Efficient Algorithms for Reachability
and Path-Selection Problems

http://www.icte.uowm.gr/lgeorg/RPS/

L A

0

John S. Latsis
Public Benefit Foundation
Research Projects 2010

http://www.icte.uowm.gr/lgeorg/RPS/

Research Team

University of Western Macedonia
Department of Informatics and El
Telecommunications Engineering '

Alexandra Galani

Loukas Georgiadis (Coordinator)

Stavros Nikolopoulos
Leonidas Palios

Reachability

[© 2000 g Iag® pug®' 0 b

SAgasgy: :

E —o~b b j 5 Reachability Query :

lo Jéf @_; E E Is vertex b reachable from vertex a ?
o070 ¢ ‘

f, P J \:‘)4—1 0 (Is there a path in G from a to b ?)
RS

Q@ 00 9OF0 a

Goal: Construct a Data Structure that answers reachability queries efficiently

Reachability

Reachability Query :

Is vertex p reachable from vertex a ?

(Is there a path in G from a to b ?)

Goal: Construct a Data Structure that answers reachability queries efficiently

Efficiency of a Data Structure: (s(n), g(n))
s(n) storage space

g(n) query time

Easy : Efficiency (n*,1) or (m+mn,m+n)

So far achieved only for
Hard : Efficiency close to (m +n,1) restricted graph classes
(e.g., planar graphs)

Join-Reachability

Collection of graphs G = {G,G>,..., Gy}

Join-Reachability Query :

Report all vertices that reach b in all graphs G; € G

(Vertices a such thatthereisa a ~~ b pathinall G; € G)

Efficiency of a Data Structure: (s(n), ¢(n, k))
s(n) storage space

q(n,k) timetoreportk vertices

Join-Reachability

Collection of graphs G = {G,G>,..., Gy}

Join-Reachability Query :

Report all vertices that reach b in all graphs G; € G
(Vertices a such thatthereisa a ~~ b pathinall G; € G)

Applications: Graph Algorithms, Data Bases
Example: Rank Aggregation

A Ranking 1 Ranking A B
B N e e T 1. Item B D
2 I = | e 2. G tensD
C ; 3. Item C 3. Item A . A

Given a collection of rankings of some items, we would like to report fast all
items ranked higher than a query item in all rankings.

Join-Reachability

[1,16] a
[2,11] b h[12,15]
3,10] ¢ g[13, 14]
4,7]d e [8,9]
[596]f Gl
[1,16] a
[2,15] g
3,10] d f[11,14]
4,9] e c [12,13]
5,8] b
6,7 h G

s o oy
G NIy DA T PO O

RN RN JURL S Bl e) JEEN B’ Bl ()

123 4 5 6 7 8 9101112131415 16

Main Idea: Geometric mapping of simple graphs

Join-Reachability

Given two digraphs G; and G, with n vertices we can construct join-reachability
data structures with the following efficiency:

(a) (n,k) when GG; is an unoriented tree and G4 is an unoriented dipath.
(b) (n,logn + k) when G is an out-tree and G5 is an unoriented tree.

(¢) (nlog®n,loglogn + k) (for any constant € > 0), when G; and G5 are
unoriented trees.

(d) {
(e) (nlog®n,klog®n) when both G; and G5 are planar digraphs.
(

(f)

nlogn, klogn) when GG is planar digraph and G is an unoriented tree.

nki, k) when Gy is a general digraph that can be covered with x; vertex-
disjoint dipaths and G» is an unoriented tree.

(g) (n(ky + logn), krilogn) or (nkylogn,klogn) when (G is a general di-
graph that can be covered with x, vertex-disjoint dipaths and G- is planar
digraph.

(h) (n(k1 + K2),k1k2 + k) or (nk1Kke, k) when each G;, ¢ = 1,2, is a digraph
that can be covered with x; vertex-disjoint dipaths.

