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Correspondence 

Unifying Maximum Cut and Minimum Cut of a Planar Graph 

WEI-KUAN SHIH, SUN WU, AND Y. S .  KUO 

Absfmcf-We consider the real-weight maximum cut of a planar 
graph. Given an undirected planar graph with real-valued weights asso- 
ciated with its edges, find a partition of the vertices into two nonemply 
sets such that the sum of the weights of the edges connecting the two 
sets is maximum. The conventional maximum cut and minimum cut 
problems assume nonnegative edge weights, and thus are special cases 
of the real-weight maximum cut. We develop an O(n3I2 logn) algorithm 
for finding a real-weight maximum cut of a planar graph where n is 
the number of vertices in the graph. The best maximum cut algorithm 
previously known for planar graphs has the running time of O ( n 3 ) .  

Zndex Terms- Algorithm, maximum cut, maximum weight matching, 
minimum cut, minimum cycle, planar graph, planar separator theorem. 

I. INTRODUCTION 
Conventionally, the maximum cut problem and the minimum cut 

problem for undirected graphs have been treated differently. In fact, 
for general graphs finding a maximum cut is NP-hard [6] while the 
minimum cut problem can be solved in polynomial time by finding 
minimum (s, t)-cuts or equivalently by finding maximum flows [8]. 
When the graph is restricted to be planar, the complexities of both 
problems are reduced: the maximum cut problem can be transformed 
into a maximum weight matching, thus is polynomial-time solvable 
[7], [ l ] ;  the minimum cut problem can be solved more efficiently 
since a minimum (s, t)-cut can be found by finding shortest paths 

In this paper, we take a unified approach to the maximum cut and 
minimum cut problems for planar graphs. We consider the following 
real-weight maximum cut problem. Let G = (V, E) be a connected 
undirected graph. Assume that each edge e E E has an associated 
real-valued weight w(e) .  The real-weight maximum cut problem is 
to find a partition of V into two nonempty sets such that the sum of 
the weights of the edges connecting the two sets is maximum. It is ap- 
parent that the conventional maximum cut and minimum cut problems 
(with nonnegative edge weights) are special cases of the real-weight 
maximum cut problem. (A minimum cut of a graph corresponds to 
a maximum cut of the negated graph.) 

Hadlock has demonstrated that for planar graphs the maximum 
cut problem can be reduced to finding a maximum weight matching 
for a complete graph 171. This approach thus yields an algorithm 
of time O(n3) where n is the number of vertices in the graph [4] 
[lo].  On the other hand, a minimum cut of a planar graph can be 
found by finding O(n) minimum (s, t)-cuts [8]. Thus, the minimum 
cut problem has an upper bound of O(n2 log’ n) [14], [15]. It should 
be mentioned that none of these algorithms can be applied to the 
more general real-weight maximum cut and we are not aware of any 
algorithm that can. 
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Fig, 1. Illustration for Lemma 1 

We investigate the real-weight maximum cut problem via a classic 
result in the planar graph theory. A connected graph G = (V, E) is 
planar iff it has a (combinatorial) dual Gd = (Vd, E d ) ,  i.e., there is a 
one-to-one correspondence f: E --+ Ed which maps a minimal cut of 
G to a simple cycle of Gd and vice versa [3]. w e  shall generalize this 
well-known result to establish a one-to-one correspondence between 
the cuts of G and the even-degree edge sets of Gd. Then finding 
a maximum cut of G is equivalent to finding a maximum (weight) 
even-degree edge set of Gd. 

We propose an algorithm for finding a maximum even-degree edge 
set of Gd.  The algorithm consists of two parts. If there is a positive 
cycle in Gd, then the problem can be reduced to finding a maximum 
weight matching of a sparse graph. By applying Lipton and Tarjan’s 
planar graph separator theorem [ 1 11, [ 121, such a maximum weight 
matching can be found in O(n3’* logn) time [13]. On the other hand, 
if Gd has no positive cycle, then a maximum even-degree edge set of 
Gd corresponds to a minimum cycle in the negated graph G ;  of Gd 
where C y  contains no negative cycle. An O(n3iz log n) algorithm 
has been presented for detecting a minimum cycle passing through 
a specified vertex in a planar graph [13]. We shall modify this algo- 
rithm for detecting a minimum cycle in G y  in the same time com- 
plexity. Consequently, we have an O(n3” log n) algorithm for finding 
a maximum even-degree edge set of Gd. In other words, a real-weight 
maximum cut of a planar graph can be found in O(n3/’ logn) time. 

