
J. Wang (Ed.): COCOON 2001, LNCS 2108, pp. 207–217, 2001.
© Springer-Verlag Berlin Heidelberg 2001

PC-Trees vs. PQ-Trees

Wen-Lian Hsu

Institute of Information Science, Academia Sinica, Taipei
hsu@iis.sinica.edu.tw,

http://www.iis.sinica.edu.tw/IASL/hsu/eindex.html

Abstract. A data structure called PC-tree is introduced as a generalization of
PQ-trees. PC-trees were originally introduced in a planarity test of Shih and
Hsu where they represent partial embeddings of planar graphs. PQ-trees were
invented by Booth and Lueker to test the consecutive ones property in matrices.
The original implementation of the PQ-tree algorithms by Booth and Lueker
using nine templates in each bottom-up iteration is rather complicated. Also the
complexity analysis is rather intricate. We give a very simple PC-tree algorithm
with the following advantages: (1) it does not use any template; (2) it does all
necessary operations at each iteration in one batch and does not involve the
cumbersome bottom-up operation. PC-trees can be used naturally to test the
circular ones property in matrices. And the induced PQ-tree algorithm can
considerably simplify Booth and Lueker’s modification of Lempel, Even and
Cederbaum’s planarity test.

1. Introduction

A data structure called PC-tree is considered here as a generalization of PQ-trees. PC-
trees were originally introduced to represent partial embeddings of planar graphs in
Shih and Hsu [7]. PQ-trees were used to test the consecutive ones property in
matrices [1]. However, the implementation of PQ-tree algorithms by Booth and
Lueker [1] (hereafter, referred to as the B&L algorithm) is rather complicated. Also
the complexity analysis is rather intricate. We shall present a very simple PC-tree
algorithm without using any template. Furthermore, we shall illustrate how to test the
circular ones property in matrices using PC-trees.

PQ-trees were invented for the more general purpose of representing all
permutations of a set U that are consistent with constraints of consecutiveness given
by a collection C of subsets of U with the convention that the element of each subset S
in C must occur consecutively in the permutation.

The literature on problems related to PQ-trees is quite extensive. PQ-trees can be
applied to test the consecutive ones property of (0,1)-matrices [1,3], to recognize
interval graphs [1,2] and to recognize planar graphs efficiently [1,6]. Korte and
Möhring [5] considered a modified PQ-tree and a simpler incremental update of the
tree for the purpose of recognizing interval graphs. Klein and Reif [4] constructed
efficient parallel algorithms for manipulating PQ-trees. On the other hand, PC-trees
were initially used in Shih and Hsu [7] (S&H) to represent partial embeddings of
planar graphs. Note that this approach is entirely different from Lempel, Even and

208 Wen-Lian Hsu

Cederbaum’s (LEC) approach [6] of using PQ-trees to test the consecutive ones
property of all nodes adjacent to the incoming node in their vertex addition algorithm.
In S&H, a P-node is a regular node of the graph, a C-node represents a biconnected
component and nodes adjacent to the node in consideration can be scattered anywhere
around the PC-tree. However, in LEC, the leaves of the PQ-tree must be those nodes
adjacent to the incoming node.

In this paper we shall focus on the application of PQ-trees to (0,1)-matrices. A
(0,1)-matrix M has the consecutive ones property (COP) for the rows iff its columns
can be permuted so that the ones in each row are consecutive. M is said to have the
circular ones property (CROP) for the rows if either the ones or the zeros of each row
are consecutive. When the zeros of a row are consecutive the ones will wrap around
the first and the last column.

A PQ-tree is a rooted tree T with two types of internal nodes: P and Q, which will
be represented by circles and rectangles, respectively. The leaves of T correspond 1-1
with the columns of M.