Join-Reachability
Collection of graphs G = {G1, Go,. .., G)\}
Join-Reachability Query :

Report all vertices that reach b in all graphs G; € G

(Vertices a such thatthereisa a ~~ b pathinall G; € G)

Join-Reachability Graph

Computing the smallest 7(G)
(in terms of the number of arcs
plus vertices) is NP-hard

a~bin J(G)
0

a~~b inal G; €G

Join-Reachability
Collection of graphs G = {G, G, ..., Gy}

Construction of a compact join-reachability graph 7(G)

0] a O 0] a

1] b O 1] e 7

K _ 6 d

2] c @ 2[fc . 3

31 d O 3] g i

5 7 3 =0 ¢
5 fO 5 f 1 Q/)}sz

: 0 a

6] g O 6] d

; B R g AR G RS TR 3 S A
(7] h O (7] h

Join-Reachability

Given two digraphs G; and G5 with n vertices, the following bounds on the size
of the join-reachability graph J({G1,G2}) hold:

(a) ©(nlogn) in the worst case when (G; is an unoriented tree and Gs is an
unoriented dipath.

(b) O(nlog®n) when both G; and G» are unoriented trees.
(¢) O(nlog®n) when G, is a planar digraph and G5 is an unoriented dipath.
(d) O(nlog®n) when both G and G are planar digraphs.
(e) O(kinlogn) when G, is a digraph that can be covered with ki vertex-

disjoint dipaths and G5 is an unoriented dipath.

(f) O(kinlog®n) when G, is a digraph that can be covered with k; vertex-
disjoint dipaths and G5 is a planar graph.

(g) O(k1kenlogn) when each G;, i = 1,2, is a digraph that can be covered
with k; vertex-disjoint dipaths.

Path-Selection

Compute paths in a graph G so that
certain requirements are satisfied

Disjoint paths

Applications: Communications, Scheduling, VLSI design

Vertex Connectivity

Strongly connected digraph G = (V, E)
contains an s ~= ¢ path for any pair s,t € V

k-vertex connected digraph G = (V, F)
the removal of any subset X C V| X| <k —1
leaves the graph strongly connected

Basic problems :
« Compute vertex connectivity (largest £ such that G is k-vertex connected)
» Test if the given digraph is k-vertex connected

Vertex Connectivity

Basic problems :

« Compute vertex connectivity k = largest k such that (G is k-vertex connected

O((n + min{x"/2, kn®>*})m) [Gabow 2006]

* Test if the given digraph is k-vertex connected

(1.3
el L }[Henzinger, Rao and Gabow 2000]
O(mmn) with error probability 1/2

(
O((M(n) +nM(k))logn) with error probability 1/n
((

} [Cheriyan and Reif 1994]
O((M(n)+nM(k))k) expected

n = |V],m = |A] M (n) = matrix multiplication time (= O(n?37%))

Vertex Connectivity

Undirected graphs: O(m + n) algorithms for testing
k=2 [Tarjan 1972]

k =3 [Hopcroft and Tarjan 1973]

Directed graphs: O(m + n) algorithm for testing k=2 ?

n=|V|,m=|A

Results

O(m + n)-time algorithm for testing 2-vertex connectivity

i

compute two vertex-disjoint s-t paths in O(log2 n) time
report the two paths, P and @, in O(|P|+ |Q]) time

O(n)-space data structure :

n=|V|,m=|A

Vertex Connectivity

k-vertex connected digraph G = (V, E)
the removal of any subset X C V| X| <k —1

leaves the graph strongly connected

From Menger’s theorem :

: (G contains k£ vertex-disjoint s-t paths
G is k-vertex connected < J P

forany s,t € V

2-Vertex Connectivity

2-vertex connected digraph G = (V, E)

the removal of at most one vertex

leaves the graph strongly connected

If G is strongly connected but not 2-vertex connected :

S

There are s,t € V such that all
s-t paths contain a common vertex

WSt

2-Vertex Connectivity

2-vertex connected digraph G = (V, E)

the removal of at most one vertex

leaves the graph strongly connected

If G is strongly connected but not 2-vertex connected :

S

There are s,t € V such that all
s-t paths contain a common vertex

WSt

2-Vertex Connectivity

2-vertex connected digraph G = (V, E)

the removal of at most one vertex

leaves the graph strongly connected

If G is strongly connected but not 2-vertex connected :

There are s,t € V such that all
s-t paths contain a common vertex

WSt

Flowgraphs and Dominators

Flowgraph G(s) = (V, E, s) : all vertices are reachable from start vertex s

v dominates w if every path from s to w includes v

dom(w) : set of vertices that dominate w

Trivial dominators : s,w € dom(w)

Application areas : Program optimization, VLSI testing, theoretical biology,
distributed systems, constraint programming

Flowgraphs and Dominators

Flowgraph G(s) = (V, E, s) : all vertices are reachable from start vertex s

v dominates w if every path from s to w includes v

dominator tree of (7(s)

