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We give a linear-time algorithm for single-source shortest paths in
planar graphs with nonnegative edge-lengths. Our algorithm also
yields a linear-time algorithm for maximum flow in a planar graph
with the source and sink on the same face. For the case where
negative edge-lengths are allowed, we give an algorithm requiring
O(n4�3 log(nL)) time, where L is the absolute value of the most
negative length. This algorithm can be used to obtain similar bounds for
computing a feasible flow in a planar network, for finding a perfect
matching in a planar bipartite graph, and for finding a maximum flow in
a planar graph when the source and sink are not on the same face. We
also give parallel and dynamic versions of these algorithms. ] 1997

Academic Press

1. INTRODUCTION

Computing shortest paths is a fundamental and ubiqui-
tous problem in network analysis. Aside from the impor-
tance of this problem in its own right, often the problem
arises in the solution of other problems (e.g., network flow

and matching). In this paper we improved algorithms for
single-source shortest paths in planar networks.

The first algorithm handles the important special case of
nonnegative edge-lengths. For this case, we obtain a linear-
time algorithm. Thus our algorithm is optimal, up to con-
stant factors. No linear-time algorithm for shortest paths in
planar graphs was previously known. For general graphs
the best bounds known in the standard model, which for-
bids bit-manipulation of the lengths, is O(m+n log n) time,
due to Fredman and Tarjan [FrT].1 For planar graphs,
Frederickson [Fre2] pioneered the use of separators to
obtain faster shortest-path algorithms. His algorithm, the
best known previously, runs in O(n - log n) time on planar
graphs. It depends on the fact that planar graphs have size-
O(- n) separators.

The second algorithm handles negative edge-lengths. We
obtain an algorithm that takes time O(n4�3 log(nL)), where
the lengths are integers greater than &L. For general
graphs, the best bound known is O(n1�2m log L) time, due
to Goldberg [Go1], which yields O(n3�2 log L) time on
sparse (e.g., planar) graphs. For planar graphs, Lipton,
Rose, and Tarjan [LRT] showed how to solve the problem
in O(n3�2) time using planar separators. Previously no
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1 In less restricted models, bounds of O(m+n log n�log log n) and
O(m+n - log C) can be achieved using [AMO, FrW]. Here m is the
number of edges, n is the number of nodes, and C is the maximum
magnitude of an edge-length assuming edge-lengths are integers. In work
subsequent to that discussed here, Thorup has developed an algorithm that
requires O(m log log m) time [Tho].
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algorithm handling negative lengths was known that ran
faster than O(n3�2). Our algorithm overcomes this apparent
barrier, improving the time by a (fractional) polynomial
factor when the negative lengths are not too large in
magnitude.

For planar graphs, shortest-path computation is closely
related to network flow. Hassin [Has] has shown that if a
source s and a sink t are located on the same face of a planar
graph, then a maximum st-flow can be found by computing
single-source shortest-paths in the planar dual. Thus using
our linear-time algorithm, one obtains a linear-time algo-
rithm for maximum st-flow in this case.

In the case when s and t are not on the same face and the
graph is directed, Miller and Naor [MiN] (see also
Johnson and Venkatesan [JoV]) show how to solve max-
flow by computing single-source shortest-path computation
with negative lengths. They use this approach to find a
maximum flow. They also use the approach in solving the
following problem: given multiple sources and multiple
sinks, each with a specified supply or demand, find a feasible
flow in the network. Bipartite perfect matching in a planar
graph, for example, can be formulated in this way. The pre-
vious best algorithms for all of these problems required
0(n3�2) time. Our shortest-path algorithm thus yields
polynomial-factor improvements for these problems. In
particular, we obtain an O(n4�3 log n)-time algorithm
for planar bipartite perfect matching. We obtain an
O(n4�3 log n log C)-time algorithm for maximum flow,
where C is the sum of (integral) capacities.

The approach used in obtaining the shortest-path algo-
rithm for arbitrary lengths also enables us to obtain parallel
and dynamic algorithms for this problem.

The key to both our shortest-path algorithms is our use
of graph-decompositions based on separators. Lipton and
Tarjan showed [LiT] that given an n-node planar graph
one can in linear time find a set of nodes of size O(- n)
whose removal breaks the graph into pieces each of size at
most 2

3n. Based on this result, Frederickson [Freb]
developed the notion of an r-division of graph, a division of
the graph into regions of size 3(r) with boundaries of size
O(- r). Frederickson showed that an r-division could be
found in O(n log n) time by recursive application of the
separator-algorithm of Lipton and Tarjan.2

The algorithm for nonnegative edge-lenghts starts with a
recursive version of an r-division, e.g., an r-division each of
whose regions has an r$-division (for r$ much smaller than r),
and so on. We use roughly log* n levels of divisions. The
algorithm maintains priority queues for each of the regions.
It performs steps analogous to those of Dijkstra's algorithm
for shortest paths, but moves between the queues of
different regions in a way that takes into account the fact

that operations on queues associated with larger regions are
more expensive than those for queues associated with
smaller regions (because the former queues have more
elements). The labels thus assigned to nodes within a region
are not guaranteed to be accurate because the labels of the
boundary nodes of the region may not be accurate. Thus the
movement between different regions must be carefully
orchestrated to make progress towards obtaining accurate
distance labels while at the same time ensuring that on
average enough small-queue operations can be done per
large-queue operation. Note tha other problems such as
bottleneck shortest path that can be solved using slight
variants of Dijkstra's algorithm can also be solved in linear
time using our approach.

One interesting aspect of our shortest-path algorithm
for nonnegative edge-lengths is that, although it uses
separators, they are not required to have size O(- n). For
example, it is sufficient to use separators of size O(n1&=).
Thus our algorithm can in principle be applied to a much
broader class of graphs than just planar graphs. Of course,
in order for the whole computation to take only linear time,
it must be possible to find the r-division in linear time. It this
is not the case, our algorithm may still be useful if many
shortest path computations are performed on the same
graph, for in this case it may be worthwhile to precompute
the decomposition. This is the case in various algorithms,
e.g., approximate multicommodity flow computations
[KPS, PST].

The algorithm for arbitrary lengths first applies the
shortest-path algorithm due to Lipton, Rose, and Tarjan
[LRT] to each region, obtaining shortest-path distances
between each pair of boundary nodes of the region. For
each region, the algorithm constructs a complete directed
graph on the boundary nodes, where the length of an
edge from u to v is defined to be the distance from u
to v within the region. The algorithm then applies the
algorithm of Goldberg to the union of these complete
graphs, obtaining distances from the source to each of
the boundary nodes. Finally, the algorithm operates once
again on each region, using the distances computed for the
boundary nodes to compute distances for all the nodes in
the region.

To obtain a parallel algorithm, we simply use a parallel
algorithm to carry out each step. Finding the r-division can
be done by repeated application of the parallel planar-
separator algorithm of Gazit and Miller [GaM]. Cohen
[Coh] gives a parallel version of the shortest-path algo-
rithm of Lipton, Rose, and Tarjan. To compute shortest
paths on the union of complete graphs, instead of using
Goldberg's algorithm, which does not directly parallelize,
we use Gabow and Tarjan's parallel algorithm for the
assignment problem; there is an efficient reduction from
single-source shortest-paths to the assignment problem. We
obtain a parallel algorithm requiring O(n2�3 log(nL) log3 n)

4 HENZINGER ET AL.

2 Goodrich has given [Goo] a linear-time algorithm to find a separator
decomposition in a planar graph. However, we will not need this result.
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time and O(n4�3 log(nL) log n) work, where L is the maxi-
mum magnitude of lengths. The same bounds hold for
perfect matching; the bounds are higher by a logarithmic
factor for max flow.

To obtain a dynamic algorithm, we use an approach used
previously for dynamically approximating shortest pats in
planar undirected graphs [KlS], an approach based in
turn on that used in dynamic algorithms for a variety of
problems in planar graphs [Frea, GaI, GIS, Sub]. To com-
pute the shortest path from a given source to a given sink,
one operates on the union of complete graphs with two of
the complete graphs replaced by the regions they represent,
one for the source and one for the sink. To update the cost
of an edge, for example, one recomputes the complete graph
for the region containing the edge. Some difficulties arise in
handling addition of edge to the network; the solution
involves bounding the time per addition only in an amor-
tized sense. The time per operation is O(n9�7 log(nL)).

In Section 2, we introduce some terminology concerning
graph divisions. In Section 3, we give our linear-time algo-
rithm for shortest paths with nonnegative edge-lengths. This
algorithm assumes the graph is equipped with a recursive
division. In Section 4, we describe our simple linear-time
algorithm for finding a recursive decomposition. In Sec-
tion 5, we give our algorithm for computing shortest paths
in the presence of negative lengths, and discuss the applica-
tion of this algorithm to finding a feasible flow and a maxi-
mum flow in a planar network. We also observe that this
algorithm can be implemented efficiently in parallel. Finally,
we describe the dynamic version of this algorithm in
Section 6.

2. GRAPH DECOMPOSITIONS

For a graph G we use V(G) to denote the node-set of G
and E(G ) to denote the edge-set. For a graph G and a node-
subset S, an S-balanced node-separator is a set of nodes
whose removal breaks G into two pieces such that each
piece contains at most an : fraction of the nodes of S (for
some suitable constant 1

2�:<1). The size of the separator
is the number of nodes it contains. For a function f, a class
of graphs that is closed under taking subgraphs is said to be
f-separable if for any n>1, an n-node graph in the class has
a separator of size O( f (n)). Examples of graph classes that
have been shown to be f-separable for sublinear functions f
are planar graphs [LiT], bounded-genus graphs [GHT],
d-dimensional overlap graphs [MTV], and graphs exclud-
ing a fixed graph as a minor [AST].

Frederickson showed [Fre2] that separators can be used
to find a division of a graph, a special kind of patition of the
edge-set into two or more subsets, called regions. A node is
said to be contained in a region if some edge of the region is
incident to the node. A node contained in more than one
region is called a boundary node of the regions containing it.

Note that each region has strictly fewer edges than the
graph itself.

An r-division of an n-node graph is a division into O(n�r)
regions, each containing at most r nodes including O(- r)
boundary nodes. Frederickson showed how to find an
r-division of an n-node planar graph in O(n log n) time.
In fact, his method applies to any subgraph-closed
- n-separable class of graphs.

We generalize the notion of an r-division in two ways. we
allow the number of boundary nodes per region to be bigger
than O(- r), and we allow the number of nodes in a region
to be bigger than r. Specifically, we define an (r, s)-division
of an n-node graph to be a division into O(n�r) regions, each
containing rO(1) nodes, each having at most s boundary
nodes. It is a strict (r, s)-division if each region has at most
r nodes.

A straightforward adaptation of Frederickson's algo-
rithm [Freb] yields the following lemma.

Lemma 2.1. Suppose f (n)=o(n). For any subgraph-
closed f-separable class of graphs, there is a constant c such
that every graph in the family has a strict (r, cf (r))-division
for any r.

