S8

. Aﬂo; L{R C(U("@Bj‘ uné D S ju‘f\VISCY\

*JT&’S nd Iwi‘fd(‘rcatn.&\l‘ﬂ . A %@&Q to
L”fle,b(la uj‘ NP prL\J{tv\es& "

Vu H. Fregwicin & Co, 1998,

Proving NP-Completeness Results

- K every NP-completeness proof had to be as complicated as that for
SATISFIABILITY, it is doubtful that the class of known NP-complete prob-
ems would have grown as fast as it has. However, as discussed in Section
2.4, once we have proved a single problem NP-complete, the procedure for
yroving additional problems NP-complete is greatly simplified. Given a
roblem 11 € NP, all we need do is show that some already known NP-
omplete problem II' can be transformed to [I. Thus, from now on, the

rocess of devising an NP-completeness proof for a decision problem H will
onsist of the following four steps:

(1) showing that IT is in NP,

(2) selecting a known NP-complete problem IT,
(3) constructing a transformation f from I’ to II, and
(4) proving that f is a {(polynomial) transformatmn

In this chapter, we intend not only to acquamt readers with the end
ults of this process (the finished NP-completeness proofs) but also to
prepare them for the task of constructing such proofs on their own. In Sec-
ion 3.1 we present six problems that are commonly used as the ‘“‘known
NP-complete problem’ in proofs of NP-completeness, and we prove that

46 PROVING NP-COMPLETENESS RESULTS

these six are themselves NP-complete. In Section 3.2 we describe three
general approaches for transforming one problem tc another, and we
demonstrate their use by proving a wide variety of problems NP-complete.

" A concluding section contains some suggested exercises.

3.1 Six Basic NP-Complete Problems

When seasoned practitioners are confronted with a problem [l to be
proved NP-complete, they have the advantage of having a wealth of experi-
ence to draw upon. They may well have proved a similar problem II" NP-
complete in the past or have seen such a proof. This will suggest that they
try to prove [1 NP-complete by mimicking the NP-completeness proof for
I or by transforming IT itself to fI. In many cases this may lead rather
easily to an NP-completeness proof for II.

All 100 often, however, no known NP-complete problem similar to I
can be found (even using the extensive lists at the end of this book).
such cases the practitioner may have no direct intuition as to which of the
hundreds of known NP-complete problems is best suited to serve as the
basis for the desired proof. Nevertheless, experience can still narrow the
choices down to a core of basic problems that have been useful in the past.
Even though in theory any known NP-complete problem can serve just as
well as any other for proving a new problem NP-complete, in practice cer-
tain problems do seem to be much better suited for this task. The following
six problems are among those that have been used most frequently, and we
suggest that these six can serve as a ‘‘basic core” of known NP-complete
problems for the beginner.

3-SATISFIABILITY (3SAT)

INSTANCE: Collection C = {cy,c5, - . . , ¢} Of clauses on a finite set U of
variables such that | ¢; =3 for 1 € i< m

QUESTION: Is there a truth assignment for U that satisfies all the clauses
in C?

3-DIMENSIONAL MATCHING (3DM)

INSTANCE: A set M © Wx xx Y, where W, X, and Y are disjoint sets
having the same number g of elements.

QUESTION: Does M contain a raiching, that is, a subset M' C M such
that | M'| = ¢ and no two elements of M’ agree in any coordinate?

VERTEX COVER (VO

INSTANCE: A graph G = (V,E) and a positive integer K < | V.
QUESTION: Is there a vertex cover of size K or less for G, that is, a subset
V' C V such that | V'] € K and, for each edge {1} € E, at least one of u
and v belongs to V?

Fs

€
Ve

e

"of

S€8

ets

ch

iset

3.1 SIX BASIC NP-COMPLETE PROBLEMS ' 47

CLIQUE :

INSTANCE: A graph G = (V,E) and‘a-positive integer J < | V).
QUESTION: Does G contain a cligue of size J or more, that is, a subset
V'€ V such that | ¥'| > J and every two vertices in V' are joined by an

edge in £7?

HAMILTONIAN CIRCUIT (HC)
'INSTANCE: A graph G = (V,E).
QUESTION: Does G contain a Hamiltonian circuit, that is, an ordering

<vi,Vy,...,v,> of the vertices of G, where n=| VI such that
{v,,,v;}E E and {vi,ve) €E forall i, 1<i<n?
PARTITION

INSTANCE: A finite set 4 and a “‘size’” s(a) € Z* for each a € 4.
QUESTION: Is there a subset 4" C A such that

Y sla) = ¥ s(a)?
atcAd’ aeAd~A'

One reason for the popularity of these six problems is that they all ap-
peared in the original list of 21 NP-complete problems presented in [Karp,
1972]. We shall begin our illustration of the techniques for proving NP-
completeness by proving that each of these six problems is NP-complete,
noting, whenever appropriate, variants of these problems. whose NP-
completeness follows more or tess directly from that of the basic problems.

SATISFIABILITY

v

3SAT

£ N

3DM

VAN

PARTITION HC CLIQUE

Figure 3.1 Diagram of the sequence of transformations used to prove that the six
basic problems are NP-complete.

QOur initial transformation will be from SATISFIABILITY, since it is
the only “known’ NP-complete problem we have so far. However, as we
proceed through these six proofs, we will be enlarging our collection of
known NP-complete problems, and all problems proved NP-complete before
a problem I will be available for use in proving that II is NP-complete.
The diagram of Figure 3.1 shows which problems we will be transforming to
each of our six basic problems, where an arrow is drawn from one problem
to another if the first is transformed to the second. This sequence of

- 3.1.1 3-SATISFIABILITY

48 PROVING NP-COMPLETENESS RESULTS

transformations is not identical to that used by Karp, and, even when his
sequence coincides with ours, we have sometimes modified or replaced the
original transformation in order to illustrate certain general proof tech-
niques. :

The 3-SATISFIABILITY problem is just a restricted version of SAT-
ISFIABILITY in which all instances have exactly three literals per clause.
Its simple structure makes it one of the most widely used problems for
proving other NP-completeness results.

Theorem 3.1. 3-SATISFIABILITY is NP-complete.

Proof: It is easy to see that 3SAT € NP since a nondeterministic algorithm

need only guess a truth assignment for the variables and check in polynomi-

al time whether that truth setting satisfies all the given three-literal clauses.
We transform SAT to 3SAT. Let U={uy,u,, ..., u,} be aset of vari-

ables and C={cy,c5, ..., ¢,,} be a set of clauses making up an arbitrary in-

stance of SAT. We shall construct a coliection C' of three-literal clauses on

a set /' of variables such that C' is satisfiable if and only if C is satisfiable.

The construction of C' will merely replace each individual clause ¢; € C
by an ‘‘equivalent’” collection C; of three-literal clauses, based on the origi-
nal variables U/ and some addltlonal variables U; whose use will be limited
to clauses in C;. These will be combined by setlmg

) m
U=Uvuiy Y
=1
and
m ¢
= l:J C;
Thus we only need to show how C; and U; can be constructed from c;.
Let ¢; be given by {z),25, . . .,] where the z’s are all literals derived

from the variables in U. The way in which C; and U; are formed depends
on the value of k.

Case 1. k=1. U={y},p?
C {{zhyj »yj },{Zhyj ’y_j } {le}7jl$yj2} {Zl’j;ji’j}:"z}}
Case 2. k=2. {){, { 21522’-))1 ZhZz ‘yJ }}

Case 3. k=3. =¢,C;= {{c }}

1
!
:
'

.8

his
the
zh-

vI-
se.
for

/ed
1ds

3.1 SiX BASIC NP-COMPLETE PROBLEMS - 49

Case 4. k>3. Uj={y/:1<i<k~3}
| C;m {{'leaZZ 1yjl}} U{{£921+23y;+]}'1$-;l*§k—4}
U {{Ek"3,2k—},2k}}

To prove that this is indeed a transformation, we must show that the
set C' of clauses is satisfiable if and only if C is. Suppose first that

- ¢ U—{T,F} is a truth assignment satisfying C. We show that ¢ can be ex-
" tended to a truth assignment ¢: U'—{T,F} satisfying C'. Since the variables

in U'—U are partitioned into sets U] and since the variables in each Uj oc-

“ eur only in clauses belonging to C;, we need only show how ¢.can be ex-

tended. to the sets U; one at a time, and in each case we need only verify

- that all the clauses in the corresponding C; are satisfied. We can do this as
'foilows If U; was constructed under e}ther Case 1 or Case 2, then the
clauses in C; ¥ are already satisfied by 7, so we can extend ¢ arbltrarily to U},
- say by settmg t'(p)=T for all yeU]. If U; was constructed under Case 3,

then U; is empty and the single clause in C} is already satisfied by ¢. The
only remaining case is Case 4, which corresponds to a clause
{zy,22. - - . . z) from C with k>3. Since ¢ is a satisfying truth assignment
for C, there must be a least integer / such that the literal z is set true
under ¢. If /is either 1 or 2, then we set t(y') Ffor 1€<i<k~3, If lis
either k-1 or k, then we set 1'(p)) =T for 1<:<k—~3 Otherwise we set
'(y) =T for 1<i< /-2 and z‘(y') F for I-1<i<k-3. It is easy to veri-
fy that these choices will insure that all the clauses in C; will be satisfied, so
all the clauses in C' will be satisfied by ¢'. Conversely, if ' is a satisfying
truth assignment for C’, it is easy to verify that the restriction of ¢’ to the
variables in U/ must be a satisfying truth assignment for C. Thus C' is
satisfiable if and only if C is.