O(m()a(m, ?’L)) algorithm: [Lengauer and Tarjan ’79]

O(m + n) algorithms:
[Alstrup, Harel, Lauridsen, and Thorup ‘97]

[Buchsbaum, Kaplan, Rogers, and Westbrook ‘04]
[G., and Tarjan ‘04]

2-Vertex Connectivity

Main Idea : Compute dominators in G(s) and G'(s) for arbitrary s € V

G" : has reversed arcs

dominator tree of G(a)

a

2-Vertex Connectivity

Main Idea : Compute dominators in G(s) and G'(s) for arbitrary s € V

G" : has reversed arcs

dominator tree of G(a)

2-Vertex Connectivity

Main Idea : Compute dominators in G(s) and G'(s) for arbitrary s € V

G" : has reversed arcs

dominator tree of G(a)

2-Vertex Connectivity

Main Idea : Compute dominators in G(s) and G'(s) for arbitrary s € V

G" : has reversed arcs

dominator tree of G(a)

2-Vertex Connectivity

Main Idea : Compute dominators in G(s) and G'(s) for arbitrary s € V

G" : has reversed arcs

dominator tree of (G" (a)

Vertex-Disjoint s-t Paths

Given a digraph G = (V, E) how fast can we compute a pair of

vertex-disjoint s-t paths?

Vertex-Disjoint s-t Paths

Given a digraph G = (V, E) how fast can we compute a pair of

vertex-disjoint s-t paths?

O(m + n) time : “vertex-splitting” + “flow augmentation”

Vertex-Disjoint s-t Paths

Given a digraph G = (V, E) how fast can we compute a pair of

vertex-disjoint s-t paths?

O(m + n) time : “vertex-splitting” + “flow augmentation”

We can get a more efficient solution when G is 2-vertex connected

- Use a 2-vertex connected spanning subgraph of G' with O(n) arcs

[Cheriyan and Thurimella 2000] : 1 + 1/k approximation of the minimum

k-vertex connected spanning subgraph in

O(km?) time

Vertex-Disjoint s-t Paths

Given a digraph G = (V, E) how fast can we compute a pair of

vertex-disjoint s-t paths?

O(m + n) time : “vertex-splitting” + “flow augmentation”

We can get a more efficient solution when G is 2-vertex connected

- Use a 2-vertex connected spanning subgraph of G' with O(n) arcs

[Cheriyan and Thurimella 2000] : 1 + 1/k approximation of the minimum

k-vertex connected spanning subgraph in
O(km?) time

« Use pairs of independent trees

Vertex-Disjoint s-t Paths

Any flowgraph G(s) = (V, A, s) has two spanning trees, B and R, such that
for any v € V
Bls,v] N R|s,v| = dom(v)

the two trees can be computed in linear time

Vertex-Disjoint s-t Paths

Corollary : If G(s) has trivial dominators only then for any v € V

B(s,v) N R(s,v) =0

R
Qs
independent
trees Qa
Ob

the two trees can be computed in linear time

Vertex-Disjoint s-t Paths

Corollary : A digraph G = (V, A) is 2-vertex connected if and only if for
two arbitrary vertices a,b € V (a # b) the flowgraphs G(a), G"(a), G(b) and
G"(b) have trivial dominators only.

We use a pair of independent spanning trees for each of the flowgraphs

G(a),G" (), G(1), G"(0)

e

a Q Q@ b
\ M

B

2-Vertex Connectivity

P, P> : vertex-disjoint a-t paths

Ps, P, : vertex-disjoint s-a paths

Suppose
Ps[s,a) N (Pi(a,t|U Psy(a,t]) #

0
Py(s,a) N (Pi(a,t) U Py(a,t)) =0

2-Vertex Connectivity

P, P> : vertex-disjoint a-t paths

Ps, P, : vertex-disjoint s-a paths

Suppose
Ps[s,a) N (Pi(a,t]U Ps(a,t]) #0
Py(s,a) N (Pi(a,t) U Py(a,t)) =0

Let = be the first vertex on Ps[s, a] such that
z € (Pi(a,t]U Pa(a,t]).

2-Vertex Connectivity

P, P> : vertex-disjoint a-t paths

Ps, P, : vertex-disjoint s-a paths

Suppose

Ps[s,a) N (Pi(a,t]U Ps(a,t]) #0
Py(s,a) N (Pi(a,t) U Py(a,t)) =0

Let = be the first vertex on Ps[s, a] such that
z € (Pi(a,t]U Pa(a,t]).