In the next section, we introduce basic definitions and demonstrate 
the correspondence between cuts and even-degree edge sets. In Sec- 
tion 111, a planar graph is triangulated so that its dual becomes a 
cubic planar graph. Then we characterize a maximum even-degree 
edge set in such a cubic graph. The reductions that relate a maxi- 
mum even-degree edge set to a maximum weight matching and the 
algorithms will be described in Section IV. Finally, we make some 
concluding remarks in the last section. 

II. CUTS A N D  EVEN-DEGREE EDGE SETS 
In this paper, all graphs and multigraphs are undirected. Multi- 

graphs can have self-loops and parallel edges but graphs cannot. 
Given a connected graph G = ( V ,  E), let E(A,  B) denote the set of 
edges of G that connects two disjoint vertex sets A and B.  An edge 
set C C E is a cut if there is a partition of V into two nonempty sets 
X and x(=V - X )  such that C = E ( X ,  x). A cut is minimal if 
none of its proper subsets is a cut. 
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I 
Fig. 2. Illustration for Lemma 2 

Lemma 1: The union of two disjoint cuts is a cut. 
P?mJ Let C = C ,  UC2 where C I  = E ( X , X ) ,  C2 = 

Consider the vertex sets X n Y ,  X n Y ,  X n Y ,  and X n9 as 
E ( Y , Y ) ,  andC1  nC2 =$. 

1) For C 2 E, C is a minimal cut of G iff f ( C  ) is a simple cycle 
in Gd. 

2) For C C E ,  C is a cut of G iff f ( C )  is an even-degree edge 
set of Gd. 

Proof: 2) is implied by 1) due to Lemmas 3 and 4. Next we 
prove that 2) implies 1). 

Assume that C is a minimal cut of G. Then f ( C  ) is an even-degree 
edge set of Gd by 2). Iff(C) is not a simple cycle, thenf(C) has a 
proper subset D which is a simple cycle. Consequently f is a 
proper subset of C and f - ' ( D )  is a cut of G by 2). This contradicts 
the fact that C is minimal. Thus, f ( C )  must be a simple cycle. 

To prove the converse, let f ( C )  be a simple cycle in Gd. Then C 
is a cut of G by 2). If C is not minimal, then C has a proper subset 
CO which is also a cut. Consequently f ( C o )  is a proper subset of 
f (C)  and is even-degree by 2). This contradicts the fact that f ( C )  is 
a simple cycle. Thus, C must be a minimal cut. Q.E.D. 

Note that 1) characterizes Gd as a combinatorial dual to G [3]. 
Thus, we have the following theorem. 

Theorem 1: A connected graph G = (V, E )  is planar iff there 
is a multigraph Gd = (Vd, Ed) and a one-to-one correspondence 
f :  E 4 Ed which maps a cut of G to an even-degree edge set of Gd 
and vice versa. 

shown in Fig. 1. 
Since C I n C = 4, we have 111. REGULARIZING THE GRAPH 

Let G = ( V ,  E )  be a connected planar graph with n( = I VI) ver- 
tices. Assume that a real-valued weight is assigned to each edge. To 
6nd a (real-weight) maximum cut of G, we 6rst triangulate G by 
adding some new edges. A triangulation G, = (V ,  E , )  of G is a 
connected planar graph satisfying 

E ( X n Y , X n Y ) = E ( X n T , X i I Y ) = 4 ,  

C I = E ( X  n Y ,  X n Y )  u E ( X  n Y ,  X nY)  and 

c2 = E ( X n Y , X n Y ) U E ( X n Y , X n F ) .  

Thus, C = C I UC2 is a cut separating (X n Y )  U (x n Y )  and 
( X n Y ) u ( X n Y ) .  Q.E.D. 

Lemma 2: Let C1 and C, be cuts of G and C C C 2 .  Then 
C = C 2 - C 1  isalsoacutof-G. 

Proof: Let C = E_(X,X) and C E_(Y, y ) .  Consider the 
vertex sets X n Y ,  X n Y ,  X n Y ,  and X n Y as shown in Fig. 2. 
Then 

c 2  = E(X n y ,  X n r )  u ~ ( x  n y ,  X n u )  
U E(X nu, X n Y )  u E ( X  n Y ,  X nY). 