To see that this transformation can be performed in polynomial time, it
suffices to observe that the number of three-literal clauses in C' is bounded
by a polynomial in mn. Hence the size of the 35AT instance is bounded
above by a polynomial function of the size of the SAT instance, and, since
all details of the construction itself are straightforward, the reader should
have no difficulty verifying that this is a polynomial transformation., ®

The restricted structure of 3SAT makes it much more useful than SAT
for proving NP-completeness results. Any proof based on SAT (except for
the one we have just given) can be converted immediately to one based on
3SAT, without even changing the transformation. In fact, the normaliza-
tion to clauses having the same size often can simplify the transformations
we need to construct and thus make them easier to find. Furthermore, the
very smallness of these clauses permits us to use transformations that would
not work for instances containing larger clauses.” This suggests that it would
be still more convenient if we could show that the analogous 2-
SATISFIABILITY problem, in which each clause has exactly two literals,
were NP-complete. However, 2SAT can be solved by “‘resolution” tech-

50 PROVING NP-COMPLETENESS RESULTS

niques in time bounded by a polynomial in the product of the number of
clauses and the number of variables in the given instance [Cook, 1971] (see
also [Even, Itai, and Shamir, 1976]), and hence is in P.

3.1.2 3-DIMENSIONAL MATCHING

The B—DIMENSIONAL MATCHING problem is a generalization of the
classical ‘‘marriage problem’’: Given n unmarried men and » unmarried
women, along with a list of all male-female pairs who would be willing to
marry one another, is it possible to arrange # marriages so that polygamy is
avoided and everyone receives an acceptable spouse? Analogously, in the
3-DIMENSIONAL MATCHING problem, the sets W, X, and Y corre-
spond to three different sexes, and each triple in M corresponds to a 3-way
marriage that would be acceptable to all three participants. Traditionalists
will be pleased toc note that, whereas 3DM is NP-complete, the ordinary
marriage problem can be solved in polynomial time (for example, see [Hop-
croft and Karp, 19731).

Theorem 3.2 3-DIMENSIONAL MATCHING is NP-complete.

Proof: It is easy to see that 3DM € NP, since a nondeterministic algorithm
need only guess a subset of g=| W|=|X|=| Y] triples from M and check in
polynomial time that no two of the guessed triples agree in any coordinate.

We will transform 3SAT to 3DM. Let U={uy,u,, ..., u,} be the set
of variables and C={c;,¢;3, . . ., c,} be the set of clauses in an arbitrary in-
stance of 3SAT. We must construct disjoint sets W, X, and Y, with
|W]=|X|=]|¥|, and a set M € W x X x Y such that M contains a match-
ing if and only if C is satisfiabie.

The set M of ordered triples will be partitioned into three separate
classes, grouped according to their intended function: ‘‘truth-setting and
fan-out,”” “‘satisfaction testing,”” or “‘garbage collection.’’ "

Each truth-setting and fan-out component corresponds o a single vari-
able #€ U, and its structure depends on the total number m of clauses in
C. This structure is illustrated for the case of m =4 in Figure 3.2. In gen-
eral, the truth-setting and fan-out component for a variable u;, involves
“internal”’ elements a,[j/1€X and b{j1€Y, 1< <m, which will not occur
in any triples outside of this component, and ‘‘external” elements
wljl, uljl1 €W, 1<j<m, which will occur in other triples. The triples
making up this component can be divided into two sets:

7 = (@160 1< <m)
7/ = {(li)a i1, 0D 1<i<m} U {(u[m),a,1],6,lmD)]}

i

Since none of the internal elements {a,{j1,5,[j1: 1< < m} will appear in any

Fi

tri
ha
in
m
er:
ab

gl
an:
lite
dei

" Th

Th

(u;
anc

IS

of
see

hm
1 in

set
in-
vith
ch-

rate
and

ari-
3 in
‘en-
VES
eur
:nts
ples

" 3.1 SIX BASIC NP-COMPLETE PROBLEMS ' 51

ul4]

73]

Figure 3.2 Truth setting component 7; when m =4 (subscripts have been deleted
for simplicity). Either all the sets of 77 (the shaded sets) or all the sets
of T/ {(the unshaded sets) must be chosen, leaving uncovered all the
u;17] or all the #[/], respectively.

triples outside of 7;=T/U T/, it is easy to see that any matching M' will
have to include exactly m tnples from T, either all triples in 77 or all triples
in /. Hence we can think of the component T; as forcing a matching to
make a choice between setting u; true and setting u, false. Thus, in gen-
eral, a matching M'C M speciﬁes a truth assignment for U, with the vari-
able u; being set true if and only if M'NT, = TL

Each satisfaction testing component in M corresponds to a single clause
¢;€C. It involves only two “‘internal” elements, s;[j1€X and s,[jl€ Y,
and external elements from {u[j1,%,{j1:1<i<n}, determined by which
literals occur in clause ¢;. The set of triples makmg up this component is
defined as follows:

C; = (G, 5,041, szlj])'u-Ec-} U {1,501, s,0D: 5, Ec}

Thus any matching M’ € M will have to contain exactiy one triple from C,.
This can only be done, however, if some w;[;] (or &]) for a literat 4, ec
(u; Ec) does not occur in the triples in 7, N M’, whlch will be the case 1f‘
and oniy if the truth setting determined by M’ satlsﬁes clause ;.

52 _ PROVING NP-COMPLETENESS RESULTS

The construction is completed by means of one large ‘‘garbage collec-
tion” component G, involving internal elements glkl€X and g,lkl€Y,
1< k< m(n—1), and external elements of the form w1 and %/} from W.
It consists of the. following set of triples:

G = { (1,2, [k1, 8,1k, (5, 11,8, (K], g, kD)
1<k<m(n-1),1<i<n,1<j<m}
Thus each pair g1ik], g,lk] must be matched with a unique u[/1 or #1/]
that does not occur in any triples of M'—G. There are exactly m(n—1)
such “‘uncovered’ external elements, and the structure of G insures that
they can always be covered by choosing M'NG appropriately. Thus G
merely guarantees that, whenever a subset of M~ G satisfies all the con-
straints imposed by the truth-setting and fan-out components, then that

subset can be extended to a matching for M.
To summarize, we set

w = {u 151 1<ign 1< <m}
X =A4US UG

where
A= lagjl:1€i€n,1<i<m)}

S = {5l 1<i< m)
G, = (gl 1<j<m(n-1}

Y*BUSzLJGQ

where .
B = (bl 1<i<n,1<j<m)

Sy = {5,141 1<j<m}
G, = gl 1€ i<m(n-1)}

and

M=|r|u UG
i1

UG
=1

_ Notice that every triple in M is an element of WX XX Y as required.
Furthermore, since M contains only

Imn + 3m + Im2n(n—1)

triples and since its definition in terms of the given 3SAT instance is quite
direct, it is easy to see that M can be constructed in polynomial time.

U]
-1)
hat

Ot~
hat

red.

yite

3.1 SiX BASIC NP.-COMPLETE PRORLEMS ‘ 53

From the comments made during the description of M, it follows
immediately that M cannot contain a matching unless C is satisfiable. We
now must show that the existence of a satisfying truth assignment for C

_implies that M contains a matching.

Let ¢: U= {T,F} be any satisfying truth assignment for C. We con-
struct a matching M C M as follows: For each clause ¢ €C, let
z; € {u;,#:1<i<n} N ¢; be a literal that is set true by 1 (one must exist

‘ smce ¢ satisfies ¢;). ‘We then set

U) G UL s 0D {u 6

=

U T

t{u)=F

M=1T
t(u)=T

where G' is an appropriately chosen subcollection of G that includes all the
g1lkl, gk}, and remaining «[j] and #[j]. 1t is easy to verify that such a
G' can always be chosen and that the resulting set M’ is a matching, ®

In proving NP-completeness results, the following slightly simpler and
more general version of 3DM can often be used in its place:

EXACT COVER BY 3-SETS (X3C)

INSTANCE: A finite set X with |X]| =3¢ and a collection C of 3-element
subsets of X.

