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ABSTRACT
We propose a game-theory-based cross-layer optimization scheme
for wireless Direct Sequence Code Division Multiple Access (DS-
CDMA) visual sensor networks. The scheme uses the Nash Bargain-
ing Solution (NBS), which assumes that the nodes negotiate, with the
help of a centralized control unit, on how to allocate resources. The
NBS takes into account the video quality each node could achieve
without making an agreement. The cross-layer optimization scheme
determines the source coding rate, channel coding rate, and transmis-
sion power for each node. We compare the proposed game-theory-
based scheme with competing schemes that minimize the average
or maximum distortion among the nodes. Experimental results are
presented and conclusions are drawn.

Index Terms— Visual sensor networks, cross-layer optimiza-
tion, game theory, Nash bargaining solution, DS-CDMA.

1. INTRODUCTION

This work is concerned with the cross-layer resource allocation for
wireless visual sensor networks. These networks are comprised of
typically low-weight distributed sensor nodes, equipped with video
cameras, that can communicate with a centralized control unit at
the network layer. The centralized control unit performs channel
and source decoding to obtain the received video from each node.
The control unit transmits information to the nodes in order to re-
quest changes in transmission parameters, such as source coding
rate, channel coding rate, and transmission power. Applications of
visual sensor networks include surveillance, automatic tracking and
signaling of intruders within a physical area, command and control
of unmanned vehicles, and environmental monitoring.

A major problem in a wireless visual sensor network is how to
allocate the resources among the nodes. In a Direct Sequence Code
Division Multiple Access (DS-CDMA) system, the transmission of
a node causes interference to the transmissions of the other nodes.
Thus, increasing the transmission power of one node will improve
the received video quality of its transmission but will also degrade
the received video qualities of the other nodes. It becomes clear that
a joint optimization of the parameters of all nodes is required. In our
previous work [1, 2], we proposed cross-layer optimization schemes
that minimize either the average video distortion of all nodes, or
the maximum distortion among the nodes. The former optimization
criterion minimizes the average distortion but does not consider fair-
ness issues among the nodes. The latter criterion optimizes the worst
video quality among all the nodes in order to be fair.
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In this paper, we propose an alternative resource allocation be-
tween the nodes, which is based on the Nash Bargaining Solution
(NBS) from game theory [3]. The NBS allocates resources as a result
of a negotiation between the nodes with the help of the centralized
control unit. The solution takes into account the video quality each
node could achieve if it were to operate in a selfish manner, without
negotiating. The video quality of each node should be at least as high
as the quality it could achieve without negotiation. The NBS has
been used before in communications problems such as the multiuser
channel allocation for Orthogonal Frequency Division Multiple Ac-
cess (OFDMA) networks [4]. It has also been used in video stream-
ing for the allocation of the total bit rate among several video users
[5]. However, in [5], no specific network setup is assumed. Also,
the achievable video qualities in case of no negotiation (disagree-
ment point) are arbitrarily selected. To the best of our knowledge,
the present work is the first that applies the NBS to a video-quality
based optimization of a wireless visual sensor network, where the
video qualities at the disagreement point are determined based on
what each node could achieve selfishly, and not arbitrarily selected.

The rest of the paper is organized as follows. In section 2, the
basic architecture of the considered wireless visual sensor network is
presented. In section 3, the proposed game-theory-based cross-layer
optimization scheme is discussed. In section 4, experimental results
are presented. Finally, in section 5, conclusions are drawn.

2. VISUAL SENSOR NETWORKS

We next describe the basic architecture of the considered wireless
visual sensor network. DS-CDMA is used at the physical layer,
while H.264 is used for source coding and Rate Compatible Punc-
tured Convolutional (RCPC) codes are used for channel coding.