Now we describe a recursive construction based on the
notion of divisions. It is used in our shortest-path algorithm
for nonnegative lengths. If we repeatedly divide the regions
of an (r, s)-division to get smaller and smaller regions, we
get a recursive division. More formally, for a nondecreasing
positive integer function f and a positive integer sequence
r� =(r0 , r1 , r2 , ..., rk), an (r� , f )-recursive division of an
n-node graph G is defined recursively as follows. The recur-
sive division contains one region RG consisting of all of G.
If G has more than one edge and r� is nonempty then, in
addition, the recursive division contains an (rk , f (rk))-divi-
sion of G and a (r� $, f )-recursive division of each of its
regions, where r� $=(r0 , r1 , ..., rk&1). The following lemma is
immediate from the definition and Frederickson's theorem.

Lemma 2.2. Suppose f (n)=o(n). For some constant c,
any graph from a subgraph-closed f-separable class has a
(r� , cf )-recursive division for any r� .

For two regions R1 and R2 of different divisions of the
recursive division, R1 is an ancestor of R2 if R1 contains R2 .
The immediate proper ancestor of a region R is called
the parent of R. Descendants and children are defined
analogously. We also use the term subregion to mean
descendant. A region with no subregions is called an atomic
region. In our linear-time algorithm, every atomic region
has precisely one edge. For an edge xy, the atomic region
consisting of xy is denoted R(xy).

The level of an atomic region is zero, and the level of a
nonatomic region is one more than the maximum level of its
immediate subregions. We use parent (R) to denote the
parent of a region R, and we use l(R) to denote its level.

5FASTER SHORTEST-PATH ALGORITHMS
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A recursive division can be compactly represented by a
rooted tree whose leaves are labeled by distinct edge of G.
We call this tree the recursive-division tree. The root of the
tree represents the region consisting of all of G, the children
of the root represent the subregions into which that
region is divided, and so on. Each leaf represents a region
containing exactly one edge.

In our linear-time algorithm, we assume the input graph
is equipped with a recursive-division tree. In Section 4 we
describe a linear-time algorithm to find a recursive decom-
position. Our decomposition algorithm can be adapted to
work for any minor-closed f -separable class of graphs where
it takes linear time to find a separator.

3. SHORTEST PATHS WITH NONNEGATIVE
EDGE-PATHS

3.1. Overview

Like Dijkstra's algorithm, our algorithm maintains a
label d(v) for each node v of G giving the length of some path
from s to v.

We say an edge vw is relaxed if d(w)�d(v)+length(vw).
It is well known that the labels give correct shortest-path
distances if the following shortest-path conditions are
satisfied:

Shortest-path condition 1: d(s)=0,

Shortest-path condition 2: every label d(v) is an upper
bound on the distance, and

Shortest-path condition 3: every edge is relaxed.

To relax an edge vw is to update d(w) according to the rule

d(w) :=min[d(w), d(v)+length(vw)].

Dijkstra's algorithm initializes d(v) to infinity for every
node, then sets d(s) to 0, and proceeds to relax every edge.
As a consequence of the order in which Dijkstra's algorithm
relaxes edges, at the end every edge is relaxed. Hence the
labels give correct distances.

Our algorithm cannot afford to relax edges in the same
order as Dijkstra's algorithm. Our algorithm's order is
inferior in that many edges need to be relaxed several times
during the course of the algorithm. However, as described
below, our algorithm can more cheaply select edges to relax,
so the overall running time is lower.

Johnson's implementation of Dijkstra's algorithm main-
tains a priority queue containing the nodes; the key of a
node v is the associated lebel d(v). Since Dijkstra's algorithm
perfoms O(n) queue operations for a graph with n nodes
and O(n) edges, and each queue operation takes O(log n)
time, the total time is O(n log n).

Frederickson took the first step toward beating this time
bound, using the idea of multiple priority queues of different
size. Frederickson's algorithm decomposes the graph into
small regions, then further decomposes those regions into
smaller regions. In preprocessing and postprocessing steps,
his algorithm does Dijkstra calculations within each region.
Because each of these regions is small, the priority queue
used in the Dijkstra calculation is small (i.e., contains few
elements) and so the queue operations are cheap. The main
thrust of his algorithm performs a Dijkstra calculation on
the graph consisting of the boundary nodes is significantly
smaller than n, so the number of queue operations is also
much smaller than n. For the main thurst, the algorithm
makes us of a data structure developed by Frederickson,
called a topology-based heap.

Our algorithm is similar to Frederickson's in that it
divides the graph into regions and subregions, and perfoms
relax operations. Like his algorithm, our algorithm runs
quickly because most queue operations are performed on
smaller queues. Our linear-time algorithm differs in that it
makes use of many (roughly log* n) levels of division: the
subregions themselves have subregions, and so on, whereas
Frederickson's method uses only three levels. The more
fundamental difference, however, is in strategy.

Frederickson's algorithm consists of a series of phases in
each of which Dijkstra's algorithm is run to completion on
a given graph. In contrast, our algorithm has a limited
``attention span.'' It chooses a region, then performs a num-
ber of steps of Dijkstra's algorithm (the number depends on
the level of the region), then abandons that region until
later. Thus it skips around between the regions.

To provide intuition, we briefly describe a simplified
version of our algorithm. The simplified version runs in
O(n log log n) time. Divide the graph into O(n�log4 n)
regions of size O(log4 n) with boundaries of size O(log2 n).3

We associate a status, active or inactive, with each edge.
Initialize by deactivating all edges and setting all node labels
d(v) to infinity. Then set the label of the source to 0, and
activate its outgoing edges. Now repeat the following two
steps:

Step 1. Select the region containing the lowest-labeled
node that has active outgoing edges in the region.

Step 2. Repeat log n times:

A. Select the lowest-labeled node v in the current
region that has active outging edges in the region. Relax and
deactivate all its outgoing edges vw in that region. For each
of the other endpoints w of these edges, if relaxing the edge
vw resulted in decreasing the label of w, then activate the
outgoing edges of w.

6 HENZINGER ET AL.

3 We omit discussion of how to do this within the required time bound.
A division with slightly different parameters can be found in linear time; see
Section 4.
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Note that applying Dijkstra's algorithm to the region would
entail repeating Step 2A as many times as there are nodes in
the region. Every node would be selected exactly once. We
cannot afford that many executions of Step 2A, since a
single region is likely to be selected more than once in
Step 1. In contrast to Dijkstra's algorithm, when a node is
selected in Step 2A, its current label may not be the correct
shortest-path distance to that node; its label may later be
decreased, and it may be selected again. Since the work done
within a region during a single execution of Step 2 is
speculative, we do not want to do too much work. On the
other hand, we do not want to execute Step 1 too many
times. In our analysis of this algorithm, we show how to
``charge'' an execution of Step 1 to the log n iterations of
Step 2A.

There is an additional detail. It may be that Step 2A
cannot be repeated log n iterations because after fewer than
log n times there are no active outgoing edges left in the
region. In this case, we say the execution of Step 2 is trun-
cated. Since we cannot charge a truncated execution of
Step 2 to log n iterations of Step 2A, we need another way
to bound the number such executions. One might think
that after a region R underwent one such truncated execu-
tion, since all its edges were inactive, the same region would
never again be selected in Step 1. However, relax-steps on
edges in another region R$ might decrease the label on a
node w on the boundary between R and R$, which would
result in w's outgoing edges being activated. If w happens to
have outgoing edges withing R, since these edges become
active, R will at some later point be selected once again in
Step 1.

This problem points the way to its solution. If R ``wakes
up'' again in this way, we can charge the subsequent trun-
cated execution involving R to the operation of updating the
label on the boundary node w. Our analysis makes use of
the fact that there are relatively few boundary nodes to
bound the truncated executions. Indeed, this is where we use
the fact that the regions have small boundaries.

In Subsection 3.2, we give the two procedures that com-
prise our algorithm, and we prove that when the algorithm
terminates, it has calculated correct shortest-path distances.
We present the analysis of the algorithms in Subsections 3.3
through 3.8.

The basis for the analysis is a charging scheme described
briefly in Subsection 3.3 and detailed in Subsection 3.5. The
properties of this scheme are proved in Subsection 3.6. In
Subsection 3.4, we analyze the simplified version outlined
above, showing that this algorithm runs in O(n log log n)
time. The analysis contains the rudiments of the ideas used
in the multilevel version. Thus intuition gained by studying
the simplified version will help the reader to understand the
analysis of the multilevel scheme, which is presented in
Subsections 3.7 and 3.8. It is the multilevel version that
achieves linear running time.

We assume in this section that the graph is equipped with
a recursive division. For the simplified version of the algo-
rithm, the recursive division is very simple: the level-2 divi-
sion consists of a single region comprising the whole graph,
the level-1 division consists of regions of size O(log4 n) with
boundaries of size O(log2 n), and, of course, the level-0 divi-
sion consists of atomic regions. For the multilevel version,
we use roughly log* n levels of division. The top level divi-
sion consists of a single region comprising the whole graph,
the next level down consists of roughly n�log2 n regions of
size slightly more than log2 n, and so on; the precise
parameters are specified in Section 4. In Subsection 3.7, we
give an inequality involving these parameters, (19), that is
sufficient for the running time to be linear.

One of the procedures, Process, refers to parameters :l ,
one for each of the levels l of the division except the atomic
level. These parameters are set differently for the simplified
version and the multilevel version. For the simplified
scheme, the middle level, level 1, has the associated para-
meter :1=log n. This value is the number of iterations of
the loop in Step 2 in the outline given above. For both
schemes, the value 1 is assigned to the parameter associated
with the highest level, the level in which there is a single
region containing the entire graph. Thus in the simplified
scheme, :2=1. The settings of the parameters for the multi-
level scheme are given in Subsection 3.7.

3.2. The Algorithm and Its Proof of Correctness

We assume without loss of generality that the input graph
G is directed, that each node has at most two incoming and
two outgoing edges, and that there is a finite-length path
from s to each node. We assume that the graph is equipped
with a recursive division.

For each region R of the recursive division of G, the algo-
rithm maintains a priority queue Q(R). If R is nonatomic,
the items stored in Q(R) are the immediate subregions of R.
If R is an atomic region, Q(R) consists of only one item, the
single edge contained in R; in this case the key associated
with the edge is either the label of the tail of the edge or
infinity, depending on whether the edge needs processing.

The algorithm is intended to ensure that for any region R,
the minimum key in the queue Q(R) is the minimum dis-
tance label d(v) over all edges vw in R that need to be pro-
cessed. We make this precise in Corollary 3.4. We use the
fact that the regions are nested to help us maintain this
property. This idea of maintaining priority queues for
nested sets is not new, and has been used, e.g., in finding the
k th smallest element in a heap [Fre3].

We assume the priority queue data structure supports the
operations:

v updateKey(Q, x, k), which updates the key of x to k,

v minItem(Q), which returns the item in Q with the
minimum key, and

7FASTER SHORTEST-PATH ALGORITHMS
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v minKey(Q), which returns the key associated with
minItem(Q).

We indicate an item is inactive by setting its key to infinity.
Items go from inactive to active and back many times
during the algorithm. We never delete items from the queue.
This convention is conceptually convenient because it
avoids the issue of having to decide, for a given newly active
item, into which of the many priority queues it should be
reinserted. In an implementation, one might remove inac-
tive items from their queues.

The two procedures are as follows:

Process(R)
Comment: R is a region.