Consider z € Py(a,t| =

Ps[s,x] - Pilz,t] and Pyls,al] - Psla,t] are vertex-disjoint s-t paths

2-Vertex Connectivity

Data Structure : Given rooted trees S; and S5 on the same nodes
support the operations:

(i) Testif Si|z1,y1] contains zs.

(i) Return the topmost vertex in S1(z1,y1].

(iiiy Testif Si[x1,y1] and Sa[xs2,y2] contain a common vertex.

(iv) Find the lowest ancestor of %2 in Ss[xs,ys] thatis contained in Si[z1, 1]

(v) Find the highest ancestor of ¥2 in Sy|z2,y2| thatis contained in S|z, y].

L4 L2

Y1
Y2

2-Vertex Connectivity

Data Structure : Given rooted trees S; and S5 on the same nodes
support the operations:

(i) Testif Si|z1,y1] contains zs.

(i) Return the topmost vertex in S1(z1,y1].

(iiiy Testif Si[x1,y1] and Sa[xs2,y2] contain a common vertex.
(iv) Find the lowest ancestor of %2 in Ss[xs,ys] thatis contained in Si[z1, 1]

(v) Find the highest ancestor of ¥2 in Sy|z2,y2| thatis contained in S|z, y].

« A query uses a constant number of these operations.

. We give an O(n)- space data structure with O(log”n) time per operation.

Example : Pairs of Disjoint Paths in the New York Area

’,/ '-I 'll _v- 7 "

X -
= __Jwe"y ~ i ‘Hawiand. &',,- Miltor ocix l Tom”m ‘o

50{“?“;3"50“& T — enu},e/k/ ‘Pough’keeps: (f; o SenRim, “waﬁBecr |
T -,ﬂontlcelu Y (. = . ¥ (7 flStOl

N ‘ ..". Wurt 1shoig, ?mekusq‘u;gp 3 : Wappnngers F‘a.m F’aw q :

< ,E dred {20 2,* fx——— ' :

“PaviiEy. -y Vo & & : , Putne’n’iy.ake
. . G'BV’\ - & _f.:~<.;;5' M’eddletow 3

)éﬁdfand W\ l,\r Flond% Mbnou

1 7» ‘Am'f’L ~)‘\'armcs

S) Dldgma'\s Ferm $ussm A~ WestHaverst wj_
4"‘"' ﬁranc* /lllb. F / We> . H'“s. oNak ¢
SR BrU shikilL” ‘;\,_,/ tF:anKnn 7 x.SGﬁe _" .
\ Newtog, N 7 Ramséy.\ o ¢
,; N ast quoudst’urg \ : \pompmn L\ake .Oakl_ana) Y/ k -‘:0'1 = hpi.ae';n Ord lk t :
{ -\. ~ _. . Ho oon | \ / ' ’ =SS R Shozeham
pac A 5 Paters son f \ o 2t queﬁefsgn, S

ew Rochelle

;&a_chor “’ne'a",f@ Hacy R e T AtiacgEns Tlen Gove) __"\Jonhporl > "1 é (o —
" Belideras 15\ Mo;(stown S 255alG urga:ﬂéck- -0 N e
! = - g - - =] - |/ B o
r%i<1 ; ygas*mg'tqn 'N'endhan‘f S - N e \ :‘—7:31—-"' \ Be|Bor
3 '/'-—_Eé'by‘cr? -

.zfruwvsburé . bemawsy/

Example : Pairs of Disjoint Paths in the New York Area

s

Example : Pairs of Disjoint Paths in the New York Area

S |

Example : Pairs of Disjoint Paths in the New York Area

RO

Computational Morphological Analysis

Morphological Analysis : the study of the internal structure of words

Fundamental Aim : identification of the constituents of words and the
properties they express.

e.g. play kind read
play-ed kind-ness read-ing
play-ing read-er
play-er read-er-s

play-er-s read-able

Issues: What morphological units languages consist of?

What features are represented in each morpheme?

How do morphemes and features interact with one another?

Are there any constraints in the selection of morphemes in
specific environments?

Computational Morphological Analysis

Computational Approach: Morphological patterns as graph reachability and path
selection problems

ATTOAUp-

-av*-

-OMQAI-OJOUV -OVTOG