QUESTION: Does C contain an exact cover for X, that is, a subcollection
C' C C such that every element of X occurs in exactly one member of C'?

Note that every instance of 3DM can be viewed as an instance of X3C, sim-
ply by regarding it as an unordered subset of WU XU Y, and the matchings
for that 3DM instance will be in one-to-one correspondence with the exact
covers for the X3C instance. Thus 3DM is just a restricted version of X3C,
and the NP-completeness of X3C follows by a trivial transformation from
3IDM.

3.1.3 VERTEX COVER and CLIQUE

Despite the fact that VERTEX COVER and CLIQUE are independently
useful for proving NP-completeness results, they are really just different
ways of looking at the same problem. To see this, it is convenient to con-
sider them m conjunction with a third problem, called INDEPENDENT
SET.

An independent set in a graph G =(V,E) is a subset ¥'CV such that,
for all u,veV', the edge {u,v} is nor in E. The INDEPENDENT SET
problem asks, for a given graph G =(V,E) and a pesitive integer J<| V|,
whether G contains an independent set V' having | V'] > J. The following
relationships between independent sets, cliques, and vertex covers are easy
to verify.

by

54 PROVING NP-COMPLETENESS RESULTS

Leknma 3.1 For any graph G =(V,E) and subset V'CV, the following
statementis are equivalent:

{a) V'is a vertex cover for G.

{(b) V—V'is an independent set for G.

{c) V—V'is a clique in the complement G¢ of G, where G° = (V E*°)
with £¢= {{u,v}: u,v€V and {u,v)¢E).

Thus we see that, in a rather strong sense, these three problems might |
be regarded simply as ‘‘different versions’ of ‘one another. Furthermore,
the relationships displayed in the lemma make it a trivial matter to
transform any one of the problems to either of the others.

For example, to transform VERTEX COVER to CLIQUE, let
G =(V,E) and K <|V| constitute any instance of VC. The corresponding
mstzlmcle of CLIQUE is provided simply by the graph G° and the integer
J=|V|—-K

This implies that the NP-completeness of all three problems will follow

as an immediate consequence of proving that any one of them is NP-

complete. We choose to prove this for VERTEX COVER.

Theorem 3.3 VERTEX COVER is NP-complete.

Proof 1t is easy to see that VC € NP since a nondeterministic algorithm
need only guess a subset of vertices and check in polynomial time whether
that subset contains at least one endpoint of every edge and has the ap-
propriate size.

We transform 3SAT to VERTEX COVER. Let U={uj,u,,...,u,)
and C={¢j,c5,...,¢,} be any instance of 3SAT. We must construct a
graph G =(V,E) and a positive integer K < |V| such that G has a vertex
cover of size K or less if and only if C is satisfiable.

As in the previous proof, the construction wiil be made up of several
components. In this case, however, we will have only truth-setting com-
ponents and satisfaction testing components, augmented by some’additional
edges for communicating between the various components.

For each wvariable wu, €U, there is a truth-setting component
T,=(V,E), with V,={u,u} and E, ={{u;,u]}, that is, two vertices joined
by a single edge. Note that any vertex cover will have to contain at least
one of u; and u; in order to cover the single edge in £,.

For each clause ¢;€C, there is a satisfaction testing component

S;=(V,E;), consisting of three vertices and three edges joining them to
form a mangle :

V; = [a;{J] 612[_]] 613[_]]}
E = {lay 1)), azm} (@l asl1h e, 0], a500))

IS

i

c)
ht
10
let
ng

©r

W
P-

er

ral
1al
it

ed
ast

:nt
1o

3.1 SiX BASIC NP-COMPLETE PROBLEMS ‘ 55

Note that any vertex cover will have to contain at least two vertices from V]
in order to cover the edges in ;.

-The only part of the construchon that depends on whzch literals occur
in which clauses is the collection of communication edges. These are best
viewed from the vantage point of the satisfaction testing components. For
gach clause ¢;€C, let the three literals in ¢; be denoted by x;, y;, and z;.

‘Then the communication edges emanating from §; are given by:

R PATIRARCATI RARCAT Y

The construction of our instance of VC is completed by setting
K=n+2mand G=(V,E), where

y= (v u
i=l J=
and
= (JE)Y U ((JEY U (JED
i=1 j=1 J=1

Figure 3.3 shows an example of the graph obtained when U ={u;,uy,u3,u,)
and C = {{uy, 83, ,), {8y, u5, 1)}

ul H %) Uy Uy Usj Uy Uy

—4\&< o
02[1} / a2[2}

a,[1] o301 a,02] a312]

Figure 3.3 VERTEX COVER instance resuiting from 3SAT instance in which
U= {u;,uz,U3,u4}, C= {{ulaﬂ3aﬁ4}9[ahu2»i’"4}}' Here Km H +2m =8

It is easy to see how the construction can be accomplished in polyno-
mial time. All that remains to be shown is that C is satisfiable if and only if

‘G has a vertex cover of size K or less.

First, suppose that V'CV is a vertex cover for. G with |V'|<K. By
our previous remarks, V' must contain at least one vertex from each T; and
at least two vertices from each §,. Since this gives a total of at least
n+2m=K vertices, V' must in fact contain exactly one vertex from each
T, and exactly two vertices from each §;. Thus we can use the way in
which V' intersects each truth-setting component to obtain a truth assign-
ment ¢ U—{T,F]. We merely set t{u)=T if ,€V' and t{u)=F if

56 PROVING NP-COMPLETENESS RESULTS

;€ V". To see that this truth assignment satisfies each of the clauses c;€C,
consider the three edges in E/'. Only two of those edges can be covered by
vertices from V; N V', so one of them must be covered by a vertex from
some V), that belongs to V'. But that implies that the corresponding literal,
either u; or u;, from clause c; is true under the truth assignment ¢, and
hence clause ¢; is satisfied by ¢. Because this holds for every ¢;€C, it fol-

lows that ¢ is a satisfying truth assignment for C.

Conversely, suppose that r: U— (T, F} is a satisfying truth assignment
for C. The corresponding vertex cover V' includes one vertex from each
T, and two vertices from each §;. The vertex from T, in V' is u, if
t{u,) =T and is u; if 1(x;) = F. This ensures that at least one of the three
edges from each set E; is covered, because ¢ satisfies each clause ¢
Therefore we need only include in V' the endpoints from §; of the other
two edges in E” (which may or may not also be covered by vertices from
truth-setting components) and this gives the desired vertex cover. 8

3.1.4 HAMILTONIAN CIRCUIT

in Chapter 2, we saw that the HAMILTONIAN CIRCUIT problem can
be transformed to the TRAVELING SALESMAN decision problem, so the
NP-completeness of the latter problem will follow immediately once HC has
been proved NP-complete. At the end of the proof we note several variants
of HC whose NP-completeness also follows more or less directly from that
of HC,

For convenience in what follows, whenever <w;,v,,...,v,> is a
Hamiltonian circuit, we shall refer to {v;, vy}, 1<i<n, and {v,,v,} as the
edges “‘in’” that circuit. Our transformation is a combination of two
transformations from [Karp, 1972], also described in {Liu and Geldmacher,

1978].

Theorem 3.4 HAMILTONIAN CIRCUIT is NP-complete

Proof} 1t is easy to see that HC € NP, because a nondeterministic algorithm
need only guess an ordering of the vertices and check in polynomial time
that all the required edges belong to the edge set of the given graph.

We transform VERTEX COVER to HC. Let an arbitrary instance of
VC be given by the graph G = (V,E) and the positive integer K < |V]. We
must construct a graph G'= (V',E’) such that ' has a Hamiltonian circuit
if and only if G has a vertex cover of size K or less.

Once more our construction can be viewed in terms of components
connected together by communication links. - First, the graph G’ has K
“‘selector’’ vertices a,a,, . . . ,agx, which will be used to select K vertices
from the vertex set V for G. Second, for each edge in E, G' contains a
“‘cover-testing’’ component that will be used to ensure that at least one
endpoint of that edge is among the selected K vertices. The component for

I
¢
{
1
€
]
b
<

an
he
1as
s
1at

he
WO
er,

‘3.1 SIX BASIC NP-COMPLETE PROBLEMS =~ 51

¢ =1{u,v} € E is illustrated in Figure 3.4. It has 12 vertices,
vi= {(u,e,),(v,e,):1<i<6}
and 14 edges, o
B = (e (e, itD), ((v,e,), (v e, i+ D} 1<i<5)
U {{(1,e,9),n,e,D}, {(v,,3),(,e, D)}
U {{(u,e,6),(v,e.8)), {(v,e,6),(u,e,4)}}

(u,e,1) . > (v,e,1)
(u,e2) (v,e,2)
(u,e,3) \’ (v,e,3)
(u,e,4) (v,e.4)
(,e,5) ¢ (v, e.5)
(u,e,6) \’ (v,e,6)

Figure 3.4 Cover-testing component for edge e = {u,v} used in transforming
VERTEX COVER to HAMILTONIAN CIRCUIT.