A1 If R contains a single edge uv then
A2 If d(v)>d(u)+length(uv) then set d(v) :=d(u)+

length(uv) and, for each outgoing edge vw of v,
call GlobalUpdate(R(vw), vw, d(v)).

A3 updateKey(Q(R), uv, �).
A4 Else (R is nonatomic)
A5 Repeat :l(R) times or until minKey(Q(R)) is

infinity:
A6 Let R$ :=minItem(Q(R)).
A7 Call Process(R$), and then call updateKey

(Q(R), R$, minKey(Q(R$))).

GlobalUpdate(R, x, k)
Comment: R is a region, x is an item of Q(R), and k is a
key value.
G1 updateKey(Q(R), x, k)
G2 If the updateKey operation reduced the value of

minKey(Q(R)) then
G3 GlobalUpdate(parent(R), R, k).

To compute shortest paths from a source s, proceed as
follows. Intitialize all labels and keys to infinity. Then assign
the label d(s) :=0, and for each outgoing edge sw, call
GlobalUpdate(R(sw), sw, 0). Then repeatedly call Pro-
cess(RG), where RG is the region consisting of all of G, until
the call results in minKey(Q(RG)) being infinity. At this
point, the labels d(v) are the shortest distances from s, as we
now prove.

Recall that an edge vw is relaxed if d(w)�d(v)+
length(vw). Our goal is to prove that when the algorithm
terminates, the shortest-path conditions hold.

The algorithm immediately assigns d(s) :=0 and never
changes that label, so shortest-path condition 1 holds. We
show that shortest-path condition 2 also holds throughout
the algorithm and that shortest-path condition 3 holds if the
algorithm terminates. In the next subsection, we bound the
time until termination.

Our goal in this subsection is to show the following
invariant holds during the algorithm. During the execution
of the algorithm, the most recent invocation of Process that

is still active is called the current invocation, and the region
to which that invocation was applied is called the current
region. If Process(R$) was invoked during step A7, the
region R$ remains the current region until the end of that
step. The invariant states essentially that for any region R
that is not an ancestor of the current region, minKey(Q(R))
is the minimum label v of the tail of an edge that may
not be relaxed. The algorithm terminates when a call
Processes(RG) results in minKey(Q(RG)) being infinity. At
this point, it follows from the invariant that every edge is
relaxed. Hence the labels d(v) give shortest-path distances.

We start by addressing shortest-path condition 2.

Lemma 3.1. For each node v, throughout the algorithm
the label d(v) is an upper bound on the distance from s to v.

Proof. By induction on the number of steps of the algo-
rithm that have been executed. Initially every label except
that of s is infinity. We only change labels in step A2.
Assuming inductively that d(u) and the old value of d(v) are
upper bounds on the distance to u and v, it follows that the
new value of d(v) is also an upper bound. K

We say that an edge uv is active if the key of uv in
Q(R(uv)) is finite. To prove that every edge is relaxed at
termination, we show that (a) if an edge is inactive, then it
is relaxed; (b) at termination all edges are inactive.

Lemma 3.2. If an edge uv is inactive then it is relaxed
(except during step A2).

Proof. The lemma holds before the first call to Process
since at that point every node but s has label infinity and
every outgoing edge of s is active. The algorithm only deac-
tivates an edge uv, i.e., uv is assigned a key of � in step A3,
just after the edge is relaxed.

An edge vw could become unrelaxed when the labels of its
endpoints change. Note that labels never go up. The label of
v might go down in step A2, but in the same step the
algorithm calls GlobalUpdate(R(vw), vw, d(v)) for each
outgoing edge vw of v. In step G1 of GlobalUpdate, the key
of vw is updated to a finite value, so vw is again active. K

Lemma 3.3. The key of an active edge vw is d(v) (expect
during step A2).

Proof. Initially all labels and keys are �. Whenever a
label d(v) is assigned a value k (either in the initialization,
where v=s, or step A2), GlobalUpdate(R(vw), vw, k) is
called for each outgoing edge uw. The first step of
GlobalUpdate(R, v, k) is to update the key of vw to k. K

New we show that the queues are ``consistent,'' in a sense
to become apparent.

Lemma 3.4. For any region R that is not an ancestor of
the current region, the key associated with R in Q(parent(R))
is the min key of Q(R).

8 HENZINGER ET AL.
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Proof. At the very beginning of the algorithm, all keys
are infinity. Thus in this case the lemma holds trivially.
Every time the minimum key of some queue Q(R) is
changed in step G1, a recursive call to GlobalUpdate in
step G3 ensures that the key associated with R in
Q(parent(R)) is updated.

We must also consider the moment when a new region
becomes the current region. This happens upon invocation
of the procedure Process, and upon return from Process.
When Process(R) is newly invoked, the new current region
R is a child of the old current region, so Lemma 3.4 applies
to even fewer regions than before; hence, we know it
continues to hold. When Process(R) returns, the parent of
the previous current region R becomes current. Hence at
that point Lemma 3.4 applies to R. Note, however, that
immediately after the call to Process(R), the calling invoca-
tion, which is Process(parent(R)), updates the key of R in
Q(parent(R)) to the value minKey(Q(R)). K

Finally, we prove the correctness invariant for the algo-
rithm. As described at the beginning of this subsection, this
invariant implies that, when the algorithm terminates, the
labels are correct.

Corollary 3.5. For any region R that is not an ancestor
of the current region,

minKey(Q(R))=min[d(v) : uv is a pending edge

contained in R]. (1)

Proof. By induction on the level of R, using Lemma 3.4.
K

3.3. Invocations, and the Charging Invariant

In this subsection, we introduce some terminology used
for the analysis of the algorithm, and we state the invariant
satisfied by our charging scheme. In Subsection 3.4, we
show that, assuming the invariant holds, the simplified algo-
rithm runs in O(n log log n) time. In Subsection 3.5, we
introduce more terminology and define our changing
scheme. In Subsection 3.7, we formulate a recurrence and
obtain an expression for the running time of the many-level
scheme. Finally, in Subsection 3.8, we show that the time
bound is linear.

The terminology we introduce in this section is used in
the analysis of both the simplified and the linear-time algo-
rithms. Consider an invocation A of the procedure Process.4

The region of A is the region R to which Process is applied.
The level of A is the level of its region R. If invocation B is
the result of executing step A7 during invocation A, then B
is called the child of A and A is the parent of B. The children

of an invocation A are ranked according to when they occur
in time. The descendants and ancestors of an invocation are
similarly defined. The end key of A, denoted end(A), is the
min key of Q(R) just after the invocation ends.

Recall the informal description of the simplified algorithm
in Subsection 3.1. As we explained in that subsection, we
ordinarily charge each execution of Step 1 to log n executions
of Step 2A. However, sometimes Step 2A cannot be repeated
log n times because we run out of active edges to select.
Because in such a case the loop of Step 2A runs for less time
than usual, we say the loop has been truncated. Applying this
terminology to the procedure Process, we say an invocation
A of Process is truncated if end(A) is infinity, i.e., if at the
end of the invocation the queue associated with the region
of A has no more active elements. Note that every level-0
invocation is truncated. Furthermore, when a highest-level
invocation is truncated, the algorithm terminates.

We define an entry node of a region. For each level-0
region R(uv), u is an entry node of the region. For an inter-
mediate-level region R (a level-1 region in the simplified
algorithm), each boundary node v of R with an outgoing
edge in R is an entry node of R. For the top-level region RG ,
s is the only entry node.

In Subsection 3.5, we describe a charging scheme in which
each truncated invocation C is charged to a pair (R, v),
where R is an ancestor of the region of C and v is an entry
node of R. We call C a charger of (R, v). Later we show that
our charging scheme satifies the following charging scheme
invariant:

For any pair (R, v), there is an invocation B whose
region is R such that all charges of (R, v) are
descendents of B.

We can use the invariant to bound the number of
chargers of (R, v) at a given level. By the invariant, all such
chargers are descendents of B, an invocation with region R.
Clearly there is only one charger whose region is R, namely
B itself. Let i be the level of R, and let j>i. To count the
number of level- j chargers of (R, v), note that B has at most
:i children, and each of them has at most :i&1 children, and
so on, so the number of descendents of B at level j is
:i :i&1 } } } :j+1. Thus the number of level- j chargers of (R, v)
is at most this number.

Define ;ij=:i :i&1 } } } :j+1 (for j>i, ;ii is defined to be 1;
for i< j, we define ;ij to be zero.) We state our bound as a
lemma.

Lemma 3.6. For a level-i region R and entry node v of
(R, v) has at most ;ij level- j chargers.

3.4. Analysis of the Simplified Algorithm

In this subsection, we show that the charging scheme
invariant enables us to show that the simplified algorithm

9FASTER SHORTEST-PATH ALGORITHMS
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takes O(n log log n) time. We start by bounding the number
of invocations charging to a pair (R, v), using Lemma 3.6
and the fact that :1=log n and :2=1:

v if R has level 0, then (R, v) is charged by at most one
level-0 invocation;

v if R has level 1, then the pair is charged by at most one
level-1 invocation and at most :1 level-0 invocations; and

v if R has level 2, then the pair is charged by at most one
level-2 invocation, at most :2=1 level-1 invocations, and at
most :2:1=log n level-0 invocations.

Since there are O(n) such pairs (R, v), where R has level 0,
it follows that O(n) truncated level-0 invocations are
charged to level-0 regions. There are O(n�log4 n) level-1
regions, and each has O(log2 n) boundary nodes, so there
are O((n�log4 n)(log2 n)) such pairs (R, v), where R has level
1. Each such pair is charged by at most log n level-0 invoca-
tions, for a total of O(n�log n). Finally, there is only one pair
(R, v), where R has level 2 and v is an entry node of R,
namely (RG , s), and it is charged by at most log n level-0
invocations. Thus there are O(n) truncated level-0 invoca-
tions. Similarly, the number of truncated level-1 invocations
is O(O(n�log4 n)(log2 n)), which is O(n�log2 n). There is at
most one truncated level-2 invocation.

Let sj be the total number of level- j invocations, including
both truncated and nontruncated. Since every level-0
invocation is truncated,

s0=O(n). (2)

Since each nontruncated level- j invocation results in :j

invocations at level j&1, the number of such invocations is
sj&1 �:j . Hence the total number of level-1 invocations is

s1�s0 �:1+O(n�log2 n)=O(n�log n), (3)

and the total number of level-2 invocations is

s2�s1 �:2+1=s1+1=O(n�log n). (4)

Next we analyze the time tj required for a single level- j
invocation, not including further calls made to Process or
GlobalUpdate. Obviously, t0=O(1). Each level-1 invoca-
tion results in log n operations on a queue of size log4 n.
Each such operation takes O(log log n) time, so t1=
O(log n log log n). Each level-2 invocation results in one
opertion on a queue of size O(n�log4 n), so t2=O(log n). It
follows that the total time for the algorithm, not including
time spent in GlobalUpdate, is �j sj tj=O(n log log n).

