establish some properties of leftmost residual
paths and walks. Recall that since the graphs we consider have no clockwise residual
cycles (Invariant 5.5), the leftmost walk is a simple path (Lemma 4.4).

LEMMA 6.1 (PROHIBITED AUGMENTATIONS). The following situations are not
permitted if A is a leftmost augmentation and the given vertex indices are well-
defined:

(1) A[x, y] is right of a residual walk R[x, y].
(2) A[x, y] makes a clockwise cycle with residual walk R[y, x].
(3) A has a dart that enters a t-to-s residual walk R from the right.

PROOF. We prove each part separately.

(1) A[s, x]◦R[x, y]◦A[y, t] is left of A. This contradicts the requirement that A is
leftmost residual walk.

(2) This contradicts Invariant 5.5.
(3) Suppose uv is a dart of a leftmost augmentation path and suppose uv enters

a t-to-s residual walk R from the right. As such, uv /∈ R and rev (uv) /∈ R.
A[s, u] must intersect R at some vertex: let x be the last intersection of A[s, u]
with R (possibly x = s). If x ∈ R(v, s], then A[x, v]◦R[v, x] is clockwise,
contradicting Invariant 5.5. If x ∈ R(t, v) then R[x, v] is a residual walk that
is left of A[x, v], which is a prohibited augmentation of the first kind.

Now we define what it means to be unusable. Unusability is given by a structure
in the residual graph called an obstruction.

Definition 6.2 (Unusable Arc). An obstruction is a clockwise non-self-
crossing cycle L◦M where L is residual and M consists entirely of arcs. We say
it is an obstruction for an arc a if 〈a, 1〉 is the first dart of L . We say an arc a is
unusable if there is an obstruction for a.

We give a second, equivalent representation for an obstruction which will be
useful in proving the Unusability Theorem. Both are illustrated in Figure 11.
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FIG. 11. (a) An obstruction for arc a as given by Definition 6.2. (b) The obstruction for arc a as given
by Lemma 6.3 with the obstruction from (a) shaded in the background. L , Q2 and R are residual; M ,
Q1 and Q2 consist of arcs; a is the first arc of L and Q2.

LEMMA 6.3. A clockwise non-self-crossing cycle C satisfies Definition 6.2 iff
it can be written as Q1◦Q2◦R where

(1) Q1◦Q2 consists entirely of arcs,
(2) Q2◦R is residual,
(3) a is the first dart of Q2,
(4) there is flow through the vertex start(R), and
(5) there is flow through the vertex end(R).

PROOF. The “if” direction is trivial. To prove the “only if” direction, let L◦M be
an obstruction for a. Since G0 has no clockwise cycle of arcs, L◦M cannot consist
entirely of arcs. Let b be the first anti-arc of L . By Invariant 5.5, L◦M cannot consist
entirely of residual darts and so M cannot consist entirely of residual darts. Let c
be the first non-residual dart of M .

Let Q1 = M[tail(c), ·], let Q2 = L[·, tail(b)], and let R = L[tail(b), ·]◦M[·,
tail(c)]. By choice of b, L[·, tail(b)] consists entirely of arcs, so Property 1 holds.
By choice of c, M[·, tail(c)] is residual, so Property 1 holds. Since a is the first
dart of L , Property 2 holds. Since b is a residual anti-arc, rev (b) carries flow, so
Property 3 holds. Since c is a non-residual arc, by Precondition 5.4 it carries flow,
so Property 5 holds.

Definition 6.4. For an unusable arc a, let �a denote the obstruction for a that
encloses the minimum number of faces (breaking ties arbitrarily). Write �a as
Q1

a◦Q2
a◦Ra , and let Qa denote Q1

a◦Q2
a .