1 2 3 4 5 6
1 1 0 0 0 0
0 1 1 0 0 0
1 1 1 1 0 0
0 0 0 1 1 1
0 0 0 0 1 1

Q

1 2 3 4 5 6

P
Q

Fig. 1. A PQ-tree and the consecutive ones property

We shall follow the notations used in [1]. The frontier of a PQ-tree T, denoted by
FRONTIER(T), is the permutation of the columns obtained by ordering the leaves of T
from left to right. Such a permutation is called a consistent permutation. The B&L
algorithm considers each row as a constraint and adds them one at a time. Each time a
new row is added, the algorithm tries to modify the current PQ-tree to satisfy the
consecutiveness constraint of columns of the newly added row. To guarantee unique
PQ-tree representations we need to restrict ourselves to proper PQ-trees defined in
[1]: every P-node has at least two children; every Q-node has at least three children.
Two PQ-trees are equivalent iff one can be transformed into the other by applying
zero or more equivalent transformations. The equivalence of two trees is written T ~
T’. There are two types of equivalent transformations:

1. Arbitrarily permute the children of a P-node,
2. Reverse the order of the children of a Q-node.
Denote the set of all consistent permutations (or frontiers) of a PQ-tree T by

CONSISTENT (T) = {FRONTIER (T ’) | T ’ ~ T}. Given a PQ-tree T and a row u of
M, define a new tree called the u-reduction of T to be one whose consistent
permutations are exactly the original permutations in which the leaves in u occur
consecutively. This new tree is denoted by REDUCE(T,u). Booth and Lueker gave a
procedure REDUCE to obtain the u-reduction. The procedure applies a sequence of
templates to the nodes of T. Each template has a pattern and a replacement. If a node
matches the template’s pattern, the pattern is replaced within the tree by the

PC-Trees vs. PQ-Trees 209

template’s replacement. This is a bottom-up strategy that examines the tree node-by-
node obeying the child-before-parent discipline.

A node is said to be full if all of its descendants are in u; It is empty if none of its
descendants are in u; If some but not all of the descendants are in u, it is said to be
partial. Nodes are said to be pertinent if they are either full or partial. The pertinent
subtree of T with respect to u, denoted by PERTINENT(T, u), is the subtree of
minimum height whose frontier contains all columns in u. The root of the pertinent
subtree is denoted by ROOT(T, u), which is usually not the root of the entire tree.
There are nine templates used in [1].

In order to achieve optimal efficiency, the algorithm takes several precautions in
scanning the pertinent subtree. For example, the maintenance of parent pointers may
cause a problem. It is possible that almost all nodes in the tree may receive a new
parent even though the row u has only two elements. Therefore, parent pointers are
only kept for children of P-nodes and for endmost children of Q-nodes. Interior
children of a Q-node do not keep parent pointers. Rather, they borrow them from their
endmost siblings. These measures unavoidably complicate the implementation of the
B&L algorithm.

A PC-tree is a rooted tree T with two types of internal nodes: P and C, which will
be represented by circles and double circles, respectively. The leaves of T correspond
1-1 with the columns of M. Figure 2 gives an example of a matrix satisfying the
CROP (but not the COP) and its corresponding PC-tree. In obtaining consistent
permutations, the children of a P-node can be permuted arbitrarily whereas the
children of a C-node observe a circular list, whose order can only be changed from
clockwise to counter-clockwise. The FRONTIER(T) of a PC-tree consists of those
consistent circular permutations.

Fig. 2. A PC-tree and the circular ones property

For each PQ-tree, we can obtain its corresponding PC-tree by replacing the Q-
nodes with C-nodes. Note that flipping a Q-node in a PQ-tree is the same as changing
the circular children list of its corresponding C-node from clockwise to counter-
clockwise order. There are a few differences between PC-trees and PQ-trees: (1)
When a PQ-tree is transformed into a PC-tree, and its root is a Q-node, then its two
endmost children must be preserved in order to maintain the COP in any consistent
circular permutation of the transformed PC-tree. Aside from this restriction, all other
PC-tree operations will yield equivalent PQ-tree operations. (2) Since it is the circular
order of the leaves that needs to be preserved (for example, in Figure 2, we can rotate
the tree so that FRONTIER becomes 2,3,4,5,6,1), one might as well fix the first
column to be 1 in a PC-tree in considering any consistent circular permutation. (3)

210 Wen-Lian Hsu

The root of a PC-tree in general is not essential except to maintain the child-parent
relationships.