Since C I C C 2 and CI is a cut separating Y and Y, we have 

C = E(X n Y ,  X n Y) U E(X n Y, X n Y) and 

E(X n Y ,  x n y )  = E(X n Y ,  X nF) = 4. 
C_onse_uently, C = C 2  - C I = E(X n Y ,  X n Y ) >  E(_X n Y, 
X nY2 a n d  C is a cut separating ( X  n Y )  U ( X  n Y )  and 
( x n Y ) u ( x n Y ) .  Q.E.D. 

Applying Lemmas 1 and 2 repeatedly, one can decompose a cut 
into minimal cuts. 

Lemma 3: An edge set C C E is a cut of G = (V, E )  iff it is a 
union of disjoint minimal cuts of G. 

Now we consider a connected multigraph Gd = (Vd, Ed).  A 
nonempty edge set D C_ Ed is said to be even-degree if each ver- 
tex of Vd is incident to an even number of edges in D. Obviously a 
simple cycle is an even-degree edge set and none of its proper subset 
is even-degree. (A self-loop is a simple cycle.) 

The even-degree edge sets have essentially the same properties as 
the cuts. We just state the result without proof. 

Lemma 4: An edge set is even-degree iff it is a union of disjoint 
simple cycles. 

In the planar graph theory, the minimal cuts of a planar graph are 
associated with the simple cycles of its dual graph [3]. The following 
lemma relates the cuts to the even-degree edge sets. 

Lemma 5: Let G = ( V ,  E )  be a connected graph and let Gd = 
(Vd, Ed) be a connected multigraph. Assume that f :  E --t Ed is a 
one-to-one correspondence. Then the following two conditions are 
equivalent. 

a) E C E t ,  
b) Each vertex of G, has degree at least 2, and 
c) GI can be embedded in the plane such that each face of G, is 

enclosed by a simple cycle of three edges. 

And we assign zero weight to each new edge in Et - E .  
Lemma 6: A maximum cut of G = (V, E )  corresponds to a 

maximum cut of G I  = (V, E , ) ,  and vice versa. 
Note that GI can be constructed from G in O(n) time and G, still 

has O(n) edges as G does. Let Gd = (Vd, Ed) be a dual of G I .  
Then Gd can be constructed from GI in O(n) time and Gd is a cubic 
planar graph, i.e., each vertex of Gd has degree 3 .  We assign to 
each edge of Ed the same weight as its corresponding edge of E,. 
Then due to Theorem 1, finding a maximum cut of GI is equivalent 
to finding a maximum (weight) even-degree edge set of Gd. 

In Gd = (Vd, Ed), a cycle is said to be positive (negative, non- 
negative) if its total weight is positive (negative, nonnegative). A 
cycle is minimum (maximum) if its total weight is minimum (maxi- 
mum). The following lemma characterizes a maximum even-degree 
edge set. 

Lemma 7: Let D be a maximum even-degree edge set of Gd. If 
Gd contains a nonnegative cycle, then D is a union of vertex-disjoint 
nonnegative cycles. If Gd contains no nonnegative cycle, then D is 
a maximum cycle in Gd. 

Proof: Since Gd is a cubic graph, each vertex of Gd is adjacent 
to 0 or 2 edges in D. Thus, D is a union of vertex-disjoint cycles 
in Gd. The claim then follows from the fact that D is maximum. 
Q.E.D. 

As an example, consider the planar graph G = ( V ,  E )  shown in 
Fig. 3. A triangulation G, = (V, E,) is illustrated in Fig. 4, and its 
dual graph Gd = (Vd, Ed) illustrated in Fig. 5. A cut is exemplified 
in Fig. 4 with its corresponding even-degree edge set shown in Fig. 
5. 

IV. REDUCTIONS A N D  ALGORITHMS 
In this section, we consider the problem of finding a maximum 

even-degree edge set in a real-weight cubic planar graph Gd = 
(Vd, Ed).  w e  first show that this problem can be reduced to finding 
a maximum weight matching provided that Gd contains a positive 
cycle. 
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Fig. 6. A star substituting vertex U. 

- 5  
Fig. 3. Planar graph G .  

- 5  
Fig. 4. Triangulation G, of G. (Edges marked with short bars form a cut.) 

Fig. 7. Star graph G’ constructed from Gd. (Edges marked with short bars 
form a complete matching.) 

- 4  

Fig. 5 .  Dual graph Gd of G,. (Edges marked with short bars form an even- 
degree edge set.) 

A matching M of graph G = (V, E )  is a set of edges no two of 
which have a common vertex. If IMI = IVl/2, then M is called a 
complete matching. Assume that each edge of G has an associated 
real-valued weight. A maximum weight matching (minimum com- 
plete matching) is a matching (complete matching) of G whose total 
weight is maximum (minimum). 