Next we analyze the time spend in GlobalUpdate. Each
initial to GlobalUpdate is made in a level-0 invocation,
which is necessarily a truncated invocation. Consider a
level-0 invocation A0 of Process, and let R(uv) be its

(atomic) region. It makes at most two calls GlobalUp-
date(R(vw), vw, d(v)), each of which leads to a series of
recursive calls to GlobalUpdate, involving a corresponding
series of regions R(vw)=R0 , ..., Rp , for p�2, where Ri+1 is
the parent region of Ri . The queue operation done on Q(R0)
takes O(1) time, the queue operation done on Q(R1) takes
O(log log n) time, and the queue operation done on Q(R2)
takes O(log n) time. Thus if the recursion goes no higher
than R1 (i.e., if p�1), it takes O(log log n) time. Since there
are O(n) level-0 invocations, the total time for GlobalUp-
date calls with p�1 is O(n log log n).

To bound the case p=2 we distinguish two cases.
Remember that O(n�log n) level-0 invocations are charged
to each level-1 or level-2 region. (These correspond to type-1
invocations in Section 3.) Their calls to GlobalUpdate
require O((n�log n) log n)=O(n) time.

The remaining cases are the level-0 invocations A0 that
are charged to their own level-0 region R(uv). (These
correspond to the type-2 invocations in Section 3.) Note
that there are 3(n) of them. We have to show that only
O(n�log n) of them result in a GlobalUpdate call with p=2.
To show this bound we associate each level-0 invocation A0

that is charged to its own level-0 region R(uv) with the node
v whose label is being updated. Since the level-0 region
R(uv) is charged at most once by a level-0 invocation and v
has indegree at most 2, at most two level-0 invocations are
associated with a given node v. Note that p=2 implies that
v is an entry node for a level-1 region and that there are at
most O(n�log2 n) entry nodes for level-1 regions. Thus there
are O(n�log2 n) level-0 invocations that charge level-0
regions and have p=2. Their total time is O(n�log n).

This shows that the total time of the algorithm is
O(n log log n), provided that the charging invariant holds.

3.5. The Charging Scheme

The start key start(A) of A is the min key of Q(R) just
before the invocation begins. The node v achieving the mini-
mum in (1) at this moment is called the start node of A. We
say that A starts with v.

The following lemma is analogous to the fact that in
Dijkstra's algorithm the labels are assigned in nondecreas-
ing order.

Lemma 3.7. For any invocation A, and for the children
A1 , ..., Ap of A,

start(A)�start(A1)�start(A2)� } } }

�start(Ap)�A. (5)

Moreover, every key assigned during A is at least start(A).

Proof. The proof is by induction on the level of A. If A's
level is 0 then it has an atomic region R(uv). In this case the

10 HENZINGER ET AL.
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start key is the value of d(u) at the beginning of the invoca-
tion. The end key is infinity. The only finite key assigned (in
GlobalUpdate) is d(u)+length(uv), which is at least d(u) by
nonnegative of edge-lengths. There are no children.

Suppose A's level is more than 0. In this case it invokes a
series A1 , ..., Ap of children. Let R be the region of A. For
i=1, ..., p, let ki be the value of minKey(Q(R)) at the time
Ai is invoked, and let kp+1 be its value at the end of Ap .
Step A6 of the algorithm ensures ki=start(Ai) for i�p. By
the inductive hypothesis, every key assigned by Ai is at least
start(Ai), so ki+1�ki . Putting these inequalities together,
we obtain

k1�k2� } } } �kp+1.

Note that k1=start(A) and kp+1=end(A). Thus (5) holds
and every key assigned during A is at least start(A). K

We define the partial order � on the set of invocations as
follows: A�B if A and B have the same region, and A
occurs no later than B. We say in this case that A is a prede-
cessor of B. We write A<B if A�B and A{B.

We say A is B 's immediate predecessor if A<B and there
is no C such that A<C<B. Note that because of the
definition of the partial order, A need not occur immediately
before B; we require only that there be no intervening
invocation with the same region.

We say an invocation A is stable if, for every B>A, the
start key of B is at least the start key of A. Consider how
instability could arise. By Lemma 3.7, computation just
within the region of A cannot result in a key within that
region being assigned a value less than the start key of A.
This idea is illustrated by two examples, the case where the
invocation's region is the whole graph and the case where it
is an atomic region.

If the region R is the top-level region RG , there are no
regions outside R, so such invocations are all stable.

Corollary 3.8. Every top-level invocation is stable.

Proof. Consider two successive such invocations D<E.
By Lemma 3.7, every key assigned during D is at least
start(D), which is the value of minKey(Q(RG)) at the begin-
ning of D. Hence the value of minKey(Q(RG)) at the end of
D is at least its value at the beginning. But start(E ) is the
value of minKey(Q(RG)) at the end of A, so start(E )�
start(D). K

Next consider a level-0 region R(vw) and two invocations
A<B on R(vw). Immediately after A, the edge vw is inac-
tive, i.e. the min key of Q(R(vw)) is infinity. The edge can
only become active again if the label d(v) is decreased. When
B occurs, the edge is active, so it follows that start(B)<
start(A), and that A is not stable. Hence if a level-0 invoca-
tion of R(vw) is stable, then no further level-0 invocations of
R(vw) occur; i.e., R(uv) is ``finished.''

For an invocation A, define stableAnc(A) to be the lowest
stable ancestor of A. By Corollary 3.8, A has at least one
stable ancestor, so this is well-defined.

As mentioned above, between two successive invocations
A and B with the same region R, a computation on a region
R$ outside R might cause a key in R to decrease. Since com-
putations on R$ only affect nodes of R$, it must be that some
node in both R$ and R (an entry node of R) had its label
decreased, and the new label becomes the minimum key
in Q(R). In this case the invocation B starts with this
entry node. Thus intuitively a series of invocations E, A1 ,
A2 , ..., Ak with the same region R during which no Ai starts
with an entry node represents a period during which the
computation on R is not affected by computation on regions
outside R, so minKey(Q(R)) does not decrease during this
period.

To characterize such a series of invocations, we define the
entry-predecessor of an invocation A to be the latest invoca-
tion E�A such that E starts with an entry node. Note that
the series E, A1 , A2 , ..., Ak is characterized by the fact
that all these invocations have the same entry-predecessor,
namely E. We denote the entry-predecessor of A by
entryPred(A).

Here is our charging scheme. We charge a truncated
invocation C to the pair (R, v), where R and v are, respec-
tively, the region and the start node of entryPred
(stableAnc(C )). To spell it out more explicitly, let A be the
lowest stable ancestor stableAnc(C ), and let R be the region
of A. Thus the region of C is a subregion of R. Also, let E be
the latest predecessor of A that starts with an entry node,
i.e., E=entryPred(A), and let v be its start node. By defini-
tion of entryPred, the start node v is an entry node of
the region of E, which is R because E�A. Thus the chargee
(R, v) of C is a region R that is an ancestor of the region of
C, together with an entry node of R. We say C is a charger
of (R, v).

We prove in Lemma 3.14 that for any invocations A<B
with entryPred(A)=entryPred(B), if B is stable then the
children of A are stable. For intuition on how this lemma
helps us prove the charging scheme invariant, suppose that
some descendent B$ of B were charged to (R, v), where R is
the region of B. We infer that B is the lowest stable ancestor
of B$ and therefore, in particular, that B is stable. Hence by
Lemma 3.14 the children of A are stable, and hence, A is not
the lowest stable ancestor of any of its proper descendents.
This shows that no such proper descendents of A are
charged to (R, v).

3.6. Proving the Charging Scheme Invariant
Lemma 3.9. Let k0 be the key associated with R at some

time t, and let A be the first invocation with region R occuring
after time t. If start(A)<k0 then A starts with an entry node.

Proof. Let v be the start node of A. Since start(A)<k0 ,
it follows from Corollary 3.5 and Lemma 3.3 that the key of
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some edge vw in R must have been lowered to less than k0

by an updateKey operation between time t and the time A
started. During this time no invocation acted on the region
R or its subregions. The updateKey operation must have
been called by an invocation GlobalUpdate(R(vw), vw, k),
occuring either during the initialization of th algorithm or
during an invocation of Process with an atomic region
R(uv).

In the former case, v=s. In the latter case, since R(uv) is
not a subregion of R, v must be a boundary node of R.
Hence, in either case v is an entry node of R. K

We immediately obtain two corollaries.

Corollary 3.10. Let A and B be invocations with region
R such that A is B's immediate predecessor. If
end(A)>start(B) then B starts with an entry node of R.

Corollary 3.11. For each region R, the first invocation
with region R starts with an entry node of R.

Lemma 3.12. If A<B are two invocations with the same
start node then start(A)>start(B).

Proof. Let v be the common start node. By
Corollary 3.5, the start key of A is the label of v at the time
A begins. The first atomic regions to be processed during A
are those for outgoing edges of v. After these are processed,
the keys associated with these atomic regions are set to
infinity in step A3. Step A2 ensures that these keys are not
futher updated unless there is a reduction in the label of v.
Since the start node of B is v, it follows by Corollary 3.5 that
some outgoing edge of v is once again pending, so such a
reduction in the label of v must have taken place before B
begins. Since the start key of B is the label of v, it follows that
start(A)>start(B). K

Lemma 3.13. For every invocation A,

start(entryPred(A))�start(A).

Proof. Let A0=entryPred(A), and let A0<A1< } } } <
Ap=A be the invocations with the same region as A that
occur between A0 and A. By definition of entryPred, none of
A1 , ..., Ap starts with an entry node, so, by Corollary 3.10,
start(A0)�start(A1)� } } } �start(A). K

Lemma 3.14. Suppose A<B are two invocations such
that entryPred(A)=entryPred(B). If B is stable then every
child of A is stable.

Proof. Let A=C0<C1< } } } <Cp=B be the invoca-
tions with region R that occur between A and B. Since
entryPred(A)=entryPred(B), the start nodes of C1 , ..., Cp

are not entry nodes of R. Hence it follows by Corollary 3.10
that end(Ci&1)�start(Ci) for i=1, ..., p. Moreover, it

follows from Lemma 3.7 that start(Ci)�end(Ci) for
i=1, ..., p. We infer that

end(A)�start(Ci) (6)

for i=1, ..., p.
Let A$ be a child of A, and let C$ be any invocation such

that C$>A$. Our goal is to show

start(A$)�start(C$) (7)

Let C be the parent invocation of C$ (so the region of C$
is R). If C=A, then (7) follows from Lemma 3.7.

Assume therefore that C>A. It follows from Lemma 3.7
that start(A$)�end(A) and that start(C )�start(C$), so it
suffices to show end(A)�start(C ). There are two cases:

Case 1: C=Ci for some i�1. In this case, end(A)�
start(C ) by (6).

Case 2: C>B. In this case, end(A)�start(B) follows
by (6), and start(B)�start(C ) follows by the stability of B,
so we obtain end(A)�start(C ). K

Finally, we prove the charging scheme invariant.

Lemma 3.15. For each pair (R, v) there is a invocation A
with region R such that every charger of (R, v) is a descendent
of A.

Proof. The lemma is trivial if (R, v) has no chargers.
Otherwise, let C be the earliest charger. Let A=
stableAnc(C ), and let E=entryPred(A). Then R is the
region of A and E, and v is the start node of E. Moreover,
by Lemma 3.13,

start(E)�start(A). (8)

Let B be any invocation such that B>A. Our goal is to
show that no descendant of B is a charger of (R, v). Suppose
for a contradiction that C$ is a descendant of B and is a
charger of (R, v). It follows that B=stableAnc(C$) and, in
particular, that B is stable. Let E$=entryPred(B), and note
that v is the start node of E$. Since B occurs after A, E$
occurs no earlier than E. Suppose that E and E$ are distinct.
In this case E$ must occur after A (else entryPred(A) would
be E$). Moreover, by Lemma 3.12, start(E$)<start(E ).
Combining this inequality with (8), we obtain start(E$)<
start(A), contradicting the stability of A. Thus we may
assume E=entryPred(B).