2.1. DS-CDMA

This work considers a wireless visual sensor network that utilizes
DS-CDMA. In DS-CDMA, all users (nodes) transmit on the same
frequency. In order to transmit a single bit, a node actually transmits
L “chips”. Thus, each node k is associated with a spreading code
(signature sequence) sk, which is a vector of length L. Thus, in or-
der to transmit the ith bit of a bit stream, node k actually transmits
bk(i)sk, which is a vector of L chips and bk(i) is either 1 or−1, de-
pending on the value of the bit that is being transmitted. The node of
interest receives interference from the other nodes. It is reasonable to
assume that the interference can be approximated by Additive White
Gaussian Noise (AWGN) [6]. Since user k has an associated power
level in watts, Sk = EkRk, the energy per bit to Multiple Access
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Interference (MAI) ratio becomes

Ek

N0

=

Sk

Rk∑K

j �=k

Sj

Wt

; k = 1, 2, 3, ..., K (1)

where Ek is the energy-per-bit, N0/2 is the two-sided noise power
spectral density due to MAI in watts/hertz, Sk is the power of the
node-of-interest in watts, Rk is the transmitted bit rate in bits per
second, Sj is the power of interfering node j in watts, and Wt is
the total bandwidth in hertz [6]. Rk is taken to be the total bit rate
used for source and channel coding. Assuming K users, Rk can be
expressed as

Rk =
Rs,k

Rc,k

; k = 1, 2, 3, ...,K (2)

where Rs,k is the source coding rate for node k and Rc,k is the
channel coding rate for node k. Since Rs,k has units of bits per
second and Rc,k is a dimensionless number, Rk will be measured in
bits per second.

2.2. Source Coding

The video captured by the nodes is compressed using the H.264/AVC
video coding standard. H.264/AVC has two conceptual layers, the
video coding layer (VCL) and the network abstraction layer (NAL).
The VCL forms the main part of the H.264/AVC and performs the
required tasks for video compression to efficiently represent the con-
tent of the video data. The NAL achieves the network-friendly ob-
jective of H.264/AVC. It defines the interface between the VCL and
the broad variety of systems and transport media. All data is encap-
sulated in NAL units, which contain an integer number of bytes. The
NAL unit structure can be used in packet-based and bitstream-based
systems. The difference in formatting lies in a unique start code pre-
fix for resynchronization preceding the NAL unit in bitstream-based
systems [7].

2.3. Channel Coding

In this work, we use Rate Compatible Punctured Convolutional
(RCPC) codes for channel coding [8]. In our calculations, we use
Viterbi’s upper bounds on the bit error probability, Pb, given by

Pb ≤
1

P

∞∑
d=dfree

cdPd (3)

where P is the period of the code, dfree is the free distance of the
code, cd is the information error weight, and Pd is the probability
that the wrong path at distance d is selected [8]. An AWGN channel
with binary phase-shift keying (BPSK) modulation has a Pd given
by

Pd = Q

(√
2dRcEb

N0

)
(4)

where Q(.) is the Q-function for a Gaussian random variable, Rc is
the channel coding rate and Eb/N0 is the energy-per-bit normalized
to the single-sided noise spectral density measured in watts/hertz.

3. OPTIMAL RESOURCE ALLOCATION

A centralized control unit at the network layer determines how net-
work resources should be allocated amongst the nodes. It can request
changes in transmission parameters, such as the source coding rates,

channel coding rates, and transmission power levels. The constraint
is that the chip rate be the same for all nodes. Assuming that all the
nodes use the same spreading code length L, a constraint on the chip
rate is equivalent to a constraint on the bit rate. In our previous work
[1, 2], we used as optimization criterion either the minimization of
the average distortion among the nodes, or the minimization of the
maximum distortion among the nodes. In this paper, we propose the
use of the Nash Bargaining Solution (NBS) from game theory [3].
The application of the NBS to our resource allocation problem is
discussed next.