With the additional freedom of rotation, it is natural for PC-trees to test the CROP.
Since our purpose is to illustrate how to replace the complicated bottom-up template
matching strategy in B&L algorithm, we shall concentrate on testing the COP using
PC-trees.

Our improvement over the B&L algorithm is based on a simple observation that
there exist at most two special partial nodes and the unique path connecting them
gives a streamline view of the update operation. In particular, no template is necessary
in our PC-tree algorithm and the node-by-node examination is replaced by one swift
batch operation.

2. A Forbidden Structure of Consistent Permutations

A key observation that simplifies our PC-tree algorithm is based on the following
forbidden structure of consistent permutations.

Theorem 1. The following structure {S1, S2, S3} is forbidden in any consistent
permutation of the columns of M that preserves the COP.
Let S1 = {a1,b1}, S2 = {a2,b2} and S3 = {a3,b3} be three subsets of columns such that

(1) Columns a1, a2 and a3 are distinct from each other.
(2) None of the ai’s is the same as any of the bi’s (but b1, b2 and b3 are not

necessarily distinct).
(3) No two columns in any Si are separated by any column in the other two subsets.

Furthermore, b1, b2 and b3 are not separated by any of the ai’s.
Proof. If b1 = b2, then from (3), we must have the arrangement a1…b1(= b2)…a2…
But then, it would be impossible to place b3 anywhere in the arrangement unless b1 =
b2 = b3. In the latter case it would be impossible to place a3 anywhere in the
arrangement.

Hence, assume b1 ≠ b2. From (3), we must have the following arrangement
a1…b1…b2…a2… (or the reverse) in any consistent permutation of the columns.
Since b1, b2 and b3 must not be separated by the ai’s, we shall have
a1…b1…b3…b2…a2… Note that in the above arrangement, b3 is allowed to be the
same as either b1 or b2. But then, it would be impossible to place a3 anywhere in the
arrangement.

3. Terminal Nodes and Paths

Define a partial node to be a terminal node if none of its children is partial. In other
words, each child of a terminal node is either empty or full. Terminal nodes play a
major role in simplifying our tree-update operation.

Theorem 2. If the given matrix M satisfies the COP, then there can be at most two
terminal nodes in T at every iteration.

PC-Trees vs. PQ-Trees 211

Proof. Suppose, on the contrary, there are three terminal nodes t1, t2, and t3. Choose
an empty child ai and a full child bi from each of the ti, i = 1, 2, 3. Then, S1 = {a1,b1},
S2 = {a2,b2} and S3 = {a3,b3} constitute a forbidden structure as described in Theorem
1.

If there are two terminal nodes t1 and t2, define the unique path connecting t1 and t2
to be the terminal path. In case there is only one terminal node t, the terminal path is
defined to be the unique path from t to ROOT(T,u). In the latter case, t is called a
special terminal node if it is a C-node and its two endmost children are empty. That
is, its full children are consecutively arranged in the middle.

Now, any C-node in the interior of the terminal path has its children (not on the
path) divided into two sides. Since one can flip the children ordering along the
terminal path to obtain an equivalent PC-tree, we shall show that there is a unique
way to flip the children of these C-nodes “correctly”. Denote ROOT(T,u) by m.

Theorem 3. If M satisfies the COP and there are two terminal nodes t1 and t2, then
(1) Every C-node in the interior of the terminal path satisfies that its full children
together with its two neighbors on the path are consecutive in its circular list.
Therefore, they can be flipped correctly.
(2) Node m must be on the terminal path.
(3) Let w be a child of a node (other than t) on the unique path from m to the root of T
such that w itself is not on this path. Then w must be empty.
Proof. Consider the following cases:

(1) If a C-node w does not have any full child, we are done. Hence, assume w
has a full child d. Let the two neighbors of w in the terminal path be s1 and s2.
Suppose, in traversing the circular list of w from s1 to s2 through the full child d1, we
encounter an empty child d2, say in the order s1, d1, d2, s2. Let d1’, d2’ be two leaves of
d1, d2, respectively. Choose an empty child ai and a full child bi from each of the ti, i =
1, 2.