Considering a minimally enclosing obstruction simplifies the proofs because it
allows us to rule out the existence of certain paths that cross the obstruction. Let C
be a non-self-crossing cycle, and let P be a path whose start and end are vertices
of C . If P has at least one dart, we say P crosscuts C if every dart of P is strictly
enclosed by C . If P has no darts (i.e. start(P) = end(P)), we say P crosscuts C if
start(P) occurs more than once in C . Note that in either case the path P splits C
into two cycles, e.g. containing strictly fewer faces.

A non-trivial path P is a flow path if every dart of P is assigned a positive flow
value. A trivial path P (i.e. having no darts) is a flow path if there is a dart incident
to start(P) that is assigned a positive flow value. Note that a dart assigned a positive
flow value must correspond to an arc, i.e. cannot be an anti-arc.
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FIG. 12. Property 6.7 (a) An illustration of the cycles C1 and C2 for the the proof of Property 6.7.
By Argument 1, there is an arc (bold) of Q1

a in �a[α, β]. By Argument 2, there is an arc (grey) of Ra
in �a[β, α]. (b) Case 1, first sub-case. C1 is a smaller obstruction. (c) Case 1, second sub-case. C2 is
a smaller obstruction. (d) Case 2. C1 is a smaller obstruction.

PROPERTY 6.5. Suppose a is unusable. There is no residual path crosscutting
�a from a vertex in Q2

a(·, ·] to a vertex in Q1
a.

PROOF. Assume for a contradiction that W is such a residual path. Then,
W◦Q1

a[end(W ), ·]◦Q2
a[·, start(W )] is an obstruction for arc a that encloses fewer

faces than �a does. That is, W can be used to replace Ra in the obstruction.

PROPERTY 6.6. Suppose a is unusable. Q2
a belongs to a t-to-s residual path.

PROOF. Since �a is a clockwise cycle, it cannot be residual, so Q1
a cannot be

residual. Let b be the last non-residual dart of Q1
a . Since Q1

a contains only arcs,
b carries flow and this flow must be routed to t . Let Ft be any head(b)-to-t flow
path and let Fs be any s-to-start(Ra) flow path. Since the reverse of a flow path is
residual, the path rev (Ft )◦Q1

a[head(b), ·]◦Q2
a◦rev (Fs) is a residual t-to-s path.

PROPERTY 6.7. There are no flow paths that crosscut �a.

PROOF. Assume for contradiction that F is such a flow path, and assume without
loss of generality that F is simple. Letα = start(F) andβ = end(F). Then C1 = �a
[α, β]◦rev (F) and C2 = F◦�a[β, α] are clockwise non-self-crossing cycles, each
enclosing fewer faces than �a . See Figure 12.

We will refer to the following:

Argument 1. Note that rev (F) is residual. If �a[α, β] were residual then C1 would
be a residual clockwise cycle, contradicting Invariant 5.5. Since all
non-residual darts of �a are in Q1

a , we infer that �a[α, β] must in-
clude at least one dart of Q1

a .
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Argument 2. Note that F consists entirely of arcs. If �a[β, α] consisted entirely of
arcs then C2 would be a clockwise cycle of arcs in G0, contradicting
Precondition 5.3. Since all anti-arcs of �a are in Ra , we infer that
�a[β, α] must include at least one dart of Ra .

There are two cases to consider:

Case 1. start(Ra) is a vertex of �a[β, α]: By Argument 1, Q1
a is not a subpath of

�a[β, α]. If a is in �a[α, β] then C1 is an obstruction enclosing fewer
faces than �a (Figure 12(b)). If a is in �a[β, α] then C2 is an obstruction
enclosing fewer faces than �a (Figure 12(c)).

Case 2. start(Ra) is a vertex of �a(α, β): By Argument 2, Ra is not a subpath of
�a[α, β], so end(Ra) is outside �a[α, β]. By Argument 1, Q1

a is not a
subpath of �a[β, α], so α is a vertex of Q1

a . Therefore the first arc of Q2
a ,

which is a, is in �a[α, β], so C1 is an obstruction enclosing fewer faces
than �a (Figure 12d).

Each case contradicts the minimality condition of �a .