In the completed construction, the only vertices from this cover-testing
component that will be involved in any additional edges are
(u,e,1), (v,e,1), (u,e,6), and (v,e,6). This will imply, as the reader may
readily verify, that any Hamiltonian circuit of G’ will have to meet the
edges in E, in exactly one of the three configurations shown in Figure 3.5.
Thus, for example, if the circuit “‘enters” this component at (u,e,1), it will
have to “‘exit” at (u,e,6) and visit either all 12 vertices in the component
or just the 6 vertices (u, e, i), | <i<6.

Additiona! edges in our overall construction will serve te join pairs of |
cover-testing components or to join a cover-testing component to a selector
vertex. For each vertex v € V, let the edges incident on v be ordered (arbi-
trarily) as e,;1), €yi2l» - - - » Eoldeg(v)} » Where deg (v) denotes the degree of v in
G, that is, the number of edges incident on v. All the cover-testing com-
ponents corresponding to these edges (having v as endpoint). are joined
together by the following connecting edges:

E, = {{(v,ev{,-;,6)‘,'(v,e‘,[,-m,l)}: 1<i<deg(v)) ’

As shown in Figure 3.6, this creates a single path in G' thatincludes exactly
those vertices (x,y,z) having x=v.

o o

/ﬂ (v,e.1)

58 | PROVING NP-COMPLETENESS RESULTS

(u,e,l)%‘ /;:v,e,l)
P}
(o) ¥ N(,e6

(u,6.,6) 1/\‘ (r,,6)
& & % %

o w & @ o

(a) (b) (c)

Figure 3.5 The three possible configurations of a Hamiltonian circuit within the
cover-testing component for edge e= {u,v}, corresponding to the cases
in which (a) u belongs to the cover but v does not, (b) both » and v
belong to the cover, and (c) v belongs to the cover but u does not.

The final connecting edges in G’ join the first and last vertices from
each of these paths to every one of the selector vertices ay,a,, ..., ag.
These edges are specified as follows:

E” = {{af’(vvev“]ﬂl)}s{aja(vaev[deg{u)],6)}:lgigk, vE V}
The completed graph G’ = (V',E") has

V'={a;1<i<K} U (Y V)
: eck

and

E=(JE)VU(|JE)UE"
eek ve y
It is not hard to see that G' can be constructed from G and X in polyno-
mial time. : .

We claim that G’ has a Hamiltonian circuit if and only if G has a ver-
tex cover of size K or less. Suppose <vy,v,,...,v,>, where n = | V'], is
a Hamiltonian circuit for G'. Consider any portion of this circuit that
begins at a vertex in the set {a;,a;,...,ax), ends at a vertex in
{aj.ay, . .., ax}, and that encounters no such vertex internally. Because of
the previously mentioned restrictions on the way in which a Hamiltonian
- circuit can pass through a cover-testing component, this portion of the cir--
cuit must pass through a set of cover-testing components corresponding to
exactly those edges from £ that are incident on some one particular vertex
vE V. Each of the cover-testing components is traversed in one of .the
modes (a), (b), or (c) of Figure 3.5, and no vertex from any other cover-
testing component is encountered. Thus the K vertices from
laj,ay, . .., ax} divide the Hamiltonian circuit into K paths, each path

TS

6)

he
es

tat

3.1 SIX BASIC NP-COMPLETE PROBLEMS ‘ 59

(vvev[i}’l)

(!J y _eV 5 }’6)

V,€,(31 ,6)

(v, .
(v, €yideg(v)] D m?:;

(v,€y [deg(1)1:6) °

Figure 3.6 Path joining all the cover-testing components for edges from £ having
vertex v as an endpoint.

corresponding to a distinct vertex v€ V. Since the Hamiltonian circuit must
include all vertices from every one of the cover-testing components, and
since vertices from the cover-testing component for edge e¢€E can be
traversed only by a path corresponding to an endpoint of e, every edge in F
must have at least one endpoint among those K selected vertices. There-
fore, this set of K vertices forms the desired vertex cover for G. .
Conversely, suppose V*CV is a vertex cover for G with | V*| < K.
We can assume that | V*| =K since additional vertices from ¥ can always
be added and we will still have a vertex cover. Let the elements of V* be
labeled as vi,v,,...,v. The following edges are chosen to be “‘in”* the
Hamiltonian circuit for G'. From the cover-testing component representing
each edge’'e = {u,v} € E, choose the edges specified in Figure 3.5(a), (b}, or
(c) depending on whether {u,v} N V* equals, respectively, {u), {u,v}, or

{v]. One of these three possibilities must ‘hold since V* is a vertex cover
_for G. Next, choose all the edges in E, for 1</<K. Finally, choose the

|) edges

{ais(vis evi[ifal)}s l‘{?’.lgk

60 PROVING NP-COMPLETENESS RESULTS

{ar'+ls(vis evj[deg(v;)]’ 6)}’ 1 R{ <K
and
[ala(vK't Ey Ldeg (v)} 6)1

We leave to the reader the task of verifying that this set of edges actually
corresponds to a Hamiltonian circuit for G'. &

Several variants of HAMILTONIAN CIRCUIT are also of interest.
The HAMILTONIAN PATH problem is the same as HC except that we
drop the requirement that the first and last vertices in the sequence be
joined by an edge. HAMILTONIAN PATH BETWEEN TWQO POINTS is
the same as HAMILTONIAN PATH, except that two vertices u# and v are
specified as part of each instance, and we are asked whether G contains a
Hamiltonian path beginning with v and ending with v. Both of these prob-
lems can be proved NP-complete using the following simple modification of
the transformation just used for HC. We simply modify the graph G’

" obtained at the end of the construction as follows: add three new vertices,

ay, ax+1, and ag,,, add the two edges {aq,ay) and {ax.p,ax42), and
replace each edge of the form {a),(v, &,(4 ()1, 81 bY {ak+1.(7, €, 1dg (11, O}
The two specified vertices for the latter variation of HC are ay and ag,,.

All three Hamiltonian problems mentioned so far also remain NP-
complete if we replace the undirected graph G by a directed graph and
replace the undirected Hamiltonian circuit or path by a directed Hamiltonian
circuit or path. Recall that a directed graph G = ()V,4) consists of a vertex
set ¥V and a set of ordered pairs of vertices called arcs. A Hamiltonian path
in a directed graph G =(V,4) is an ordering of ¥ as <v;,v5,...,v,>,
where n=|{V|, such that (v,,v.;) €4 for 1<i<n. A Hamilionian circuit
has the additional requirement that (v,,v;) € 4. Each of the three
undirected Hamiltonian problems can be transformed to its directed coun-
terpart simply by replacing each edge {u,v} in the given undirected graph by
the two arcs (u,v) and (v,u). In essence, the undirected versions are
merely special cases of their directed counterparts.

3.1.5 PARTITION

In this section we consider the last of our six basic NP-complete prob-
lems, the PARTITION problem. It is particularly useful for proving NP-
completeness results for problems involving numer:cai parameters, such as
lengths, weights, costs, capacities, etc.

Theorem 3.5 PARTITION is NP-complete
Proof: It is easy to see that PARTITION € NP, since a nondeterministic al-
gorithm need only guess a subset 4’ of 4 and check in polynomial time

TS

it
ee
n...

Ie

b-
. P-
as

yl-
ne

3.1 SIX BASIC NP-COMPLETE PROBLEMS ' 61

that the sum of the sizes of the elements in A’ is the same as that for the

elemenis in 4—A4". ‘ ‘
.We transform 3DM to PARTITION. Let the sets W, X.Y, with

1 wl=1|X]|= |¥| =g, and M € W x X x Y be an arbitrary instance of 3DM.
- Let the elements of these sets be denoted by

W={w,wy,....w,]
X =l xs, .. x)

Ym{yh.'yZ! .. -’yq}

and
M = {.ml,mg, ey mk}

where k=|M|. We must construct a set 4, and a size s(a) € Z* for each
a €A, such that 4 contains a subset A4’ satisfying

T sta) = 3 sa)
. a€A’ a€A-4'
if and only if M contains a matching.

The set 4 will contain a total of k+2 elements and will be constructed
in two steps. The first k elements of 4 are {g;: 1<i<k}, where the ele-
ment a; is associated with the triple m;€ M. The size s(a;) of a4; will be
specified by giving its binary representation, in terms of a string of 0’s and
1’s divided into 3¢ “‘zones” of p = [log,(k+1)] bits each. Each of these
zones is labeled by an element of W U X U ¥, as shown in Figure 3.7.