Then S2 = {a1,b1}, S2 = {a2,b2} and S3 = {d1’,d2’} constitute a forbidden structure
as described in Theorem 1.

(2) This is obvious.
(3) Suppose w has a leaf b in u. Since we have …a1…b1…b2…a2…(or its

reverse) in any consistent permutation of the columns, it would be impossible to place
b anywhere in the arrangement.

Theorem 4. Consider the case that M satisfies the COP and there is only one special
terminal node t. Let w be a child of a node (other than m) on the path from m to the
root of T such that w itself is not on the path. Then w must be empty.
Proof. Suppose w has a leaf b in u. Let a1, a2 be any leaf of the two endmost children
of t, respectively and b’, a leaf in a full child of t. Then we shall have a1…b’…a2 (or
its reverse) in any consistent permutation of the columns. But then, it would be
impossible to place b anywhere in the arrangement.

By considering the terminal nodes we have a global view of the distribution of all
full nodes by Theorems 3 and 4. Figure 3 illustrates an example with two terminal

212 Wen-Lian Hsu

nodes. Note that, in this example, we have flipped all full children of nodes on the
terminal path down.

Fig. 3. The unique separating path between two terminal nodes u and u’

4. Constructing the New PC-Tree

Rather than using the node-by-node tree modification in the B&L algorithm, we shall
update the current PC-tree to the new one in a batch fashion.

When a new row u is added, perform the following labeling operation:
1. label all leaf columns in u full.
2. the first time a node becomes partial or full, report this to its parent.
3. the first time a node x gets a partial or full child label x partial
4. the first time all children of a node x become full label x full

Our batch tree-update operation consists of the following steps:
1. delete all edges on the terminal path
2. duplicate the nodes on the terminal path (this is called the splitting operation)
3. create a new C-node w and connect w to all duplicated nodes according to their

relative positions on the terminal path as follows (this is called the modifying
operation): connect w directly to all P-nodes; connect w to all full children of C-
nodes according to their original ordering; contract all degree two nodes

The following figures illustrate the splitting and the modifying operation on the
graph of figure 3. Note that the root in a PC-tree does not play a major role in these
operations.

Fig. 4. The splitting operation

PC-Trees vs. PQ-Trees 213

Theorem 5. The corresponding PQ-tree of the newly constructed PC-tree is the same as the
one produced by the B&L algorithm.

Proof. As noted before, the B&L algorithm modifies the tree in a node-by-node
bottom-up fashion based on 9 templates. Whenever a pattern is matched, it is
substituted by the replacement.

We shall prove the theorem by induction on the depth of the pertinent subtree. For
each template operation of the PQ-tree, we shall illustrate the corresponding splitting
operation of the PC-tree and show the equivalence of the two operations in terms of
the resulting PQ-tree. We shall skip the easy cases of P0 and P1, Q0 and Q1.

Fig. 7. The template operations of Booth and Lurker’s algorithm

Fig. 6. The modifying operation

Template P2 for ROOT (T,S) when it is a P-node

Template P3 for a singly partial P-node which is not ROOT (T,S)

Template P4 for ROOT(T,S) when it is a P-node with one partial child (T,S)

Template P5 for a singly partial P-node, other than ROOT(T,S), with one partial child

Fig. 5. Connecting to the new C-node

214 Wen-Lian Hsu

First, consider templates at the root of T. In Figure 8 we consider template P2. The
top part of Figure shows the PQ-tree replacement. The bottom part gives the
corresponding PC-tree splitting and modifying operation. The equivalence is shown
by the two rightmost diagrams, in which a PQ-tree (on top) and its corresponding PC-
tree (in the bottom) are obtained through B&L template matching and the PC-tree
operation, respectively.

The same goes for the templates P4, P6, Q2 and Q3 as shown in Figures
9,10,11,12.