COROLLARY 6.8. If �a strictly encloses a flow-carrying dart d, then �a strictly
encloses the source s and every s-to-head(d) flow path.

PROOF. Suppose for a contradiction that there is a flow-carrying dart d strictly
enclosed by �a and an s-to-head(d) flow path P containing a dart e that is not
strictly enclosed by �a . Let Q be a head(d)-to-t flow path. The path P◦Q contains
a subpath that starts at a vertex (head(e)) not strictly enclosed by �a , goes through
a dart (d) strictly enclosed by �a , and ends at a vertex (t) not strictly enclosed by
�a . Such a flow path violates Property 6.7.

For an unusable arc a, there is a start(Ra)-to-t flow path and an s-to-end(Ra)
flow path by Parts 6.3 and 6.3 of Lemma 6.3.

COROLLARY 6.9. For an unusable arc a, any start(Ra)-to-t flow path does not
intersect any s-to-end(Ra) flow path.

PROOF. Let Ft be any start(Ra)-to-t flow path and let Fs be any s-to-end(Ra)
flow path. By Corollary 5.6, each of these paths is simple. Suppose for a contra-
diction that Ft and Fs share a vertex. Let w be the first such vertex in Ft . See
Figure 13. Let F ′

s be the maximal suffix of Fs that is not strictly enclosed by �a .
By Corollary 6.8, F ′

s is the only part of Fs that is not strictly enclosed by �a . Since
Ft ends at a vertex that is not strictly enclosed by �a , Property 6.7 implies that no
arc of Ft is strictly enclosed by �a , so w must be a vertex of F ′

s .
Let F = Ft [start(Ra), w]◦Fs[w, end(Ra)]. F is a start(Ra)-to-end(Ra) flow path

that is not internal to �a . By the Non-Crossing Theorem, F is either right of or left
of Ra . There are two cases.

Case 1. If F is right of Ra , Ra◦rev (F) is a clockwise residual cycle, contradicting
Invariant 5.5.

Case 2. If F is left of Ra , F is also left of rev (Qa) by transitivity. Hence F◦Qa
is a clockwise cycle in G0, a contradiction. This case is illustrated in
Figure 13.
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FIG. 13. If flows to and from �a (dashed), Fs and Ft , share a vertex w , then we can construct from
them a start(Ra)-to-end(Ra) flow path F (bold). The shaded area is bounded by a clockwise cycle of
arcs.

FIG. 14. Lemma 6.10, construction of C1. The obstruction �a is shown in bold. It consists of paths
R, Q1, and Q2, where a is the first arc of Q2. The s-to-end(Ra) flow path Fs is indicated by a solid
line. The dashed curve A1 denotes a subpath of a leftmost residual path A that is assumed to include
the arc a. The interior of the cycle C1 is shaded.

Now we have all the tools needed to prove the Unusability Theorem. We prove
it in three parts. First, we show that an unusable arc cannot belong to a leftmost
residual path (Lemma 6.10). Next, we show that if an arc a satisfies the condition
of the Unusability Theorem, there is an obstruction for a in the residual graph
(Lemma 6.11). Finally we show that obstructions persist under leftmost augmen-
tations (Lemma 6.12). The Unusability Theorem follows.

LEMMA 6.10 (UNUSABLE ARC CONSEQUENCE). A leftmost augmenting path
contains no unusable arcs.

PROOF. Let A be the leftmost augmenting path, and assume for a contradiction
that it goes through an unusable arc a.

The goal is to first construct a non-self-crossing cycle C that strictly encloses a
and does not enclose t . A[tail(a), ·] must therefore cross C . We will show that this
results in a contradiction.