3.1. The Nash Bargaining Solution

The goal of our resource allocation problem is to determine the
source coding rate, channel coding rate, and transmission power of
each node, subject to a target bit rate constraint. The received video
of node k will have expected distortion E{Ds+c,k}. As in [5], we
define the utility xk for node k as

xk =
c

E{Ds+c,k}
, (5)

where c is a positive constant.
Let X be the feasible set that consists of all possible vectors

(x1, x2, . . . , xK) . Thus, each element of X comes from a different
combination of source coding rates, channel coding rates and powers
for the K nodes. The feasible set X is assumed to be convex, closed
and bounded above.

Given the nature of the DS-CDMA channel, increasing the trans-
mission power of one node will improve its video quality but will
also degrade the video quality of the other nodes due to increased
interference. Thus, the nodes should negotiate (with the help of the
centralized control unit) in order to decide on a mutually acceptable
member of set X (operating point). The result of the negotiation
should give all nodes at least as high a utility as what they would
get if they were to decide on their parameters independently, other-
wise the agreement would do harm to them rather than good. Thus,
if the negotiation fails, each node will decide on its parameters in-
dependently, with the goal of maximizing its utility, regardless of
what the other nodes decide to do. Thus, the disagreement point
d = (d1, d2, . . . , dK) is the vector of utilities that each video node
can get without making a deal.

In our case, if no deal is made and the node of interest wants
to maximize its video quality regardless of what the other nodes are
doing, it will need to transmit with maximum power, since this will
maximize its Ek/N0 from Eq. (1), regardless of the other users’
transmission powers. Clearly, this applies to all video nodes. Thus,
d will consist of the utilities that each of the nodes gets when all
nodes transmit with maximum power. Thus, to find d, we will need
to find the optimal allocation between source coding and channel
coding for each node, given that all nodes transmit with maximum
power. This corresponds to a Nash equilibrium, because the strategy
of each of the nodes is a best reply to the strategies of the other nodes.
(If a node wants to maximize its video quality regardless of what the
other nodes are doing, it will have to transmit with maximum power).

Let us now define the bargaining set. The bargaining set consists
of all Pareto-efficient payoff profiles (elements of X) that assign all
nodes at least as much as they can get at the disagreement point
(without making a deal).

An agreement is Pareto-efficient when there is no other feasi-
ble agreement that all nodes prefer. Thus, a utility allocation x =
(x1, x2, . . . , xK) is not Pareto-efficient if there is another allocation
where each node gets a larger utility.
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The Nash Bargaining Solution F (X,d) is a member of the bar-
gaining set that satisfies the following axioms [3].

1. F (X,d) ≥ d.

2. y > F (X,d)⇒ y /∈ X.

3. Given any strictly increasing affine transformation τ(.),
F (τ(X), τ(d)) = τ(F (X,d)).

4. If d ∈ Y ⊆ X, then F (X,d) ∈ Y ⇒ F (Y,d) =
F (X,d).

The first two axioms stipulate that the solution should lie in the
bargaining set. The third axiom means that the solution should not
depend on how the nodes calibrate their utility scales. Thus, if we
scale the utility x as Ax + B, where A > 0, it should not make
a difference in the solution. Also, since scaling doesn’t matter, the
selection of the constant c in the definition of utility is not important.
The fourth axiom is the Independence of Irrelevant Alternatives. If
x ∈ Y ⊆ X and x is the solution to the problem when the feasi-
ble set is X, then x should also be the solution when the feasible
set is Y. Since points in X that do not belong in Y were not cho-
sen as the solution to the problem where the feasible set is X, their
unavailability in the problem where the feasible set is Y should be
irrelevant.