Case 1: C=A. In this case, A is truncated, so end(A) is
infinity. Let A$ be the immediate successor of A, and note
that since E comes no later than A and B comes after A,
E�A$<B. Since the start key of A$ must be finite, it follows
from Corollary 3.10 that A$ starts with an entry node of R,
contradicting the fact that E=entryPred(B).

12 HENZINGER ET AL.
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Case 2. C{A. By Lemma 3.14, the child of A that is
an ancestor of C is stable, contradicting the fact that A is the
lowest stable ancestor of C. K

3.7. An Expression for the Running Time of the Algorithm

In this subsection, we obtain an expression for the run-
ning time of the algorithm in terms of the characteristics of
the recursive decomposition and the parameters :i . In the
next section, we state what our algorithm requires of the
recursive decomposition. We show that if this requirement
is met, there is a way to set the parameters to achieve linear
time.

Our estimate of the running time consists of several parts.
We formulate a recurrence relation for the number sj of
level- j invocations of Process, and then give a formula in
terms of the sj 's for the running time not including the time
for GlobalUpdate. We then consider two kinds of calls to
GlobalUpdate, and separately bound the total time for calls
of each kind.

Let the recursive decomposition be a (r� , f )-recursive
decomposition, and write r� =(1, r1 , r2 , ..., rk). For nota-
tional convenience, let r0 denote 2.

There are O(n�ri) level-i regions, each having O( f (ri))
boundary nodes. Thus the total number of boundary nodes
at level i is O(nf (ri)�ri). Each is an entry node of at most two
regions at that level, so there are O(nf (ri)�ri) pairs (R, v),
where R is a level-i region and v is an entry node of R. Each
pair has at most ;ij level- j chargers by Corollary 3.6. Sum-
ming over all levels i, we obtain the following lemma.

Lemma 3.16. The number of level- j truncated invocations
is

:
i

O(nf (ri) ;ij �ri). (9)

Next we formulate a recurrence for the total number sj of
level- j invocations, including both truncated and non-trun-
cated. Since every level-0 invocation is truncated, we get
s0=�i O(nf (ri) ;i, 0 �ri) directly from Lemma 3.16. Since
each nontruncated level- j invocation results in :j invoca-
tions at level j&1, the number of such invocations is
sj&1 �:j . Hence, the total number of level- j invocations
satifies the following recurrence:

s0=:
i

O(nf (ri) ;i, 0 �ri) (10)

sj�sj&1 �:j+:
i

O(nf (ri) ;ij �ri). (11)

The time required for a single level- j invocation ( j>0),
not including further calls made to Process or GlobalUp-
date, is dominated by the number :j of iterations of the loop

multiplied by the time to obtain the minimum item from the
queue and to update its key. Since the queue of a level- j
region contains O(rO(1)

j ) items, the time for these operations
is O(log rj). Thus the time for such an invocation is
O(:j log rj). The time for a single level-0 invocation is O(1),
which is O(log r0) since we previously set r0=2. For nota-
tional convenience, set :0=1. Thus we obtain the following
lemma.

Lemma 3.17. The total time for the algorithm, not
including time spent in GlobalUpdate, is

O \ :
j�0

sj :j log rj+ .

Next we analyze the time spent in GlobalUpdate. Con-
sider a level-0 invocation A0 of Process, and let R(uv) be its
(atomic) region. It makes at most two calls GlobalUp-
date(R(vw), vw, d(v)), each of which leads to a series of
recursive calls to GlobalUpdate, involving a corresponding
series of regions R(vw)=R0 , R1 , ..., Rp , where Ri+1 is the
parent region of Ri . The call involving region Ri requires
O(log ri) time (not including recursive calls), so the total
time for the series of calls is

:
p

i=1

O(log ri). (12)

The key to the analysis is the following lemma bounding
number of terms in this series. We postpone its proof until
the end of the section.

Lemma 3.18. Suppose that in step A2 a call GlobalUp-
date(R(vw), vw, d(v)) occurs. Let R(vw)=R0 , R1 , ...,
Rp&1 , Rp be the regions to which the resulting recursive
invocations of GlobalUpdate are applied, and suppose p�1.
Then v is an entry node of Rp&1.

Let level(v)=max[i : v is a boundary node of a level-i
region]. It follows that the length p of the series is at most
1+level(v). We obtain the following corollary.

Corollary 3.19. Suppose that in step A2 a call Global
Update(R(vw), vw, d(v)) occurs. The total time for the result-
ing series of calls to GlobalUpdate is O(�1+level(v)

i=1 log rj).

Suppose the chargee of the level-0 invocation A0 is (R, x).
Let us say A0 is type 1 if the level of R is at least level(v), and
type 2 otherwise. First we bound the time spent in type-1
invocations. As in the previous analysis, for each level j there
are O(nf (rj)�rj) pairs (R, x), where R is a level- j region and
x is an entry node of R. Each is the chargee of at most ;j, 0

level-0 invocations. If such an invocation is type-1 then by
Corollary 3.19 the time required for the resulting series of
calls of GlobalUpdate is � j+1

i=1 O(log ri). We thus obtain the
following lemma.

13FASTER SHORTEST-PATH ALGORITHMS
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Lemma 3.20. The total time spent in GlobalUpdates
called from type 1 invocation is

O \:
j

(nf (rj)�rj) ;j, 0 } :
j+1

i=1

log ri+ . (13)

Now we bound the time for type-2 invocations. We do this
by bounding the quantity

:
j

:
v : level(v)= j

:
edges uv

(GlobalUpdate time

for type-2 invocations with region R(uv)). (14)

Fix an edge uv, and let j=level(v). An invocation with
region R(uv) is charged to a pair (R, x), where R is an
ancestor of R(uv) and x is a boundary node of R. Let
R0 , R1 , R2 , ... be the ancestors of R(uv), where Rl is the
ancestor at level l. If an invocation with region R(uv) has
type-2 then it is charged to a pair (R, x) where level(R)< j.
Thus GlobalUpdate time for type-2 invocations with region
R(uv) is

:
l< j

:
boundary nodes x of Rl

(GlobalUpdate time

for chargers of (Rl , x) with region R(uv)). (15)

By Corollary 3.6, the number of level-0 chargers of ( Rl , x)
is at most ;l0 . By Corollary 3.19, the Global Update time
for a single invocation with region R(uv) is O(� j+1

i=1 log ri).
Hence GlobalUpdate time for chargers of (Rl , x) with
region R(uv) is ;l0 } O(� j+1

i=1 log ri). We substitute into (15)
and use the fact that Rl has at most f (rl) boundary nodes,
obtaining

:
l< j

f (rl) ;l0 } O \ :
j+1

i=1

log ri+ (16)

for the GlobalUpdate time for type-2 invocations with
region R(uv). We substitute into (14) and use the fact that
each node v has indegree at most two, obtaining

:
j

:
v : level(v)= j

2 :
l< j

f (rl) ;l0 } O \ :
j+1

i=1

log ri+ (17)

as a bound on (14).
Recall that level(v)= j means that v is a boundary node

of a level- j region. The number of such regions is O(n�rj),
and each has f (rj) boundary nodes, so we can rewrite (17)
as

:
j

O(n�rj) } f (rj) } 2 :
l< j

f (rl) ;l0 } O \ :
j+1

i=1

log ri+ .

We thus obtain the following lemma.

Lemma 3.21. The total time spent in GlobalUpdates
called from type-2 invocations is

:
j>1

O(nf (rj)�rj) \ :
j&1

l=1

f (rl) ;l0+\ :
j+1

i=1

log ri+ . (18)

We now proceed with the proof of Lemma 3.18.

Proof. Let A0 be the invocation of Process during which
the initial call to GlobalUpdate was made, and let R(uv) be
the (atomic) region of A0 . For i=0, ..., p+1, let Gi be the
invocation of GlobalUpdate with region Ri , and note that
Gi calls Gi+1 in step G3 for i=1, ..., p. Since Gp+1 takes
place, it must be that during Gp the condition in step G2
must have been true: the updateKey operation in step G1
must have resulted in a reduction in the value of
minKey(Q(Rp)).

Since Rp is an ancestor of R0=R(vw), the edge vw
belongs to Rp . To show that v is a boundary node of Rp , we
show that the edge uv does not belong to Rp . Suppose for a
contradiction that uv # Rp , so R(uv) is a subregion of Rp .
Hence, the invocation A0 is a descendant of some invoca-
tion A whose region is Rp . If A=A0 then p=0, a contradic-
tion. Otherwise, let A$ be the child of A that is an ancestor
of A0 . The start key of A$ is the value of minKey(Q(Rp)) at
the time when A$ starts. By Lemma 3.7, every key assigned
during A$ has value at least the start key of A$, contradicting
our earlier assertion that step G1 resulted in a reduction in
the value of minKey(Q(Rp)). K

3.8. The Linear Time Bound

In this subsection, we specify a condition on the quality of
the recursive decomposition, and we assign values to the
parameters :i appearing in the procedure Process. Based on
these, we show a linear bound for the running time of the
algorithm.

Recall from the previous subsection that ri denotes the
maximum number of edges in a level-i region, and each such
region has O( f (ri)) boundary nodes. We can show that our
algorithm runs in linear time if our recursive decomposition
satisfies the condition

ri

f (ri)
�8if (ri&1) log ri+1 \ :

i+1

j=1

log rj+ (19)

for all ri 's exceeding a constant.
Let us assume that the condition holds. We set :i=

4 log ri+1 �log ri . Recall that ;ij is defined to be :i :i&1 } } }
:j+1. We obtain ;i, j=4 i& j(log ri+1 �log rj+1). Using this
setting, we state the following inequalities for later use.
These inequalities are derived in the Appendix. They hold
for all ri 's exceeding a constant.

14 HENZINGER ET AL.
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;i, 0

f (ri)
ri

�
1
2i (20)

:i log ri+1

f (ri)
ri

�
4
8i (21)

;i, 0

f (ri)
ri \ :

i+1

j=1

log rj+�
1
2 i (22)

f (ri) ;i, 0�2f (ri&1) ;i&1, 0 (23)

;i&1, 0

f (ri)
ri

f (ri&1) \ :
i+1

j=1

log rj+�
1
2i . (24)

The total time consumed by the calls to Process is
O(�j�0 sj :j log rj). We will show that the j th term in this
series is bounded by cn�2 j for some constant c. This leads to
an O(n) bound on the series.

Lemma 3.22. sj :j log rj�cn�2 j for some constant c.

Proof. The proof is by induction on j. Recall from 10
that s0=�i c1 ;i, 0 nf (ri)�ri for some constant c1 . By
inequality (20), the i th term in this series is at most c1n�2 i.
Hence, s0�2c1 n. We previously set :0=1 and log r0=1.
Hence, s0:0 log r0�2c1 n. The induction basis therefore
holds if we choose c�2c1 .