LTI e LI TR L e e Y T TE DT TR A e oo T

WI W2 sen Wq x} xZ P xq yl y2 see yq

Figure 3.7 Labeling of the 3¢ “zones,” each containing p = [log,(k+1)] bits
of the binary representation for s{a), used in transforming 3DM to
PARTITION.

The representation for s(a;) depends on the corresponding triple
my= (Weey, X0, Ya()) € M (where f,g,and h are just the functions that
give the subscripts of the first, second, and third components for each m;).
It has a 1 in the rightmost bit position of the zones labeled by w¢), Xg(i)»
and y,(and 0’s everywhere else. Alternatively, we can write

s(a,-) e 2p(3q-~f(i)) + 2p(2q—-g(i)) + 2p(q-h(i))

Since each s{a,) can be expressed in binary with no more than 3pg bits, it

62 PROVING NP-COMPLETENESS RESULTS

is clear that s(a;) can be constructed from the given 3DM instance in poly-
nomial time.

. The important thing to observe about this part of the construction is
that, if we sum up all the entries in any zone, over all elements of
{a,:1<i<k}, the total can never exceed k=27—1. Hence, in adding up
Y, cq s(a) for any subset 4' € {a;: 1<i<k}, there will never be any ““car-
ries”’ from one zone to the next. It follows that if we let

' . 3g-1
B=% 20i
J=0
(which is the number whose binary representation has a 1 in the rightmost
position of every zone), then any subset 4" C {a;: 1<i< k] will satisfy

3. sla) =8B
atd’

if and only if M’ = {m;; a,€ A’} is a matching for M.
The final step of the construction specifies the last two elements of 4.
These are denoted by b; and 5, and have sizes defined by

s = 2| 3 s(a)| - B
i=1
and

s(by) = i s(a)|+ B

im]

Both of these can be specified in binary with no more than (3pg+1) bits
and thus can be constructed in time polynomial in the size of the given
3DM instance.

Now suppose we have a subset A’ € 4 such that

Ysla) = 3 s(a)

a€A’ a€A—A"
Then both of these sums must be equal to 2¥. %, 5(a;), and one of the two
sets, 4’ or A—A’', contains b; but not b,. It follows that the remaining ele-
ments of that set form a subset of {a,: 1< i<k} whose sizes sum to B, and
hence, by our previous commenis, that subset corresponds to a matching
M in M. Conversely, if M'C M is a matching, then the set.
{5y} U la;;m € M’} forms the desired set 4' for the PARTITION instance.
Therefore, 3DM o« PARTITION, and the theorem is proved. &

K8

ly-

| s
of

up
ar-

105t

bits
ven

two
ele-
and
1ng
set
nce.

: M*awy i :;r‘_:-r‘.‘;_.;:}-‘ ‘ ;

3.2 SOME TECHNIQUES FOR PROVING NP.COMPLETENESS : 63

| 3.2 Some Technigues for Proving NP-Completeness

‘The techniques used for proving NP-completeness results vary dlmost
as widely as the NP-complete problems themselves, and we cannot hope to

" jlustrate them all here. However, there are several general types of proofs

that occur frequently and that can provide a suggestive framework for de-

ciding how to go about proving a new problem NP-complete. We call these

(a) restriction, (b) local replacement, and (c) component design.

In this section we shall indicate what we mean by each of these proof
types, primarily by giving examples. It would be sheer folly to attempt to
define them explicitly. Many proofs can be interpreted in ways that would
place them arbitrarily in any one of the three categories. Other proofs
depend on decidedly problem-specific methods, so that no such limited set
of categories could possibly include them in a natural way. Thus, we cau-
tion the reader not to interpret this as a way to classify all NP-completeness
proofs. Rather, our sole intent is to illustrate several ways of thinking
about NP-completeness proofs that the authors {(and others) have found to
be both intuitively appealing and constructive.

For brevity in what follows, we shall be omitting from all our proofs
the verification that the given problem is in NP. Fach of the problems we
consider is easily seen to be solvable in polynomial time by a nondeter-
ministic algorithm, and the reader should have no difficulty supplying such
an algorithm whenever required.

3.2.1 Resiriction

Proof by restriction is the simplest, and perhaps the most frequently ap-
plicable, of our three proof types. An NP-completeness proof by restriction
for a given problem II € NP consists simply of showing that T contains a
known NP-complete problem II' as a special case. The heart of such a
proof lies in the specification of the additional restrictions to be placed on
the instances of 11 so that the resulting restricted problem wiil be identical
to II'. We do not require that the restricted problem and the known NP-
complete problem be exact duplicates of one another, but rather that there
be an “obvious’ one-to-one correspondence between their instances that
preserves ‘‘yes’ and “no’* answers. This one-to-one correspondence,

"which provides the required transformation.from I’ to I1, is usually so ap-

parent that it need not even be given explicitly. :

We have already seen several examples of this type of proof. In Sec-
tion 3.1.2, the problem EXACT COVER BY 3-SETS was shown to be NP-
complete by restricting its instances to 3.gets that contain one element from
a set W, one from a set X, and one from a set Y, where W, X, and Y are
disjoint sets having the same cardinality, thereby obtaining a problem identi-
cal to the 3DM problem. In Section 3.1.4, DIRECTED HAMILTONIAN

64 PROVING. NP-COMPLETENESS RESULTS

CIRCUIT was shown toc be NP-compleie by restricting its instances to
directed graphs in which each arc (u,v) occurs only in conjunction with the
oppositely directed arc (v,u), thereby obtaining a problem identical to the
undirected HAMILTONIAN CIRCUIT problem.

Thus proofs by restriction can be seen to embody a different way of
looking at things than the standard NP-completeness proofs. Instead of try-

ing to discover a way of transforming a known NP-complete problem to our o
target problem, we focus on the target problem itself and attempt to restrict . . &

away its “‘inessential’’ aspects until a known NP-complete problem appears.
We now give a number of additional examples of problems proved
NP-complete by restriction, stating each proof with the brevity it deserves.

(1) MINIMUM COVER

INSTANCE: Collection C of subsets of a set §, positive integer K.
QUESTION: Does C contain a cover for S of size K or less, that is, a

subset C' € C with |C'| < K and such that { J ¢ = §?

T ceC
Proof* Restrict to X3C by aliowing only instances having |¢|=3 for all
c€C and having K = |§|/3.

(2) HITTING SET

INSTANCE: Collection C of subsets of a set S, positive integer K.
QUESTION: Does § contain a hitting set for C of size K or less, that
is, a subset §'C § with |S'| < K and such that §' contains at least
one element from each subset in C?

Proof Restrict to VC by allowing only instances having |c{=2 for all
ceC.

(3) SUBGRAPH ISOMORPHISM
INSTANCE: Two graphs, G =(V,E,) and H=(V, ,E,). :
QUESTION: Does G contain a subgraph isomorphic 10 H, that is, a
subset ¥ C V| and a subset E C E| such that |V|=|W,],|El=|E,],
and there exists a one-to-one function f:¥,— V satisfying {u,v} € E,
if and only if {f(u),f(V)}€E?
Prooft Restrict to CLIQUE by allowing only instances for which H is
a complete graph, that is, £, contains all possnble edges joining two
members of V,.

(4) BOUNDED DEGREE SPANNING TREE .
INSTANCE: A graph G=(V,E) and a positive integer K <|V}|-1.
QUESTION: Is there a spanning tree for G in which no vertex has
degree exceeding K, that is, a subset £' € E such that |E'|=|V]|~1,
the graph G'=(V,E’) is connected, and no vertex in V¥ is included in
more than K edges from E'?
Proof: Restrict to HAMILTONIAN PATH by allowing only instances
in which K =2.

rs

to
1€
1€

of
y-
ar
ct

1

it
st

1l

3.2 SOME TECHNIQUES FOR PROVING NP-COMPLETENESS ' 65

(5)

(6)

(7)

MINIMUM EQUIVALENT DIGRAPH

INSTANCE: A directed graph G ={(V.,4) and a positive integer
K<lal :

QUESTION:. Is there a directed graph G'=(V,4") such that
A'CA, |4 l K, and such that, for every pair of vertices v and v in
V. G’ contains a directed path from u to v if and only if G contains a
directed path from u to v.

 Proof: Restrict to DIRECTED HAMILTONIAN CIRCUIT by allow-

ing only instances in which G is strongly connected, that is, contains a
path from every vertex u to every vertex v, and K =|V|. Note that
this is actually a restriction to DIRECTED HAMILTONIAN CIRCUIT
FOR STRONGLY CONNECTED DIGRAPHS, but the NP-
completeness of that problem follows immediately from the construc-
tions we gave for HC and DIRECTED HC.