To find the Nash Bargaining Solution, we need to find the source
coding rate, channel coding rate and power for each node (which
determine the vector of utilities x = (x1, x2, . . . , xK)) so that the
Nash product is maximized [3]:

F (X,d) = argmax
x

(x1 − d1)
α1(x2 − d2)

α2 · · · (xK − dK)αK ,

(6)
subject to the requirement that x ≥ d, where αi is the bargain-
ing power of node i. The bargaining power of a node depends on
whether it is advantaged or disadvantaged by its role in the bargain-
ing game [3]. In our setup, there is no reason to assume that some
nodes are more advantaged than others, thus we assume that αi = 1
for all i. Then, the Nash product becomes

F (X,d) = argmax
x

(x1 − d1)(x2 − d2) · · · (xK − dK). (7)

Thus, in order to apply the Nash Bargaining Solution to our
cross-layer optimization problem, we will first need to determine
vector d = (d1, d2, . . . , dK), which contains the maximum utility
for each video node when all nodes transmit at maximum power

Once d is found, we will just need to determine the source cod-
ing rates, channel coding rates, and transmission powers, that will
maximize the Nash product (Eq. (7)).

We partition the sensor nodes into two classes: Nodes that image
low-motion scenes (low-motion nodes) and nodes that image high-
motion scenes (high-motion nodes). Let us now assume that there
are Klow low-motion nodes and Khigh high-motion nodes, where
Klow +Khigh = K. Then, the NBS will be a vector (xlow, xhigh),
such that

F (X,d) = argmax
x

(xlow−dlow)
Klow (xhigh−dhigh)

Khigh , (8)

where d = (dlow, dhigh) is the disagreement point. Here, we as-
sume two classes of nodes. However, the scheme can be generalized
to any number of classes.

3.2. Optimization Solution

The expected distortion E{Ds+c,k} (and thus the utility xk) of node
k depends on the source coding rate Rs,k, the channel coding rate

Rc,k and transmission power Sk selected for user k, as well for the
transmission powers Si, i �= k, selected for all the other users (inter-
ferers). Thus, the goal of the optimization is to determine the Rs,k,
Rc,k and Sk, k = 1, . . . ,K so that the Nash product in Eq. (7) is
maximized. The problem is a discrete optimization problem, that is,
Rs,k, Rc,k, and Sk can only take values from discrete sets Rs, Rc,
and S, respectively, i.e., Rs,k ∈ Rs, Rc,k ∈ Rc, Sk ∈ S.

Since it would be prohibitively complex to experimentally ob-
tain the expected distortion for each user for all possible combina-
tions of source coding rate, channel coding rate, and power level,
we have used the Universal Rate Distortion Characteristics. These
characteristics model the expected distortion as a function of the bit
error rate after channel decoding. As in [9], we assume the following
model for the URDC for each user k

E{Ds+c,k}(Rs,k, Pb) = a
[
log10

(
1

Pb

)]−b

(9)

where a > 0 and b > 0 are determined using mean square optimiza-
tion from a few (E{Ds+c,k}, Pb) pairs that are obtained experimen-
tally. a and b depend on the video sequence and source coding rate
Rs,k.

Therefore, the expected distortion E{Ds+c,k} of user k is de-
termined using the following procedure. First, for a given set of
transmission powers, the Ek/N0 is determined from Eq. (1). Then,
for a given selection of Rc,k, the bit error rate Pb after channel de-
coding is estimated using Eqs. (3) and (4), with Eb = Ek. Finally,
for a given selection of Rs,k, the expected distortion is estimated
using Eq. (9).

4. EXPERIMENTAL RESULTS

A number of experiments were conducted, some of which are pre-
sented here. We assumed that the visual sensor network nodes be-
long to one of two classes, depending on the amount of motion
in the scene they are viewing: low-motion class and high-motion
class. The “Foreman” video sequence was used to represent the
scene viewed by a high-motion node, while the “Akiyo” video se-
quence was used to represent the scene viewed by a low-motion
node. Thus, it is necessary to have two sets of URDC curves, one
for each level of motion. The characteristics were obtained for both
video sequences at a frame rate of 15 frames/s. The data points used
to obtain the parameters a and b in Eq. (9) were obtained by corrupt-
ing the video stream with packet errors based on a bit error rate Pb,
decoding the corrupted video bit stream with the H.264/AVC codec,
calculating the distortion, repeating this experiment 300 times and
then taking the average distortion. We chose c = 2552 so that the
definition of utility is analogous to the definition of PSNR. However,
as mentioned previously, the choice of c does not affect the results.