Fig. 9. Template P4 for ROOT(T,S) when it is a P-node with one partial child (T,S)

Template P6 for ROOT(T,S) when it is a doubly partial P-node

Template Q2 for a singly partial Q-node

Template Q3 for a doubly partial Q-node

Fig. 7. (Continued)

Fig. 8. Template P2 for ROOT (T,S) when it is a P-node when it is a P-node

PC-Trees vs. PQ-Trees 215

Now, assume the theorem is true for PQ-trees whose pertinent subtree is of depth k
and consider a tree whose pertinent subtree is of depth k+1. In the PQ-tree operation,
a template will be applied to a non-root terminal node x of the current PQ-tree T1, to
obtain a new PQ-tree T2. To simplify the argument we assume the pertinent subtree of
T2 has depth k. Since, by induction, further PQ-tree operations on T2 can be done
equivalently through the corresponding PC-tree operations, we only have to show that
the template matching operation on node x results in the same subtree as the one
obtained by operation on the corresponding PC-tree of T2. These are illustrated in
Figures 13 and 14.

Fig. 10. Template P6 for ROOT(T,S) when it is a doubly partial P-node

Fig. 11. Template Q2 for a singly partial Q-node

Fig. 12. Template Q3 for a double partial Q-node

216 Wen-Lian Hsu

Fig. 13. Template P3 for a singly partial P-node which is not ROOT (T,S)

Fig. 14. Template P5 for a singly partial P-node, other than ROOT(T,S), with one partial child

End of Proof of Theorem 5

5. The Complexity Analysis

In the B&L algorithm, the bottom-up propagation potentially could examine the same
node many times. Hence, special care must be taken to ensure efficiency. In our
splitting and modifying operation of PC-trees the update is done in one batch.

We shall apply the same pointer strategy as in the B&L algorithm with regard to P-
nodes and C-nodes. Our major saving is in skipping the pattern-matching phase at
each node. The remaining replacement phase will be the same as in the B&L
algorithm except that we use C-nodes instead of Q-nodes.

The detailed operations needed for PC-trees are all included in those of the B&L
algorithm. Hence, the running time is linear in the size of the input.

6. Conclusion

We believe that a more efficient implementation of our PC-tree algorithm deviating
completely from the pointer operation of B&L algorithm is possible. However, the
purpose of this paper is to demonstrate that, conceptually, there is a simpler way to
view the PQ-trees and their updates. Implementation issues of PC-trees will be left
for those who have the experience of implementing the B&L algorithm.

PC-Trees vs. PQ-Trees 217

7. Acknowledgement

This research was supported in part by the National Science Council under Grant
NSC 89-2213-E-001.

References

1. K.S. Booth and G.S. Lueker, Testing of the Consecutive Ones Property, Interval graphs,
and Graph Planarity Using PQ-Tree Algorithms, J. Comptr. Syst. Sci. 13, 3 (1976),
335-379.

2. D.R. Fulkerson and O.A. Gross, Incidence Matrices and Interval Graphs, Pacific
Journal of Math., (1965), 15:835-855.

3. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press,
New York, 1980.

4. P.N. Klein and J.H. Reif, An efficient parallel algorithm for planarity, J. of Computer
and System Science 37, (1988), 190-246.

5. N. Korte and R. H. Möhring, An Incremental Linear-Time Algorithm for Recognizing
Interval Graphs, SIAM J. Comput. 18, 1989, 68-81.

6. A. Lempel, S. Even and I. Cederbaum, An Algorithm for Planarity Testing of Graphs,
Theory of Graphs, ed., P. Rosenstiehl, Gordon and Breach, New York, (1967), 215-
232.

7. W.K. Shih and W.L. Hsu, Note A new planarity test, Theoretical Computer Science
223, (1999), 179-191.

	Introduction
	A Forbidden Structure of Consistent Permutations
	Terminal Nodes and Paths
	Constructing the New PC-Tree
	The Complexity Analysis
	Conclusion
	Acknowledgement
	References