KNAPSACK

INSTANCE: A finite set U, a “size’” s(u) € Z" and a ‘‘value™
v(u) € ZT for each u € U, a size constraint B € Z7, and a value goal
KeZ*

QUESTION: Is there a subset U’ C ¥ such that

T sw<B and ¥ v(w) 2K

uwel ue

Prooft Restrict to PARTITION by allowing only instances in which
s()=v(u) forall u € U and B=K =%y, ysu).

MULTIPROCESSOR SCHEDULING

INSTANCE: A finite set 4 of *“‘tasks,” a ‘‘length™ I(a) € Z* for
each g € 4, a number m € Z* of “processors,” and a ‘‘deadline™
DeZ

QUESTION: Is there a partition 4 = 4,UA4,U -+ - U4, of 4 into
m disjoint sets such that

2 Ha) 1<ism i< D ?

aEA.
Proof: Restrict to PARTITION by allowing only mstances m which
= 2 and D E/ZZQEA[(a) '

As a final comfherit, we observe that, of all the approaches to proving

NP-completeness we shall discuss, proof by restriction is the ore:that would
profit most from an extensive knowledge of the class of known NP-
complete problems — beyond the basic six and their variants. Many prob-
lems that arise in practice are simply more complicated versions of problems

66 PROVING NP-COMPLETENESS RESULTS

that appear on our lists of NP-complete problems, and the ability to recog-
nize this can often lead to a quick NP-completeness proof by restriction.

3.2.2 Local Regﬂacemem

In proofs by local replacement, the transformations are sufficiently non-
trivial to warrant spelling out in the standard proof format, but they. stiil -
tend to be relatively uncomplicated. All we do is pick some aspect of the
known NP-complete problem instance to make up a collection of basic un-
its, and we obtain the corresponding instance of the target. problem by re-
placing each basic unit, in a uniform way, with a different structure. The
transformation from SAT to 3SAT in Section 3.1.1 was of this type. In that
transformation, the basic units of an instance of SAT were the clauses, and
each clause was replaced by a collection of clauses according to the same
general rule. The key point to observe is that each replacement constituted

only local modification of structure. The replacements were essentially in-

dependent of one another, except insofar as they reflected parts of the origi-
nal instance that were not changed.

Let us flesh these genéralities out with some more examples. The fol-
lowing decision problem corresponds to a problem of minimizing the
number of multiplications needed to compute a given collection of products
of elementary terms, where the multiplication operation is assumed to be
associative and commutative:

ENSEMBLE COMPUTATION

INSTANCE: A collection C of subsets of a finite set 4 and a positive in-

teger J.
QUESTION: Is there a sequence

L=x3Uy, 5=xUpp, ..., Z=x;Uy; >

of j<J union operations, where each x; and y, is either {a} for some a € 4
or z; for some k<, such that x; and y; are disjoint for 1< /< and such
that for every subset ¢ € C there is some z;, 1</</, that is identical to ¢ ?

Theorem 3. 6 ENSEMBLE COMPUTATION is NP-complete.

Prooff We transform VERTEX COVER to ENSEMBLE COMPUTATEON
Let the graph G = (V,E) and the positive integer K < | V| constitute an ar-
bitrary instance of VC.

The basic units of the instance of VC are the edges of G. Let ap be
some new element not in V. The local replacement just substitutes for
each edge {u,v}€E the subset {agu,v} € C. The instance of ENSEMBLE
COMPUTATION is completely specified by:

till

1at

ois

ir-

be
or
B

" 3.2 SOME TECHNIQUES FOR PROVING NP-COMPLETENESS | 67

A=VU {ag} |
T C= {{ao,u,v}:{u‘,v}GE}
J=K+|E|

It is easy to see that this instance can be constructed in polynomial time.
We claim that G has a vertex cover of size X or less if and only if the
desired sequence of j € J operations exists for C.

First, suppose V' is a vertex cover for G of size K or less. Smce we
can add additional vertices to V' and it will remain a vertex cover, there is
no loss of generahty in assuming that | V'| =K. Label the elements of V' as
v,z -+« , Vg and label the edges in E as ej,e;, . . . , €y, Where m=|E|.
Since V' is a vertex cover, each edge ¢; contams at least one element from
v'. Thus we can write each e; as ¢;= {u;,v,;}, where 7[/] is an integer
satisfying 1<r[j/1<K. The fol]owmg sequence of K +|E| =J operations is
easily seen to have all the required properties:

<21:{QQ}U{V1}, 22={00}U{V2}, e e g ka{aD}U{VK},
zK%—lﬁ{ul}Uzril}» ZK+2={u2}UZr[2lv e sz{um}Uzr[m])'
Conversely, suppose § = <z;=x;Uy,...,z=xUy;> is the

desired sequence of j < J operations for the ENSEMBLE COMPUTATION
instance. Furthermore, let us assume that § is the shortest such sequence
for this instance and that, among all such minimum sequences, S contains
the fewest possible operations of the form z = {u} U {v} for u,v € ¥. Our
first claim is that § can contain no operations of this latter form. For sup-
pose that z = {u} U {v} with u,v€V is included. Since {«,v} is not in C
and since § has minimum length, we must have {u,v} € E, and
{ag,u,v} = {ag} U z (or z U {ag)) must occur later in §. However, since
{#.v) is a subset of only one member of C, z cannot be used in any other
operation in this minimum length sequence. It follows that we can replace
the two operations

= {u} U {V) and {do,U,V} = {ao} U z

by
= {ap} U {u} and {ao,u,v}_"—— vlu g

thereby reducing the number of proscribed operations without lengthening
the overall sequence, a contradiction to the choice of §. Hence S consists
only of operations having one of the two forims, z ={as} U {u} for u€V or
{ag,u,v}={v} U z for {u,v) € E (where we disregard the relative order of
the two operands in each case). Because |C|=|E| and because every
member of C contains three elements, S must contain exactly |E| opera-
tions of the latter form and exactly JmlE | € J-|E]| =K of the former.

L

68 PROVING NP-COMPLETENESS RESULTS

Therefore the set
V' = {u€V: z;={ao) U {u) is an operation in S}

contains at most K vertices from ¥ and, as can be verified easily from the
construction of C, must be a vertex cover for G. 8
Another exampie of a polynomial time transformation using local

~ replacement, this time from EXACT COVER BY 3- SETS 15 the following:

PARTITION. ENTO TRIANGLES

INSTANCE: A graph G=(V,E), with | V| =3¢ for a positive integer 4.
QUESTION: Is there a partition of V into ¢ disjoint sets V),V,, ..., V,
of three vertices each such that, for each V; = {v,y),viz,vip3))> the three

edges {v;yys vt i visy)s and {vi, vy} all belong to £7?

Theorem 3.7 PARTITION INTO TRIANGLES is NP-complete.

Proof: We transform EXACT COVER BY 3-SETS to PARTITION INTO
TRIANGLES. Let the set X with |X|=3¢ and the collection C of 3-
element subsets of X be an arbitrary instance of X3C. We shall construct a
graph G = (V,E), with |V|=3¢’, such that the desired partition exists for
G if and only if C contains an exact cover.

The basic units of the X3C instance are the 3-element subsets in C.
The local replacement substitutes for each such subset ¢; = {x.,y;,z} € C
the collection E; of 18 edges shown in Figure 3.8. Thus G=(V. E) is
defined by

|c|
V=xU J lalil1<<9)

....
i
-

Notice that the only vertices that appear in edges belonging to more than a
single £, are those that are in the set X. Notice also that
LV| = {X]|+9]|C| =3¢g+4+9|C| so that ¢'= g+3|C|. It is not hard to see
that this instance of PARTITION INTO TRIANGLES can be constructed in
polynomial time from the X3C instance.

If ¢1,¢5,...,¢, are the 3-clement subsets from C in any exact cover
for X, then the corresponding partition ¥V = V,uV,u--~u Vpof Vis
given by taking

{a,'[].],a,‘[Z]-,x;}, la,[4],a,-[5],y,-} ‘
{a,' [7],@,‘ [8] ,Z,'}, {a,— [3},0,’ [6],0; [9]}

from the vertices meeting E, whenever ¢;={x;,y,,z;] is-in the exact cover,

LTS

the

ical

1a
nat
ee

in

/er
is

3.2 SOME TECHNIQUES FOR PROVING NP-COMPLETENESS | 69

6Bl 4]

AR r ;18]

X; Y Z

Figure 3.8 Local replacement for ¢, = (x,y;,z) € C for transforming X3C to
PARTITION INTO TRIANGLES.

and by taking ‘
(a;(1},4,(2],a,131}, {a;(41.4,15).4,(6]}, {a;{7],4;(8],4;[9]}

from the vertices meeting £; whenever ¢, is not in the exact cover. This
ensures that each element of X is included in exactly one 3-vertex subset in
the partition.