To find a maximum even-degree edge set of Gd = (Vd,  Ed) ,  we 
construct a graph G’ = (V’, E’) from Gd. Each vertex U of Gd is 
replaced by a “star” in G’ and each edge e of Gd has a surrogate 
in G’ as depicted in Fig. 6 .  For the graph in Fig. 5, the constructed 
graph is shown in Fig. 7. Define the edge weights of G’ as follows: 
the surrogate of each edge e E Ed has the same weight as e; and 

all new edges in stars have zero weights. It is apparent that G’ has 
O(n) vertices and O(n)  edges and G’ can be constructed from Gd 
in O(n) time. Similar constructions have appeared in [16], [ lo],  and 
[ 131. We have the following lemma. 

E’ be a minimum complete matching of 
G’ = (V’,  E’) .  If Ed - M#+, then Ed - M is a maximum even- 
degree set of Gd = (Vd, Ed).  

E’ be any complete matching of G’ such that 
Ed -M#+. If Mdoes  not contain edge (U’, U”) in a star substituting 
a vertex U of Gd (see Fig. 6),  then Mmust  contain (U’, U’), (U”, U”) 
and all the edges incident to U in Gd and hence U has degree 0 in the 
subgraph of Gd induced by Ed -M. On the other hand, if M contains 
(U’, U”), then U has degree 2 in the subgraph. Thus, Ed - M is an 
even-degree edge set of Gd. Conversely, let D be any even-degree 
edge set of Gd. As shown in Lemma 7, D is a union of vertex- 
disjoint cycles in Gd. Thus, from the construction of G’, one can 
easily observe that there exists a complete matching M of G’ such 
that D = Ed - M (see Fig. 7). Clearly the weight of Ed - kf is 
maximum if and only if the weight of M is minimum. Q.E.D. 

A minimum complete matching of G’ can be found by finding a 
maximum weight matching of the same graph except that the weight 
w ( e )  of each edge e E E’ must be replaced by a new weight W - w ( e )  
where W is a large constant [ lo] .  Lipton and Tarjan have presented 
an O(n3/’ log n) algorithm for finding a maximum weight matching 
of a planar graph by applying the planar separator theorem [ l  11 
[12]. For graph G’ = (V’,  E’) which is not always planar, the same 
“divide-and-conquer” method can still be applied as Matsumoto et 
al. have pointed out [13]. 

Lemma 9: A maximum weight matching of G’ = (VI, E’) can 
be found in O(n3/’ log n) time. 

Note that Lemma 9 has been demonstrated in [13] for a graph 

Lemma 8: Let M 

Pro08 Let M 
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Fig. 8. The star for vertex v in G’/u. 

slightly different from G’. But the same deductions can be carried 
over for GI. 

Directly from the proof of Lemma 8 is the following simple result. 
If Gd contains a positive cycle, then Ed - Mf4 where M is a 
minimum complete matching of G’. Thus, Lemmas 8 and 9 have 
suggested an efficient algorithm for the maximum even-degree edge 
set of Gd provided that Gd has a positive cycle. In the case that 
Gd contains no positive cycle, a maximum cycle in Gd is then a 
desired maximum even-degree edge set (Lemma 7). In the following, 
we assume that the weights associated with the edges of Gd have 
been negated. Thus, we want to find a minimum cycle in graph 
G d  = ( v d ,  E d )  where G d  contains no negative cycles. 

Finding a minimum cycle in Gd can be reduced to finding max- 
imum weight matchings in certain graphs augmented from GI. Let 
U be a specified vertex in Gd. Denote by G‘jv = ( V ‘ / v ,  E‘ lv )  the 
graph augmented from G’ by adding two vertices and two edges to 
the star substituting v in G’ as shown in Fig. 8. (Other stars remain 
as in Fig. 6.) We assign zero weights to the two new edges. 

Lemma 10: Assume that M C E’lv  is a complete matching of 
G’ju = (V’ju,  E’ju) .  Then M is maximum if and only if Ed - M 
is a vertex-disjoint union of a minimum cycle Z passing through U ,  
and possibly some zero cycles in Gd = ( v d ,  Ed) .  (A similar result 
has appeared in [13].) 