Consider the flow assignment just before augmenting. Refer to Figure 14. By
the definition of �a , there is an s-to-end(Ra) flow path. Let Fs be any such path
and let P1 = Q2

a◦Ra◦rev (Fs). P1 is a residual tail(a)-to-s path. Let A1 be the
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FIG. 15. Lemma 6.10, the construction of C2. In both cases, the interior of C2 is shaded. (a) An
example where the subpath A1 starts in Q2. In this case P ′

1 does not include start(Ra), so C2 is defined
to be C1. (b) The case where P ′

1 includes start(Ra). In addition to the paths in Figure 14, this figure
illustrates the start(Ra)-to-t flow path Ft . The prefix F ′

t that is enclosed by C1 is indicated in gray.

maximal suffix of A[s, tail(a)] that does not cross P1. Let P ′
1 = P1[·, start(A1)].

Let C1 = A1◦P ′
1. Then C1 is a residual cycle and since there are no c.w. residual

cycles, it is c.c.w. By construction, C1 is non-self-crossing.
We next define another c.c.w. non-self-crossing cycle, C2. Refer to Figure 15. If

P ′
1 does not include start(Ra), define C2 = C1. See Figure 15(a). Note that in this

case P ′
1 is a subpath of Q2

a .
Otherwise, we proceed as follows. See Figure 15(b). By the definition of �a , there

is a start(Ra)-to-t flow path. Let Ft be any such path and let F ′
t be the maximal prefix

of Ft that is enclosed by C1 (possibly the empty path). By Corollary 6.9, Ft and Fs
do not share any vertices and by Corollary 6.8, no part of Ft is enclosed by �a . We
conclude that end(F ′

t ) is in A1. We define C2 = F ′
t ◦A1[end(F ′

t ), ·]◦P1[·, start(F ′
t )].

Note that P1[·, start(F ′
t )] = Q2

a . By definition, C2 is non-self-crossing.
Note that, in both cases, Ra is not enclosed by C2. Refer to Figure 16. Let P2

be the maximal subpath of Q2
a◦Ra◦Q1

a that is not enclosed by C2. By applying the
Composition Lemma (Lemma 4.3) to C2 and rev (P2), we get a non-self-crossing
cycle, C whose boundary is composed of subpaths of Ft , A, rev (Q1

a), rev (Ra), and
possibly rev (Q2

a). Further, C is c.c.w. and strictly encloses a.
Let A3 denote the maximal prefix of A[head(a), ·] that does not cross C . The

three cases are illustrated in Figure 17.

Case 1. end(A3) ∈ Q2
a◦Ra . Let P3 = Q2

a◦Ra: P3[start(A3), end(A3)] is a boundary
of C and since A3 is enclosed by C , A3 is right of P3[start(A3), end(A3)],
violating Part 1 of Lemma 6.1.

Case 2. end(A3) ∈ rev (F ′
t ). Since rev (F ′

t ) is a subpath of a t-to-s residual path,
this case contradicts Part 3 of Lemma 6.1.

Case 3. end(A3) ∈ Q1
a . Let A4 be the maximal suffix of A3 that is internal to �a .

The only boundary vertices of �a that are not boundary vertices of C are
the vertices of Q2

a so start(A4) must be a vertex of Q2
a . This case therefore

contradicts Property 6.5.
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FIG. 16. Lemma 6.10. (a) The path P2, indicated by the dashed gray curve, is the maximal prefix
of R ◦ Q1 not enclosed by C1. The interior of the cycle C2 is shaded. (b) The cycle C is obtained by
combining the cycle C2 with the path rev (P2). Its interior is shaded. Note that C strictly encloses the
arc a. The head(a)-to-t subpath of the augmentation path A must escape from C at some point.

FIG. 17. Lemma 6.10. (a) Case 1: The augmenting path leaves C via a vertex of Q2 ◦ R. (b) Case
2: The augmenting path leaves C via a vertex of F ′

t . (c) Case 3: The augmenting path leaves C via a
vertex of Q1. In this case, a subpath of the augmenting path that is enclosed by �a goes from a vertex
of Q2 to a vertex of Q1.

LEMMA 6.11 (UNUSABLE ARC CREATION). If augmentation A uses arc a in
the reverse direction, a will be unusable after augmentation A.