Conversely, if V = V,UV,U - UV, is any partition of G into trian-
gles, the corresponding exact cover is given by choosing those ¢;€C such
that {g,[3],4;16],4,19]} = V; for some j, 1<j<q'. We leave to the reader
the straightforward task of verifying that the two partitions we have con-
structed are as claimed. ® -

Both examples we have just seen represent what might be called
“pure’’ local replacement proofs. The structure of the target instance was
completely determined by the structure of the given problem instance and
the local replacements. It is often advantageous to augment this with a lim-
ited amount. of additional structure that acts as an “‘enforcer,”! imposing
certain additional restrictions on the ways in which a “‘yes’” answer to the
target instance can be obtained. For a target problem having the form
“‘Given an instance 7, does there exist an X; having the desired property?”’
the enforcer portion of I acts to limit the possible” X;’s so that the remain-
ing choices all mirror the choices available in the original problem instance,
whereas that portion of 7 obtained by applying local replacement to the ori-
ginal instance provides the means for making those choices and for ensuring
that they have the desired properties. The two elements b; and b, in the

t A picturesque term suggested by Szymanski [1978].

70 PROVING NP-COMPLETENESS RESULTS

NP-compieteness proof for PARTITION acted as such an enforcer. We
give two further examples of local replacement proofs using enforcers,
beginning with that for the following scheduling problem:

SEQUENCING WITHIN INTERVALS
INSTANCE: A finite set T of ‘‘tasks” and, for each 7€7T, an integer

- “release time * r(1) 20, a ‘*deadline” d(s) €Z7, and a “length” HDeZt,
- QUESTION: Does there exist a feasible schedule for T, that is, a function

o T—Z* such that, for each t€T, (1) 2 r(8), o (D+1{) < d(), and, if
'€ T—{¢}, then either a(¢)+I1{¢) < o (1) or o(r) Z () +1(1)? (The task
1 is “executed”” from time o (1) to time o (1)+/(r), cannot start executing
until time r(), must be completed by time d{¢), and its execution cannot
overlap the execution of any other task '.)

Theorem 3.8 SEQUENCING WITHIN INTERVALS is NP-complete.
Proof We transform PARTITION to this problem. Let the finite set 4 and
given size s(a) for each a€A4 constitute an arbitrary instance of PARTI-
TION, and let B=73, 4 s(a).

The basic units of the PARTITION instance are the individual elements
a€Ad. The local replacement for each a€A4 is a single task ¢, with
r(1,) =0, d(1,) =B+1, and I(s,) = s(a). The ‘“‘enforcer” is a single task 7
with r(7) =[B/2], d(?) =[(B+1)/2], and (7} =1. Clearly, this instance
can be constructed in polynomial time from the PARTITION instance.

The restrictions imposed on feasibie schedules by the enforcer are two-
fold. First, it ensures that a feasible schedule cannot be constructed when-
ever B is an odd integer (in which case the desired subset for the PARTI-
TION instance cannot exist), because then we would have r{(7)=d(7), so
that 7 could not possibly be scheduled. Thus from now on, let us assume
that B is even. In this case the second restriction comes to the forefront.
Since B is even, r(F)=8/2 and d(7)=r(?) +1, so that any feasible
schedule must have o(7)=2B8/2. This divides the time available for
scheduling the remaining tasks into two separate blocks, each of total fength
B/2, as illustrated in Figure 3.9. Thus the scheduling problem is turned
into a problem of selecting subsets, those that are scheduled before 7 and
those that are scheduled after 7. Since the total amount of time available in

the two blocks equals the total length B of the remaining tasks, it follows

that each block must be filled up exactly. However, this can be done if and

.only if there is a subset 4'C A4 such that ..

Y sa)=8B/2= 3 s(a)

acd' a€d—~A4'

Thus the desired subset 4’ exists for the instance of PARTITION if and
only if a feasible schedule exists for the corresponding instance of
SEQUENCING WITHIN INTERVALS. =

(S

0y}
if
ik
g
b

3.2 SOME TECHNIQUES FOR PROVING NP-COMPLETENESS ' 71

B B
2 2
r i N r -~ N
7
0 B B, B+1
3 5 -1 |
— Time ——

Figure 3.9 Schedule ‘‘enforced” by the transformation from PARTITION to
SEQUENCING WITHIN INTERVALS.

Our final example of the use of an enforcer in a local replacement proof
involves the following problem of diagnostic testing:

MINIMUM TEST COLLECTION

INSTANCE: A finite set 4 of “possible diagnoses,” a collection C of sub-
sets of 4, representing binary ‘‘tests,” and a positive integer J < |Cl.

QUESTION: Is there a subcollection C’' C C with IC | € J such that, for
every pair a,,a of possible diagnoses from A, there is some test cEC’ for
which |{ a;,4, ﬂcl =1 (that is, a test ¢ that “dnstmgulshes between a; and

aj)?

Theorem 3.9 MINIMUM TEST COLLECTION is NP-complete.

Prooff We transform 3DM to this problem. Let the sets W, X, Y, with
|W|=|X|=]¥|=4q, and the collection M € W x X x Y constitute an arbi-
trary instance of 3DM.

The basic units of the 3DM instance are the ordered triples in M. The
local replacement substitutes for each m=(w,x,y)€ M the subset
{w,x,y} € C. The enforcer is provided by three additional elements,
Wos Xg» and yg, not belonging to WUXUY, and two additional tests,
Wulwsl and Xulxy). The complete MINIMUM TEST COLLECTION
instance is defined by:

A= WUXU YU {W(},)CO,_,VQ)
C = {tw,x,y}: (w, x,)M} U { WU {wo), X U {xo}}
J=q+2
It is easy to see that this instance can be constructed in polynomial time
from the given 3DM instance.
Once again the enforcer places certain limitations on the form of the

desired entity (in this case, the subcollection C' of tests). First, C" must
contain both Wulw,) and Xulxy), since they are the only tests that

72 PROVING NP-COMPLETENESS RESULTS

distinguish y, from wy and x,. Then, since wy, X, and y, are not contained
in any other tests in C, each element of WUX U Y must be distinguished
from the appropriate one of wy, x4, or yy by being included in some addi-
tional test ¢ € C'—{Wulwo),Xu{xel}. At most J—2=g¢ such additional
tests can be included. Because each of the remaining tests in C contains
exactly one member from each of W, X, and Y, and because W, X, and ¥
are disjoint sets, having ¢ members each, it follows that any such additional

g tests in C' must correspond to ¢ triples that form a matching for M.

Conversely, given any matching for M, the corresponding. ¢ tests from C
can be used to complete the desired collection of J=g+2 tests. Thus M
contains a matching if and only if the required subcollection of tests from C
exists. B

Although the enforcers in both our examples are quite simple, the
reader should be placed on notice that this need not always be the case. A
particularly complicated enforcing structure is used in the NP-completeness
proof for PLANAR DIRECTED HAMILTONIAN PATH in {Garey, John-
son, and Stockmeyer, 1976]. Other relatively complicated enforcers can be
found in [Liu and Geldmacher, 1978], {Garey, Johnson, and Sethi, 1976},
and [Garey, Graham, Johnson, and Knuth, 1978].

3.2.3 Component Design

Our last type of proof, and the one that tends to be the most complicat-
ed, is component design. The NP-completeness proofs given in Section 3.1
for 3-DIMENSIONAL MATCHING, VERTEX COVER, and HAMIL-
TONIAN CIRCUIT are typical examples of this type of proof. '

The basic idea is to use the constituents of the target problem instance
to design certain ‘‘components’ that can be combined to ‘‘realize” in-
stances of the known NP-complete problem. In these three examples, there
are two basic types of components, ones that can be viewed as ‘‘making
choices” (for example, selecting vertices, choosing truth values for vari-
ables) and ones for “‘testing properties’” {for example, checking that each
edge is covered, checking that each clause is satisfied). These components
are joined together in a target instance in such a way that the choices are
communicated to the property testers, and the property testers then check
whether the choices made satisfy the required constrainis. Interactions
between components occur both through direct connections {such as the
edges linking the truth setting components to the satisfaction testing com-
ponents in the transformation from 3SAT to VC) and through global con-

straints (such as the overall bound K in the transformation from 3SAT to

VC, which, together with the structure of the components, ensures that
each truth setting component contains exactly one vertex from the cover
and that each satisfaction testing component contains exactly two vertices
from the cover).

188
n-
be

21,

Is

3.2 SOME TECHNIQUES FOR PROVING NP-COMPLETENESS 73

More generally, any'proof in which the constructed instance can be
viewed as a collection of components, each performing some function in

‘ terms of the given instance, can be regarded as a component design proof.

The generic transformation used to prove Cook’s Theorem in Chapter2 is a
good example of this, with each of the six clause groups being one type of
component.