Assume by the inductive hypothesis that s1 :i log ri is
bounded by cn�2i. Our goal is to bound si+1 :i+1 log ri+1

by cn�2i+1. We consider inequality (11), which is restated
below (with a change of index names and the introduction
of c2 in place of big-O notation)

si+1�si �:i+1+:
j

c2 nf (rj) ;j, i+1

rj
.

Since si :i log ri is bounded by cn�2i, and :i=4(log ri+1 �
log ri) we can rewrite the inequality above as

si+1�
cn

4(2i:i+1 log ri+1)
+:

j

c2nf (rj) ;j, i+1

rj
.

By substituting ;j, i+1=4 j&i&1 log rj+1 �log ri+1 and
using inequality (21) we can simplify the inequality further
as

si+1�
cn

4(2i:i+1 log ri+1)
+ :

j�i+1

4c2n
8i+1(2 j&i&1:j log ri+1)

�
cn

4(2i:i+1 log ri+1)
+

8c2 n
(8i+1:i+1 log ri+1)

�
cn

2i+1:i+1 log ri+1

.

The second inequality above follows from the fact that
each :j in the summation is at least as large as :i+1 and the
fact that 2 is an upper bound on the geometric series defined
by �i�0 1�2i. The final inequality follows for c>3c2 . We
have shown that si+1:i+1 log ri+1�cn�2i+1, completing
the induction step. K

The above lemma implies that the total Process time is
linear.

We proceed by verifying that the total time for GlobalUp-
dates is linear. First we consider the type-1 GlobalUpdate
time which is bounded by the expression in (13), restated
below.

O \:
i

(nf (ri)�ri) ;i, 0 } :
i+1

j=1

log rj+ .

By inequality (22), each term of the summation above is
bounded by cn�2i for some c. Thus the total type-1
GlobalUpdate time is O(n).

To finish, we bound the total type-2 GlobalUpdate time.
Recall that this time is bounded by Eq. (18) which is
restated below.

:
j>1

O(nf (rj)�rj) \ :
j&1

i=1

f (ri) ;i0+\ :
j+1

i=1

log ri+ .

Using Eq. (23), we can simplify the summation to

:
j>1

O(nf (rj)�rj) f (rj&1) ;j&1, 0 \ :
j+1

i=1

log rj+ .

(We note that the constants in the big-O notation in the
summations above are different.) We can bound this sum-
mation by O(n) by using inequality (24) to bound the i th
term by cn�2i. Thus the total type-2 GlobalUpdate time is
linear.

This completes the analysis of the algorithm for com-
puting shortest-path with nonnegative edge-lengths.

In the following theorem, we show that for a class of
graphs with small enough separators, a recursive division
exists that is sufficiently good for the shortest-path to run in
linear time. The proof is given in the Appendix.

Theorem 3.23. For any f such that f (k)=O(k�2log= k),
where = is a constant, for any subgraph-closed f-separable
class of graphs with an f-separator theorem, there is a shor-
test-path algorithm that runs in linear time not including the
time required for building a recursive division.

The above analysis does not include the time to find
the recursive decomposition. For a minor-closed O(- n)-
separable graph class where finding a separator of size
O(- n) takes linear time, we give a linear-time algorithm to

15FASTER SHORTEST-PATH ALGORITHMS
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construct a sufficiently good recursive division. The algo-
rithm is given in Section 4. The class of planar graphs is such
a class, so we obtain the following corollary.

Corollary 3.24. Single-source shortest paths in planar
graphs with nonnegative lengths can be computed in linear
time.

4. FINDING A RECURSIVE DIVISION
IN LINEAR TIME

Recall that a recursive division of a graph is a division of
the graph into regions, a division of each of those regions
into subregions, and so on. In this section, we give a linear-
time algorithm to find an ((r0 , r1 , r2 , ...), f )-recursive
decomposition, where f (x) is a function to be defined.
(Roughly speaking, f (x)=O(x3�4 log2 x).) Recall that this
means that the level- j decomposition consists of O(n�rj)
regions, each containing O(rO(1)

j ) edges and each having
O( f (rj)) boundary nodes. The number of levels for our divi-
sion is roughly log* n. The values rj are determined in
Lemma 4.3, where we show that this recursive division is
good enough for inequality (19) to be satisfied, and there-
fore good enough for the shortest-path algorithm to run in
linear time.5 The algorithm works for any minor-closed - n-
separable family of graphs. In fact, the algorithm can be
modified to work for any minor-closed n1&=-separable
family of graphs, where = is a positive contant.

The recursive decomposition algorithm is based on an
idea of Frederickson [Fre2]. In his Lemma 4, Frederickson
shows how to find an r-division of an n-node planar graph
in O(n log r+(n�- r) log n) time. The approach is as
follows: decompose the graph into connected subgraphs all
of roughly the same size. Contract each of these subgraphs
into a single node. Apply the basic algorithm for finding an
r-division to the contracted graph. Undo the contractions,
obtaining a division of the original graph. Finally, apply the
basic algorithm to each of these regions.

In our recursive-division algorithm we use the same basic
strategy, but we apply it recursively and with different
parameters. We call the contraction operation Con-
tract(G, z). This operation uses a procedure FindClusters
from [Fre1] to determine a decomposition of the graph G
into at most n�z connected subgraph each containing at
most 3z nodes, and then contracts each subgraph to a single
node. The time required by Contract on an n-node graph is
O(n). For a node v is the contracted graph, let expand(v)
denote the set of nodes contracted to form v.

The basic procedure for finding a division, which we call
Divide, comes from [Fre2]. Given an n-node graph G and
a node-subset S, Divide(G, S, r) divides up the graph into

regions each having at most r nodes. Call a node v a bound-
ary node if (1) it lies in more than one region, or (2) it
belongs to S. The output division has the property that each
region has at most c1 - r boundary nodes, where c1 is a
constant. Furthermore, the number of regions is at most
c2( |S |�- r+n�r), where c2 is a constant. The time required
by Divide on an n-node graph is O(n log n).

Our algorithm has two phases. In the first phase, the algo-
rithm forms a series of contracted versions of the input
graph G. Each graph in the series is obtained from the pre-
vious graph by a call to Contract.

Let n be the number of nodes in G.
Let G0 :=G.
Let z0 :=2.
Let i :=0.
While number of nodes in Gi exceeds n�log n, do

Let Gi+1 :=Contract(Gi , zi)
Let zi+1 :=7zi

1�5

Let i :=i+1.
Let I :=i&1.

In the second phase of the algorithm, the graphs in the
series are considered in reverse order and a division is
obtained for each of them. The division for Gi is obtained
from that for Gi+1 by (1) further subdividing the regions of
the division of Gi+1 and (2) obtaining regions of Gi by
replacing each node v of Gi+1 with the nodes of Gi contrac-
ted to form v. During this process, the recursive-division tree
is constructed, except for the leaves.

Create a vertex vG to be the root of the recursive-division
tree.
Let DI+1 be the trivial division of GI+1 consisting of a single
region.
For i :=I down to 0 do

For each region R of Di+1

Let SR be the nodes in region R that also appear in
other regions of Di+1

Let DR :=Divide(R, SR , zi).
For each region R$ of DR ,

Expand R$ into a region R" of Gi by replacing each
v # R$ with expand(v).
Create a child vR" of vR in the recursive-division tree.

Let Di be the decomposition of Gi consisting of the
regions R" found above.

In the third phase, the leaves are added to the recursive-
division tree.

For each region R of D0 ,
For each edge e of R, create a child ve of vR.

For i=0, ..., I+1, let ni denote the number of nodes in Gi

and let ki denote the number of regions in the division Di

of Gi . The analysis of the above algorithm consists of four

16 HENZINGER ET AL.
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parts. First, we analyse the division Di to show that each of
its regions has at most 3z2

i nodes and O(z1.5
i ) boundary

nodes. Second, we show that the number ki of regions is
O(ni �z2

i ). Third, we show that the recursive-division algo-
rithm takes linear time. Finally, we show that the recursive
division obtained is good enough for use in the linear time
shortest-path algorithm.

We start by bounding the number of nodes and number
of boundary nodes per region. For notational convenience,
let zI+1=- nI+1. Then the single region of the division
DI+1 of GI+1 has z2

I+1 nodes. Consider iteration i�I in the
second phase. By the correctness of divide, the decomposi-
tion DR of a region of Di+1 consists of regions R$ of size at
most zi . By the correctness of contract, each node of Gi+1

expands to at most 3zi nodes f Gi . Hence each region R"
obtained from R$ by expanding has size at most 3z2

i .
Similarly, each region R$ has at most c1 - zi boundary
nodes by the correcteness of Divide, so the corresponding
region R" has at most 3c1z1.5

i boundary nodes.
Next we bound the number of regions in each division.

Lemma 4.1. The number ki regions in the division Di is
O(ni �z2

i ).

Proof. We show by reverse induction on i that
ki�c3ni�z2

i for all i�i0 , where i0 and c3 are constants to be
determined. For the basis, we have kI+1=1.

Consider iteration i�I in the second phase, and suppose
i�i0 . The regions of Di are obtained by subdividing the
ki+1 regions comprising the division of Gi+1. By the induc-
tive hypothesis, we have

ki+1�c3ni �z2
i . (25)

Each region R in the division of Gi+1 has |SR |�3c1 z1.5
i+1

boundary nodes. Let nR be the number of nodes in R.
Summing over all regions R in Di+1 , we obtain

:
R

nR=:
R

(number of nonboundary nodes

+number of boundary nodes)

�ni+1+:
R

3c1 z1.5
i+1

�ni+1+3c1ki+1z1.5
i+1. (26)

For each region R, by correctness of divide, the number
of subregions into which R is divided is at most
c2( |SR |�- zi+nR �zi), which in turn is at most c2(3c1z1.5

i+1 �
- zi+nR�zi). Summing over all such regions R and using
(26) and (25), we infer that the total number of subregions
is at most

:
R

c2(3c1z1.5
i+1�- zi+nR �zi)

=c1c2ki+1z1.5
i+1 �- zi+c2 :

R

nR�zi

�3c1c2ki+1 z1.5
i+1 �- zi+c2(ni+1+3c1ki+1z1.5

i+1)�zi

�3c1c2 \c3 ni+1

z2
i+1

z1.5
i+1+<- zi+c2 ni+1�zi

+3c1c2 \c3ni+1

z2
i+1 + z1.5

i+1�zi

�3c1c2c3 ni+1 �- zi zi+1+c2ni+1 �zi

+3c1c2 c3ni+1 �zi - zi+1

�3c1c2c3 ni�z1.5
i - zi+1+c2ni �z2

i

+3c1c2 c3ni�z2
i - zi+1 , (27)

where in the last line we use the fact that ni+1�ni�zi . We
have obtained an upper bound on the total number of sub-
regions into which the regions of Di+1 are divided. Each
subregion becomes a region of Di . Thus we have in fact
bounded ki , the number of regions of Di . To complete the
induction step, we show that each of the three terms in (27)
is bounded by c3 ni�3z2

i .
The second term, c2ni �z2

i , is bounded by c3ni �3z2
i if we

choose c3�3c2 . The third term is smaller than the first term.
As for the first term, recall that zi+1=7zi

1�5
. For sufficiently

large choice of i0 , we can ensure that i�i0 implies - zi+1�
9c1c2 - zi . Thus the first term is bounded by c3ni�3z2

i .
We conclude that ki�c3ni �z2

i , completing the induction
step. We have shown this inequality holds for all i�i0 . As
for i<i0 , clearly ki�(z2

i ) ni �z2
i �(z2

i0
) ni �z2

i . Thus by choos-
ing c3 to exceed the constant z2

i0
, we obtain ki�c3ni �z2

i for
every i. K

Note for the proof of the next lemma that by combining
Lemma 4.1 with inequality (26), we infer that the sum
�R nR of sizes of all regions in Di+1 is ni+1+O(ni+1 �
- zi+1), which is O(ni).