PROOF. See Figure 18. Let a be an arc and let A be the leftmost residual s-to-t
path. Suppose d is a dart in A where d = rev (a). Since d is residual, a must carry
flow. Let F be any s-to-tail(a) flow path. Let x be the last vertex of A[·, tail(a)]
that is in F . Let L = rev (A[x, tail(a)]) and let M = F[x, tail(a)].

Both L and M are simple and by the choice of x , L does not cross M . L is
residual after augmentation and a is the first dart of L . M consists entirely of arcs.
Since rev (M) is residual before augmentation, A[x, tail(a)] must make a c.c.w.
cycle with it by Part 2 of Lemma 6.1. Therefore, M◦L is a c.w. non-self crossing
cycle, and hence an obstruction for a.

LEMMA 6.12 (UNUSABLE ARC PERSISTENCE). Once an arc becomes unus-
able, it remains unusable.

PROOF. Suppose a is an unusable arc at some point in time, and let A be
the leftmost residual s-to-t path at that time. The obstruction �a for a remains
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FIG. 18. Lemma 6.11. The creation of an obstruction (whose interior is shaded) from the flow path
(dotted) through a (grey) and the augmentation path through rev (a) (solid).

an obstruction after augmentation along A unless the augmentation renders some
dart of Q2

a◦Ra nonresidual. Since every dart of Q2
a is an unusable arc, Lemma 6.10

implies that the augmentation cannot contain a dart of Q2
a . We may therefore assume

that A and Ra share a dart.
Let b be the first dart of Ra that is in A. Let A1 be the maximal suffix of

A[·, head(b)] that is not strictly enclosed by �a . Since A cannot enter Ra from
the right by Part 2 of Lemma 6.1 and since the left of Ra is not enclosed by �a , A1
is not a trivial path.

Case 1. A1 �= A[·, head(b)]. This case is illustrated in Figure 19. Let c be the
dart of A just preceding A1. By construction of A1, the dart c is strictly enclosed
by �a . Both Q2

a and Ra belong to t-to-s residual paths (by Property 6.6 and by
consequence of Lemma 6.3, respectively). Since c is strictly enclosed by �a and
so enters �a from the right, head(c) cannot belong to either Q2

a or Ra by Part 3 of
Lemma 6.1. Thus, head(c) is on Q1

a . Write �a = P◦P ′ where P is a head(c)-to-
head(b) path that contains b (i.e., P = Q1

a[head(c), ·]◦Q2
a◦Ra[·, head(b)]). Since

A1 does not cross P , A1 is either left of or right of P .
First suppose A1 is right of P . This is the situation depicted in Figure 19(a). Since

rev (A1) is residual after augmentation, rev (A1[·, tail(b)])◦P[head(c), tail(b)] is an
obstruction for a after augmentation, proving the lemma.

Suppose therefore that A1 is left of P . This is the situation depicted in
Figure 19(b). Let Ft be a start(Ra)-to-t flow path, and let W1 be the maximal
prefix of Ft consisting of darts enclosed by the cycle A1 ◦ rev (P). Let W2 be the
maximal prefix of Ft [end(W1), ·] that consists only of darts strictly enclosed by �a .
We claim that W1 ends on a vertex of the cycle A1 ◦ P ′, and W2 contains no darts.

If W1 = Ft , then W2 contains no darts, and, since t is incident to the infinite face,
which is not enclosed by A1 ◦ P ′, end(W1) is a vertex of A1 ◦ P ′, proving the claim.
Assume therefore that W1 �= Ft . If W2 were nontrivial then W2 would cross �a ,
contradicting Property 6.7. Therefore W2 contains no darts, and W1 is immediately
followed in Ft by a dart d such that d is not enclosed by A1 ◦ rev (P) and not strictly
enclosed by �a = P ◦ P ′. Since every dart of W1 is enclosed by A1 ◦ rev (P)
and therefore by A1 ◦ P ′, we infer that tail(d) belongs to A1 ◦ P ′, proving the
claim.