Since component design proofs tend to be rather lengthy and since we
have already given a number of examplés of such proofs, we shall confine
ourselves to 'a single additional example in this section. (More can be
found in [Sethi, 1975}, [Even, ltai, and Shamir, 1976], [Garey, Johnson,
and Tarjan, 1976} and EStockmeyer 1973].) This final example is quite
different from the standard ones, and illustrates an approach that has been
useful for transforming CLIQUE to several other problems. The target
problem is a scheduling problem related to the problem of SEQUENCING
WITHIN INTERVALS proved NP-complete in the preceding subsection.

MINIMUM TARDINESS SEQUENCING

INSTANCE: A set T of ‘‘tasks,” each €T having “‘length” 1 and a
“‘deadline” d(1)€Z™*, a partial order < on T, and a non-negative integer
K<|T).

QUESTION: Is there a ‘‘schedule” o:T—{0,1,...,|7]=1} such that
o(t) #a(¢') whenever r# ¢, such that o-(t)<o'(t’) whenever t< t', and
such that |{t€ T: o ()+1>d(D}| < K?

Theorem 3.10 MINIMUM TARDINESS SEQUENCING is NP-complete.

Proof: Let the graph G = (V,E) and the positive integer J < | ¥| constitute

an arbitrary instance of CLIQUE. The corresponding instance of

MINIMUM TARDINESS SEQUENCING has task set T=VUE,
= |E|—(J(J—1)/2), and partial order and deadlines defined as follows:

(<t e (EV, 1 EE and vertex t is an. endpoint of edge ¢'

JU+/2 if (€E
A0 =1 \v|+|E| ifrev

Thus the ‘“‘component” correspondmg to each vertex is a single task with
deadline | V|+|E|, and the “‘component” corresponding to each edge is a
single task with deadline J(J+1)/2. The task corresponding to an edge is
forced by the partial order to occur after the tasks correspondmg to its two

endpoints in the desired schedule, and only edge tasks are in danger of be-

ing tardy (being completed after their deadlines).

It is convenient to view the desired schedule schematically, as shown in
Figure 3.10. We can think of the portion of the schedule before the edge
task deadline as our ‘‘clique selection component.” There is room for
J(J+1)/2 tasks before this deadline. In order to have no more than the

14 PROVING NP-COMPLETENESS RESULTS

specified number of tardy tasks, at least J(J—1)/2 of these ‘“‘early’’ tasks
must be edge tasks. However, if an edge task precedes this deadline, then
so. must the vertex tasks corresponding to its endpoints. The minimum
possible number of vertices that can be involved in J{J -1)/2 distinct edges
is J (which can happen if and only if those edges form a complete graph on
those J vertices). This implies that there must be at least J veriex tasks

- among the ‘‘early” tasks. However, there is room for at most

LU/ - U=/ = J

vertex tasks before the edge task deadline. Therefore, any such schedule
must have exactly J vertex tasks and exacrly J(J—1)/2 edge tasks before this
deadline, and these must correspond to a J-vertex clique in G. Conversely,
if G contains a complete subgraph of size J, the desired schedule can be
constructed as in Figure 3.10. &

Clique Clique
vertices edges

e)
J JU=D/2 V|=J | |El=J(-1)/2
Vertex Edge Vertex Edge
tasks tasks tasks tasks
0 J(J+1) Vi+|E|
2

—ee Time —#

Figure 3.10 Diagram of the desired schedule for an instance of MINIMUM
TARDINESS SEQUENCING corresponding to a CLIQUE of size /.

3.3 Some Suggested Exercises

In this section we present the definitions of twelve NP-complete prob-
tems and leave to the reader the task of proving that they are NP-complete.
None of these problems requires a complicated proof, so we encourage the
reader to attempt them all. For the purposes of these exercises, only those
“known’’ NP-complete problems mentioned in Section 3.1 shouid be used.

- As a hint for how to proceed, we have grouped the problems according to

our own preferred proof technique, but the reader should feel free to ignore

" these hints whenever an alternative approach seems worthy of pursuit.

Those desiring additional (or more difficult) exercises can choose from the
lists included in the Appendix, keeping in mind that these lists contain
some problems for which only quite elaborate proofs are known.

3.3 SOME SUGGESTED EXERCISES ‘ 75

s
s Restriction
Mn 1. LONGEST PATH : ‘
m - INSTANCE: Graph G = (V,E), positive integer K <|V|.
a QUESTION: Does G contain a simple path (that is, a path encountering no
n vertex more than once) with X or more edges?
ks 2. SET PACKING
INSTANCE: Collection C of finite sets, positive mleger K<|C|.
QUESTION: Does C contain K disjoint sets? -
| 3. PARTITION INTO HAMILTONIAN SUBGRAPHS
e INSTANCE:- Graph G ={(V,E), positive integer K<|V]|.
3 'QUESTION: Can the vertices of G be partitioned into k<X disjoint sets
¥s VioVa, .. ., Vi such that, for 1<i<k, the subgraph induced by V, contains
K a Hamiltonian circuit?
4. LARGEST COMMON SUBGRAPH
INSTANCE: Graphs G,=(V},E)) and G,=(V,,E;), positive integer K.
QUESTION: Do there exist subsets EyCE, and E;CE, such that
|E\|=]E3] 2K and such that the two subgraphs G]= (V,,E) and
. G; = (V,,E3) are isomorphic?
- 5. MINIMUM SUM OF SQUARES
INSTANCE: Finite set 4, “‘size”” s{(a)€Z™* for each a €A, positive integers
K and J.
QUESTION: Can the eleti?ems of A be partitioned into K disjoint sets
A A,, ..., Ag such that ¥ (3 s@) < s
i=1 aE.&i
Local Replacement
6. FEEDBACK VERTEX SET
INSTANCE: Directed graph G = (V,4), positive integer K< | V}.
QUESTION: Is there a subset ¥'C ¥ such that | ¥'|<K and such that every
7 directed circuit in G includes at least one vertex from V'?
b- 1. 7. EXACT COVER BY 4-.SETS
e. INSTANCE: Finite set X with |X|=4g. ¢ an integer, and a collection C of
he 4-element subsets of X,
se QUESTION: Is there a subcollection C'C C such that every element of X
d occurs in exactly one member of C'?
to i 8. DOMINATING SET S
re - INSTANCE: Graph G = (V,E), positive integer K <] .
it _ QUESTION: s there a subset V'C V such that |V} <K and such that every
he - vertex v € V=V is joined to at least one member of V' by an edge in E?
in | 9. STEINER TREE IN GRAPHS
n. : INSTANCE: Graph G=(V,E), subset RC ¥, positive integer K < | V|~
QUESTION: Is there a subtree of G that includes all the vertices of R and
that contains no more than K edges?

76

10.

il

12.

13.

14.

PROVING NP-COMPLETENESS RESULTS

STAR-FREE REGULAR EXPRESSION INEQUIVALENCE

INSTANCE: Two star-free regular expressions £; and E, over a finite alpha-
bet T, where such expressions are defined by (1) any single symbol c€Z is a
star-free regular expression, and (2) if e, and e, are star-free regular expres-
sions, then the strings e,e; and (e,Ve,) are star-free regular expressions.

QUESTION: Do E, and E, represent different languages over Z, where the
language represented by o€X is o), and, if e, and e, represent the
languages L; and~ L, respectively, then e)e, represents the language

{xy:x€L; and p €Ly} and (eVe,) represents the language L,UL; ?

Component Design

SET SPLITTING
INSTANCE: Collection C of subsets of a finite set S.
QUESTION: Is there a partition of S into two subsets S, and §; such that

no subset in C is entirely contained in either §; or 5;?
Hint: Use 3SAT.

PARTITION INTO PATHS OF LENGTH 2

INSTANCE: Graph G = (V,E), with | V| =34 for a positive integer g¢.
QUESTION: Is there a partition of V into ¢ disjoint sets Vy,V;, ..., ¥, of
three vertices each so that, for each V; = {vyy, vi. i), at Jeast two of the
three edges {vu1, v}, (v vam}, and {vp, vaa)} belong to E?

Hint: Use 3DM.

GRAPH GRUNDY NUMBERING

INSTANCE: Directed graph G = (V,4).

QUESTION: Is there a labeling L: V—Z* {where the same label may be as-
signed to more than one vertex) such that, for each v€ ¥, L(v) is the least
non-negative integer not in the set {L(u): u€V,(v.u)€A}?

Hint: Use 3SAT.

GRAPH 3-COLORABILITY

INSTANCE: Graph G=(V,E).

QUESTION: Is G 3-colorable, that is, does there exist a function
f: V—I{1,2,3} such that f(u)#f(v) whenever {u,v]€E?

Hint: Use 3SAT.