We assumed Binary Phase Shift Keying (BPSK) modulation
and RCPC codes with mother rate 1/4 from [8]. We set the
link layer packet size to 400. The total bandwidth, Wt, was set
to 5 MHz. For the results presented here, we assumed a tar-
get bit rate of Rk = 96kbps for all k. The set of admissible
source coding rates and corresponding channel coding rates were:
C ∈ {1 : (32kbps, 1/3), 2 : (48kbps, 1/2), 3 : (64kbps, 2/3)}.
The power levels were chosen from S ∈ {5, 10, 15} watts.

We performed the cross-layer optimization using the Nash Bar-
gaining Solution and compared its results with the method of mini-
mizing the average expected distortion of the nodes (MAD) and the
method of minimizing the maximum distortion among the nodes
(MMD) [1, 2]. We report expected PSNR values instead of ex-
pected distortion values, since they are equivalent. Tables 1, 2, 3,
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S1 (W) S2 (W) C1 C2 PSNR1 PSNR2

MAD 15 10 1 1 25.24 28.33
MMD 10 5 1 1 25.79 25.64
NBS 5 5 1 1 24.19 30.81

Table 1. Optimal resource allocation for the three criteria (MAD,
MMD, NBS) for 25 high-motion and 25 low-motion users.

S1 (W) S2 (W) C1 C2 PSNR1 PSNR2

MAD 15 10 1 1 26.13 30.32
MMD 10 5 1 1 26.48 27.82
NBS 5 5 1 1 25.45 32.83

Table 2. Optimal resource allocation for the three criteria (MAD,
MMD, NBS) for 25 high-motion and 15 low-motion users.

4 and 5 show the results of the three cross-layer optimization meth-
ods for the cases of 25 high-motion and 25 low-motion nodes, 25
high-motion and 15 low-motion nodes, 25 high-motion and five low-
motion nodes, 15 high-motion and 25 low-motion nodes, and five
high-motion and 25 low-motion nodes, respectively. Si is the trans-
mission power, Ci is the source-channel coding rate combination
and PSNRi is the expected PSNR in dB, where i = 1 refers to the
high-motion nodes and i = 2 refers to the low-motion nodes. It can
be seen that the NBS results in a higher PSNR for the low-motion
nodes, compared to the other methods. This is because dlow, the
maximum utility of the low-motion nodes when all nodes transmit
at maximum power (when no deal is made), is already higher than
the utility the low-motion nodes would get under MAD and MMD.
Of course, with the NBS, the PSNR of the high-motion nodes de-
creases. By looking at the presented results, we can see that the
PSNR increase of the low-motion nodes is larger than the PSNR
decrease of the high-motion nodes, except when the number of low-
motion nodes is much larger than the number of high-motion nodes
(as in Table 5). Thus, we can say that the NBS is the preferred opti-
mization criterion, unless the low-motion nodes heavily outnumber
the high-motion nodes. The NBS solution has the additional benefit
that the transmission powers of all the nodes are lower than with the
other criteria.

5. CONCLUSIONS

A major problem in wireless visual sensor networks is how to allo-
cate the available system resources fairly among the nodes. We have
presented a cross-layer resource allocation scheme that is based on
the Nash Bargaining Solution (NBS). The NBS allocates resources
as a result of an agreement between the nodes, taking into account
the video quality each node could receive without making an agree-
ment. We have experimentally compared our criterion with two
competing criteria, which minimize the average or the maximum
distortion among the nodes. Our experimental results show that the
NBS is the preferred optimization criterion, unless the low-motion
nodes heavily outnumber the high-motion nodes.
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