Every dart of W1 is enclosed by A1 ◦ rev (P), so end(W1) belongs to A1 ◦ rev (P).
If end(W1) were not on A1, then end(W1) would be an internal vertex of P and
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FIG. 19. Lemma 6.12, Case 1. The obstruction �a is depicted by the solid lines. The path P , on the
left, consists of Q1, Q2, and the prefix of R ending with dart b. The remainder of R, which is denoted
P ′, appears on the right. The subpath A1 of the augmenting path is represented by the dashed line.
(a) A1 is right of P . In this case, combining A1 with part of P yields a new obstruction for a. (b) A1

is left of P . The flow path W1 is shown as a thick gray arrow. The proof shows that this path ends on
a vertex of A1 and is followed in Ft by at least one dart.

an internal vertex of P ′, again contradicting Property 6.7. Thus W1 ends on A1, as
shown in Figure 19(b).

Since A is a simple path ending at t , A1 is a subpath of A,and b occurs on A after
A1, it follows that A1 does not include t . Therefore W1 is a proper prefix of Ft . Let
d1 be the dart of Ft immediately after W1.

Let D = rev (W1 ◦ d1) ◦ Ra[·, head(b)]. We claim that some dart of A1 enters
D from the right. This argument is illustrated in Figure 20. Note that D contains
b, which also belongs to A1. Let d2 be the first dart in D[tail(d1), ·] that is not in
rev (A1), and let d3 be its predecessor dart in D.

The dart d3 either is the reverse of a dart of A1 or is not enclosed by A1 ◦ rev (P).
The dart d2 is enclosed by A1 ◦ rev (P) and is not the reverse of a dart of A1.
If tail(d2) = start(A1), then let d4 = c; then d4 is strictly enclosed in �a , and
head(c) = tail(d2). Otherwise, let d4 be the dart of A1 whose head is tail(d2). In
either case, d4 enters d3 ◦ d2 from the right, as illustrated in Figure 20. This is
Situation 6.1 of Lemma 6.1, contradicting that lemma.

Case 2. A1 = A[·, head(b)]. This case is illustrated in Figure 21. Let Fs be any
s-to-end(Ra) flow path. Let A2 be the maximal suffix of A1 that does not cross Fs .
Let F ′

s = Fs[start(A2), ·]. Since start(A2) is not strictly enclosed by �a , F ′
s starts

outside the interior of �a , and so by Property 6.7 no part of F ′
s is interior to �a . Let

C = F ′
s◦rev (Ra[tail(b), ·])◦rev (A2[·, tail(b)]). By the choice of A2, C is non-self-

crossing. By Part 2 of Lemma 6.1, rev (C) is c.c.w. and so C is c.w. By applying
the Composition Lemma (Lemma 4.3) to �a and rev (A2[·, tail(b)])◦F ′

s , we get
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FIG. 20. Lemma 6.12. The dart d4 enters d3 ◦ d2 from the right. (a) In this case, d4 is the dart c that
precedes A1 in A. (b) In this case, d4 is the dart of A1 whose head is tail(d2).

FIG. 21. Lemma 6.12, Case 2.

a non-self-crossing cycle C1. Let Q1 = F ′
s◦Q1

a and R′ = Ra[·, tail(b)]◦rev (A2).
Then C1 = Q1◦Q2

a◦R′ is an obstruction for a after augmentation since rev (A2) is
residual after augmentation. This proves the lemma.

This completes the proof of the Unusability Theorem.

7. Closing Remarks

In closing, we mention two more general versions of max-flow. The first is maximum
flow subject to vertex capacities. The best known result is by Khuller and Naor
[1994]. The second problem is maximum flow with multiple sources and/or sinks.
As Miller and Naor [1995] point out, planarity is not preserved by the traditional
reduction from multiple-source/sink max flow to single-source/sink max-flow. Is
there a planarity-exploiting algorithm for either of these problems?
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