Next we analyze the running time of the recursive-
division algorithm.

Lemma 4.2. The algorithm requires O(n) time, where n is
the number of nodes in the input graph.

Proof. The time required to form the graphs G1 ,
G2 , ..., GI+1 is O(�i n�zi), which is O(n). For i<I, the time
to apply Divide to a region R of Gi+1 with nR nodes is
O(nR log nR). Each such region has O(z2

i+1) nodes, so the
time is O(nR log zi+1). Summed over all regions R, we get
�R O(nR log zi+1)=O( i+1 log zi+1). The time to obtain
the induced division of Gi is O(ni). Thus the time to obtain
divisions of all the Gi 's is �i O(ni+1 log zi+1). Since
ni+1�n�zi and log zi+1=O(z1�5

i ), the sum is O(n). K

17FASTER SHORTEST-PATH ALGORITHMS
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Finally we show that the recursive division is good
enough for the linear-time shortest-path algorithm.

Lemma 4.3. The recursive division obtained by the above
algorithm satisfies inequality (19).

Proof. First note that combining the inequalities
nj+1�nj�zj , we obtain

nj�n<`
j<i

zj . (28)

Note, moreover, that each node of Gi expands to at most
>j<i 3zj nodes of G.

Consider the division Di of Gi , and the division of G it
induces. The division Di consists of O(ni �z2

i ) regions, each
consisting of O(z2

i ) nodes and O(z1.5
i ) boundary nodes.

Thus it induces a division of G consisting of O(ni �z2
i )

regions, each consisting of O(z2
i >j<i 3zj) nodes and

O(z1.5
i >j<i 3zj) boundary nodes.

Let ri=z2
i >j<i zj , and define

f (ri)=z1.5
i `

j<i

3zj .

Then the induced division of G has O(n�ri) regions each with
O(ri 3

i) nodes and O( f (ri)) boundary nodes. Since 3i=
O(>j�i zj), the number of nodes per region is O(r2

i ).6

We show that the recursive division induced on G satisfies
(19). We have

ri

f (ri)
=

z2
i

c1 z1.5
i

=- zi �c1 .

Using the definition of zi , one can verify that zi&1=
%(log5 zi) and >j<i zj=O(log6 zi). Hence

f (ri&1)=c1z1.5
i&1 `

j<i&1

zj

=O(log7.5 zi log6 log zi).

We have

log ri+1=O(log z2
i+1)=O(z1�5

i )

and, consequently, �i+1
j log rj=O(z1�5

i ). It follows that for
a sufficiently large constant ĉ, inequality (19) is satisfied by
ri 's exceeding ĉ. K

5. SINGLE-SOURCE SHORTEST PATHS WITH
NEGATIVE EDGE-LENGTHS

In this section we consider the shortest-path problem
when the edges are allowed to have arbitrary lengths. Our
approach may be seen as an adaption of the approach
Frederickson [Fre2] used for the nonnegative length
problem. Frederickson's approach, which we adopt, is
essentially the following:

Step 1. Find an r-division of the graph into regions,
where r is a parameter to be determined.7

Step 2. Compute, for each region R, shortest-path dis-
tances within R between each pair of boundary nodes of R.
Let HR be the complete directed graph whose nodes are the
boundary nodes of R and where the length of an edge uv in
this complete graph is defined to be the u-to-v distance
within the region.

Step 3. Compute shortest paths from a given source s in
the graph obtained from the input graph by replacing each
region with the complete graph HR .

Step 4. Propagate shortest-path distance information
into the interior of the region, obtaining the distance from
s to every node in the region.

Frederickson's algorithm uses the above approach in
conjunction with Dijkstra-like searches using a data struc-
ture called the topology-based heap. Since our algorithm is
intended for graphs with negative lengths, we cannot use
Dijkstra-type search. Instead, for Step 2 we use the nested-
dissection algorithm of Lipton, Rose, and Tarjan, and for
Step 4 we use the shortest-path algorithm of Goldberg. since
the complexity of each of these algorithms differs from that
of the corresponding search used by Frederickson's algo-
rithm, we chose the region size of the division differently as
well.

Next we briefly describe the nested-dissection algorithm
of Lipton, Rose, and Tarjan and how we modify it to suit
our purposes. That algorithm uses the separator structure of
the graph to obtain an certain ordering of the nodes. Then
algorithm uses the separator structure of the graph to
obtain a certain ordering of the nodes. Then the nodes are
eliminated from the graph one at a time in the prescribed
order. Eliminating a node consists in forming a complete
graph among its neighbors that are still in the graph, and
then deleting it from the graph. In the application to com-
puting shortest paths, the step in which a node v is
eliminated assigns lengths to the edges of the complete
graph among v's neighbors. Namely, for any two edges uv
and vw, the elimination step assigns length length(uv)+
length(vw) to the new edge uw. Finally, if there was already

18 HENZINGER ET AL.

6 In fact, this is a very rough bound; the number is not much more
than ri .

7 His algorithm further subdivides these regions into subregions. Ours
does not.
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an edge uw, the cheaper of the new edge and the old edge
is retained. The elimination step has the property that, for
any pair of nodes x and y remaining after the step, the x-to-y
distance remains unchanged.

To apply this algorithm to a region, we ensure that the
boundary nodes of the region occur last in the ordering.
Then we stop the elimination process when the only nodes
remaining are the boundary nodes. At this point, we have
computed shortest-path distances among all boundary
nodes of the region, as required in step 2, and have con-
structed the complete graph needed for step 3.

The time required to eliminate a node is proportional to
the square of the number of neighbors the node has. Lipton,
Rose, and Tarjan show that this elimination process takes
time O(n3�2) for n-node planar graphs.8

Once Step 3 of our algorithm has computed the distance
from the source node to all the boundary nodes of each
region, we can carry out Step 4, propagating the shortest-
path information to the interior of the region, by running
the elimination process backwards. That is, we restore the
eliminated nodes in reverse of the order in which they were
eliminated. When a node v is restored, the distance from the
source to that node can be computed as the minimum, over
all incoming edges uv, of the distance to u plus the length
of uv.

Now we prove the correctness of the algorithm.

Lemma 5.1. The distance computed by the above algo-
rithm are correct shortest-path distances.

Proof. First let v be a boundary node. To show the dis-
tance to v is correctly computed, we show a correspondence
between shortest s-to-v paths P in the input graph G and
shortest s-to-v paths P$ in H.

Given s shortest s-to-v path P in G, mark nodes of P that
are boundary nodes of regions of the r-division. This mark-
ing divides P into a sequence of subpaths each of which
(except possibly the last starts and ends with boundary
nodes and has no internal boundary nodes. Consider such
a subpath. Since it has no internal boundary nodes, it lies
entirely within some region R. It therefore corresponds to
an edge in the auxiliary graph HR . Let P$ be the path
obtained from P by replacing each internal mark-to-mark
subpath with the corresponding edge in H.

Conversely, give a shortest s-to-v path P$ in H, replace
each edge of H with the corresponding path in G, obtaining
a path P in G.

We have shown that distances from the source s to
boundary nodes v are correctly computed. For any other
node x, let v be the last boundary node on a shortest s-to-x
path P, and consider the subpath Pv from v to x. Since this
subpath contains no boundary nodes after v, it lies entirely

within some region R. It follows that in Step 4 the distance
to x is correctly computed. K

Now we analyze the algorithm. Step 1, finding the r-divi-
sion the r-division, can be done using Frederickson's algo-
rithm in O(n log n) time. Since each region has O(r) edges
and nodes, the nested-dissertion algorithm used in Step 2
requires O(r3�2) time per region in the division. Since there
are O(n�r) regions in the division, the total time for Step 2
is O((n�r) r3�2). Each resulting auxiliary graph HR has
O(- r) nodes and, therefore, O(r) edges. The union H of
O(n�r) such graphs has O(n) edges and O(n�r1�2) nodes.
Therefore, running Goldberg's algorithm on H requires
O((n3�2�r1�4) log D) time, where D is the sum of absolute
values of the negative lengths. Finally, the time for Step 4
is the same as the time for Step 2. Choosing r equal to
n2�3 log4�3 D, we see that the entire algorithm requires
O(n4�3 log2�3 D) time. We thus obtain the following theorem.

Theorem 5.2. Let G be a n-node planar directed graph
such that the sum of the absolute values of the negative edge-
weights is at most D. For any node s in G the shortest-path
distances from s to all the other nodes in G can be found in
time O(n4�3 log2�3 D).

Next we address the problem of computing a feasible
flow. The input is a directed network whose edges are
labeled by lower and upper capacities, and whose nodes are
labeled by demands (both positive and negative). The goal
is to compute a feasible flow, a flow assignment such that
the sum of the flow into any node is equal to the demand at
that node, and such that, for each edge, the folow across
that edge is at least the lower capacity and at most the upper
capacity. Miller and Naor [MiN] show that if the graph is
planar the problem can be solved by doing a single-source
shortest-graph computation in the dual graph. Thus our
algorithm can find a feasible flow if one exists in time
O(n4�3 log2�3 D) time, where D is the sum of all the edge-
capacities.

Miller and Naor also point out that since this reduction
yields an integral flow if the capacities are integral, the same
approach solves the problem of finding a perfect matching
in a planar bipartite graph. In this case the capacities are all
1, so the time required by our algorithm is O(n4�3 log2�3 n).

Finally, Miller and Naor show that by a series of log n
such computations, one can find a maximum source-to-sink
flow. Thus we obtain a bound of O(n4�3 log n log2�3 D) for
this problem. More generally, if there are multiple source
and sinks that lie on the boundaries of at most k faces
then a maximum flow in G can be computed in
O(k2n4�3 log n log2�3 D) time.

5.1. Computing Shortest Paths in Parallel

To get an efficient parallel algorithm we follow the same
approach but use somewhat different algorithms. In Steps 2

19FASTER SHORTEST-PATH ALGORITHMS

8 Indeed, the algorithm works for any - n-separable family of graphs, as
long as separators can be found quickly enough.
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and 4, we use a parallel algorithm due to Cohen [Coh] that
takes polylog time and does O(r3�2) work for an r-node
graph. In Step 3, instead of using Goldberg's algorithm, we
use an algorithm due to Gabow and Tarjan [GaT]. Given
an x-node e-edge graph H with integral edge-lengths that
are at most N in magnitude, the algorithm in [GaT]
computes single-source shortest-paths in H in time
O(- x e log(xN)(log 2p)�p) using p�e�(- x log2 x) pro-
cessors. Using this algorithm in Phase II and setting r to be
n2�3 log4�3 n and p to be n2�3�log5�3 n we can get a parallel
algorithm with the following bounds.