Proof: Let M C E‘lu be a complete matching of G‘lu. As 
in the proof of Lemma 8, we can show that each vertex of Gd is 
adjacent to 0 to 2 edges in Ed - M ,  but vertex U is adjacent to 
exactly 2 edges in Ed - M .  Thus, Ed - M is a vertex-disjoint union 
of cycles in Gd, one of these cycles passes through U. Conversely, 
let D be a vertex-disjoint union of cycles in Gd, one of these cycles 
passes through U. One can easily verify that there exists a complete 
matching M of G’lu such that D = Ed - M .  Clearly the weight of 
M is maximum if and only if the weight of D is minimum. Since 
D is minimum and Gd contains no negative cycle, D consists of a 
minimum cycle Z passing through U and possibly some zero cycles 
in Gd. Q.E.D. 

Due to Lemma 10, one can find a minimum cycle passing through a 
specified vertex by finding a maximum weight matching, which takes 
time O(n3l2 log n ) .  Thus, a straightforward procedure for finding 
a minimum cycle in Gd would take O(n5I2 logn) time. (For each 
vertex U ,  find a minimum cycle passing through U .) In the following, 
we shall develop an O(n3i2 logn) algorithm for finding a minimum 
cycle. 

Lemma 11: Let U , ,  v 2 , ’ . ’ , v k  be vertices of G d  = ( v d ,  Ed) .  
Then one can find k cycles z l ,  z 2 , . . . , z k  in Gd in time 
O(n3/’ log n + kn log n ) ,  where each Z, is a minimum cycle passing 
through U,, j = 1, 2 , “ . , k .  

Proof: To find k minimum cycles Z , , Z 2 ,  . . . , z k ,  we need to 
compute, for each vertex v J ,  j = 1, 2, . . , k, a maximum weight 
matching of G’/vJ.  We first find a maximum weight matching M of 
G’, which takes O(n3’2 log n) time (Lemma 9). Then for each U,, 
starting with M of GI, we can find a maximum weight matching of 
G’lv, in O(n log n) time [SI, [2] since G’lu is constructed from G’ 
by adding two vertices and two edges. Thus, the total running time 
is O(n3/’ log n + kn log n). Q.E.D. 

Lemma 12 (Planar Graph Separator Theorem [ l  I]): Let Gd = 
( v d  , Ed) be a planar graph. Then v d  can be partitioned into three 
sets A, B, and S such that no edge joins a vertex in A with a vertex 
in B, IAI, IBI I c l lvd l ,  and IS\ 5 c 2 1 v d 1 1 / 2  where c1( < 1) and c2 
are two suitable positive constants. 

Lemma 13: Let Gd = ( v d ,  Ed) be a cubic planar graph which 
contains no negative cycle. Then a minimum cycle in G d  can be 
found in O(n3J2 log n) time. 

Proof: w e  apply the planar graph separator theorem to G d  . Let 
A,  B, and S (separator) be the vertex partition asserted by Lemma 
12, and let CA and Gs  be the subgraphs of Gd induced by A and 
B, respectively. A minimum cycle in Gd is either a minimum cycle 
in GA or GB or a minimum cycle in Gd passing through a vertex 
in s. Thus, a minimum cycle in Gd can be found by recursively 
finding a minimum cycle in G A  and a minimum cycle in Ge, and 
finding, for each vertex U in S ,  a minimum cycle in G d  passing 
through U. Let T ( n )  be the running time of the algorithm on a graph 
having n vertices. Since S contains O(n’i2) vertices, the minimum 
cycles passing through S can be computed in O(n3I2 log n )  time due 
to Lemma 11. Then 

~ ( n )  = ~ ( n ~ )  + 7yn2)  + 0 ( ~ 3 / 2  iogn) 

where n I + n2 5 n and n , n2 5 C, n . An induction proof shows that 
T ( ~ )  = 0 ( ~ 3 / 2  log n). Q.E.D. 

Combining all the results we have obtained, we have the following 
major theorems. 

Theorem 2: A maximum even-degree edge set of a cubic planar 
graph Gd = ( v d ,  E d )  can be found in O(n3/’ log n) time. 

Theorem 3: A real-weight maximum cut of a planar graph G = 
( V ,  E )  can be found in O(n3/2 logn) time. 

V. CONCLUDING REMARKS 

The contributions of this paper are two fold. First, the conventional 
maximum cut and minimum cut are unified to the more general real- 
weight maximum cut, and hence can be computed through a common 
framework. Second, a fast algorithm has been presented for finding 
a real-weight maximum cut of a planar graph. The algorithm makes 
extensive use of recent results on maximum matchings and minimum 
cycles, and achieves better performance than previous maximum cut 
algorithms. 
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