Theorem 5.3. Let G be a n-node planar directed graph
such that the sum of the absolute values of the edge-lengths
is at most D. The single-source shortest-path problem in G
from a given source-node s can be solved in time
O(n2�3 log7�3 n log(nD)) and work O(n4�3 log n log(nD)).

We obtain similar bounds for feasible flow and maximum
flow using the reduction of Miller and Naor.

6. A FULLY DYNAMIC DATA STRUCTURE FOR
SHORTEST PATHS IN PLANAR GRAPHS WITH

POSITIVE AND NEGATIVE EDGE-LENGTHS

In this section we describe a fully dynamic data structure
for maintaining all-pairs shortest paths in a planar directed
graph that can have both negative and nonnegative-length
edges. As with the sequential algorithm our dynamic
algorithm also uses the division-based of Frederickson. We
use the cluster-partitioning approach previously used by
Frederickson, Galil and Italiano, and others [Fre1, GaI,
GIS, Sub].

The basic idea to divide G into suitably sized pieces and
precompute all-boundary pair shortest paths in each piece.
These precomputed answers are used to answer any given
query quickly. When edges are aded or removed we need
only recompute the shortest paths in a few pieces.

Throughout this section we assume that the edge-addi-
tions preserve planarity. This can be easily enforced within
the same time and space bounds by running the dynamic
planarity-testing algorithm by Galil, Italiano, and Sarnak
[GIS] in the background and only allowing edge-additions
that preserve planarity. The edge-additions need not
preserve the specific planar embedding since planarity is
only required in order to obtain the division, and every so
often the algorithm recomputes the division from scratch.

Our dynamic algorithm supports the following opera-
tions:

1. distance(u, v): Find the distance between u and v in G.

2. add(u, v, l ): Results in the addition of the edge uv with
length l.

3. delete(u, v): Results in the deletion of the edge uv.

Our results are stated in the following theorem and its
corollaries.

Theorem 6.1. There is a fully dynamic data structure to
maintain the all-pairs shortest-path information of a planar
graph. Let G be an n-node planar directed graph G such that
the sum of the absolute-values of the negative edge-lengths is
at most D. The preprocessing to create the data structure
from G is O(n10�7). The space required by the data structure
is O(n). The time per operation is O(n9�7 log D). The time
bound for queries, edge-deletion, and changing lengths is
worst-case while the time for adding edges is amortized.

As with the sequential and parallel algorithms our shor-
test path algorithm can be used to derive dynamic algo-
rithms for maintaining a feasible flow in planar graphs. A
query determines the amount of flow on a particular edge.
The time per operation is O(n9�7 log C ), where C is the sum
of edge-capacities. This algorithm can in turn be applied to
maintain a perfect matching.

We start by finding an r-division of G (the value of r will
be determined later). As in the sequential algorithm we use
nested dissection to find all-boundary-pair shortest-paths in
each of the regions. We also construct the auxiliary graph H
as before by unioning the complete auxiliary graphs HR .
Hereafter we will refer to HR as the substitute graph for the
region R. Our data structure consists of the auxiliary graph
H and the original graph G along with its division.

To find the distance between two given query points u
and v, we form a temporary auxiliary graph S by unioning
the regions R1 and R2 containing u and v along with H. We
then run a sequential shortest path algorithm on S to
compute the distance between u and v.

Lemma 6.2. The distance between u and v is computed
correctly.

Proof. The proof is analogous to the proof of
Lemma 5.1. Given s shortest u-to-v path P in G, mark nodes
of P that are boundary nodes of regions of the r-division.
This marking divides P into a sequence of subpaths each of
which (except possibly the first and last) starts and ends
with boundary nodes and has no internal boundary nodes.
Consider such a subpath. Since it has no internal boundary
nodes, it lies entirely within some region R. It therefore
corresponds to an edge in the auxiliary graph HR . Let P$ be
the path obtained from P by replacing each internal mark-
to-mark subpath with the corresponding edge in H. The first
subpath starts at u and ends at a boundary node; since it has
no internal boundary nodes, it lies entirely within a region,
the region containing u. (If u is itself a boundary node, this
subpath is trivial.) Similarly the last subpath starts at a
boundary node and ends at v, and lies entirely within the
region containing u. It follows that P$ is a path in the tem-
porary auxiliary graph S. Thus the computed distance in S
is at most the actual u-to-v distance in G.

20 HENZINGER ET AL.
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Conversely, given a shortest s-to-v path P$ in S, replace
each edge of an auxiliary graph HR with the corresponding
path in G, obtaining a path P in G. Thus the distance in S
is no less than the distance in G. K

To perform an update (whenever an edge is added or
deleted, or its cost is changed) we need to recompute the
substitute graph of each region that is affected by the change
in the input. Lemma 6.3 shows that only a constant number
of regions are affected during a single update operation.

Lemma 6.3. Adding, deleting, or changing the length of
an edge affects only a constant number of regions in the divi-
sion. Therefore, only a constant number of substitute graphs
need to be recomputed to update H.

Proof. We discuss the case of an edge addition. The
arguments for edge deletion and changing edge-lengths are
similar. Consider adding the edge uv. If u and v lie in the
same region, this addition results in a change to that region.
If they lie in different regions, one of the regions is chosen to
contain the new edge, and the node not previously in that
region becomes a boundary node of that region. Thus that
region is changed. Moreover, if that node was previously in
only one region, it becomes a boundary node of that region
as well, so that region changes. (If the node was previously
in more than one region, it was already a boundary node in
those regions, so those regions do not change.) K

Repeated requests for adding edges can result in an excess
of boundary nodes. Therefore, we recompute the r-division
after the number of add operations exceeds the value of a
preset parameter limit.

We are now ready to discuss our bounds for maintaining
all-pairs shortest paths. We set r to be n6�7 and limit to be
n3�7. Just after that r-division is computed, each region has
at most cn3�7 boundary nodes for some constant c. Since we
recompute the division every n3�7 adds, each region has at
most (c+1) n3�7 boundary nodes at any time.

There are O(n�r) regions, each having O(- r) boundary
nodes. Since r=n6�7, the number of boundary nodes is
O(n3�7). Hence each complete auxiliary graph HR has
O(n3�7) nodes and O(n6�7) edges. Since there are O(n1�7)
regions, the auxiliary graph H obtained from the graph HR

has O(n1�7 } n3�7)=O(n4�7) nodes and O(n1�7 } n6�7)=O(n)
edges. The same bounds hold for the size of the auxiliary
graph S as well. Therefore, running Goldberg's algorithm
[Gol] on S will require O(n9�7 log D) time to find the
shortest u-to-v path. This shows that the query time is
O(n9�7 log D).

To bound the update time we note that all-boundary-pair
shortest-paths can be computed in O(n9�7) time for any
region R using nested dissection. Since only a constant num-
ber of subgraphs are affected during an update operation,
the time for an update is also O(n9�7). We also recompute

the division9 and all the substitute graphs, once every n3�7

adds. The time taken to recompute the division is O(n log n)
and the time required to build all the substitute graphs is
O(n10�7). Amortizing this over n3�7 adds we find that the
amortized time of rebuilding the data structure is O(n) per
add operation. We therefore get a fully dynamic algorithm
for maintaining exact all-pairs shortest paths that requires
O(n9�7 log D) time per operation. The bounds of Theorem
6.1 therefore follows.

APPENDIX

At the beginning of Subsection 3.8, in analyzing the algo-
rithm for shortest-paths with nonnegative lengths, we stated
what we required of the recursive decomposition in
inequality (19). In this appendix, we show how inequalities
(20) through (24), used in that subsection, can be derived
from inequality (19). We also prove Theorem 3.23, which
states that even graphs with fairly poor separators have
recursive decompositions satisfying inequality (19). We
start by restating the key inequality, inequality (19),

ri

f (ri)
�8if (ri&1) log ri+1 \ :

i+1

j=1

log rj+ .

A.1. Derivation of Auxiliary Inequalities

By simple algebra (reciprocating and cross multiplying to
obtain 1�2i on the right-hand side) and by substituting
;i, 0=4i log ri+1 �log r1 , we rewrite (19) as

;i, 0

f (ri)
ri

f (ri&1) \ :
i+1

j=1

log rj+�
1

2i log r1

. (29)

By assuming that log r1�1 (i.e., the second lowest level of
the decomposition has a region that contains at least two
nodes) and that f (ri&1)�1 (i.e., on each recursive level
there is at least one border node), we obtain inequality (22).
By noting that ;i&1, 0<;i, 0 we can obtain inequality (24)
from (22). By additionally noting that (�i+1

j=1 log rj)�1 we
obtain inequality (20) from inequality (29).

To derive inequality (21), we use simple algebra in (19)
and substitute in :i=4 log ri+1 �log ri to obtain

:i
f (ri)

ri
f (ri&1) \ :

i+1

j=1

log rj+�
4

8i log ri
. (30)

By noting that (�i+1
j=1 log rj)�log ri+1 , that log ri�1

(for ri exceeding some constant), and that f (ri&1)�1, we
obtain inequality (21).
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9 If necessary, we first recompute a planar embedding.
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Finally, inequality (23) holds (even without condition
(19)) because f (ri)� f (ri&1) (since f is nondecreasing) and
because ;i, 0�4;i&1, 0 .

A.2. The Proof of Theorem 3.23.

We restate and prove Theorem 3.23:

Theorem A.1. For any f such that f (k)=O(k�2log= k),
where = is a constant, for any subgraph-closed f-separable
class of graphs with an f-separator theorem, there is a shor-
test-path algorithm that runs in linear time not including the
time required for building a recursive division.

Proof. We will use a (r� , f ) recursive division for a
sequence r� that we define in terms of a function g to be
specified later. Let r� =(r0 , r1 , ..., rs) be defined by rs=n,
ri&1=g(ri). For a nonnegative integer i, we use gi to denote
the i-fold composition of g with itself, i.e., g0(k)=k, gi(k)=
g(gi&1(k)). Define g&1(k) to be max[i : g(i )=k]. Finally,
define g*(k) to be max[i : gi(k)=1]. Since ri=g(ri+1) and
f (x)�x, we can ensure that Eq. (19) holds if for all k the
following inequality holds:

k
f (k)

�8g*(k)g(k) log g&1(k) \ :
g*(k)

j=0

log g&1+ j(k)+ .

Since g(k)�k, we can infer log g&1+ j(k)�log g&1(k) for
any positive j. Hence, the inequality above is implied by the
following inequality:

k
f (k)

�8g*(k)g(k) g*(k) log2(g&1(k)). (31)

Let g(k) = 2c log= k. Then g*(k) = O(log log k), 8g*(k) =
O(logO(1) k), and log g&1(k)=O(log1�= k). Let r� =(r0 ,
r1 , ..., rs) be defined by rs=n, ri&1=g(ri). By Lemma 2.2,
there exists an (r� , f ) recursive division. In order to prove
inequality (31), we need to prove

2log= k�2c log= k(log k)O(1)+2�=

=2c log= k+O(log log k)+2 log log k�=.

By an appropriate choice of c, this inequality can be made
to hold for sufficiently large k. K
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